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AuSTRACT. Wc investigate the problem of designing survivable broadband vir
tual private networks that employ the Open Shortest Pa th First (OSPF) rout
ing protocol to route the packages. The capacities available for the links of 
the network are a minimal capacity plus multiples of a unit capacity. Given 
the directed communication demands between all pairs of nodes, we wish to 
select the capacities in a such way that even in case of a single node or a single 
link failure a specified percentage of each demand can be satisfied and t h e 
costs for these capacities are minimal. We present a mixed-integer linear pro
gramming formulation of this problem and several heuristics for i ts solution. 
Furthermore, wc report on computational results with real-world da t a . 

1. In t roduct ion 

In this article we describe the network design and bandwidth allocation problem 
we encountered in a cooperation with our partner DFN-Verein e.V. (Registered 
Association for the Promotion of a German Research Network). DFN acts as the 
internet provider for German universities and research institutions. The backbone 
network of DFN, called B-WiN, is operated as a broadband virtual private network 
(BVPN) on the ATM cross connect network of the Deutsche Telekom AG. 

Currently, the network contains ten central service switches. It is possible to 
rent a link at a certain capacity between each pair of switches. These links are 
virtual paths in the ATM cross connect network, whose structure is transparent 
to DFN. The capacities available for rented links are a certain minimum capac
ity plus multiples of a unit capacity. See [11] for a description of the technical 
implementation of the B-WiN. 

In the network design problem considered here, we must employ the OSPF 
(Open Shortest Path First, see [7] and [23]) routing protocol to route the traffic 
demands in the network. Using this routing policy, each package is sent to its 
destination along a shortest path with respect to some given link weights. In 
principle, the routing is performed in an embedded IP overlay network consisting 
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of permanent virtual circuits (PVCs), which are paths in the BVPN. However, since 
DFN currently identifies virtual paths and virtual circuits, we do not distinguish 
either. 

Nowadays, a network provider must: not only offer large bandwidths and high 
transmission rates, but also guarantee a specified quality of service. Hence, it. is 
important for the provider to limit the impact of network failure's. In this article 
we consider single failures of switches or links. Given the directed Iraffic demands 
between all pairs of switches, the capacities must be selected in such a way that 
even in case of a single component, failure at least a specified percentage of each 
demand can be routed in the remaining network. 

The design of survivable networks has been studied for various capacity and 
survivability models. Grötschel, Monma, and Stoer considered uncapacitated net
work design problems with connectivity constraints in [9, 10, 22]. The networks 
synthesis problem which includes some variation of capacity, routing, and surviv
ability decisions attracted many researchers. Gomory and Hu initiated the research 
on non-simultaneous single-commodity flow problems in [8]. Minoux addressed in 
[18] non-simultaneous multi-commodity flow problems, suggesting a sub-gradient 
optimization procedure for its solution. More recently, link and path restoration 
have been considered, for instance, in [2, 15, 19, 25]. The solution methods in
clude combinatorial heuristics, LP-based rounding heuristics, and branch-and-cut, 
algorithms. The survivability concepts of diversification and reservation have been 
investigated in [l] and [4] for two different capacity models and cutting plane meth
ods have been suggested as solution approach. Multi-layer models including surviv
ability have been considered, for instance, in [13, 17]. Given a network topology 
and link capacities, Lin and Wang addressed in [16] the problem of finding a set 
of link weights that, provide a feasible OSPF routing and proposed a dual solution 
approach based upon Lagrangean relaxation. 

In this article we present a model that differs in one important aspect from the 
models studied previously. We integrate survivability, capacity planning and the 
OSPF routing protocol in one model. Survivability respecting the OSPF routing 
protocol can be viewed as a variation of path restoration. The failing communica
tion demands are rerouted end-to-end, but the way the routing paths may change 
in a failure situation is defined by the routing protocol and each demand is routed 
on a single path. Bifurcated routing is allowed neither in the non-failure nor in any 
of the failure cases. 

The remainder of this article is organized as follows: The next section contains 
a detailed description of the problem, its input data, and its constraints. A mixed-
integer linear programming model for the IP network design and routing problem is 
developed in Section 3. In Section 4 we briefly present several heuristics to solve this 
problem. Computational results for real-world data provided by DFN are reported 
in the last section. 

