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Abstract 
The need to solve transportation problems was and still is one of the 
driving forces behind the development of the mathematical disciplines 
of graph theory, optimization, and operations research. Transportation 
problems seem to occur for the first time in the literature in the form of 
the four "River Crossing Problems" in the book Propositiones ad acuen
dos iuvenes. The Propositiones — the oldest collection of mathematical 
problems written in Latin — date back to the'8th century A.D. and are 
attributed to Alcuin of York, one of the leading scholars of his time, a 
royal advisor to Charlemagne at his Prankish court. 

Alcuin's river crossing problems had no impact on the development 
of mathematics. However, they already display all the characteristics of 
today's large-scale real transportation problems. Prom our point of view, 
they could have been the starting point of combinatorics, optimization, 
and operations research. We show the potential of Alcuin's problems in 
this respect by investigating his problem 18 about a wolf, a goat and a 
bunch of cabbages with current mathematical methods. This way, we 
also provide the reader with a leisurely introduction into the modern 
theory of integer programming. 
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1 Introduction 
The book Propositiones ad acuendos iuvenes seems to be the oldest collection 
of mathematical problems written in Latin. It aims at teaching students some 
basic skills in logic thinking and problem solving. The collection was probably 
written at the end of the 8th century A.D. and is attributed to Alcuin, see 
[13], an Anglo-Saxon monk, born in York in 735, one of the leading scholars 
of his time, head of the Prankish court school at Aachen and a royal advisor 
of Charlemagne, see [12]. [18] contains an English translation of Alcuin's pro
blems, [13] the Latin "original" together with a German translation. Both 



papers also discuss the history of the problems tracing most of them back to 
ancient Chinese, Egyptian, Greek etc. sources. There is one notable exception. 
The four "River Crossing Problems" (No. 17-20) seem to appear for the first 
time in Alcuin's book. We quote here the Singmaster and Hadley translation: 

17. Propositio de tribus fratribus singulas habentzbus sorores — About three 
friends and their sisters. 
Three friends each with a sister needed to cross a river. Each one of them 
coveted the sister of another. At the river they found only a small boat, 
in which only two of them could cross at a time. How did they cross the 
river without any of the women being defiled by the men? 

18. Propositio de lupo et capra etfasciculo cauli — About a wolf, a goat and 
a bunch of cabbages. 
A man had to take a wolf, a goat and a bunch of cabbages across the 
river. The only boat he could find could only take two of them at a time. 
But he had been ordered to transfer all of these to the other side in good 
condition. How could this be done? 

19. Propositio de viro et muliere ponderantibus plaustrum — About a very 
heavy man and woman. 
A man and woman, each the weight of a cartload, with two children who 
together weigh as much as a cartload, have to cross a river. They find 
a boat which can only take one cartload. Make the transfer if you can, 
without sinking the boat. 

20. Propositio de ericiis — About Hedgehogs. 
The Latin text seems to be defective. It seems to say: "About a male 
and female hedgehog with two young, having weight, wanting to cross a 
river." 

One can obviously view these problems as transportation problems subject to 
side constraints. Such problems have — in the centuries to come — played 
prominent roles in shaping the mathematical disciplines of Discrete Mathe
matics (Combinatorics and Graph Theory), Optimization (Linear and Integer 
Programming), and Operations Research. 

The river crossing problems do not seem to have had any impact on the de
velopment of mathematics. They were merely conceived as recreational math
ematics. Prom today's point of view they could have been the starting point 
of combinatorics and optimization — as we will point out in this paper. But 
history took a different line. 

The roots of combinatorics seem to lie in counting objects and arranging num
bers such as the construction of magic squares. Counting formulas and magic 
squares can be found in Hindu and Chinese culture more than two thousand 
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years ago. Surprisingly, almost no literature on combinatorics can be found in 
classical Western civilization. Substantial progress, in particular in the study 
of magic squares, was made by Chinese and Islamic scholars in the period from 
900 to 1300 A.D. Although there was some transmission of this knowledge to 
the West it was not until the 17th and 18th century that European mathemati
cians took up the subject seriously. Pascal's work on "his" triangle, otivated 
by his and Fermat's famous correspondence on games of chance around 1654, 
Leibniz's Dissertatio de Arte Combinatoria in 1666 and Jakob Iernoulli's pa
per Ars Conjectandi, published posthumous in 1713, mark the beginnings of 
modern combinatorics; Euler's paper on the bridges of Konigsberg 1736 gave 
birth to the area of graph theory. Note again that Euler's work was inspired 
by a (recreational) transportation problem. A detailed account of the history 
of combinatorics can be found in [3]. 

