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Abstract

We present an approach to implement an auction of railway slots.
Railway network, train driving characteristics, and safety requirements
are described by a simplified, but still complex macroscopic model. In
this environment, slots are modelled as combinations of scheduled track
segments. The auction design builds on the iterative combinatorial
auction. However, combinatorial bids are restricted to some types of
slot bundles that realize positive synergies between slots. We present a
bidding language that allows bidding for these slot bundles. An integer
programming approach is proposed to solve the winner determination
problem of our auction. Computational results for auction simulations
in the Hannover-Fulda-Kassel area of the German railway network give
evidence that auction approaches can induce a more efficient use of
railway capacity.

1 Introduction

During the last decades many countries have experimented with open ac-
cess policies to their railway networks. Particularly the EU advocates non-
discriminatory open access as a part of its general policy towards market
opening and on-track competition, and as an instrument to foster European
railway integration, namely, by allowing national train operating companies
to access the networks of neighbor states.

The usefulness of open access for railways is widely discussed about. The
main argument is whether on-track competition can be a viable alternative
to fully integrated or regional franchise systems or not. One of the main
objections is that on-track competition wouldn’t really work on a full scale,
due to the problems associated with coordination and network timetabling.
Indeed, there does at present not exist a satisfactory allocation mechanism
for network slots under conditions of non-discriminatory open access and
on-track competition.

This paper outlines an approach to design and develop such a mecha-
nism.1 The basic idea is to perform slot auctions, in which scarce network

1The paper is based on research project “Trassenbörse” (“Railway slot exchange”),
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capacities are allocated to the most valuable uses, and not by inherited
‘rights’ or by simple priority rules. This idea is not new. In fact, auction-
ing procedures have already been established in several European railway
markets. For example, in Germany, slots are allocated according to priority
rules, however, railway law and regulation also provide for the application of
a ‘highest price procedure’ in case of a conflict between equally ranked slot
requests.2 This ‘highest price procedure’ is being criticized since it does not
take account of interdependencies.The argument is that someone who wins
a particular bottleneck slot in a bidding procedure might block other scarce
parts of the network and drive out demands that were not involved in the
particular bidding procedure. This can lead to inefficient allocations. Iso-
lated bidding for bottlenecks is therefore not appropriate for railway network
allocation.

The way to overcome this objection is to consider a so-called combi-
natorial auction that allocates a multitude of interdependent slots simul-
taneously. Currently, theory and practice of such combinatorial auctions is
rapidly developing3, the main applications being logistics and spectrum auc-
tions in telecommunications.4 Railway as well as airport slot allocation are
also often cited as possible applications for combinatorial auctions, however,
as far as we know, no specific auction design has yet been developed that
would meet the particular needs and problems of railway systems. There
probably doesn’t exist one for airport slots either, and even if it did, it is
unclear how one could transfer results from this area to a railway setting, be-
cause the analogy between railway and airport allocation is limited. In fact,
for air planes, only take-off and landing slots have to be planned in advance,
while routing in air takes place spontaneously. In railways, in contrast,
issues like track capacities, overtaking, and signalling systems are essential
([Pachl 2003, p.228]). Therefore, the efficient use of a railway network hinges
not only on departures and arrivals, but also on the combination of routes
and speeds taken by individual trains in the network. Another difference
to airlines is the larger importance of regular service patterns in timeta-
bles. Constraints such as these make railway capacity allocation much more
complex than that of airport slots.

In this paper we will describe our basic approach to combinatorial railway

funded by the German Ministry of Education and Research (BMBF), 19 M 4031A. It
is joint research of the following institutions: TU Berlin, Workgroup for Infrastructure
Policy (WIP) and Department of Railway Track and Operations (SFWBB). Konrad-
Zuse-Zentrum Berlin (ZIB) for mathematical optimization. Institut für Verkehrswesen,
Eisenbahnbau und -betrieb (IVE), University Hannover. Rail Management Consultants
GmbH, Hannover. Consultants Ilgmann & Miethner. IABG Munich. Dr. Udo Ziegenhorn.

2In Great Britain some kind of auction mechanism for the allocation of individual
train paths was considered during the rail reform process but finally not implemented; see
Affuso [2003] and Affuso & Newbery [2004].

3See for example Milgrom [Milgrom 2004, Chapter 8].
4See Ledyard et al. [2002] or Caplice & Sheffi [2003].