2. The Problem 

Formally, the problem can be described as follows: We are given a supply 
g r aph G = (V, E) consisting of the nodes V and the edges E. The node set V 
corresponds to the set of IP router locations. The edge set E corresponds to the 
set of all potential links, which in our application is the set of all virtual paths (in 
the underlying ATM-network) that may be rented from Deutsche Telekom. 



For every supply edge, the installed capacity must be either zero or the min
imal capacity cnim G Z.,. plus a multiple of the unit capacity c u € Z+. For 
no edge may the capacity exceed the maximal capacity c m n x G '&+. The capac
ities are bidirectional, i.e., the capacity installed on an edge can be used in both 
directions independently. An edge with non-zero capacity is called a chosen edge. 

We wish to design a network that is still operational if a single node or a single 
edge fails. Therefore, we introduce the set of operating states S. The considered 
operating states a £ S arc the normal operating state {s = 0), which is the state 
with all nodes and edges operational, and the failure s ta tes , which are the states 
with a single edge (.s = e G E) or a single node (s = v G V) non-operational. Note 
that in a node failure state s = v G V all edges incident to v are non-operational, 
too. 

For each ordered pair of nodes (u, v) G V x V the value d u v G Z+ is the directed 
communication demand from u to v. Clearly, in a node failure state s = v G V 
the demands with origin or destination v cannot be satisfied and are therefore not 
considered in this operating state. 

Since network failures are considered to be non-permanent, we do not have to 
satisfy the total demands in a failure situation. For each operating state s G 5, 
we introduce a reservation parameter ra > 0 specifying how many percent of 
each demand must be routable in this operating state. In contrast, to telephone 
networks, the traffic demands in IP networks arc extremely bursty and the network 
contains a higher percentage of spare capacity to accommodate the traffic peaks. 
Our model allows to oversize the installed capacities in the normal operating state 
by setting the reservation parameter r° to a value larger than one. In this case, 
even if all demands increase simultaneously by a factor of r", the capacities permit 
a feasible routing as long as no network component fails. 

In principle, the demands are routed in a second network layer, the so called 
overlay network, which is embedded in the BVPN. The nodes of the overlay network 
are the nodes of the supply graph. Its edges, which are permanent virtual circuits 
(PVCs) in the BVPN, correspond to paths in the supply graph. For each PVC 
a capacity is reserved on its edges. With this second network layer it is easier to 
manage different traffic types, such as IP, X.25, etc., in the network. Usually, one 
sets up a separate overlay network for each traffic type and routes the corresponding 
demands within this overlay network. However, we assume here that there is only 
one traffic type in the network, namely IP traffic. Furthermore, we restrict ourselves 
to the case where, for each rented virtual path, there is exactly one direct permanent 
virtual circuit set up at the full capacity of the virtual path, i.e., the IP overlay 
network and the BVPN are equivalent. Hence, we can pretend that the demands 
are routed directly in the supply graph and no second network layer exists. 

The capacities chosen for the supply edges have to be large enough to allow a 
feasible routing with respect to the OSPF routing protocol in all operating states. 
Assuming non-negative routing weights for all supply edges, the OSPF protocol 
implies that each demand is sent from its origin to its destination along a shortest 
path with respect to these weights. In each operating state only operational nodes 
and edges are considered in the shortest path computation. In this article we 
address only static OSPF routing where the link weights do not depend on nor 
change with the traffic. Dynamic shortest path routing algorithms, which try to 
adapt to traffic changes, often cause oscillations that lead to significant performance 
degradation, especially if the network is heavily loaded (see [3]). 



Although not; required by the OSPF protocol, in our problem wc have to guar
antee the existence of a path between any pair of operational nodes in each operating 
state. This implies that, the subgraph of G induced by the chosen supply edges must 
be 2-node-connected. 

The routing weights must be chosen in such a way that, for all operating states 
and all demands, the shortest path from the demand's origin to its destination is 
unique with respect to these weights. Otherwise, it is not determined which one of 
the shortest paths will be selected by the implementation of the routing protocol 
in the network and, therefore, it would be impossible to guarantee that the chosen 
capacities permit a feasible routing of the demands. 