Also around the end of the 17th century the foundations of optimization were 
laid through the calculus of variations. A prominent example of this type is 
the discovery of the brachystochrone by Jakob I Bernoulli and Euler in 16971. 
However, modern optimization only took off in the 20th century. Its rapid 
development was and still is closely connected to the progress in computing 
technology. The origins of linear programming, probably the most intensively 
used optimization technique and the most cost-saving mathematical tool, can 
again be traced back to transportation problems. Independent developments in 
the Soviet Union by [21] (mathematical methods for the organization and plan
ning of production), for which he received the 1975 Nobel Prize in Economics, 
and in the United States (logistics for the war in the Pacific in the early 1940s) 
resulted in a general mathematical theory and powerful algorithmic tools that 
are able to solve linear programs of extremely large scale (see [10] and [24] for 
the history). 

Transportation problems often have integrality constraints because of the 
indivisibility of commodities or transportation units and, therefore, they also 
give rise to the study of combinatorial or integer programs. Problems of this 
type are the famous travelling salesman problem (see [20] for its history), the 
assignment and transportation problem (discussed in [19] and [22]), network 
and multicommodity flow and vehicle routing problems (see, for surveys, [1], 
[11]). An important early example is the case of the Berlin air lift in 1948/1949, 
which is extensively discussed in [26]. 

What has all this to do with Alcuin? The point is that Alcuin's river crossing 
problems could have been the beginning of all these developments. The aim 
of our paper is to show the potential of his problems in this respect and — in 
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1 The brachystochrone problem, was also solved by Jakob's younger brother Johann I, who 
posed the problem to the "deeper thinking mathematicians" of his time in 1696, Euler, 
de l'Hopital, and Leibniz, but Jakob Bernoulli's and Euler's methods led to the invention 
of the calculus of variations. 



this way — to provide the reader with a leisurely introduction into the modern 
theory of integer programming and its algorithmic techniques. 

2 Alcuin's Solution of his Transportation Prob
lems 

Alcuin did not develop general solution procedures for his problems. He simply 
stated his solution. For problem 18,it reads-. 

"I would take the goat and leave the wolf and the cabbage. Then I would 
return and take the wolf across. Having put the wolf on the other side I would 
take the goat back over. Having left that behind, I would take the cabbage across. 
I would then row across again, and having picked up the goat take it over once 
more. By this procedure there would be some healthy rowing, but no lacerating 
catastrophe." 

Figures 1 and 2a give a pictorial description of the solution. 

Figure 1: "I would take the goat and leave the wolf and the cabbage." | 

We can only guess how Alcuin arrived at his solutions. But it is very likely 
that a combination of trial and error, enumeration, and the use of logic impli
cations was used —just as schoolchildren confronted with such problems today 
would do it. 

From our modern point of view, no mathematical theory was developed. 
Problems were solved by ad-hoc methods. This approach was still in use just 
one hundred years ago, as is pointed out in [28], where a detailed history of 
problem 17 is given with its generalization to more than three couples and the 
additional use of an island in the river. Authors describing such variations 
and generalizations of Alcuin's transportation problems during the last 1200 
years often reported wrong solutions. The errors were (and still are, if ad-hoc 
enumerative reasoning is used) due to the fact that, in general, the number of 
possibilities grows extremely fast when additional parameters are introduced. 
Nowadays this phenomenon is called combinatorial explosion. There is no way 



Figure 2: "Then I would return and take the wolf across. Having put the wolf 
on the other side I would take the goat back over. Having left that behind, 
I would take the cabbage across. I would then row across again, and having 
picked up the goat take it over once more." 



to avoid it. But today we know reasonable ways to control or structure the 
"space of solutions'! 

3 The Modern Approach 
Our aim in this paper is to describe a general technique — based on geometry 

(polyhedral theory) and linear programming —with which Alcuin's transporta -
ton problems and their variants and genera 1'zatons can be matbemafcally 
modelled and solvecP . In fact, we describe the methodology currently in use 

to solve truly large-scale integer programs coming up in practice. We sketch a 
few of these applications in the final section of this paper . 

To show the technique we concentrate on problem 18 about a wolf, a goat, 
and a bunch of cabbages. It should be clear from our description how the 
other transportation problems can be handled. We are, of course, aware that 
problem 18 is quite simple and that we are using a steam hammer to crack 
a nut. But the technique we describe is very flexible and applies to all kinds 
of generalizations. The wolf-goat-cabbage problem is not only just a nice ex
ample where the modelling technique can be described easily In fact; quite 

surprisingly ,all the mathematical difficulties that arise in integer programming 
already appear here. 

Our starting point is the symbolic description of Alcuin's solution shown in 
Figures 1 and 2a. We want to transform this description into a representation 
that admits the use of algebraic and geometric techniques and is suitable for 
computation. 