2



slot auctioning. We (i) model the railway network in a suitably simplified
form, (ii) design a multi-round auction including an appropriate bidding
language for train operating companies to express their bids, and (iii) solve
the combinatorial track allocation problems that arise in each round. At
present, the auction itself is quite simple. We will sketch our auction rules
(i.e., the determination of winners and actual payments etc.) only briefly,
and do not address bidding strategies at all; these topics are for further
research.

Our approach allows train operating companies (TOCs) to express bids
that entail some flexibility with respect to departure and arrival times, to
speed, and to the exact route taken (where deviations from the most pre-
ferred schedule lead to reductions of the monetary bid). In each auction
round a combinatorial optimization problem, a so-called optimal track allo-
cation problem (“OPTRA”), will be solved to pick the combination of slot
requests that maximizes network proceeds. In this way, requests that would
drive out too many other high-valued requests will not be allocated. More
importantly, the structure of allocated slots will reflect the overall scarcity
of slots in the network. For example, it might happen that a high-speed
train is slowed down by the overall optimization procedure in order to leave
more room for slower, but highly valued trains; such a result would normally
not be achieved by hierarchical planning. In accordance with EU criteria,
we assume that the base prices for slots are fairly low. Thus, the true aim
of the auction mechanism is an optimal use of the network, not literally the
maximization of network proceeds.5

Mathematical optimization of an entire network timetable is completely
new to the industry. Until now, network timetables are hand-optimized: in-
herited timetables are improved selectively in a trial and error manner. The
main reason for this way of planning seems to be the complexity that arises
from the manifold important technical components and details of a rail-
way network with its tracks, switches, signals, and train running dynamics.
Indeed, constructing an algorithm to optimize the network use on a micro-
scopic basis seems to be hopeless. We will therefore resort to simplifications:
a coarser classification of train types replaces individual train running dy-
namics and the network is described by a simplified ‘macroscopic’ model.
On this basis, our mathematical optimization module, as it stands, works
for a small subset of the German network. We are, of course, aware that
it remains to be shown that our approach can be scaled to larger scenarios
and, perhaps even more important, that a coarse timetable of the type that
we propose can be refined to a detailed, ’tractable’ plan in a routine way
without loosing its characteristics.

The optimization of the entire network timetable in one single auction

5Between auction dates it will be possible to acquire slots on short notice for a short
period of time, but this is not our main interest.
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is not a practical aim anyway. One of the reasons for considering smaller
scenarios are terms of validity. Generally, the time interval between two
auctions should be shorter (say, one year) than the expiration time of the
rights to use a slot (say, four years). As a consequence, only part of the
network capacity will be on sale in any single auction. Such a partial auc-
tioning will reduce the complexity of the optimization problem, but it will
also reduce the optimization potential. Nevertheless, it is hoped that the
overall timetable will improve over time if every slot will eventually return
to the market. In any case, if an auction mechanism will be put into practice
one day, it will be introduced on small, confined allocation problems (like a
region or an important corridor) to test its power and applicability.

Irrespective of the organizational structure of the railway system and
its marketing, a powerful track allocation method will be of interest in its
own right. A fully integrated company would be subdivided into differ-
ent transportation departments (like regional and long-distance passenger
services, freight services) and a rational allocation of network slots to the
independent profit centers requires a fair and non-discriminatory allotment
procedure. Such a company might very well want to do an internal auc-
tion of slots. Moreover, since open access is required by EU directives and
competition is politically appreciated, the presence of such an integrated
company would certainly call for a fair and non-discriminative allocation
mechanism. Of course, a network manager in a vertically separated system
would be even more interested in a fair, revenue-maximizing mechanism.

The paper is outlined as follows. After a general literature overview in
Section 2, Section 3 describes our railway model. The main topic here is
the tradeoff between the level of detail required by a realistic model and
the requirement to reduce complexity for the sake of tractability. Section 4
proceeds with our auction design including an economic bidding language
that enables train operating companies to express their bids in a satisfac-
tory and flexible way. Our mathematical optimization approach to the track
allocation problems arising in each round of the auction is explained in Sec-
tion 5. Section 6 illustrates its capabilities by some computational results.
The final Section 7 outlines the route for further research.