For each demand, the variation of its data package transmission times increases 
significantly with the number of nodes in the routing path, especially if the network 
is heavily loaded. For multi-media applications, for example, this might lead to 
unacceptable differences in the transmission times. In order to avoid too large 
variations, the number of edges in each routing path is bounded from above by 
i € Z-i- in the normal operating state. 

Finally, let us explain the (complicated) cost structure of the problem con
sidered. Since the edges of the network correspond to virtual paths in the ATM-
provider's network, we have network costs which do not depend on the physical 
lengths of the edges but on the number of chosen edges. Hence, we cannot allow 
an arbitrary number of edges in a solution. Due to the different tariffs for different 
numbers of edges, we have a predefined number, say m, of supply edges that must 
be chosen. All the following cost parameters depend on this number m. Router 
costs are not considered. In our application each node is a central service switch 
for its local area and, hence, must have routing equipment installed anyway. 

The total cost of installing capacities on the supply edges is defined as follows. 
For installing the minimal capacity 

Cjnin on ?77, edges we have the fixed cost Kmin £ 
Z + . Since we cannot influence these costs, they can be omitted in the optimization. 

Each capacity unit cu that is installed in addition to the minimal capacity 
on a single supply edge causes further costs. The set of feasible capacities above 
the minimal capacity cm;„. is divided into consecutive capacity intervals (batches). 
Each interval (except maybe the last interval) contains b 6 Z+ capacity units and, 
thus, has a batch capacity Cbateh := b ■ cu. The number of these intervals is 
rcmo,T-cmin1 p o r each interval i € I := (0 , . . . , rCm"J~c"""l - 1}, we denote the 
cost for one capacity unit cu installed within [Ct,jjn ~\~i ■ C6af.e/i , cm in 

+ (i + l) ' cbatch\ 
by k; e Z+. 

For one capacity unit installed simultaneously on all m chosen supply edges 
in interval i & I, the sum of the unit costs of these m capacity units is reduced 
by the discount K| e Z+. For notational convenience, we denote the minimum 
of the capacities of the m chosen supply edges as network base capacity Cbase-
Note that the cost discount applies exactly to those capacity units that are installed 
below the network base capacity. 

Let us illustrate the capacity and cost structure by means of the example shown 
in Figure 1. There are six supply edges, five of which are chosen. The minimal 
capacity a,nin and the unit capacity cu are 80,000 and 5,000 ATM-cells/s, respec
tively. The batch capacity is equal to the minimal capacity, i.e., cratch — 80,000 
ATM-cells/s and b = 16. In this example we have a base capacity c/,ase of 130,000 
ATM-cells/s. The cost for installing the minimal capacity of 80,000 ATM-cells/s 



CapticiLy 

FIGURE 1. Example with six potential links 

(dark gray) on all five chosen edges is the fixed cost Kmin- For every capacity unit 
installed above 80,000 ATM-cells/s we have costs that depend on the interval in 
which the unit is installed. Up to 160,000 ATM-cells/s (mid gray) we have costs 
of/Co per unit and between 160,000 and 240,000 ATM-cells/s (light gray) we have 
costs of ki per unit. For the 130,000 - 80,000 = 10 • 5,000 ATM-cells/s installed 
additionally to the minimal capacity on all five chosen supply edges simultaneously 
(hatched area) we get a discount of 10 • K{). 

Note that in the problem considered here the cost of a solution does not depend 
on the physical lengths of the chosen edges. 

The IP network design problem, called IP-ND, consists of two parts. In 
the first part, we design the overall BVPN, i.e., we decide which capacities to install 
on which edges. In the second part, we determine the routing weights and compute 
the routings for each operating state. The objective is to minimize the total costs 
of the network, which depend on the installed capacities. 

3. The Model 

In this section we present a mixed-integer linear programming model of 
the IP-ND network dimensioning and routing problem. 

3.1. The Supply Graph. To describe which edges are chosen at which ca
pacities we have so-called global and local variables in our model. The global 
variables are used to decide the network base capacity, whereas the local variables 
are employed to decide whether a supply edge will be installed in a solution, and if 
so, to choose the capacity installed on this particular edge. The global variables 
are 

• Xi € {0 , . . . , &}, for all i 6 / , determining the number of capacity units 
installed in interval i as base capacity. 

