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We study the problem of finding ground states of spin glasses with exterior magnetic field, and the problem of minimizing
the number of vias (holes on a printed circuit board, or contacts on a chip) subject to pin preassignments and layer
preferences. The former problem comes up in solid-state physics, and the latter in very-large-scale-integrated (VLSI)
circuit design and in printed circuit board design. Both problems can be reduced to the max-cut problem in graphs.
Based on a partial characterization of the cut polytope, we design a cutting plane algorithm and report on computational
experience with it. Our method has been used to solve max-cut problems on graphs with up to 1,600 nodes.

perations research, due to its historical develop-
ment, is closely linked to the fields of econom-
ics, management science and engineering. However,
since the models developed by operations researchers
and mathematical programmers are abstract mathe-
matical models, they quite frequently apply to ‘real-
world situations other than those from which they
arose. Unfortunately, OR professionals are often una-
ware of these potential applications, and, conversely,
professionals in other fields do not know about the
models and solution methods developed by operations
researchers and mathematical programmers, or about
the present state of the art of our discipline. This lack
of mutual awareness is due mainly to insufficient
communication on both sides, and has led to many
rinventions and rediscoveries of models, theorems
and algorithms. In this article, we will report on several
sich cases in the field of physics and VLSI circuit
design.

Cuts (in graphs and digraphs) have played an impor-
tant role in combinatorial optimization since the early
days of network flow theory. The efficient solvability
of minimum-cut problems follows from the work
of Ford and Fulkerson, while the max-cut problem
was among the first problems to be shown to be NP-
tomplete (Karp 1972). In this paper, we will consider
the latter problem. In can be stated as follows. Given
u undirected graph G = (V, E) with edge weights

Subject classification: 432 The max-cut polytope; 628 a cutting plane method for the max-cut problem,
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¢; € R for all ij € E, find a cut (W) in G such that
c(3(W)) := 3 ijesm Ci; 1s as large as possible. For any
subset W C V, 8(W) denotes the set of edges ij € E
(the cut associated with W) with i € W and
j € V\W. If all weights c;; are nonpositive, then the
max-cut problem is trivial, and also a nonempty cut
of maximum weight can be found in polynomial time
using any good min-cut algorithm. Orlova and Dorf-
man (1972) and Hadlock (1975) independently found
a method that transforms the max-cut problem in
planar graphs into a so-called T- “join problem (using
the duality theory of planar graphs) for which a beau-
tiful polynomial time solution method had been
invented by Edmonds and Johnson (1973). Their
algorithm is based on a combination of shortest-path
and matching algorithms. Barahona (1983) showed
the max-cut problem to be polynomially solvable for
graphs not contractible to K (these graphs include
planar graphs); Grétschel and Pulleyblank (1981) did
likewise for the case ¢; = 0 for all ij, for weakly
bipartite graphs. The latter two results are based
on polyhedral combinatorics; this theory also forms
the background of the algorithm we will present
and discuss in Sections 4 and 5. On the negative
side, Barahona (1983) proved that for “almost
planar” graphs, i.e., graphs G that contain a node v
such that G — v is planar, the max-cut problem 15
NP-complete.

633 applications of integer programming t0

0030-364)(/88/36(_)3-0493 301.125
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Let us now describe two applications in which the
max-cut problem arises in a rather patural way. A
very interesting problem in statistical physics (within
the theory of magnetism) is the determination of
ground states of spin glasses, and the study of their
properties; for details see Section 1. Some models of
spin glasses, in particular, (according to Kinzel and
Binder 1984) the most successful model introduced
by Edwards and Anderson, which is based on the Ising
model, led to formulations of the ground state prob-
lem that are optimization problems in *1-variables.
In fact, an easy transformation shows that these prob-
lems can be reduced to max-cut problems,

The reduction of Orlova and Dorfman, and of
Hadlock, has been rediscovered in the field of physics.
Toulouse (1977) introduced concepts such as curved
plaquettes, frustrated contours, and so forth, that cor-
respond to notions such as odd nodes, and odd cuts
used by Edmonds and Johnson. Based on Toulouse’s
observation, Bieche et al. (1980) realized that a ground
state (in two dimensions) can be found by means of
matching techniques. ‘

Barahona et al. (1982) described a primal version
of the Edmonds-Johnson algorithm. A primal algo-
rithm is especially useful in performing postoptimality
analysis—in this case, to study the existence of long
distance order. This algorithm has been heavily used;
as far as we know, it can successfully handle spin glass
problems on grids of size 50 x 50 (see Angles d’Auriac
and Maynard 1984).

Working on some problems in very-large-scale-
integrated (VLSI) circuit design, we recently found
that a rather parallel development has occurred in this
field. One important problem here is to reduce the
number of vias (holes in a printed circuit board,
contacts on a chip). Over the years, many heuristics
for this problem have been proposed in the electrical
engineering and computer science literature, and
researchers believed the problem to be NP-complete.
Then Pinter (1984) and Chen, Kajitani and Chan
(1983) found independently that the 2-layer problem
(without preassignments and preferred layers) can be
reduced to a max-cut problem in planar graphs. So
again the Orlova-Dorfman-Hadlock reduction can be
used to apply the Edmonds-Johnson algorithm to
obtain a polynomial time algorithm. We will show in
Section 2 that pin-and-wire preassignments and pre-
ferred layers can also be handled within the max-cut
model, though polynomial time solvability is lost, by
using an analogy to the planar spin glass problem with
exterior magnetic field.

We were quite surprised to discover this (rather

simple and obvious) analogy between two such un-
related problems. But this situation shows again
the importance of two basic components of opera-
tions research/mathematical programming: a good
knowledge of the abstract theory, and a sound famil-
iarity with modeling techniques in various fields of
application.

We learned a number of things from our study. For
example, our interactions with physicists provided us
with some new and interesting applications. The cor-
responding mathematical models (here, the max-cut
problem) are well known but had not been extensively
studied. The applications gave rise to interesting math-
ematical questions which we turned into problems
concerning the polyhedral structure of cut polytopes
that could be solved—at least partially. Moreover, we
used the theory to derive algorithms that, we hope,
can solve some of the open questions in the applica-
tions. It is our fecling that many discrete phenomena
in nature have not been studied seriously from an
optimization perspective. We believe that the tech-
niques developed recently in our field—and unknown
to most practitioners or scientists in other areas—
could help to solve some of the new, larger, real-world
problems, In particular, some areas in physics, chem-
istry, biology, computer science and engineering have
little contact with our science, and many problems in
these fields are waiting to be addressed using the
techniques of operations research and mathematical
programming,.

1. Spin Glasses

One of the most flourishing branches of physics at
present is the study of order-disorder phenomena. A
central topic in this area is the investigation of prop-
erties of spin glasses. Researchers have developed a
number of theories to model spin glasses and explain
their behavior. Some of these theories predict contra-
dicting phenomena. These phenomena occur in situ-
ations that are hard to realize experimentally. In order
to test the theories and guide the design of experi-
ments, researchers have developed computer models
to simulate the behavior of spin glasses and then
observe which phenomena occur. Some aspects stud-
ied in these models lead, in fact, to optimization
problems.

A spin glass is an alloy of magnetic impurities
diluted in a nonmagnetic metal. Alloys that show spin
glass behavior are, for instance, CuMn; the metallic
crystal AuFe; the insulator EuSrS; and the amorphous
metal GdAl. One characteristic of spin glasses is a
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peak in magnetic susceptibility at a certain tempera-
ture. This peak indicates a phase transition. Another
phase transition may take place at very low tempera-
ture. However, it is an open question at present
whether or under what conditions on the spin glass
such a phase transition occurs, and what kind of order
phenomena appear at low temperature.

We will now present a mathematical model of spin
glasses. We assume a given spin glass that contains n
magnetic impurities (atoms). Each magnetic atom
has a magnetic orientation (spin) that is represented
by a 3-dimensional unit-length vector S;. Between
each pair i, j of magnetic atoms there is an interaction
J;; that depends on the nonmagnetic material and on
the distance r;; between the atoms. Several proposals
in the literature model this interaction. One common
feature of these models is that the absolute value of
the interaction decreases rapidly with distance and
that small changes of distance may result in a change
of sign of the interaction. One example of such an
interaction function (used frequently) is

cos(Dr;;)
Br;,

where A, B, and D are material-dependent constants.
(We remark at this point that the choice of the func-
tion J is irrelevant for our purposes. Our methods
handle any function.) If atoms i and j have spins S;
and S;, the energy interaction between i and j is
given by

Hu =JySi - ),
where S; - S; denotes the Euclidean inner product.

Given a spin configuration w, the energy of the whole
system is given by the hamiltonian,

Jy=J(ry) = 4

n—1 n n
Hw)=~3Y X JySi- §—hY S -F

i=1 jemi+1 =1
where a unit length vector F € R?® represents the
orientation of an exterior magnetic field and A repre-
sents the strength of this field. The study of this
hamiltonian is a major issue in statisical physics. Its
difficulty has led to considering various simplifica-
tions. One such simplification is to replace the
3-dimensional vectors S; and the magnetic field F by
1-dimensional vectors s;, respectively f, with values
+1 or —1 (called “Ising spins”), meaning magnetic
north pole “up” and magnetic north pole “down.”
Such a representation is called the Ising model. There
are, in fact, substances that show an up/down behavior
and for which the Ising model is the “correct™ model
and not just a simplification.