2 Literature Overview

Much of the early research on auctioning railroad slots was inspired by the
Swedish Parliament’s move to search for market-based mechanisms for track
allocation. Brewer & Plott [1996] propose in this context an auction-based
mechanism for track allocation provided that slots have the binary exclusion
property, that is, a set of slots is consistent if any two of its elements are.
This condition, however, does not hold for a general network of tracks with
alternative connections available between origin-destination pairs. Nilsson
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[2002] follows up and introduces the triangular shape of the operator’s util-
ity functions that we will also use. He notes that some scheduled trains may
have complementary value (e.g., by securing connections), and suggests that
bidding for bundles of trains may be allowed. To handle negative inderde-
pendencies by closely scheduled trains competing for customers, the author
suggests a regret rule that allows bidders to withdraw their last bid. Also,
the author quotes a result of Ellis and Silva that states that in long-term
equilibrium, there will be only one company serving each market segment,
and concludes that considering negative interdependencies is not strictly
necessary. Authors don’t give a final statement on the necessity of the re-
gret rule. Isacsson & Nilsson [2003] report an experimental game where
participants compete over one rail segment, and compare bidding behaviour
under first- and second price auctions and two types of stopping rules.

Parkes & Ungar [2001] present an auction-based track allocation mecha-
nism for the case that single-track, double-track, and yard segments have to
be concatenated to form a single line. (Double-track segments allow trains
to pass each other, yards allow passes and meets of trains.) Parkes assumes
that train operators schedule trains between a given origin destination pair,
and uses operator utility functions similar to those of Nilsson. Parkes as-
sumes that every line segment is managed autonomously by a dispatcher.
All dispatchers run simultaneous but otherwise independent auctions to find
the optimal allocation of slots for their track segment. Train operators must
bid for every segment their train passes on its way, i.e., they bid for the
right to enter and leave a segment at specified times where times can be
either fixed or flexible. For flexible bids, the bid amount decreases linearly
with the allocated times deviating from the requested times. Composition
of XOR-connected combinatorial bids is allowed. The rules of the auction
follow Parkes i -bundle (Parkes [1999]) auction design.

In Parkes’s approach, the only form of coordination between different
segments is that all auctions end simultaneously. His auction therefore can
be seen as a combination of a combinatorial auction with a simultaneous
ascending auction: the combination of segments to a complete train line is
done via simultaneous ascending auctions for each required segment, while
for the timing of segment access, XOR-connected bids are allowed. It is
well-known (see e.g. Milgrom [2004] chapter 7) that simultaneous ascending
auctions work well for goods that are substitutes, while for complementary
values, such as the segments of a line (Parkes uses a linear network, i.e.,
without cycles), there is in general no stable bidding strategy. Parkes also
claims no theoretical result regarding efficieny. He rather reports on exper-
iments, in which all trains travel from end-to-end over the network, i.e., all
trains have identical complemetarities, and with players using a myotic best
response strategy. In this setting, he reports high efficiencies.

Bassanini et al. [2002] give a game-theoretic model of train operators’
competition about track usage. They don’t model train conflicts, but rather
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consider congestion which slows down affected trains. The minimal track
occupation time between two stations is the sum of the free-running time
and a congestion-dependent delay. A schedule then is feasible if every sched-
uled train in it is feasible (that is, respects the speed limit of the train, a
minimal dwelling time at stations, etc.), and if the constraints imposed by
congestion are satisfied. The game is played separately for every line (which
is composed of line segments). The authors suggest that if multiple lines
are considered, the mechanism should be applied to all lines subsequently
in order of decreasing traffic intensity of this line. They would also allow
requests for connections from branch lines. The authors have compared em-
pirical data from the Rome-Milan line with numerical simulations of their
model and found a good correspondence. However, the model is too coarse
to generate a valid traffic diagram, and therefore not applicable for our
purpose.

Brnnlund et al. [1998] propose an integer programming approach to the
optimal track allocation problem similar to, but less detailed, than ours.
They consider a railway network with a block security system, in which
all conflicts between trains arise from simultaneous allocations of one block
to more than one train at a time, and fixed departure and arrival times.
Based on a path-based integer programming model, they generate a feasible
schedule using Langrangean-relaxation techniques and predefined prioritiy
rules for the considered train types. For a linear network between Uppsala
and Borlänge with 17 stations and 30 trains over a time horizon of 17 hours,
they can compute timetables with optimality gaps of at most 3,8%.