The local variables, for every supply edge e € E, are 



• z,. € {0,1}, where z,, = 1, if we install capacity on supply edge e, 
• Zj|t. £ {0,1}, for all i £ I, where zur = L if the capacity of edge c is larger 

than c„„-„ + i ■ CW,/M and 
• x1|C € {0 , . . . ,6}, for all i £ / , determining the number of capacity units 

installed in interval i on edge e. 
To represent feasible choices, the local variables associated with a supply edge 

e £ E must satisfy 

(1) 
(2) 
(3) 
Due to inequality (1) the variable ziiC can only be positive if zc = 1. Suppose we 
wish to choose edge e in a solution, i.e., we have z,: = 1. In this case it follows 
from (2) and (3) that the variables xitfi can only be positive if Zii(. — 1 and that 
Zi+\,e = 1 implies xit(. = b. Hence, if capacity units arc installed in interval i £ /, 
then Zj%e — 1 and i'Jie = b for all j < i, i.e., all b capacity units are installed in 
the capacity intervals "below" i, and Ziit. = 1. This determines a proper setting of 
the local variables and the edge's capacity. If we do not choose edge e, i.e., ze = 0, 
then the inequalities (I), (2), and (3) imply zii(, = xlit. — 0 for all i £ I. 

Note that, if the capacity of edge e equals c„„n + i ■ ci,aich for some i £ / , then 
the variable z*,,. may be zero as well as one. 

With the following constraints we guarantee that the capacity of each chosen 
supply edge exceeds the base capacity: 

(4) 
To understand (4) consider the following. If supply edge e is chosen in the network, 
then ze = 1. In this case inequality (4) reduces to Xi <Xi,e, which means that the 
number of capacity units installed in interval i on edge e is at least the number of 
units installed for the network base capacity. In the other case z(: = 0 and (4) is 
satisfied anyway. 

For notational convenience, we introduce auxiliary variables 

(5) 

representing the capacities installed on the supply edges. 
It is easy to see that, if Ki > 0 for all i € /, in any optimal solution of our 

mixed-integer linear programming model the term YLieixi IS t n e network base 
capacity. The upper bounds for these capacities are enforced by 

(6) 
To ensure that the number of chosen supply edges is exactly m we have the equality 

(7) 

The objective is to minimize the total cost of installing the necessary capacities 
on the edges of the supply graph. This is formulated as 

(8) 



dowcribes the total coat of the installed rapacity 
units and £ ] ! G / A',x, is the discount for those capacity units that are installed for 
the network base capacity. 

3.2. The OSPF-Routing. In the following we present a model of the OSPF 
routing protocol, which is used to route the IP traffic in the network. 

Let 6" = (V, Es) be the supply graph in operating state s e S, i.e., the 
subgraph of G consisting of all nodes and edges that are still operational. Since the 
IP traffic is directed, we associate with each G" the directed graph D s = (V, A") 
with 

whore H* and *e" denote the two orientations of edge e. By D = (V,A) = (V°, A°) 
we denote the digraph associated with G. 

Using the OSPF routing protocol, each package is routed to its destination on 
a shortest path with respect to a common edge weight, function. All packages ema
nating from a node with the same destination must use the same route, bifurcation 
is not allowed. In our model we use the path variables 

• '-uu.a € {0,1}, for all A- e S, u,v S V, and a £ A", which are chosen to be 
ouc if arc a is contained in the routing path from u to v in operating state 
■s. 

To guarantee that, for every operating state s € S and every pair u, v g V" of nodes, 
the arcs corresponding to the non-zero path variables form a path we introduce the 
equalities and inequalities 

(9) 

(10) 

(11) 

where ^"(VK) denotes the set of arcs in the subgraph of D" induced by W and <5j (u) 
and öp(u) denote the sets of arcs in D with tail and head u, respectively. Equality 
(9) ensures that there is exactly one arc leaving the source node u and one arc 
entering the destination node v. For every other node we ensure that the number 
of incoming arcs equals the number of leaving arcs by (10), while (11) eliminates 
additional cycles. 