An Application of Combinatorial Optimization [ 495

If we consider interactions between all pairs of
impurities, we can speak of a long range model. But,
as just noted, the absolute value of the interaction
decreases rapidly with distance. So a number of
models consider only interactions between “close”
impurities (so-called nearest neighbor interactions),
and set to zero the interactions between impurities
that are far apart. These models are called short range
models. Many physicists consider short range models
more realistic (see Young 1984, and Kinzel 1984).
Moreover, a number of substances show short range
interactions only: next-neighbor and second-next-
neighbor, say. In our computational study, presented
in Section 5, we will therefore investigate short range
models, although our methods are equally well suited
for other models.

It is customary to make further simplifications and
to consider the spins regularly distributed, say on a
two- or three-dimensional grid. In a typical short range
model of such a grid structure, interactions are non-
zero only along edges of the grid, so, for instance, in
two-space, an impurity interacts only with (at most)
four other impurities, its neighbors in the grid graph.
Two grid models of this type have been studied inten-
sively: the Gaussian model, where the interactions
are chosen from a Gaussian distribution, and the
+J-model, where interactions between impurities
attain only the values +J and ~J, J a fixed positive
number, according to some distribution. In a real spin
glass (an alloy), the magnetic impurities are randomly
distributed. Note that in the models just introduced,
the spins are regularly distributed in a grid, but the
interaction values are considered random.

Let Q be the set of all the possible configurations of
Ising spins on a grid. So | @ | = 2, if there are » spins.
The behavior of such a system at temperature T is
(basically) described by the so-called magnetic parti-
tion function

- —H(w)
) E,, exp\ —r )
where X is the Boltzmann constant. Analytic expres-
sions of this function are, in general, not known.
But for the two-dimensional grid model with only
+J interactions (the so-called ferromagnetic case),
Onsager derived a simple formula for f. He predicted
a phase transition (at the so-called Curie temperature)
that could be observed experimentally. This discovery
was honored with a Nobel prize. Onsager’s results,
and those of many other researchers, indicate the
suitability of the short range Ising model of spin
glasses.
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At 0°K, the spin glass system attains a minimum
energy configuration. Such a configuration is called a
ground state. This state can be found by minimizing
the Hamiltonian associated with the system. We will
now present the reduction, mentioned in the intro-
duction, of the problem of finding 2 minimum energy
spin configuration in the Ising model to a max-cut
problem in graphs.

Suppose we have magnetic impurities 1, 2, ..., n
and an exterior magnetic field, 0. We set V' = {0, 1,
..., n} and consider V as the node set of a graph G =
(V, E). For a pair i, j of impurities, G constains an
edge ij if the interaction J;; between i and j is nonzero.
An edge 0i links every impurity i, 1 < i < n, to the
magnetic field 0. An Ising spin s; € {—1, +1} is
associated with each impurity. The Ising spin s, of the
exterior magnetic field can be set to +1 without loss
of generality. Let h be the strength of the magnetic
field and set Jo,:=h fori =1, ..., n; then we can
write the hamiltonian of this model as a quadratic
function in =1-variables in the following way:

H(w) = -AZE J,‘jS,'S_,' —h 21 S8i
ij€ -
i

=- 2 Jij8i8;.
ijJEE
Each spin configuration « corresponds to a partition
of Vinto V* and V~, where V* = {i € V|5, = +1}
and V- = {i € V| 5,= —1}. So we can write the energy
of the spin configuration w in the form

Hw)=-— 2 Jijsis;
HEE(V?)
- X Jysig= X Jyss
(JEE(VT) ijesv™)
=— X 4= X L+ X Uy
HEEW™) ijEEWVT) ijesv*)

where, for each subset W of V, we define E(W) :=
{ij € E|i,j € W} and, as before, (W) = {ij € E|
i€ W,j€ V\W].Setting C := Y ce Jij, We see that
Hw)+C=2 Y Jy,

ijesr)
and defining ¢;; := —J; for all ij € E, we find that the
problem of minimizing H is equivalent to maximizing
@)= X ¢

ije s(v*)

over all V* C V. This problem is a weighted max-cut

problem in the graph G associated with the spin glass
system. Thus, finding a ground state in the Ising model

of a spin glass is equivalent to finding an optimum
solution of the corresponding max-cut problem.

It is impossible to survey in this article all the
important properties of spin glasses and the unsolved
problems related to them. Some recent papers that
serve this purpose are those of Kinzel, and Young.
Van Hemmen and Morgenstern (1983) give a broad
overview of all theoretical and experimental issues
discussed in this area. Kinzel has counted about 2,000
publications on this subject and estimates a present
production rate of one paper per day on spin glasses.
(Ours is the one for May 2, 1986!)

We would, however, like to mention a few open or
controversial questions to acquaint the reader with
this area. Some of these problems can be approached
using the algorithm developed in this paper.

Animportant problem is the behavior of spin glasses
at temperatures close to zero. Kinzel writes: “Lowering
the temperature of spin glasses, one usually finds that
below a rather well-defined freezing temperature 7,
the magnetic moments freeze into randomly distrib-
uted directions. One of the main problems in spin
glasses is the question: Is this transition into the
spin glass phase a true static phase transition or is
it a gradual freezing process far from thermal equi-
librium,” and further, “...the two-dimensional
Edwards-Anderson model describes real spin glasses
qualitatively surprisingly well. However, recently
more and more experiments seem to favor a true
phase transition at a nonzero critical temperature T,
whereas the model has a nonequilibrium freezing
temperature. ...”

It is interesting to see that two-dimensional and
three-dimensional spin glasses seem to behave differ-
ently: theories and experiments are more in agreement
with respect to the planar case. In particular, some
power law hypotheses about phase transitions seem to
be generally accepted in dimension two, while the
three-dimensional case is open. Moreover, there are
controversies between theory and practice. Young
points out: “In the last three years, then, theorists have
become more than ever convinced that (the lower
critical dimension) d;. = 4 and experimentalists more
than ever sure that a transition occurs in d = 3. Hence
this paradox is no nearer being solved.” Moreover,
Morgenstern and Binder (1980a) explain: “The
nonexistence of a phase transition at nonzero temper-
ature in two dimensions is in agreement with high-
temperature series extrapolation . .. , with most (but

not all) real space renormalization group treatments
and other arguments. For three-dimensional Ising
systems, the situation is much more controversial:
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series . . . and other arguments . .. again imply non-
existence of a tranmsition, while all real-space re-
normalization methods ... now imply the existence
of a transition with 7, # 0.”

There are a number of open questions (in two and
three dimensions) concerning the behavior of the +.J
model. Angles d’Auriac and Maynard write: “In the
+J model, the ferromagnetic (+.J) and antiferromag-
netic (—J) bonds are distributed at random on a
square lattice of Ising spins. By increasing the concen-
tration x of antiferromagnetic bonds from 0 to 0.5 at
very low temperatures, the ferromagnetism disappears
and a dislocated phase appears which resembles a
superparamagnet. This property is well established,
but there has been some controversy as to whether the
random antiphase occurs between the ferromagnetic
phase and superparamagnetic at T = 0°K. This pos-
tulated phase has been suggested ... from the obser-
vation of a series of exact ground states exhibiting
both rigidity and a magnetic wall at intermediate
concentrations 0.1 < x < 0.15.” In fact, these obser-
vations have only been made in the planar case with-
out exterior maguetic field, and it is interesting to see
whether or not similar phenomena occur in three
dimensions or with a magnetic field.

Reger, Binder and Kinzel (1984) express further
interest in exact ground-state calculations with
exterior magnetic field: “Thus, there is considerable
interest in estimating the ground-state magnetization
M(T = 0, H) accurately. So far the information on
M(T = 0, H) rests on Monte Carlo simulations where
the temperature T of the model system is slowly cooled
down to T = 0. These simulations are very time
consuming ... More efficient alternative methods to
study ground-state properties of spin glass models
would be highly desirable.”

Here we come to an interesting issue. Ground-
state calculations were the starting point of the Monte
Carlo methods (currently running under the name of
simulated annealing) that now invade many branches
of optimization. Although many physicists believe
that some stochastic processes such as simulated
annealing reflect the evolution of real spin glass sys-
tems rather accurately, there have been some doubts.
For instance, Van Hemmen and Siit6 (1985) point
out: “Most glassy materials show an extremely slow
relaxation to equilibrium once they are below glass
transition regime. This behavior is due to local
anisotropies which make a local change inadvanta-
geous unless other particles also participate and a
whole cluster is flipped.” The flipping of one spin at a
time is the usual random change used in simulated
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annealing. Morgenstern and Binder (1980b) write,
with respect to this method: “It is an open question to
identify the times necessary to simulate equilibrium
properties of spin glasses,” and furthermore: “There
has been considerable discussion in the literature . . .
concerning ground-state properties obtained from
Monte Carlo simulations.”