Caprara et al. [2002] introduce an integer programming approach to what
they call the train timetabling problem; this problem is equivalent to our
optimal track allocation problem without combinatorial bidding constraints.
They propose an arc-based multi-commodity flow model and attack it with
a heuristic based on Lagrangean relaxation. The computational experiments
study real-world problems provided by Italian railway companies. The in-
stances deal with a single, one-way track linking two major stations, with
a number of intermediate stations in between. The networks considered
contain up to 73 stations and 500 trains during a time horizon of one day,
which was discretized in steps of one minute. In these instances, almost all
trains could be scheduled wtih optimality gaps below 2%. They also tested
more congested instances, for which only a part of the trains can be sched-
uled. In these scenarios, the optimality gap increases up to 10-20%, the
solution time increases as well. In a subsequent publication, Caprara et al.
[2001] improved their train timetabling model by taking into account several
additional constraints that arise in real-world applications. Computational
results for the above mentioned, modified scenarios with up to 221 train
requests are reported.

Overall, the question of whether auctions can be used for efficient rail
path allocation, and how an implementation would need to work, can’t be
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(a) A station head in microscopic view,
with signals (red triangles) and switches
(black triangles) — far too many details
for a mathematical optimization

(b) Macroscopic view of a subnet, with
nodes and arcs (high-speed in red). For
node Braunschweig, station capacity κ and
the driving-time vectors D and headway
matrices B of the adjacent arcs are
indicated.

Figure 1: Microscopic and macroscopic view of railway networks

answered from the existing literature. As far as we know, the literature
does not propose models and solution concepts for track allocation problems
of practically relevant sizes, that would adequately reflect the complexity
of a real-world railway network. In fact, most of the literature considers
simplified, non-branching lines, or even single segments.

3 Railway Model

Railway scheduling has always been considered a difficult problem. Current
schedules are the result of a year-long process of incremental changes that
reflect experience and needs to adapt to changing demand and technology.
Schedules are, however, not optimized in a mathematical sense, at least not
on a national level.

3.1 Blocking Times

Classical railway scheduling is based on a microscopic model of the rail-
way network, i.e., a model that includes all tracks, switches, and signals,
see Figure 1(a). Such a model is suited for planning on the principle of
exclusive use of block sections. This means that a block section, roughly
spoken the line segment between any two main signals, may be occupied
by at most one train at a time. Driving characteristics of individual trains,
such as maximum speed, acceleration and braking distance, as well as the
characteristics of the respective track segments, such as allowed speed and
signalling system, determine the blocking time, i.e., the time that a block
section is occupied, and the headway, i.e., the minimum time interval be-
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t(lZug) route clearing time main signal

tB2 route release time distant signal

Figure 2: Blocking time stairway

tween two trains; see Pachl [2002], Brnger [1996], Hauptmann [2000] and
Hrlimann [2001] for more information on railway scheduling.

Block section exclusivity can be visualized in a blocking time diagram, see
Figure 2(a) for an example. The horizontal axis of such a diagram represents
a given track with its signals; the vertical axis measures time (downwards).
The black line represents a train traversing through a block section. The blue
area marks the blocking time interval where access to the block is locked for
any other train; its computation takes into account the length of the block,
the distance from the distant signal to the start of the block, the length of
the slip distance, the train length, and the train driving time. Considering
the blocking times for a sequence of consecutive block sections gives rise
to the characteristic blocking time stairway, see Figure 2(b). Here, shaded
areas mark buffer times added to the minimal headways. These additional
buffer times give operational stability to a planned schedule in the case of
unforeseen delays. To determine them a balance has to be found between
desired robustness of a schedule and the maximum usage of track capacity.

Blocking time stairways can also illustrate the influence of the signalling
system and the sequence of trains on the capacity of a railway network.
Figure 3 illustrates how the throughput of a line is increased by arranging
trains in such a way that trains of the same type, i.e., with blocking time
stairways of identical slope, follow each other. It can be seen that the min-
imal headways between trains of the same type is typically smaller than
those between trains of different types. This so-called bundling of trains is
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(a) Before bundling (b) After bundling

Figure 3: A set of trains with blocking times, before and after bundling.

a popular technique of manual schedule optimization. Bundling is a com-
binatorial problem. Besides train selection, bundling is the main source of
potential in any optimization approach to railway scheduling; we have also
implemented bundling in our track allocation module OPTRA.

3.2 Macroscopic Infrastructure Model

A combinatorial optimization of railway scheduling based on a microscopic
model is not possible with the current computing and mathematical tech-
nology; it is, in fact, already difficult to simulate rail traffic at this level of
detail. We therefore propose a macroscopic model that is detailed enough to
capture the essential characteristics of a railway network and coarse enough
to be amenable to mathematical optimization approaches.