To guarantee that no routing path contains more than i arcs in the normal 
operating state we need the inequalities 

(12) 

For each operating state s € S, the installed capacities must permit a feasible 
routing of the specified reservation percentage r" of each demand. This condition 
yields the capacity constraints 

(13) 



Up to here, we have modeled a survivable single path routing scheme, i.e., a 
scheme where in each operating state there is exactly one routing path between any 
pair of nodes. To model the OSPF routing protocol completely, we also have to 
ensure that all routing paths are shortest paths with respect to a common weight 
fu notion w : E —» IR .̂. We introduce the following variables: 

• iut. € R+ , for each e € E, which is the routing weight of edge e, and 
• 7r;"Ml 6 IR+, for each ,s e 5' and each pair u,v E V, the potential variables 

denoting a feasible potential of node v with respect to the edge weights w 
and the root node u in Ds. 

The node potentials are used to decide which arcs are on shortest paths and can 
be used in routing paths and which are not. They correspond to the dual variables 
in the embedded shortest path problems (see (6, 12]). 

The feasibility of the potentials is guaranteed by the following metric inequal
ities: 

(14) 
(15) 

It follows from (14) and (15) that in each solution of this mixed-integer program 
the variable 7r* u is at most the distance from v to u in G" with respect to w. Note 
that the perturbation technique that will be introduced below to ensure uniqueness 
of all shortest paths implies that all routing weight variables are strictly positive, 

If, for some feasible potentials, inequality (15) holds with equality for all edges 
of a path with destination u, then this path is a shortest path from its origin to u 
in G" (see (6, 5]). Furthermore, there exist feasible potentials, such that edge e is 
contained in a shortest path with destination u in Ga if and only if inequality (15) 
is tight. Hence, we can ensure that all routing paths are shortest paths from their 
origins to their destinations, by introducing for each operating state s e S and each 
pair of operational nodes u i ,u 2 € V the inequalities 

(16) 

where M is a large constant. It is sufficient to choose M to be two times the 
maximum of the routing weights. 

Finally, we have to ensure that all routing paths are unique shortest paths with 
respect to w. We apply a perturbation technique that guarantees the uniqueness of 
the lengths of all paths in G. Let a : E —> { 1 , . . . , \E\} be an arbitrary permutation 
of the edges of G. We define the perturbation of the routing weights as 

(17) 

It is easy to see that ^ e g £ e e < 1. Furthermore, for all subsets 
have J2e.€El

 ee ^ £cefl2
 €« if a n d o n l y i f 

Let w'e : E —» Z + be integer weights on the edges of G. Then with 

(18) 

different paths have different lengths and, thus, every shortest path is unique. This 
follows directly from ^ f i P P te < 1 for all paths P C E 
distinct paths Pi, P2 C E, and the integrality of w'. Note that the integer weights 
w' are the variables in this mixed-integer programming model. The perturbed 
weights vi are "only" artifical variables. 



FIGURE 2 

We wish to stress at this point the indispensability of all shortest paths being 
unique. Only if this condition is satisfied, the routing paths chosen by the router in 
practice are guaranteed to be those computed in the planning. Otherwise, the ca
pacities are potentially insufficient for the paths chosen in practice. As an example, 
consider the network in Figure 2 with communication demands dnini = da.,_(ll = 1, 
dbjti, = ^a.bj = 1 for i = 1,2 and j = 1 , . . . ,4, and ditli, = 0 for i, j = 1 , . . . ,4, 
that, is a i and a-2 have a demand of one from and to any other node. Suppose in a 
solution we have a capacity ye = 2 for all supply edges e. It is easy to verify that 
these capacities are feasible with respect to the routing weights wc = 1 + 2a^e^~H 

for any permutation & : E —> { 1 , . . . ,7} of the supply edges with a(a\ci2) = 7. For 
routing weights S(. = 1, for all supply edges e, all shortest paths with respect to w 
remain shortest paths with respect to w in this example. However, these paths are 
no longer unique shortest paths, and, even worse, for all non-zero demands there is 
another {3-shortest routing path containing supply edge a\<i2- Thus, if the router 
chooses these latter paths the required capacity on edge a,\a<2 would be three. 