A more elaborate discussion of this topic can be
found in Barahona et al. (1982). We have done some
preliminary testing and found that simulated anneal-
ing comes up with spin configurations whose energy
is only slightly larger than the minimum energy, but
the spin configurations often differ considerably from
the optimal ones. Qur observations agree with the
findings of Morgenstern and Binder (1980b). We will
report elsewhere on this subject.

As we have mentioned, there is considerable interest
in obtaining exact ground states. So far, physicists
use almost exclusively (approximative) Monte Carlo
methods. A completely different approach is described
in the recent paper by Canisius and Van Hemmen
(1986). Here a nonlinear programming algorithm
(based on Rosen’s projected-gradient method) is
designed to minimize the hamiltonian H(w) directly.
This method produces a series of local minima
from which the best is selected. It can handle quite
large two- and three-dimensional grids (problems of
size up to 30 X 30 and 10 X 10 X 10 are reported)
and provides good approximations of the ground
state.

We have found very few reports mentioning exact
algorithms for spin glass systems different from planar
grids. Hartwig, Daske and Kobe (1984) report on a
branch-and-bound method that is able to solve sys-
tems with up to 60 spins. With the same algorithm,
Kaschner and Kobe (1984) handled 80 spins. For a
special planar grid model with exterior magnetic field,
Morgenstern and Binder (1980b) invented an enu-
meration method—which is quite time-and-space
consuming—with which optimal ground states could
be found for 18 X 18 grids. (Their study needed about
500 hours of computing time on an IBM 370/168.)
Barahona and Maccioni (1982) have designed an algo-
rithm for three-dimensional spin glasses which can
handle 5 X 5 X 5 grids.

The algorithm we have designed has been used
successfully for toroidal grids of up to 40 X 40 with
exterior magnetic field—see Section 5 for details. This
grid size is acceptable for many applications in physics,
though larger grid sizes are desirable in certain
instances. We hope that our approach will provide the
means to also address these larger applications.
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Figure 1. A chip with six cells and nine nets.

2. Via Minimization

We now want to outline another application of the
max-cut problem that has interesting parallels to the
ground-state minimization of spin glasses. This prob-
lem comes up in VLSI design and in the design of
printed circuit boards. A chip construction is usually
broken into several phases, among which are place-
ment, routing and layer assignment. We suppose that
all cells are placed on a chip and all nets have been
routed but that the assignment of wire segments to
layers has not been performed (this is called transient
routing). A net may connect two Or more pins.
Figure 1 shows six cells with nine nets. All nets connect
two pins.

In a transient routing, wires belonging to different
nets may cross. A feasible layer assignment must have
the property that such crossing wire segments are
assigned to different layers. Thus some wires necessar-
ily have to be routed on different layers. Physically, a
change of layers is achieved by placing a “via”—in
printed circuit board design, a hole to be drilled; in
VLSI design, a contact that needs special treatment
in the production process. In printed circuit board
fabrication, vias cause additional costly work and
often contribute to failure of the board due to crack-
ing. In VLSI design, vias need additional space, are
obstacles in compaction, and decrease the yield in the

fabrication process. Thus, it is desirable to find a layer
assignment such that the number of vias is as small as
possible. Further design rules (for example, two wires
that run parallel at minimum feasible distance within
a certain interval may not contain a via within this
interval) restrict the placement of vias. In general,
each wire may be partitioned into free and critical
segments, such that vias are allowed on free segments
but are forbidden on critical segments. In Figure 1
there are 14 critical segments (drawn solid and num-
bered 1, .. ., 14) and 23 free segments (drawn dotted).

We want to treat the case where only two layers are
available. Let us first assume that all nets connect
exactly two pins, so each net consists of one wire. We
partition each wire into its free and critical segments.
The critical segments correspond to the node set V of
a layout graph G = (¥, E) which has two kinds of
edges. Nodes i and j are joined by a conflict edge ij
whenever the associated critical segments must be
on different layers. Nodes i and j are joined by a con-
tinuation edge ij whenever the associated critical
segments are connected by a free segment. So
E = A U B, where A are the conflict edges and B
the continuation edges. In our example, the lay-
out graph looks as shown in Figure 2. In it, the
conflict edges are represented by solid lines and
the continuation edges by broken lines.

If the “conflict graph” H = (V, A) of G is not
bipartite, it is easy to see that there is no feasible

Figure 2. The layout graph for the chip shown
in Figure 1.
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shown in Figure 2.

assignment of segments to the two layers (in this case
the transient routing has to be changed). Otherwise H
partitions into connected bipartite components
Vi, A1), ..., (Vi Ay). Clearly, the assignment of one
node of a component (¥;, 4;) to a layer implies the
assignment of all other nodes of V;. We can now
phrase the via minimization problem in terms of the
layout graph G as follows. Find a cut C of G that
contains all conflict edges 4 and contains as few
continuation edges as possible. To formulate this as a
max-cut problem, we proceed as follows.

We construct a reduced layout graph R = (W, F)in
the following way. For each component (V;, 4,) of H,
we arbitrarily select a “representative” node v; and set
W = {vy, ..., u}. F contains an edge linking v; and
v;, i # j, if and only if G contains a (continuation)
edge linking some node in V; to some node in ¥;. In
graph theor¢tical terminology, the reduced layout
graph is constructed from the layout graph by “shrink-
ing” each component (V;, 4,), i € {1, ..., k}, to one
node v;. This way, all conflict edges disappear and the
edge set F represents the continuation edges. Since,
by definition, continuation edges do not cross,
the reduced layout graph is planar by construction.
Figure 3 shows the reduced layout graph of the graph
shown in Figure 2. For each edge v;v; in F, we define
two weights a;; and g;; in the following way:

;;:= number of vias between V; and ¥} necessary
if v; and v; are assigned to the same layer, and

B := number of vias between V; and V; necessary
if v; and v; are assigned to different layers.

The numbers «;; and g;; can be easily calculated in
linear time by counting continuation edges in G
between V; and V. In Figure 3, the edges of the
reduced layout graph are labeled (e;;, 8;).

A layer assignment corresponds, by construction, to
a partition W*, W~ of W. Given such a partition, the
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number of vias is

VIAW W)= ¥ ay+ Y ay+ % B
vy EF v uEF vy, EF
vy EWY v EWT vEW*

yEW™

Define C:= ¥, ,er o;j. Then
VIAW*, W)= C= Y (B, ~ ay),

vy €F

vEW™T

quW‘
and so for ¢;; := a;; — B;; the problem of minimizing
the number of vias is equivalent to the max-cut prob-
lem in R = (W, F), with the weights c;; on the edges
v;v; € F. In our example, we have C = 2, and the edge
weights ¢;; are shown in Figure 4. We induce a maxi-
mum weight cut in this graph by partitioning W into
{1, 5} and {6, 8}. This cut has weight 0, and therefore
at least C — 0 = 2 vias are needed. Our (optimal)
solution consists of placing a via between the critical
segments 5 and 7 and another via between the critical
segments 4 and 8 of Figure 1.

The reduction outlined above is due to Pinter and
to Chen, Kajitani and Chan independently. These
authors also observed that the max-cut problem is
solvable in polynomial time since the reduced layout
graph is planar.

Pinter, and Chen, Kajitani and Chan mention that
the reduction just described also works in the case of
general nets (3 pins or more per net are allowed) if the
transient routing contains three-way junctions only.
How to handle four-way junctions is an open prob-
lem, but, fortunately, they rarely occur in practice.
Figure 5 shows how a three-way junction has to be
modeled in the layout graph. The triangle consists of
three “continuation edges” with weights %2. In this
more general framework, all other continuation edges

©- - D

Figured. The reduced layout graph, showing
the edge weights c;;.
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Figure 5. Model of a three-way junction in
alayout graph.

are assumed to have weight 1. The modeling of the
via minimization problem just described disregards
an important requirement in VLSI design, where in
many cases one of two layers is preferred and pins are
preassigned to some layer. For instance, in standard
cell design in 3-u-CMOS-2 technology, there are a
polysilicon (poly) and an aluminum (alu) layer. Pref-
erably, wires should be in the alu-layer whereas pins
are usually in the poly-layer. In ECL technology there
are two metal layers (alu 1 and alu 2), and pins are
usually preassigned to one of the layers.

We will now show how one can model these require-
ments by introducing an additional node. This node
plays the role of the exterior magnetic field in the spin
glass application. The graphs that result will not be
planar in general, but they will be “almost planar.”

First we would like to remark that via minimization
and layer preference are conflicting objectives, since
obviously, by increasing the number of vias, more
wire segments can be placed on the preferred layer.
This suggests the introduction of a parameter, to be
set by the user, with which the relative emphasis given
to the two goals can be controlled.