We indicated the presence of a wolf, goat, or cabbage by writing W, G, or 
C and the absence by '-'. Instead of W, G, and C, we could also write 1 
and instead of '- ' write 0. To remember whether 1 stands for W, G, or C we 
(arbitrarily) fix an order of the symbols. We agree that symbols always appear 

in triples, the first symbol in the triple referring to the wolf, the second to the 
goat, and the third to the cabbage. For example, with this convention the "old" 
triple (W, - , C) now reads (1,0,1). Applying this procedure to Figure 2a yields 
Figure 2b. The advantage of this representation is that we can now "compute 
with wolves, goats, and cabbages" using standard algebra without introducing 
special rules for this particular case. 

The procedure that we have just applied is a special case of a more general 
method to bring vector spaces into play. This technique is the following: We 
assume that we have a (finite) set Nofn elements. We (arbitrarily) number the 

2 Our approach is by no means the only modern mathematical method suitable to attack 
Alcuin's transportation problems. For instance, [4] suggest in exercise 1.8.4 to solve 
problem 18 as a shortest path problem in a certain state-time graph. This approach is 
simpler than ours, but it illustrates other techniques than the ones we want to discuss 
and is not as general. 



elements 1, ..., n and define a vector x — Otii • ■ • tXn) where the components 
are indexed by the elements of N. If M is a subset of N we can represent M 
by an n-component vector 

where 

The vector xM is called the characteristic or incidence vector of the subset 
M of N. In our case of problem 18 the set N consists of the wolf, the goat, 
and the cabbage. The wolf is the first element and thus represented by the 
number 1, the goat gets number 2, and the cabbage 3. This way N = {1,2,3} 
is a representation of the wolf, the goat, and the cabbage and, therefore, every 
0/1-vector xM with three components can be viewed as the incidence vector of 
a "wolf-goat-cabbage configuration" M. 

There are several ways (and it is not completely straightforward) how to 
model the full problem 18 using this technique. We describe one version that 
is somewhat redundant but conceptionally clear. 

Our approach is to view a solution of problem 18 as a sequence of states 
at different points in time. Let us begin at time t = 0 (again this is just a 
convention). We introduce three vectors 

with the following meaning: x(Q) represents the incidence vector of the wolf-
goat-cabbage configuration on one side (we call it the left-hand side) of the 
river, y(0) the incidence vector of the wolf-goat-cabbage configuration in the 
boat, and z(0) the incidence vector on the other side (the right-hand side) of 
the river, all at time t = 0. The initial configuration (the state at time t = 0) 
in problem 18 is 

(1) 

(Clearly, our approach could handle any other initial state.) Now we have to 
make some conventions to record the transformation of states when items are 
shipped across the river. Let us denote by 



as above, the states on the left bank, the boat and the right bank, respectively, 
at time t = 0,1,2,.... The states x(t) and z(t) correspond to the wolf-goat-
cabbage configuration after the i-th shipment has been completed, while y(t) 
records the boat configuration for the i-fch sh'ipment. Th'is convert "ion'implies 
that 

(2) 

(3) 

These equations are algebraic representations of the state transitions. Equa
tion (2) describes the transition when an item is shipped from the right-hand 
side to the left-hand side, i.e., when t is even, while equation (3) models ship
ments from the left to the right. For instance, consider the transition from the 
initial state state at (even) time t — 0 with wolf-goat-cabbage configuration 
x(0),z(0) to the next state with wolf-goat-cabbage configuration x(l),z(l) by 
using the first shipment y(l) (shipping the goat from the left bank to the right 
bank). Equation (2) yields: 

The relations (2) and (3) are not sufficient because we have to guarantee fea
sibility of the states according to Alcuin's stipulations. Since the man rowing 
the boat can take only one item at a time, we have to introduce additional 
inequalities 

(4) 

We interpret Alcuin's phrase "... transfer . . . in good condition" that certain 
wolf-goat-cabbage configurations are not allowed. 'Wolf and goat' or 'goat and 
cabbage' are not permitted on the same side without the man. We can take this 
into account by adding so-called set constraints to the model. The constraint 

which is equivalent to stipulating 

(5) 



requires that whenever the man is not on the left bank, i.e., t is odd, a confi
guration consisting of all three items, the wolf and the goat, or the goat and 
the cabbage is not permitted. 

The modelling of the constraint for the right bank follows the same principle, 
but needs one more thought. Our aim is to ship all items from the left to the 
right, i.e., to reach a configuration z(t) = (1,1,1). Clearly, when z(t) = (1,1,1) 
is reached for the first time, say at time t0, t0 must be odd because a last item 
has to be moved by the man from the left to the right. When this happens we 
consider our problem solved and don't want further shipments to occur, i.e., 
we wish the states to be x{t) = (0,0,0), y(t) = (0,0,0), and z{t) = (1,1,1) for 
all t > £Q. Thus, we do not exclude the state z(t) = (1,1,1) from our state 
space for t even. Therefore, our set constraint for the right bank reads 

At this point we have arrived at a proper mathematical model of Alcuin's prob
lem 18 in the following sense. For every set of 0/1-vectors x(t): y(t), z(t) G 
{0, l } 3 , t = 0,1, 2 , . . . , satisfying the constraints (l)-(6) and z(tQ) = (1,1,1) for 
some tQ > 0, there is a feasible shipment of the wolf, the goat, and the bunch 
of cabbages such that all three items arrive on the right bank of the river at 
time to. Conversely, every solution of Alcuin's problem 18 can be encoded into 
a set of 0/1-vectors as above. 