Given the perturbed routing weights for the edges of the supply graph, we can 
easily determine whether, for these weights, there exists a feasible solution satisfying 
all side constraints. From inequalities (9)-(ll), (14), and (15) we obtain the routing-
paths and with (13) a lower bound for the capacity of each supply edge. We have 
to validate three constraints: The routing paths in the normal operating state must 
not contain more that t edges (12), the number of chosen supply edges must be 
exactly m (7), and, finally, the lower bound for the capacity of each supply edge 
may not exceed cmax (6). If these constraints are satisfied there exists a solution 
with these routing weights. The capacities of a cheapest such solution can be easily 
computed from the routing paths. 

4. Algori thmic Approach 

In this section we describe several starting and improvement heuristics that 
utilize the observation made at the end of the previous section. Given (perturbed) 
routing weights for the supply edges, it is easy to decide whether these weights, 
together with the induced routing paths and capacities, define a feasible solution. 
In the starting heuristics we try to assign such weights to the supply edges from 
scratch, while in the improvement heuristics we iteratively exchange or modify these 
weights to reduce the induced cost. 

4 .1 . S tar t ing Heuristics. We employ a two step approach to compute an 
initial feasible solution. First we choose exactly m supply edges that induce a 
2-node-connected subgraph containing all nodes of the supply graph. Thereafter, 
in the second step, we assign weights to the supply edges in sueh a way, that 



only those m edges are used to route the demands. If the induced routing paths 
and capacities satisfy all constraints wo have found a feasible solution. Otherwise, 
the starting heuristic fails. To compute an initial topology, we implemented three 
methods, one randomized and two deterministic ones. 

Random topology: In the first method we iteratively select: m supply edges 
at random until we obtain a 2-node-counected subgraph containing all nodes 
of C To test for biconnectivity we use a simple depth-first-search based 
algorithm due to Tarjan [24]. Applying the random topology method several 
times, we compute in very short running time many different topologies to 
continue with. 

Tour based topology: The idea, here, is to compute heuristically a Hamil
tonian cycle with a double tree heuristic or with Christofides' heuristic 
(see (20]) and to add further edges until the induced subgraph contains 
in edges. Since we start with a Hamiltonian cycle, the final subgraph is 
2-nodc-connected and contains all supply nodes. To increase the probability 
that an edge e € E is chosen if there is a high demand between its end-
nodes u and v we define artificial edge costs c,, := l/max(<i„„ + dmn 1) for 
the Hamiltonian cycle computation. In the second step we add the cheapest 
m — \V\ remaining edges with respect to these costs. 

Delete heuristic topology: In the third method to compute an initial topol
ogy we start with the entire supply graph and iteratively delete edges until 
there are exactly m edges left. In every iteration we try to delete, one of 
the remaining edges. If, after deletion, the edges left over do not induce 
a 2-node-connected subgraph containing all nodes, we put this edge back 
and label it as un-removable. Whenever we cannot remove any further edge 
we start a backtracking procedure that re-inserts the edge deleted last and 
reverts all labels set after its deletion. 

The final topology depends on the order the edges are considered for 
deletion. In the beginning and after each successful deletion we (re-)compute 
the capacities that are induced by (non-perturbed) unit routing weights on 
the remaining edges (and "infinite" weights on the deleted edges). In each 
iteration we try to delete the edge with the smallest of these capacities. 

Given a feasible network topology, we initially assign a perturbation of the unit 
weights to its edges. This approach has the advantage that every demand is always 
routed on a shortest path with respect to the number of edges, a property, which 
is appreciated by network operators. 

With the perturbation technique described in Section 3, such routing weights 
only depend on the permutation of the supply edges (see (17) and (18)). Given a set 
F C E of m supply edges that induce a 2-node-connected subgraph of G containing 
all nodes, we first choose a permutation a : F —♦ { 1 , . . . , m} of these edges. Then 
we extend this permutation canonically to a permutation a' : E —» { 1 , . . . , \E\} of 
all supply edges, with cr(e) = cr'{e) for all e 6 F, and set the routing weights as 
follows: 

Since we. > m + 2m~l£l > £ e e F u > * for all e' e E \ F and (V,F) is a 2-node-
connected spanning subgraph of Ö, no edge in E \ F is contained in any routing 



path in any operating state. Hence, the subgraph of C induced by the routing paths 
with respect to these weights is indeed (V,F). Although in practice only the edges 
in F are considered in the routing path computations, we set. the routing weights 
for the other edges here according to the model we developed in Section 3. 