Recall that the layout graph was constructed from
free and critical wire segments of the transient routing.
We now add additional critical segments as follows. If
the initial segment of a wire starting at a pin is free,
we replace it by a critical segment (starting at the pin)
followed by a free segment. Each remaining free seg-
ment is subdivided into a free segment, followed by a
critical segment, followed by a free segment. From
this set of critical and free segments, we construct the
layout graph G = (V, E), V= {l,. .., n}, as described
previously. We introduce an additional node, called
0, and associate it to the preferred layer. We use this
node as a “magnetic field” to attract wire segments to
the preferred layer with “force” 4> 0 and to preassign
some wire segments and pins to any of the two layers.
To do this, we join each node i, 1 < i< n,to O by an
edge. Let us call this graph the extended layout graph
G = (¥, E). We now put weights on the edges of E.
All conflict edges ij in E have weight w;; := 0, all
continuation edges have weight w;; := 1 (unless they

result from the construction shown in Figure 5, in
which case they have weight 12). Let M be a very large
positive number. We define the weight of an edge 0i
as follows:

—M if i corresponds to a wire segment pre-
assigned to the preferred layer,
Woi 1= M if i corresponds to a wire segment pre-
assigned to the other layer,
—h otherwise.

A pin preassignment is handled by putting the appro-
priate weight (M or —M) on the edge 0i, where i is the
node corresponding to the initial critical segment start-
ing at that pin.

We want to solve the following problem: Find a cut
C in G such that C contains all conflict edges and
w(C) is as small as possible.

The parameter £ is the control parameter for the
user to decide on the relative emphasis given to the
conflicting goals. The stipulation /1 = 0 results in a via
minimization subject to preassignments of some pins
and wire secgments, while /2 large enough strongly
favors the preferred layer. Clearly, some care must be
given to setting A.

We now construct the reduced layout graph R=
(W, F) from G as described previously (the edges 0i
are considered continuation edges). The definition of
the weights a;;, §;; of the edges of F should be clear
from the construction. Setting ¢; = oy — £, We
can easily see that finding a cut € in R with maxi-
mum weight c(C’) is equivalent to the problem just
defined.

The reduced layout graph R 1s not planar, but
R - v, where v, is the node in R corresponding to
node 0 in & that is associated to the preferred layer, is
planar. So we are able to reduce the via minimization
problem, subject to pin preassignment and layer pref-
erence, to a max-cut problem in an “almost planar”
graph, Recall that a similar problem also arose in our
spin glass application, where we had a torus instead
of a planar graph. As mentioned in the introduction,
the max-cut problem is NP-complete for these almost
planar graphs. Our computational experience (see Sec-
tion 5) with the spin glass problem shows that the
polyhedral approach is good enough to handle such
problems in practice. This indicates that our algorithm
might also be suitable for via minimization with pre-
ferred layers and preassignments. (If there is no layer
preference, but possibly pin preassignments, then the
problem is polynomially solvable provided that all
nodes corresponding to preassigned pins are on the
same face of the reduced layout graph.)

CE RS E L O




The reduction just described (in particular, the sub-
division of all free segments and the addition of a
critical segment at each pin) results in a rather large
number of nodes. In a practical situation, not all free
segments and pins are equally important, and thus the
user should decide which critical segments he wants
to add.

We would like to remark that, so far, we minimize
the number of vias, respectively, maximize the number
of wire segments, on the preferred layer. Our model
also allows us to take the lengths of wire segments into
account by individualizing the magnetic force, i.e., by
attracting a long segment with a larger force than a
short one.

3. Polyhedral Background

We will now describe the theoretical background on
which we base our cutting plane algorithm for the
max-cut problem.

Suppose a graph G = (V, E) with edge weights c;;
for ij € E is given. For each cut §(W), W C V, we
define its incidence vector x**’ € R by setting
x!M = 1ife€ (W) and x!™ = 0if e & 6(W). The
cut polytope CUT(G) of & is the convex hull of all
incidence vectors of cuts of G, i.e.,

CUT(G) = conv{x*" € RE| W C V}. (1)

We can write the problem of finding a cut §( W) in G
with ¢(5(W)) as large as possible (considering c as a
vector in R£) as the linear program

max{c”x|x € CUT(G)}, (2)

since the vertices of the polytope CUT(G) are exactly
the incidence vectors of the cuts of G. In order to
apply linear programming techniques to solve this LP,
we must represent CUT(G) as the solution set of an
inequality system. Since the max-cut problem is
NP-complete, we cannot expect to find a complete
system describing CUT(G), but, as we shall see later,
partial systems may also be useful in solving the max-
cut problem. The polyhedral structure of CUT(G) and
the closely related bipartite subgraph polytope has, for
instance, been studied in Barahona, Grotschel and
Mahjoub (1985) and Barahona and Mahjoub (1986).
We now summarize some of the results known about
the facial structure of CUT(G) mentioned in Bara-
hona and Mahjoub.
The cut polytope is full dimensional, i.c.,

dim(CUT(G)) = | E|.
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This implies that each facet-defining inequality is
unique up to multiplication by a constant. Since
CUT(G) is in the unit hypercube of RZ, the trivial
inequalities O < x, < 1 are valid for CUT(G).

Theorem 1. For e € E, the following statements are
equivalent:

(@) x. = 0 defines a facet of CUT(G).
(b) x. =<1 defines a facet of CUT(G).
(c) edoes not belong to a triangle.

We know from graph theory that a cut and a cycle
intersect in an even number of edges. This observation
yields that the odd cycle inequalities

X(F) — x(C\F)=< |F| -1
forallcycles CC Eand all FC C, | F| odd

are satisfied by all incidence vectors of cuts. Recall
that a chord of a cycle C is an edge of G that joins
two nodes of C but does not belong to C.

Theorem 2. Let C C E by a cycle and F C C, | F|
odd, then x(F) — x(C\F) < | F| — 1 defines a facet
of CUT(G) if and only if C has no chord.

A graph is called a bicycle p-wheel if it consists of a
cycle of length p and two nodes adjacent to each other
and to every node of the cycle.

Theorem 3. Let (W, F) be a bicycle (2k + 1)-wheel,
k = 1, contained in G. Then the inequality

x(F) <202k + 1)
defines a facet of CUT(G).

Theorem 4. Let K, = (W, F) be a complete subgraph
of order p of G. Then the K,-inequality

o<l

is valid for CUT(GY); this inequality defines a facet of
CUT(G) if and only if p is odd.

There are further known classes of facets of
CUT(G). In particular there exist interesting methods
to construct new facet-defining inequalities from given
facet-defining inequalities. Especially notable are the
techniques of changing the sign of a cut and of sub-
dividing an edge. The exact definitions of these
operations are technically a little complicated and
are therefore omitted.

A relevant problem for our purposes is to decide
whether the separation problem for the classes of
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inequalities just decribed for CUT(G) is solvable effi-
ciently. The separation problem for a class # of
inequalities valid for CUT(G') is as follows.

Given y € QF, decide whether y satisfies all ine-
qualities in %, and if y does not, find an inequality
in % violated by y.

The importance of the separation problem stems from
the fact that the polynomial time solvability of the
separation problem for # implies, by the ellipsoid
method, the existence of a polynomial algorithm for
the optimization problem max{c”x | x satisfies all in-
equalities in % } (see Grotschel, Lovasz and Schrijver
1981). Although the ellipsoid method is not practically
efficient, experience gained in recent years shows that
these optimization problems can indeed be solved
reasonably well in practice (see, e.g., Crowder and
Padberg 1980; Crowder, Johnson and Padberg 1983;
Gritschel and Holland 1985; and Grotschel, Jiinger
and Reinelt 1984).

Concerning the classes of inequalities just defined,
the following is known. We assume that a graph
G = (V, E) and a point y € QF are given. We want to
solve the separation problem for y.

Trivial Inequalities. The separation problem is
trivial. We simply substitute y into the inequalities
0€x.51,e€E.

0Odd Cycle Inequalities. (We can assume that
0 € y. < 1 holds.) We define a new graph H =
(V'U V" E'UE"” UE")= (W, F) that consists
of two copies of G, say G’ = (V’, E’) and G" =
(V”, E"), and the following additional edges E”. For
each edge uv € E we create the two edges u’v” and
u”v’. The edges u’'v’ € E’ and u"v" € E” are
assigned the weight y,,, while the edges u’v”, u"v' €
E™ are assigned the weight 1 — y,,. For each pair of
nodes u’, u” € W, we calculate a shortest (with respect
to the weights just defined) path in H. Such a path
contains an odd number of edges of E” and corre-
sponds to a closed walk in G containing u. Clearly, if
the shortest of these (u’, ©”)-paths in H has length
less than 1, there exists a cycle C C E and an edge set
FC C, | F| odd, such that y violates the correspond-
ing odd cycle inequality. (C and F are easily con-
structed from a shortest path.) If the shortest of these
(u’, u” y-paths has length at least 1, then y satisfies all
these inequalities. So the separation problem can be
solved in polynomial time (Barahona and Mahjoub).