The formulation above is not finite, just as problem 18 is not, since we could 
always add a few irrelevant additional shipments producing arbitrarily long 
sequences. As one can see from his solution, Alcuin was clearly interested in 
a minimum number of shipments. This brings up the optimization aspect and 
ways to make the problem finite. 

One possibility to introduce a finite time horizon is to count the number L 
of possible states x(t), t odd, on the left bank and observe that, whenever a 
certain state x(i), t odd, appears for a second time, say x(s) = x(t), where 
s < t and s and t are odd, then all shipments in the time interval between s 
and t were unnecessary. The set constraints (5) imply that there are at most 
L := 5 different feasible wolf-goat-cabbage configurations for t odd on the left 
bank, and thus, if a feasible solution exists, there must be one with at most 
T = 2L - 1 = 2 - 5 - 1 = 9 shipments. 

Using this or similar observations we can introduce a finite time horizon 
T, and therefore Alcuin's problem 18 can be viewed as a finite combinatorial 
problem. More precisely, by adding the "final state constraint" 

z(T) = (1,1,1) (7) 

we can conclude that the wolf, the goat, and the cabbage can be shipped from 



the left to the right-hand side if and only if the following system (l)-(8) has a 
feasible solution. 

(1) 

even (2) 

odd (3) 

(4) 

odd (5) 

even (6) 

(7) 
(8) 

Let us introduce some abbreviations at this point. Combining the 3-dimen-
sional vectors x(t), y(t), and z{t) for all T + 1 time periods t = 0, 1 , . . . , T into 
3 • (T + l)-dimensional vectors 

and those into a 3 • 3 • (T + l)-dimensional vector 

Alcuin's problem 18 is to decide wheth erth ere'is a sd ution u=(x,y,z) to the 
system (l)-(8). 

There are different solutions of Alcuin's problem. It is therefore reasonable to 
compare the "quality" of different solutions by the evaluation of certain crite
ria. In mathematical language this means that we transform the combinatorial 
problem into a combinatorial optimization problem by introducing an objective 



function that evaluates the quality of solutions. There are, as usual, many 
options. 

The most natural option is to minimize the number of trips the man has to 
do. This is probably what Alcuin had in mind. One is therefore tempted to 
minimize the function 

(9) 

which, unfortunately, does not do the job. Namely, this function just counts 
the loaded trips since, whenever the man crosses the river with one item (the 
boat carries at most one) at time t, exactly one of the three variables y(t, 1), 
y[t,2) and y(i,3) is equal to one while the others are zero. But this function 
does not count the unloaded trips. Thus, unloaded trips can be "added" to 
any optimum solution without affecting optimality. 

A typical "trick" in optimization, with which such situations can be handled, 
is scaling. We replace the objective function 9, which has only 0/1-coefRcients, 
by 

(10) 

For any feasible solution (x,y,z) of (l)-(8), set 

i.e., t n i a x is the time of the last nonempty shipment. Now suppose that (x,y, z) 
and {x',y',z') are two feasible solutions of (l)-(8) with tQ = tmax(x,y,z) < 
t'Q = tmax(x',y',z'). Then the choice of the scaling factors implies that 

Hence if (x,y,z) is a feasible solution of (l)-(8) achieving a minimum value 
with respect to the objective function (10) then t^^x^y^z) is the minimum 
number of trips necessary to take the wolf, the goat, and the bunch of cabbages 
across. 

There are other "tricks" to count the number of trips. We could introduce 
auxiliary "counting variables" that are one as long as the river is crossed. In 
our case we would define 0/1-variables w{t) for t = 1 , . . . , T satisfying 



Then the objective function 

(11) 

would count the number of river crossings, and any minimum solution with re
spect to this function would be best in Alcuin's sense. Although this modelling 
technique is quite general (other cases can be handled similarly) optimizers do 
not like auxiliary 0/1-variables since they usually lead to further difficulties 
that we cannot discuss here. 

Another possibility, in the particular case of Alcuin's problem 18, is to min
imize the function 

(12) 

that models the aim to remove all items from the left bank as soon as possible. 
It is not difficult to show that minimizing (12) is equivalent to minimizing (11). 

As we have indicated, there is no unique natural way to model Alcuin's pro
blem 18. But we hope that it has become clear that the general approach to 
formulate problem 18 as a 0/1-optimization problem is quite flexible. Using 
similar observations and "tricks", generalizations and variants of problem 18 
can be modelled easily. Different objective functions and further or other re
strictions can be taken into account without difficulty. It should also be ap
parent how Alcuin's other transportation problems can be phrased in this way. 