In our implementation we use the following three methods to choose a permu
tation of the edges in F and to define the routing weights. 

Random permutation: In the first method we choose a permutation of the 
edges in F at random. If the induced capacities do not exceed the capacity 
bound cniax, we have found a feasible solution. We repeat this method 
several times and choose the cheapest solution found. 

Demand based permutation: To reduce the probability that the capacities 
induced by the initial routing weights are larger than cmaT, we order the 
edges in F in increasing order of the demands between their end-nodes. 
Using this permutation, edges with higher demands between their end-nodes 
get larger routing weights than those with smaller demands. Hence, if there 
is more than one path with the same minimal number of edges between the 
end-nodes of a demand, we select the path, for whose edges the largest of 
these demands is minimal. 

Capacity based permutation: Similar to the previous perturbation method, 
we again try to balance the flow on the chosen edges. First, we choose for 
each operating state and for each demand one of the shortest paths with 
respect to the number of edges in (V, F). Using these paths to route the de
mands, we obtain capacities, by which we order the edges in F increasingly. 

4.2. Improvement Heuristics. In this subsection we present several im
provement heuristics devised to solve the IP-ND problem, which are based on local 
search techniques. Given a feasible initial solution, we iteratively exchange or mod
ify the routing weights to reduce the costs caused by the induced capacities. 

In principle, a local search algorithm is given by a neighborhood and a rating 
function. The neighborhood function assigns to each solution a set of solutions, 
that, usually, can be obtained from this solution by a simple modification. The 
rating function, which assigns some (maybe artificial) costs to each solution, is 
used as a measure of quality of the solutions. Given a neighborhood and a rating 
function, a generic local search algorithm works as follows: Starting with the initial 
solution, in each iteration the algorithm scans the neighborhood of the current 
solution for a neighboring solution with the best rating, which becomes the current 
solution in the next iteration. This process is repeated until there is no solution 
with a better rating than the current solution in the neighborhood. 

To solve the IP-ND problem, we implemented two classes of neighborhood func
tions and three different rating functions. 

Switching neighborhoods: Given a solution, we define its fc-switching neigh
borhood as the set of all feasible solutions that can be obtained by exchang
ing the routing weights of at most k supply edges. Note that exchanging the 
weights assigned to chosen and non-chosen edges may change the topology 
of the induced solution. Since a small number of changes to the routing 
weights causes only few routing paths to change and these changes are easy 
to compute (see (21]), the switching neighborhoods can be implemented 
efficiently. 



If the routing weights of the initial solution are perturbed unit weights, 
which implies that all routing paths are minimal with respect to the number 
of edges in the current topology, so are the weights of the solutions considered 
by these neighborhoods. 

Modification neighborhoods: In contrast to the switching neighborhood, 
we modify, here, the edge weights depending on the routing paths and the 
capacities of the current solution. 

The I, ̂ -modification neighborhood of a given solution is defined as fol
lows: In the first step, we compute / assignments of routing weights by 
modifying the weights of the current solutions. Thereafter, in the second 
step, for each of these / assignments we consider all weight exchanges de
fined by the A;-switcliing neighborhood. The I, fc-modification neighborhood 
consists of all feasible solutions induced by the weights obtained this way. 
Practical experiments revealed that the performance of our algorithms im
proved significantly when the weight modification methods were combined 
with the weight switching neighborhoods. 

In our implementation we use three different kinds of weight, modification methods: 
Load: Reduces the routing weight on edges with small load (average flow over 

all operating states / capacity) to use free capacities. 
Capacity: Reduces the routing weight on edges with small capacity to increase 

the usage of low-capacity edges and decrease the usage of high-capacity 
edges. 

Violation: Increases the routing weight on edges whose current capacity is 
larger than the capacity in a given reference network. 

In contrast to the switching neighborhoods, it may happen that in the solutions 
computed with these neighborhoods the routing paths are not shortest paths with 
respect to the number of edges if we have perturbed unit routing weights in the 
initial solution. 