Bicycle Wheel Inequalities. Gerards (1985) has
shown that the separation problem for this class of
inequalities can be reduced to a sequence of shortest
path calculations in a similar way as described above

for the odd cycle inequalities. Hence, this separation
problem is also polynomially solvable.

K,-Inequalities. Trivially, for p fixed, one can check
all K,-inequalities in polynomial time by enumera-
tion, but it is not known whether there is a polynomial
time algorithm to solve the separation problem for all
complete subgraph inequalities. It is also not known
whether there is a good algorithm to solve the sepa-
ration problem for the class of inequalities obtained
from the K;-inequalities by edge subdivision and
changing the sign of a cut.

These remarks show that the following LP-
relaxation of the max-cut problem can be solved in
polynomial time.

Max ¢"x
O<sx.<1 forale€ E
x(F)—x(C\F)< |F| -1
for all cycles CC Eand all FC C, | F| odd
x(F) < 22k + 1)
for all bicycle (2k + 1)-wheels (W, F).

In the special application we will treat, bicycle p-
wheels do not occur. (The graphs ( also do not contain
complete subgraphs K, for p = 4, but they may contain
subdivisions of K; that induces facets of CUT(G).)
Thus we can disregard these inequalities and concen-
trate on the remaining two classes. Let us therefore
define the following polytope.

P(G):={xeRE|0<x.<1forallelE,
x(F)—x(C\F)< |F| -1
forall cycless CCE
andall FC C, | F| odd}.

Observe that

CUT(G) = conv{x € P(G)|x integer},

)
max ¢’x
x € PA(G)
X integer

is an integer programming formulation of the max-
cut problem. Moreover, the following has been shown
by Barahona and Mahjoub.

Theorem 5. Po(G) = CUT(G) if and only if G is not
contractible to K.
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This theorem and our preceding remarks prove that
the max-cut problem is solvable in polynomial time
for the class of graphs not contractible to K. Since,
by Wagner’s theorem, planar graphs are those graphs
which are not contractible to K5 or K;;, we have
P-(G) = CUT(G) for all planar graphs. So this obser-
vation also implies the polynomial time solvability of
the max-cut problem for planar graphs.

Barahona (1981) designed a polynomial time algo-
rithm that solves the max-cut problem for toroidal
graphs with +1 weights. This makes it possible to find
a ground state in the two-dimensional +.J-model with
periodic boundary conditions. However, we do not
know an inequality system describing the cut polytope
for toroidal graphs.

As mentioned before, for the ground state problem
in spin glasses, Toulouse introduced the concept of
frustrated contours and stated “There is no way of
choosing the orientations of the site spins around a
frustrated contour without frustrating at least one
bond.” If one translates this sentence into our termi-
nology, it suggests that we consider the following
system of inequalities:

2 x; = 1 for all frustrated contours C C E,

ijec
x;20 forall ijEE,

where frustrated contours are cycles in G with an
odd number of negative interactions. For the
two-dimensional case, this system defines an integral
polyhedron. This follows from the Chinese-Postman-
Theorem of Edmonds and Johnson, as has been
pointed out in Barahona et al. For random-field Ising
ferromagnets, the system also defines an integral
polyhedron. This is a consequence of the max-flow
min-cut theorem of Ford and Fulkerson and was
shown by Barahona (1985). This system, however, is
not integral for three-dimensional Ising models, but it
provides a tight LP-relaxation, as can be seen from
the computational experience with it reported in Ba-
rahona and Maccioni. It is also not integral for planar
nor for toroidal spin glass systems with exterior mag-
netic field, a case we will consider later in this paper.

4. The Cutting Plane Algorithm

We have implemented a standard cutting plane algo-
rithm based on the simplex method: i.e., we start with
a very coarse LP-relaxation of the max-cut problem
and use the simplex method to solve it. If the optimum
solution is the incidence vector of a cut, we are done.
Otherwise we enter a “separation phase” to find ine-
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qualities violated by the optimum solution. If such
inequalities are found, we add them and repeat the
process. If not, we have to resort to branch and bound
(in principle). Our cutting plane algorithm was not
implemented to treat general graphs. Our objective
was to develop a special purpose computer code for
max-cut problems in the spin glass application.
Although we exploited the special structure of this
problem class (e.g., by designing special purpose cut-
ting plane generation heuristics) our approach is gen-
eral in principle. Only a few heuristics have to be
exchanged and some data structures have to be mod-
ified in order to treat arbitrary graphs.

We study two-dimensional Ising spin glasses on a
grid with nearest neighbor interactions, an exterior
magnetic field and so-called periodic boundary con-
ditions. (The periodic boundary conditions are a
standard way of modeling an infinite planar spin glass
finitely.) This leads to the class of graphs consisting of
a k X k-grid embedded on a torus and a further node
joined to all grid nodes (Figure 6.) Setting n = k2, our
graphs, thus, have n + 1 nodes nd m = 3n edges.

Now we outline our strategy for generating and
eliminating cutting planes. As mentioned previously,
we restrict ourselves to trivial inequalities and odd
cycle inequalities. The nonnegativity constraints and
the upper bounds (of value 1) on the variables are
automatically handled by the simplex method. We
implemented the separation. algorithm for the odd
cycle inequalities outlined in Section 3. Using
Dijkstra’s method and labeling techniques, we can
achieve an O(n’)-implementation, but, for practical
purposes, this approach is rather slow. Therefore, we
have added faster heuristics for finding violated odd

—

Figure 6. A k X k grid embedded on a torus, with a
further node joined to al! grid nodes.
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cycle inequalities in order to avoid calling the “exact
separation routine.” We describe them in the order
we call them in the algorithm.

Suppose y € QF is the optimum solution of the last
linear program. We have to check whether y is the
incidence vector of a cut, and if not, find odd cycle
inequalities violated by y, if there are any.

CIBCAG (Check Integrality, Bipartiteness, Cut,
and Generate Cutting Planes). For 0 < ¢ < 2 we
define the graph G, = (V, E.) as follows:

E:=le€E|ly.<eory.=1-—¢}

We try to 2-color the nodes of G, with red and green,
say. First we pick an arbitrary node v € ¥ and color
it red. For all neighbors w of v in G, we do the
following: If w is not colored, w receives the color of
v if y,» < ¢, otherwise w receives the complementary
color. If w is already colored, there are two cases. If w
has the same color as v and y,, < e or if v and w
have complementary colors and y,,, = 1 — ¢, we con-
tinue. Otherwise we have found a cycle C with
an odd number of edges of value at least 1 — €. Let F
be the set of these edges. We check whether y(F) —
WCN\F)> | F| — 1. If this is the case, we have found
a violated odd cycle inequality. When all neighbors of
v have been considered, we pick a new, colored node,
consider its neighbors, and proceed in breadth first
search manner.

If y is integral, which we check on the run, and not
a cut, this procedure guarantees that a violated odd
cycle inequality will be found. So, if for an integral y,
CIBCAG does not produce a violated inequality, y is
the incidence vector of a maximum weight cut in G.
The breadth first search tree built up by CIBCAG
allows us to generate the violated odd cycle inequali-
ties efficiently. The worst-case running time of our
implementation of CIBCAG depends on the structure
of G. and is between O(n) and O(| E | log n). Empir-
ically it is O(n) and extremely fast.

GENA4CYC (Generate 4-Cycles). Due to the special
structure of our graph, the unchorded 4-cycles of the
graph correspond exactly to the grid squares. There
are n such 4-cycles. We scan through all these and
check each of the eight associated odd cycle inequali-
ties for violation. This can be done in O(n) time.

GEN3CYC (Generate 3-Cycles). All 3-cycles (tri-
angles) in G must contain the node 0 corresponding
to the exterior magnetic field. By scanning through all
grid edges vw we check the four possible odd cycle
inequalities that can be derived from the triangle Ouw.
This algorithm has time complexity O(n).

SHOC (Spanning Tree Heuristic for Odd Cycles).
We calculate a maximum weight spanning tree T,
of G with edge weights | y, — ¥2|. For any non-tree
edge e, we consider its fundamental cycle C and set
F:={e € C|y.>'}. We check whether | F| is odd
and the corresponding odd cycle inequality is violated
by y. Using Kruskal’s algorithm, this heuristic runs in
time O(n log n) on the average, and O(n?) in the
worst case.

The above decribed heuristics are used in the follow-
ing order.

« CIBCAG with user specified parameter EPSI-

LON; if no cut can be generated

this way, CIBCAG tries again with

EPSILON = 0.49.

« GEN4ACYC if less than GENCYC-LIM cutting
planes have been produced by CIB-
CAG.

*« GEN3CYC if less than GENCYC-LIM cutting

planes have been produced by CIB-

CAG and GEN4CYC.

if less than SHOC-LIM cutting planes

have been produced in the previous

steps.

Finally, the “exact” separation routine named OC
(0dd Cycles) is called if all heuristics together found
less than OC-LIM cutting planes. This kind of para-
meterization keeps the program flexible by allowing
us to test various cutting plane generation strategies.