Summarizing the discussion of this section, we have shown that Alcuin's 
problem 18 is equivalent to finding an optimum solution to the 0/1-Optimi-
zation Problem (3) with T = 9. This is the problem that we are going to 
discuss further in subsequent sections. The choice of one of the three (or 
more) possible objective functions is a matter of taste. We always try to avoid 
auxiliary variables. That is why we rule out (11). Objective function (10) has 
large coefficients (which sometimes results in numerical problems), thus we opt 
for (12). 

4 The Integer Programming Approach 
We would like to solve Alcuin's problem 18 by means of 

integer programming methodology. The current model (3), however, is not 
suitable for this approach because of the set constraints. Constraints of this 
type can (occasionally) be exploited by dynamic programming or other search 
or implicit enumeration techniques in case the state or search spaces can be 
efficiently reduced. We do not discuss these methods here. 



minimize 
subject to 

Optimization Problem 1: A Model of Alcuin's Problem 18. 

Our approach is to reformulate the set constraints geometrically by means of 
linear inequalities (and integrality requirements). 

Let us look at the set constraints 

We view the five 3-dimensional 0/1-vectors 

describing the set of possible z-states, as points in M3. The convex hull of these 



points 

forms a polytope that we call the x-state polytope. By a general theorem due 

Figure 3: z-State Polytope. 

to Weyl and Minkowski, see [29], there is, for every finite set V of points in Mn, 
a finite set of inequalities Ax < b whose solution set is equal to the convex hull 
of V, and vice versa, for every bounded set P that is the solution set of some 
inequality system Ax < b, there is a finite set V whose convex hull is equal to 
P. 

So we know that there is a system Ax < b of inequalities with 

There are general techniques to determine, given a finite set of points in Mn, 
an inequality system describing the convex hull of these points (such as Fourier-
Motzkin elimination or the double description method, see [26] or [30]). These 
methods are inherently exponential. In other words, there are examples of a 
few points that need an enormous number of inequalities for the description of 
the convex hull. 



In our case we are lucky and can easily compute 

conv 

Similarly, we get a z-state polytope by observing that 

conv -

Figure 4: a-State Polytope.  

We can use this observation to set up the integer programming problem 
we are aiming at. We simply replace all the set constraints in Optimization 
Problem 2 by the corresponding inequality systems. This leads to Optimization 
Problem 2. One may be tempted to believe that the integrality stipulations are 
not necessary since we found complete linear descriptions for the individual set 
constraints. But — as we will see in a minute — this is not so! What we have 



Optimization Problem 2: A Integer Program of Alcuin's Problem 18 . I 

achieved, however, is the following: Optimization Problem 2 is an integer linear 
programming model of Alcuin's problem 18, i.e., a description by means of linear 
constraints and integrality stipulations only. Why is Optimization Problem 2 
a better model than the old Optimization Problem 1? The point is that if 
we delete the integrality constraints from Optimization Problem 2 we obtain 
an optimization problem over a system of linear equations and inequalities, a 
so-called linear program, with the property that all feasible integral solutions 
of this linear program are exactly the solutions of Alcuin's problem 18. This 
linear program, Optimization Problem 3, is called the LP relaxation of the 
integer program. The reason for making all these efforts is that there is good 
commercial and public domain software available that solves linear programs, 
even of very large size, quite easily. 

Does that approach — formulating a problem as an integer linear program 

minimize 
subject to 



Optimization Problem 3: The LP Relaxation of Problem 2. 

and dropping the integrality constraints — solve Alcuin's problem? Unfortu
nately not! Namely, if we solve the LP Optimization Problem 3, we get the 
solution shown in Figure 5. 

We observe that it is not integral, i.e., the integrality stipulations in (4) were 
in fact necessary! 

Although this is "illegal", we interpret the fractional optimum solution. 
The interpretation is illustrated in Figure 6. The man first ships the goat 
(y(l, 2) = 1) from left to right, returns, then ships half the wolf and half the 
cabbage (y(3,1) = y(3,3) = 0.5) from left to right, returns, and ships the re
maining half of the wolf and the cabbage (y(5,1) = y(5,3) = 0.5) to the right. 
This "solution" does not violate any of the inequalities of the LP relaxation (4) 
and requires only 5 shipments, but is certainly not what Alcuin had in mind. 
The point here is simply that the numbers 0 and 1 are indicating the presence 
or absence of an item. They are indicator variables and not numeric vari
ables from which we can take fractions. Fractional values of indicator variables 

minimize 
subject to 



have no meaning in the "real world" — although we could not withstand the 
temptation to talk about half a wolf. So, was all this effort just funny nonsense? 

Of course not, otherwise we would not have written this paper. As often in 
mathematics, we go through infeasible domains to arrive at our aim. How we 
do that will be described in the next sections. 