To decide which of the solutions in the current neighborhood is chosen for the 
next iteration in the local search heuristic, the following three rating functions have 
been implemented: 

Cost: Cost(solution), i.e., the solutions are rated by their cost. 
Capacity: X ^ e E ^ ' i-e-> * n e solutions are rated by their total capacity. 
Violation: ^ e e E mai{i; s - ce,0} for given capacities ce € K + , i.e., the solu

tions are rated by their total violation of the capacities of a given reference 
network. 

The first two rating functions can be applied to reduce the cost of the solution—they 
evaluate the solutions directly by their cost or indirectly via the total capacity. The 
last rating function, together with a violation based modification neighborhood, is 
used in routing heuristics, which try to find routing weights that allow a feasible 
routing in a given network. 

5. Computational results 

In this section we report on first computational experiments with real-world 
data provided by our partner DFN. The current backbone network of DFN contains 
ten central service switches defining the node set of the complete supply graph. We 
wish to select either 12 or 13 of its 45 supply edges as cheap as possible for different 
parameter settings. The directed demands between the central service switches are 
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peak demands obtained from IP iLccounting over three consecutive, months. Over 
these months, the demands' ranges are [110, 56, 000], [160,5!), 000], and [170,64,000] 
ATM-cells/s, respectively. The capacities available for the supply edges an; 80, 000 
ATM-cclls/s plus a multiple of the unit capacity .r),()0() ATM-cells/s, the upper 
capacity bound is 350,000 ATM-cclls/s. In the reported computations the length 
restriction for the routing paths in Die normal operating state Ls set to P = 4. 

The algorithms described in the previous section have been implemented in 
C+ + using the library LEDA [14], The computations were, performed on a Sun 
Ultra Kntcrprise 3000 (Ulf ra-S PARC processor at 108 MHz), the peak memory 
usage was 15 MD. 

In Table 1 we compare the .solution values and running times for the starting 
heuristics applied to the last demand set (month). We report the results only for 
one setting of the reservation parameters. In the normal operating state we oversize 
the network capacities by a factor of two (?■" ■= 2.0) and in the failure states we 
wish to route1 at least 100 percent of each demand {r" ^-1.0 for all s G S\{0}) . The 
experiments revealed that the delete method to compute an initial topology clearly 
outperforms the others, no matter which routing weight assignment we employ in 
the second phase of the starting heuristics. This result was obtained for all other 
tested settings of the reservation parameters and all other demand sets, too. 

Wc run several local search heuristics to improve the best solution found by 
each of the starting heuristics in order to find the best combination. Results for 
different neighborhoods and demand sets are shown in Table 2 In contrast to the 
results obtained for the starting heuristics, no combination clearly outperformed 
the others. As one might expect, it, is more difficult to obtain good solutions when 
starting with a random topology, probably because these do not take advantage of 
the demand structure. 

The running times of our heuristics are fairly good, considering the size of 
the problems. T h e starting heuristics compute feasible solutions within a couple 
of seconds. Keeping in mind that the network is re-designed every 2-3 months 
only, the running times reported for the combinations of starting and hnprovement 
heuristics are also satisfactory, even for the larger neighborhoods. 



TABLE 3. 
m = 12). 

Impact of the reservation parameter setting (month 3, 

Finally, to evaluate the impact of the reservation parameter on the best solution 
value we run further test series. We see from Table 3 that there is a clear trade
off between the cost and the quality of the resulting solution. Whether we allow 
arbitrary or only perturbed unit routing weights does not make a considerable 
difference. It is up to the network designer to compare the different scenarios and 
to choose a solution that fits additional design requirements best. 



a 

6. Conclusions 

In this article we introduced a mixed-integer linear programming formulation 
for a survivable capacitated network design problem. To our knowledge this is the 
first time» that survivability, capacity planning, and the OSPF routing protocol have 
been integrated and solved within one model. 

We have shown that our heuristics produce solutions that satisfy all constraints 
in reasonable running times. However, in order to evaluate the quality of the 
solutions, we still need a method to compute good lower bounds to the optimal 
solution value. 

From a practical point of view, there are at least two interesting extensions to 
our model. First, a virtual circuit layer that does not necessarily identify virtual 
paths and virtual circuits and, second, the incorporation of different traffic types 
or IP service classes in this model. 
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