Elimination of Cutting Planes. To keep the number
of constraints small, we eliminate inequalities in the
following way: Whenever the objective function value
has decreased by more than the parameter DELTA
compared to the previous solution value, all inequal-
ities nonbinding at the current optimum solution are
eliminated; otherwise no elimination is performed.

The features just described are the basic components
of our cutting plane algorithm. The algorithm prova-
bly produces an optimum vertex of the polytope
P-(G). If this algorithm finds an optimum solution
which is integral, it provides a ground state of the spin
glass. The algorithm, however, carries no guarantee of
finding an optimum integral solution. Formally, we
could add a branch-and-bound phase to give such a
guarantee. But, as shown in Section 5, it turned out
that this is unnecessary.

« SHOC

5. Computational Experience

In this section, we report our findings concerning the
practical performance of the cutting plane algorithm
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described in the previous section. We aim to solve
ground-state problems. Thus we have generated sev-
eral series of spin glass problems with spin interactions
and exterior magnetic force, as used in physics. We
have concentrated on the Gaussian model. The spins
are located on the nodes of a toroidal k X k grid
(Figure 6).

In a first series of experiments, not reported here,
we have compared various choices of the parameters
DELTA, EPSILON and other tactical issues. We
decided to use the following features:

DELTA is set to 0.001. 3)
EPSILON is set to 0.3. 4)
To keep the number of rows small, we never add (5)
more than MAXGEN = 200 new inequalities in
one cutting plane phase. As soon as the 200th
cutting plane is found, we terminate the current
separation routine and proceed by solving the
new linear program.

In case we run a series of experiments in which (6)
all spin interactions remain fixed and only the
strength of the exterior field varies, we start with

the problem with the strongest field and itera-
tively reduce the strength of the field until the
lower bound (usually zero) is reached. Whenever

a new problem is solved, we use the optimal
(final) basis of the preceding problem as the
starting basis for the new problem.

If the strength of the exterior field is zero, a so- (7)
called “2 A-phase” is inserted; i.e., we solve the
problem with exterior magneticfield2 * DELTA
before solving it with zero field.

Feature (6) resulted in considerable savings in the
overall running time. If we compare (6), for instance,
with the intuitively more appealing strategy of (due to
complexity considerations) starting with zero field and
increasing the strength of the field gradually, we see

. (6)’s clear superiority. Quite frequently a whole series

of runs with strategy (6) took about the same time as

- solving the first problem of zero field of the second

strategy. In addition, feature (7) turned out to speed

" up the solution process. This is due to the fact that, in

our approach, the zero field problem is by far the

© “hardest” in such a series. We expected the additional

2A-phase to provide a good starting solution for the
0O-phase; in many cases this solution turned out to be

~ optimal for the 0-field problem.

In a second series of experiments, we tried to find a
good strategy for setting the parameters GENCYC-
LIM, SHOC-LIM, and OC-LIM. We tested and report

. the four strategies given in Table I.

An Application of Combinatorial Optimization | 505

Table I
Strategies for Setting the Parameters
GENCYC-LIM, SHOC-LIM, and OC-LIM

Strategy GENCYC-LIM SHOC-LIM OC-LIM
1 0 0 0
2 00 0 (]
3 0 © 0
4 0 0 o0

Table I can be interpreted as follows. According to
our description of the cutting plane algorithm in Sec-
tion 4, given the optimum solution y of the last LP,
we always call the subroutine CIBCAG first. Afterward
the routines GEN4CYC, GEN3CYC, SHOC, OC are
called in this order. If one of the parameters . . .-LIM
is equal to /, we call the corresponding algorithm only
if all separation routines preceding it have not found
more than / violated inequalities.

We experimented with 10 X 10 and 20 X 20 grids
with Gaussian interactions to compare the strategies.
The results in all cases gave a consistent picture. So
we restrict ourselves to showing a detailed report of
the behavior of the four strategies on a fixed 20 x 20
Gaussian problem in which the exterior field ranges
fromh=1toh=0by0.2.

The experiments we document were run on an IBM
3081-D32 at the Kernforschungsanlage Jiilich. We
also used the IBM 4361 of the Institut fiir Okonome-
trie und Operations Research at the University of
Bonn. The running times on this machine are about
3 times as long as those on the 3081.

The code was written in ECL (an extension of PL/I)
and uses IBM’s LP-solver MPSX as a subroutine.

Tables 1I through V contain the relevant informa-
tion to compare the four strategies. These tables
should be interpreted as follows.

Column [2h

= strength of the exterior magnetic field.
Column 2 2 Ph

= pumber of cutting plane phases

= number of LPs solved
Column 3 24C

= number of calls of GEN4CYC
Column 4 4 3C

= number of calls of GEN3CYC
Column 54 SH

= number of calis of SHOC
Column 6 2 0OC

= number of calls of OC
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Table 11
Behavior of Strategy 1 on a Fixed 20 x 20 Gaussian Problem

Strategy 1 (0, 0, 0)

Ph 4C 3C SH oC No. Iter Size Time % Cut % LP % Rev
20 0 0 0 0 1435 764 1:46.07 9 45 35 -
16 0 0 0 0 1286 764 1:32.55 5 57 31
20 1 0 0 0 2429 905 2:59.03 4 70 21
42 2 0 0 0 3183 876 4:34.48 4 62 27
93 1 0 0 0 5211 923 9:18.95 6 57 30
185 36 21 13 13 3501 1293 63:15.31 80 6 11
8 3 1 1 1 63 1310 38:33.62 99 0 0
7 4 No. iter pletely trust the accuracy of these data, we include pract
= total number of simplex pivots used for them because we believe that they give the right idea. extre
solving all the LPs In all our runs (with a few exceptions), Strategy 2 ristic
8 2 Size turned out to be the best with respect to total running asa.
= number of rows of the final LP time. This is because the cutting plane heuristics we class
9 & Time used (mainly GEN4CYC and GEN3CYC) generate, We
= total computation time in min:sec on the average, no fewer violated inequalities than the («,0
including input and output other algorithms but are much faster with respect to as 10
.10 & % Cut execution time. Note, however, that these routines are In di
= percentage of total time spent in cutting special purpose heuristics and may not be reasonable eter |
plane generation (including the feasi- for other classes of graphs. quali
bility check done by CIBCAG) In general, the running times of cutting plane algo- to th
114 %LP rithms that are based on combinations of heuristics Tal
= percentage of total time spent in solving are not precisely predictable. For a given set of com- ofou
the LPs parable problems, the large majority of the running glass
112 & % REV times for a fixed strategy are within a relatively small ‘netic
= percentage of total time spent in gen- time interval, but there may be a few rather poor Table
erating MPSX revise data and revising exceptions: the running time for Strategy 4 at 0.4-field (with
the LP data is such a runaway. labele
From a theoretical point of view, the strategy to use spin,
rercentages of a row do not add up to 100%; is Strategy 4 (which consists only of calls of the exact colun
sing time was spent in input, output and separation routine OC). However, this method is not spin,
overhead. suitable as Tables II-V show. OC runs much longer minu
btained the data for columns 9-12 by calling than the heuristics and generates only a few con- the o]
system functions that do not seem to behave straints. Thus many more LP phases must be exe- Tat
7 in some cases. Although we do not com- cuted. This outcome shows that, in order to obtain 20X !
Table III
Behavior of Stategy 2 on a Fixed 20 % 20 Gaussian Problem
Strategy 2 (oo, 0, 0)
Ph 4C 3C SH OC  No.lter Size Time %Cut ®%LP  %Rev o
8 6 3 0 0 939 924 0:53.32 11 46 33 1
2 2 2 0 0 326 1034 0:15.25 6 55 31 0
3 3 3 0 0 422 1107 0:23.00 5 60 28 0.
6 0 0 929 1205 1:00.99 3 69 22 0.
11 11 11 3 3 1178 1200 3:31.52 59 28 10 0.
38 38 38 0 0 1566 1290 3:35.02 7 40 42 2
0 0 (] 0 0 7 1290 0:01.90 6 31 31 0.
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Table IV
Behavior of Strategy 3 on a Fixed 20 X 20 Gaussian Problem

Strategy 3 (0, «, 0)

h Ph 4C 3C SH oC No. Iter Size Time % Cut % LP % Rev
1.0 11 0 0 9 0 1157 1017 2:12.14 49 28 19
0.8 5 0 0 S 0 725 1107 1:30.62 55 27 14
0.6 0 0 6 0 0 1173 1116 2:17.69 46 40 11
0.4 23 1 0 23 0 2404 1079 7:13.40 55 31 11
0.2 42 1 0 42 0 3693 1055 12:46.63 57 30 11
2A 64 3 0 64 0 2497 1293 16:36.32 64 15 17
0.0 0 0 0 0 0 49 1293 0:04.30 3 70 14

practically efficient cutting plane algorithms, it is
extremely important to use very fast separation heu-
ristics. Exact separation routines should be called only
as a last resort to guarantee that all inequalities of a
class have been checked.