5 The Polyhedral Approach and Cutting 
Planes 

The first attempt to solve the integer programming version (Optimization Prob
lem 2) of Alcuin's problem 18 using only linear programming was not successful. 
But by extending the idea that we described in Section 4 to reformulate the 
set constraints we get on the right track. Let us look again at Problem 2.The 
set of integral vectors 

is a solution of Problem 2}, 

i.e., the set of solutions of Alcuin's problem 18, is finite. Thus the convex 
hull P of V forms a polytope, and just as for the set constraints (5) and (6), 
the theorem of Weyl and Minkowski implies the existence of a finite system of 
inequalities Au < b with 

It is well known from polyhedral theory that the set of vertices (extreme points) 
of P is a subset of V. In fact, since V C {0,1}3-3'(T+1) it is easy to see that 
V is exactly the set of vertices of P. But Optimization Problem 2 asks for 



Figure 6: Half the wolf and the cabbage are shipped over the river . . . 

an element of V with minimum objective value, i.e., for a vertex of P with 
minimum objective value. 

Now a simple but fundamental observation of linear programming is the fact 
that, for any linear objective function cTu, the minimum value of the LP 

mincTu = minimize cTu 
ueP subject to Au < b 

is attained at a vertex of P. The famous simplex method exploits exactly this 
observation. It first finds a vertex of P (in simplex terminology: a basic feasible 
solution) and then iteratively moves from one vertex to a neighboring vertex 
with smaller objective function value, until an optimum vertex is reached. Since 
this vertex is a point in V, our integer program is solved. 



To put this approach into practice, we need the system AU < b that descibes 
P. We have already mentioned that, in general, this system can be very difficult 
to find. Let's take the travelling sales man problem as an example. There 
are natural ways to formulate the well known travelling salesman problem as 
an integer program resulting, for n cities, in travelling salesman polytopes in 
dimension n(n - l)/2 with \{n - 1)! vertices, see [17]. Table 1 shows for 
5 < n < 10 the number of vertices and the number of facets (in equalities 
necessary to describe the polytope) of the travelling salesman polytope. This 
table, composed from [9] and [26], gives a glimpse of the enormous growth that 
may occur here. 

Table 1: Combinatorial explosion in the TSP-polytope. 

In general, it is practically impossible to compute all the necessary inequali
ties. Even if we could do that it is simply out of question to input them into a 
computer code and solve the resulting LP. Nevertheless, there are ways to use 
this approach algorithmically as we will illustrate. 

Let us first "do the impossible". Alcuin's problem is still in the range of 
problem sizes where one can compute all the feasible integer solutions and a 
complete description of their convex hull by linear inequalities. We did that 
using the program PORTA ([8]). 

Setting the time horizon to T := 9 we obtain an integer program in 3 ■ 3 • 
(T + 1) = 3 ■ 3 ■ 10 = 90 variables where the first 9 variables are fixed to 
x(0) = (1,1,1), 2/(0) = (0,0,0), z(Q) = (0,0,0) due to Alcuin's initial condition 
and where we require 2(9) = (1,1,1), as outlined in the description of our 
model, as the "terminal state" meaning wolf, goat, and cabbage have to be on 
the right bank in the end. 

We determined all vertices (integral and fractional) of the LP relaxation and 
took all feasible integral solutions to generate the linear inequalities (facets) and 
linear equations that are necessary to describe the convex hull of the integral 
points in R90. The result is displayed in Table 2. All the 20 different integral 

Table 2: Complete description of the convex hull. 

solutions of Alcuin's problem (for T = 9) and the complete list of 16 inequalities 



and 79 equations describing their convex hull can be found in the Appendix in 
Figures 8 and 9. 

The number of equations and inequalities is so small that every commercial 
LP code solves the resulting LP in a matter of milliseconds. Using the objec
tive function (10) or (12) we obtain exactly the 0/1-representation of Alcuin's 
solution and have thus succeeded in solving the integer program as a linear 
program. 

In general, however, we don't have the list of all inequalities. In such a case 
we use what is called the cutting plane approach in combinatorial optimization. 
This is done as follows. 

We first solve the "natural LP relaxation" of the given integer program. In 
our case, that would be the Optimization Problem 3. If the optimum solution — 
say u* — is integral we are done (since we are solving an optimization problem 
over a set larger than the set of integral solutions). If it is not integral (like in 
our case the solution in Figure 5 happened to be) we search for an inequality or 
an equality from the complete system describing the convex hull that is violated 
by the current fractional solution u*. Such an inequality/equation is called a 
cutting plane, as it cuts off the current solution u*. We modify our present LP 
by adding the inequality/equation found (of course, in practice we will not only 
add one cutting plane, but usually as many as we can find - provided that the 
LP does not get too large) and resolve the LP. We iterate this process until an 
integral solution is found. 