We ran all further experiments with strategy
(o0, 0, 0). (We also tried to replace « by numbers such
as 100, 200, . . ., but the results were slightly inferior.)
In different experiments, we observed that the param-
eter MAXGEN, which controls the number of ine-
qualities to be added in one phase, should be adjusted
to the problem size.

Tables VI-IX demonstrate the empirical behavior
of our cutting plane algorithm for toroidal k X k spin
glass systems (k = 10, 20, 30, 40) with exterior mag-
netic field. These tables have the same structure as
Tables II-V, but they have two additional columns
(with information relevant for physicists). The column
labeled “Energy” contains the ground-state energy per
spin, i.e., the ground-state energy divided by k2. The
column labeled “Mag” contains the magnetization per
spin, i.e., the number of spins with north pole up
minus the number of spins with north pole down (in
the optimum solution found), divided by k2.

Tables VI-IX contain experiments on 10 X 10,
20 x 20, 30 x 30 and 40 % 40 grids. MAXGEN is set

to 300, 400, 500, 600, respectively. For each k, the
spin interactions are chosen from a Gaussian distri-
bution and are fixed for all runs, and the exterior
magnetic field varies in strength from h=4to h=0
in steps of 0.2.

Our code was defeated in the 40 % 40 problem with
h = 2A of Table IX. We found an optimum solution
of the LP relaxation after about 300 minutes, but it
turned out to be nonintegral. Qur code does not yet
contain an additional branch-and-bound or cutting
plane phase (with Gomory cuts, say). So the code gave
up without producing an optimum solution to (2).
For this reason, we did not attempt to solve the
0-field problem.

For all of the more than one hundred problems
documented so far, the optimum LP solutions turned
out to be integral, with the one exception just men-
tioned. We thus found (globally optimal) ground
states. To test the various versions of our code and
decide on tactical issues, we ran far more than a
thousand spin glass problems. In the Gaussian model,
we encountered only a few nonintegral optimal solu-
tions. Figures 7 and 8 show two fractional solutions,
both on a 5 X 5 grid at zero exterior magnetic field.
Solving problems of the +.J-model yielded a few more,
but still only a marginal number, of fractional LP

Table V
Behavior of Stratgegy 4 on a Fixed 20 X 20 Gaussian Problem

Strategy 4 (0, 0, »)

h Ph 4C 3C SH oC No. Iter Size Time % Cut % LP % Rev
1.0 13 0 0 0 11 1273 862 3:58.86 69 17 11
0.8 8 0 0 0 8 854 929 2:55.71 69 18 10
0.6 10 0 0 0 10 1489 904 3:49.22 56 31 10
0.4 46 1 0 0 46 4707 980 47:16.16 86 10 3
0.2 89 1 0 0 89 7253 1023 31:58.10 62 26 10
24 93 0 0 0 93 3709 1205 37:01.00 76 11 11
0.0 0 0 0 0 0 20 1205 0:02.51 5 48 24




508 / BARAHONA ET AL.

Table VI
Empirical Behavior of the Cutting Plane Algorithm for a Toroidal 10 X 10 Spin Glass System

10 X 10 Strategy (, 0, 0)

h Ph 4C 3C SH OC |No.lter Size Time % Cut %LP % Rev Energy Mag
4.0 2 2 2 0 0 102 145  0:02.02 14 30 2 -3.9876  0.9000
338 0 0 0 0 0 2 145  0:00.61 3 0 1 -3.8102 0.8800
3.6 0 0 0 0 0 0 145 0:00.01 80 0 20 -3.6342  0.8800
34 0 0 0 0 0 1 145  0:00.61 3 0 0 ~3.4582 0.8800
32 0 0 0 0 0 4 145  0:00.01 83 0 17 —3.2822  0.8800
3.0 2 2 2 0 0 8 156 0:01.35 10 89 1 -3.1071  0.8600
2.8 0 0 0 0 0 2 156  0:00.01 100 0 0 -2.9360 0.8400
2.6 0 0 0 0 0 6 156  0:00.61 3 0 97 -2.7704  0.8000
24 0 0 0 0 0 4 156  0:00.01 100 0 0 -2.6105  0.8000
2.2 1 1 1 0 0 10 158  0:00.68 11 0 89 -2.4539  0.7800
2.0 1 1 1 0 0 14 170 0:01.30 8 46 46 -2.2979  0.7800
1.8 2 2 2 0 0 22 185  0:00.72 16 0 84 -2.1469  0.7000
1.6 1 1 1 0 0 21 190  0:00.64 5 0 2 -2.0069  0.7000
1.4 1 1 1 0 0 26 200 0:00.70 14 0 86 —1.8787  0.6000
1.2 0 0 0 0 0 19 200 0:00.62 4 0 0 -1.7645  0.5400
1.0 1 1 1 0 0 36 202  0:00.66 8 0 92 -1.6592  0.5200
0.8 1 i 1 0 0 50 225  0:01.27 4 94 2 —1.5590  0.5000
0.6 2 2 2 0 0 84 241  0:01.95 7 92 1 -1.4601  0.4400
0.4 3 3 3 0 0 59 255  0:02.07 12 29 59 ~1.3894  0.2800
0.2 2 2 2 0 0 94 257  0:02.62 8 68 24 -1.3359  0.2600
2A 36 36 36 3 0 437 274  0:26.66 18 45 19 —1.2886  0.0000
0.0 0 0 0 0 0 0 274  0:00.62 4 0 96 —1.2886  0.0000

Table VII

Empirical Behavior of the Cutting Plane Algorithm for a Toroidal 20 X 20 Spin Glass System

20 X 20 Strategy («, 0, 0)

h Phn 4 3C SH OC No.lter Size Time %Cut %LP % Rev Energy Mag
4.0 3 3 3 0 0 509 614  0:25.70 19 49 15 —4.0099  0.9450
38 2 2 2 0 0 15 622  0:03.17 23 57 20 -3.8225 0.9300
3.6 1 1 1 0 0 8 627  0:02.86 15 0 43 -3.6367 0.9250
34 0 0 0 0 0 12 627 0:01.31 8 46 46 -3.4534  0.9100
3.2 2 2 2 0 0 17 631  0:04.41 18 0 42 -3.2726  0.9000
3.0 2 2 2 0 0 14 638  0:03.13 22 19 59 -3.0942  0.8800
2.8 1 1 1 0 0 26 647  0:02.87 16 21 43 -2.9230 0.8400
2.6 1 1 1 0 0 31 664  0:02.93 17 20 42 -2.7591  0.8050
24 2 2 2 0 0 34 679  0:03.77 20 32 33 -2.5994  0.7900
22 1 1 1 0 0 30 681  0:02.84 15 0 43 —2.4469  0.7500
20 1 1 1 0 0 34 688  0:03.44 13 0 53 -2.2999  0.7250
1.8 2 2 2 0 0 58 712 0:05.19 18 23 24 -2.1560  0.7150
1.6 2 2 2 0 0 82 745  0:05.00 16 48 24 -2,0166  0.6800
1.4 1 1 1 0 0 84 775  0:04.05 10 30 30 —1.8841  0.6500
1.2 2 2 2 0 0 135 810  0:06.69 19 27 36 -1.7598 05750
1.0 2 2 2 0 0 125 863  0:06.75 11 27 36 -1.6517  0.5250
0.8 3 3 3 0 0 215 912 0:10.98 12 55 22 -1.5498  0.4550
0.6 2 2 2 0 0 311 922  0:12.52 9 67 10 -1.4745 03450
0.4 5 5 5 0 0 586 1013 0:30.98 8 72 14 —1.4094  0.2750
0.2 2 2 2 0 0 679 1062 0:2791 3 82 9 -1.3667 0.1650
2A 48 48 48 2 0 1804 1173 3:35.71 19 43 26 —-1.3395 0.1250
0.0 1 1 1 0 0 90 1165  0:07.08 7 62 16 -1.3392  0.1250
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Table VIII
Empirical Behavior of the Cutting Plane Algorithm for a Toroidal 30 x 30 Spin Glass Sys

30 x 30 Strategy (e, 0, 0)

h Ph 4C 3C SH OC |No.lter Size Time %Cut %LP %Rev Energy
40 5 5 5 0 0 1520 1586  2:30.87 26 49 13 ~4.0290
3.8 1 1 1 1 0 13 1587  0:32.58 82 4 9 -3.8371
3.6 1 1 1 0 0 22 1593 0:08.11 18 15 36 ~3.6470
3.4 1 1 1 0 0 27 1606  0:08.24 20 15 44 ~3.4591
32 1 1 1 0 0 37 1618  0:08.81 18 14 41 —-3.2734
3.0 1 1 1 0 0 29 1622 0:08.03 17 15 38 ~3.0916
238 1 1 1 0 0 56 1643 0:09.00 20 20 40 ~2.9139
2.6 1 1 1 0 0 65 1659  0:08.95 19 13 41 ~2.7416
24 1 1 1 0 0 89 1691 0:10.39 19 29 35 —2.5784
2.2 1 1 1 0o 0 89 1721 0:10.30 12 29 41 —2.4200
20 2 2 2 0 0 115 1765  0:14.38 16 25 34 —2.2652
18 2 2 2 0 0 158 1798  0:16.66 20 25 33 ~2.1164
16 2 2 2 6 0 149 1827  0:15.68 15 34 27 -1.9797
14 2 2 2 0 o0 211 1908  0:19.11 15 41 29 ~1.8511
12 2 2 2 0 0 259 1994  0:21.14 14 37 32 ~1.7310
o 2 2 2 0 0 400 2112 0:30.90 12 49 26 ~1.6205
08 3 3 3 0 0 491 2217 0:38.86 12 49 24 —1.5212
06 5 5 5 1 0 879 2294  1:38.81 32 46 11 —1.4373
04 8 8 8 1 0 1336 2405 2:52.08 21 59 11 ~1.3754
02 7 7 7 0 0 2691 2512 5:08.57 5 80 11 -1.3334
26 9% 96 9 13 1 6069 2831  34:13:89 37 35 17 -1.3187
00 0 0 O 0 0 133 2831 0:20.21 2 7 15 -1.3187
Table IX
Empirical Behavior of the Cutting Plane Algorithm for a Toroidal 40 X 40 Spin Glass Sys
40 X 40 Strategy (°, 0, 0)

h Ph 4C 3C SH OC No.lter Size Time %Cut %LP %Rev Energy
40 7 1 6 0 0 3108 2901  10:20.57 39 42 10 —4.0207
3.8 1 1 1 o 0 31 2910  0:21.52 27 11 39 ~3.8285
3.6 1 1 1 0 0 41 2919 0:22.04 26 14 38 ~3.6387
34 2 2 2 0 0 37 2925 0:27.52 28 11 35 ~-3.4508
3.2 1 1 1 0 0 50 2942 0:22.50 28 13 38 ~3.2654
30 2 2 2 0 0 77 2963  0:32.58 31 15 32 ~3.0849
2.8 2 2 2 0 0 96 3000 0:36.83 31 15 31 —-2.9082
2.6 1 1 1 o 0 130 3033 0:27.98 27 21 35 —2.7355
24 2 2 2 0 0 152 3079 0:40.35 31 22 29 —~2.5682
22 2 2 2 0 0 186 3155 0:40.01 25 24 30 —~2.4080
2.0 2 2 2 0 0 187 3202 0:42.00 30 21 27 -2.2547
18 2 2 2 0 0 253 3259  0:48.40 29 27 26 —2.1079
16 3 3 3 0 0 330 3339 0:59.02 25 28 26 —1.9688
14 2 2 2 0 0 419 3468 1:01.92 22 37 25 ~1.8395
2 2 2 2 0 0 559 3600  1:16.51 19 45 22 -1.7195
.0 3 3 3 0 0 719 3725 1:33.21 17 46 2 -1.6129
08 4 4 4 0 0 1044 3892 2:17.12 15 52 18 -1.5192
06 5 5 5 0 0 1372 4050  3:43.54 11 63 14 —1.4375
04 14 14 14 2 0 2260 4197 114255 37 45 9 ~-1.3710
02 7 7 7 0 0 4668 4394  13:38.52 5 81 9 -1.3236
20— - - = - — - — — — — —
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solutions. These empirical observations justify our
choice of the odd cycle constraints, i.e., the polytope
P(G), for the LP-relaxation of the max-cut problem.

Nonintegral optimum solutions can be handled in
two ways to obtain integrality. One either adds further
cutting planes (e.g., bicycle wheel inequalities—see
Theorem 3; or K,-inequalities—see Theorem 4) or
one proceeds with branch and bound. For this case,
we want to discuss only two small examples.

Figure 7 shows a fractional solution of a 5 X 5 grid
problem with exterior field. Edges drawn with solid
lines correspond to variables with value 1; edges drawn
with dotted lines correspond to value %; edges drawn
with broken lines correspond to value Y3; edges with
value 0 are not shown. The edges connecting a spin
node to the exterior magnetic field node 0 appear as
short lines pointed northeast. For clarity, they are not
connected to 0. Note that the graph of Figure 7 has to
be embedded in a torus. So the edges leaving the top
line in the northerly direction must be identified with
the corresponding edges leaving the bottom line in the
southerly direction (e.g., nodes 6 and 10 are connected
by an edge with value %); similarly, the corresponding
leftmost and rightmost edges must be identified (e.g.,
nodes 3 and 23 are connected by an edge of value '3).

Figure 7. A fractional solution of a 5 X 5 grid prob-
lem with exterior field.

Figure 8. A fractional solution of a 5 X 5 problem
in which our heuristic for detecting vio-
lated subdivided K inequalities failed:

By visual inspection, we found that this fractional
solution violates an inequality that can be obtained
by subdividing edges of K;. The violated inequality
which, as shown by Barahona and Mahjoub, defines
a facet of CUT(G), is the following (0 is the node
corresponding to the exterior field, the nodes of X
are the nodes 0, 1, 3, 5, 25):

Xo,1 + Xo,3 + Xo,5 + Xo,25 + Xi1,2
+ X5 + X121 — Xo3 + X34 — X323
= Xa5 + X525 — Xar,2s + X23.24 — Xoa25 S 6.

Substituting the solution shown in Figure 7 into the
left-hand side of this inequality gives the value 2%.
We added this inequality to our LP and obtained an
integral optimum solution in the next step. Based on
this example, we invented a heuristic to search for
violated “subdivided Ks-inequalities.” One example
in which this heuristic and all our further efforts failed
is the fractional solution of a 5 X 5 problem, shown
in Figure 8. We were unable to produce an inequality
valid for CUT(G) that was violated by the solution of
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Figure 9. The effect of increasing the strength of the
magnetic field on the ground state of a
20 x 20 spin glass system with + 1 inter-
actions.

Figure 8. But a few steps in a branch-and-bound
method handles this case.

Finally, we would like to show an example of a
ground state and the effect of increasing the strength
of the exterior field. Given is a 20 X 20 grid on the
torus with +1 interactions. 14% of all interactions are
negative. The strength of the exerior magnetic field is
h=0.1. Figure 9 shows a ground state of this problem.
All spins represented by a “«” are pointing into the
direction of the magnetic field (up). All other spins
point downwards. Increasing the strength of the field
to 2 = 0.3 flips a whole cluster of spins, those denoted
by an open circle. Still, all “+”-spins point upward, as
do all “O”-spins.

6. Final Remarks

In statistical physics, one is interested not only in
calculating just one ground state; knowing all ground
states or knowing certain properties of ground states
(for example, the rigidity of bonds) is of equal impor-
tance. The algorithmic approach described in this
paper is particularly well suited to obtain this type of
information.

The computational experience described in Sec-
tion 5 shows that, for all but a few ground-state prob-
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lems, the optimum solution of our LP-relaxation of
the max-cut problem was integral. This result puts all
the tools of postoptimality analysis of linear program-
ming at our disposal. For instance, using LP-duality
we can often derive results that show that

« The ground state is unique, or that

* A certain cluster of spins will have the same relative
orientation in all ground states (rigidity of the
ground states).

Actually, in the examples of Section 5, we frequently
observed that the ground states are unique. If the
ground state is not unique, we can use reduced cost
criteria to exhibit alternative ground states. We cannot
produce all ground states (in reasonable time) since
there may be exponentially many. Even so, LP-duality
can be used to prove that certain edges have value one
or zero in all ground states. From this information we
can derive the fact that certain clusters of spins have
the same relative orientation in all ground states. And
thus, our methods enable us to determine the existence
of long distance order. Let us remark that information
of this type is hardly obtainable from enumerative or
branch-and-bound methods.

A number of variations of the ground state problem
are relevant for understanding spin glasses. Let us
mention one question due to A. J. Bray and M. A.
Moore (1986). Suppose a spin glass (Gaussian model)
on a toroidal k X k grid without exterior magnetic
field is given. Let w be a ground state and E, be its
energy. We pick a column of spins of the grid and
take an adjacent column of spins. The spins in the
first column are fixed to their orientations in w, while
the spins in the second column are fixed to the ori-
entations opposite those in w. This fixing can be
achieved by using the same trick as in via minimiza-
tion to preassign pins and wire segments (i.e., add an
exterior field and use +M and zero forces). Let E, _
be the ground-state energy subject to this side condi-
tion. Set AE := | E, ~ E,_|. It has been conjectured
that (AE)? ~ k™ In particular, that v is negative. For
the straightforward generalizations of this question to
3-dimensional grids, it is believed that y is positive.
Using the algorithm described in this paper, we can
obtain, numerically, estimates for ~.

It is also possible to contribute to the open problem
mentioned in Angles d’Auriac and Maynard, quoted
earlier, by calculating ground states under the addi-
tional condition that the magnetization is zero. We
can “misuse” the exterior magnetic field to formulate
this problem as an integer linear program, but further
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polyhedral studies are necessary before this approach
can be used algorithmically.
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