We have done that with Alcuin's problem. The first LP-solution listed in 
Figure 5 was fractional. This solution does not satisfy the equation (53) 

of the complete description listed in Figure 9. In fact, in the LP solution we 
have 

Thus we can use this equation as a cutting plane and add it to the LP. The 
optimum solution of the new LP was again fractional. We found the new 
cutting plane 

which is inequality (10) from the complete description. We also added this 
inequality to the LP. The optimum solution of the third LP was integral and 
again Alcuin's solution. 

So with just two additional cutting planes we were able to produce a provably 
optimum integral solution (by solving three linear programs). This rather sur
prising result is not just a strike of luck. There is a general theory often termed 
the "polynomial time equivalence of optimization and separation" worked out 



in detail in [16] which explains this favorable behavior. Even a short outline of 
this theory is beyond the scope of this paper. 

We did not explain how we determine cutting planes. In Alcuin's case this is 
easy. Since we have an explicit list of all necessary inequalities and equations, 
we can simply substitute the fractional solution into the inequalities/equations. 
As the list is complete and the fractional solution is not in the convex hull of the 
integral points there must be at least one inequality/equation that is violated 
and we can use this as a cutting plane. In general, however, this approach 
requires too much computational effort, even if someone gave us the complete 
description for free, since the complete systems describing polyhedra associated 
with combinatorial optimization problems tend to have exponentially many 
inequalities (see the TSP case already mentioned). That difficulty can be dealt 
with by means of so-called separation algorithms. The associated theory can 
be found in [16]. 

Making this theory practical, i.e., coming up with algorithms that solve prob
lems of the real world efficiently, requires a lot of additional, often problem 
specific work. We refer the interested reader to [27] for a discussion of the TSP 
case in this respect. 

The same approach also applies when we do not know complete inequality 
systems describing the convex hull, which, in fact, is the usual case. The cutting 
plane method is again based on separation algorithms, but these implicitly or 
explicitly search only parts of the (existing but unknown) complete system. In 
such a case we may be lucky and find an optimum integral solution (in our case, 
the initial LP plus only two more inequalities described above would result in 
such a case), but in general we are not guaranteed to terminate with an integral 
optimum solution. If that happens, and in practical applications this is usually 
so, we still have a way out. This is described in the next section. 

6 Branch and Bound 
We have arrived at a state where our LP solver has determined an optimum 
non-integral solution of our current LP relaxation of the integer program and 
where our separation algorithms were unable to find a further cutting plane. 
In Alcuin's problem 18 that could have been after the solution of the initial 
LP relaxation if we had not been able to compute the inequality system in 
Figure 9. 

At such a point, practice has shown that it is not a bad idea to do something 
(theoretically) trivial. We resort to (partial) enumeration and combine this 
with some heuristics. 

So let us summarize the current situation. We have a fractional solution 
of the last LP relaxation at hand. Its objective function value provides by 
construction a lower bound CL for the (unknown) optimum value copt of the 



integer program, i.e., 

Now, in practical applications one usually implements several heuristics that 
try to find "good" feasible solutions using various problem specific search and 
improvement techniques. The best such feasible solution provides an upper 
bound cy for copt . 

lower bound 
copt 

optimal solution 
(unknown) 

< cv 
upper bound 

= best known solution 

Let us look at the relative error e = Cu~^u (assuming CL > 0). If e = 0 (i.e. 
cv = CL = copt) we are done. In many applications the data are somewhat 
"soft" or "fuzzy" and practitioners are perfectly happy with a situation where 
e = 0.1. That means that we have a feasible solution with value cu that is 
guaranteed to differ from the optimum value copt by at most 10%. 

In Alcuin's case we could use his solution with value cu = Ylx(t,i) = 12 
whereas our LP-solution gives a lower bound CL = 9. We are not satisfied with 
the resulting gap of 331%. That is why we turn to partial enumeration. Using 

Figure 7: Branch & Bound searchtree. 

some rule (to be determined by problem specific investigation) we choose one 
of the variables having a fractional value. In our case we choose x(3,l) , i.e., 
the wolf variable on the left bank in time period three, whose value is 0.5 in our 
LP solution. In an optimum solution this value must be either 0 or 1. So we 
create two new subproblems consisting of the old LP plus one of the additional 



requirements ar(3,1) = 0 or #(3,1) = 1. This creation of two new subproblems 
splits the set of feasible integral solutions into two distinct subsets and is called 
a branching step. 

Now we solve each of the resulting new LPs with our LP solver (possibly using 
the generation of new cutting planes, in which case we call the procedure branch 
and cut). In each subproblem we get new lower bounds and possibly, running 
further heuristics, also new upper bounds. If the lower bound at a subproblem 
is larger than or equal to the best current upper bound we can stop investigating 
this subproblem since it provably does not contain an integral solution that is 
better than the current best. This is the bounding or fathoming step with which 
we can trim the search tree that is generated by iteratively applying the fixing 
of variables as described above. 

The search tree that is obtained in Alcuin's case is shown in Figure 7. We 
already described how we created two new subproblems from the initial LP 
relaxation. Solving the LP at subproblem 2 — arising from fixing the wolf 
variable a;(3,1) to 0 — yields Alcuin's integral solution with objective value 12. 
We already knew this solution, so our upper bound of 12 is not improved, but 
since we solved subproblem 2 to (integral) optimality, we can stop processing 
it. A better solution could, however, still be found in subproblem 3 that we 
got from the LP relaxation by fixing x(3,1) to 1. Solving this LP yields a 
fractional solution with value 12. This value is a lower bound on the objective 
value of all fractional and integral solutions in subproblem 3. But since this 
objective value equals the value of the best known solution, there cannot be 
any better integer solution in subproblem 3 and we have fathomed it. So by 
just examining three subproblems in the searchtree we once more arrived at 
Alcuin's solution and proved it to be optimal (with respect to objective (12) 
and thus also with respect to (10)) again. 

The search tree could, in principle, consist of 290 nodes turning this approach 
into (hopelessly ineffective) complete enumeration. In case both the LPs solved 
on the run and the heuristics provide good bounds on the optimum value the 
search tree often is of manageable size, as in our case. 

This enumerative technique called branch and bound, or implicit enumera
tion, or branch and cut or the like guarantees the finiteness of the procedure 
that we described - at least theoretically. In Alcuin's case we could easily prove 
that his solution is optimal. 

7 Transportation Problems 
Alcuin's problems 17,... ,20 are certainly not transportation problems that ap
pear in practical applications. We have chosen problem 18 to show how — 
in our times — transportation problems are modelled and solved. Surpris
ingly, problem 18 displays all the difficulties in mathematical modelling and 



in algorithmically solving real transportation problems of today. In fact, the 
mathematical techniques and the algorithmic ideas that we sketched in the pre
vious sections are exactly the methods with which large-scale transportation 
and other combinatorial optimization problems are attacked at present. 

It is simply impossible to survey here all the variants of transportation prob
lems that are used in practice and dealt within the mathematics and opera
tions research literature. The Handbook "Network Models" by [Ball, Magnati, 
Monma and Nemhauser '(1995)] contains several chapters that discuss various 
types of transportation problems (travelling salesman; watchman routes; as
signment, minimum cost and multicommodity flow problems; path planning), 
the survey articles [11] and [1] contain broad overviews of the subject and 
classifications of the problem types. A survey of the field of combinatorial 
optimization can be found in [15]. The polyhedral methods of integer pro
gramming emphasized in this paper are described in more detail in the articles 
[17] and [27]. 

We are currently working on two special and really large-scale logistics prob
lems: Bus scheduling in Hamburg and Berlin and the transportation of disabled 
persons in Berlin. 

The bus scheduling problem is the following. The transportation company of 
a city has decided (taking many additional requirements and side constraints 
into account) on a network of lines where buses regularly run. Moreover, the 
timetable for the bus trips has been determined. The company has several bus 
depots and types of vehicles. For each trip it is known which vehicle type from 
which depot can serve it. The task is to assign the vehicles to the trips such that 
each trip is served by a "legal vehicle" and such that the fleet size is minimized 
and the cost of the "unloaded trips" (move of a bus without passengers between 
two trips, or from or to the depot) is as small as possible. This problem can 
be modelled as a special integral multicommodity flow problem. In case of the 
city of Berlin, the mathematical model has about 70 million integral variables. 
We can solve the problem to optimality on fast SUN workstations in about two 
days of CPU time, see [25]. 

The city of Berlin operates a fleet of about 100 special buses that can carry 2 
to 4 wheel chairs simultaneously. Every disabled person in Berlin is entitled to 
order rides (under certain side constraints) that will be provided by this system. 
About 23,000 people currently subscribe to the system and order between 1,000 
and 1,500 rides a day on the average. The problem is to schedule the individual 
rides into buses so that timely service is provided and the overall cost is as small 
as possible. We have modelled this task, to be solved day by day, as a so-called 
set partitioning problem, requiring the solution of an integer program 



minimize cTx 
subject to 

where A is a 0/1-matrbc with 1,000 to 1,500 rows and 100,000 to 1 million 
columns and 1 a vector all of whose components are 1. We are unable, at 
present, to solve this problem to optimality, but we can generate, in a few 
hours of CPU time, feasible solutions with costs provably at most 10% to 20% 
above the (unknown) minimum value. A first version of this system started 
operation in Berlin in June 1995 and resulted in considerable savings (about 
25%) compared to the previously used "scheduling by hand", see [5] and [6]. 



Appendix 

Figure 8: List of all integer solutions of Alcuin's problem 18 for T = 9. 
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Figure 9: Complete linear description of the polytope associated with Alcuin's 
problem 18 for T = 9. 
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