The first component of our model is an infrastructure network N with
nodes and arcs, i.e., a (directed) graph, Figure 1(b). The nodes of this
graph represent places where trains can pass each other: stations and line
crossings. Note that complex stations can be handled by refining the model
appropriately, introducing sufficient numbers of additional nodes. We denote
nodes by lower case letters like a, b or v1, v2, v3.

Nodes are connected by arcs that model railway line segments. We shall
assume that arcs are dedicated to a specific driving direction; bidirectional
tracks can be modelled by introducing a pair of antiparallel arcs. I.e., a
physical track segment between stations a and b, which can be used in both
directions, is represented by two directed arcs (a, b) and (b, a), oriented in
opposite directions, while a physical line segment, that can only be used
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in one direction, corresponds to exactly one arc. We assume that it is
not possible to overtake on an arc. Rather, overtaking is modelled using an
additional node, namely, a simple line crossing. We denote by N = (VN , AN )
the infrastructure network consisting of the set of all nodes VN and the set
of all connecting arcs AN .

Figure 1(b) illustrates this macroscopic railway description (labels B,
D, and κ will be explained below). We currently work with a subnet of the
German railway network that is bounded by the lines connecting Hannover,
Kassel, Fulda and Braunschweig.

3.3 Train Types

As a second component, we group trains into train types rather than consid-
ering an unlimited variety of individual driving dynamics. The classification
of train types is based on the following properties:

• similar driving characteristics

• equivalent train protection system

• similar intermediate stops within the arcs

• equivalent service type (passenger vs. freight, local vs. long distance).

Examples for train types, that we currently use, are: InterCityExpress ICE,
InterCity IC, RegionalExpress, RegionalTrain, and InterCargoTrain. The
set of all train types is denoted Y , a single train type by y ∈ Y .

We associate with each train type parameters that describe standardized
characteristics such as maximum length, acceleration, and maximum speed.
We must, of course, make sure that every train can meet the characteris-
tics of its type. For example, the broader category LongDistancePassenger-
Train, a pooled description for ICE and IC, is determined by the length
and acceleration of an ICE and the maximum speed of an IC. Similar to the
infrastructure, the train type model can be refined to an arbitrary level of
detail by introducing additional train types.

We allow a mimicking of train types by other train types with superior
driving characteristics. For example, it is allowed to slow down an ICE train
on high speed line segment to the speed of an IC train, i.e., an ICE train can
mimic an IC train (but not the other way round). Mimicking capabilities
are stated in terms of a function F (·) : Y → 2Y , which states that a train
type y can mimic the behavior of all train types z ∈ F (y).

3.4 Operational Constraints

We label the nodes and arcs of our infrastructure network with operational
data that models a complete set of rules and constraints for all possible track
allocations.
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The individual arcs are labeled with the following data:

• DAN

Y = (de
y) → the vector of driving times6 for all train types

• BAN×AN

Y ×Y = (be,f
y,z) → the matrix of the scheduled headways7 for any

ordered pair of train types for each pair of arcs (e, f) ∈ AN × AN :

– an identical pair of arcs describing the sequence of trains for one
direction (i.e. one train follows another)

– arcs corresponding to opposite directions on single tracks (i.e.,
opposing arcs)

– arcs corresponding to same-level line crossings8

– arcs corresponding to similar conflict cases (e.g., narrow tunnels).

In addition to the standardized driving style of the involved train types,
the computation of driving times and headway matrices is based on a number
of physical properties of the track that the corresponding arc represents,
among them the maximum allowed speed, the gradient profile of the track,
and the track safety equipment.

The nodes of the infrastructure network are also labeled with capacities,
i.e., the number of trains that can pass and/or stop at a node at any point
in time. We denote the track capacity of a node v ∈ VN by κv ∈ N, and the
vector of all such capacities by κ. We remark that such a label is clearly
only a first step to model the operational constraints inside a station.

We summarize the macroscopic model that we have developed so far
as consisting of an infrastructure network N = (VN , AN ), a set of train
types Y , a type mimicking function F , a driving time matrix DY,AN

, a

headway matrix B
AN×AN

Y ×Y , and a node capacity vector κ.

3.5 Time Expanded Model

We finally expand our model along a discretized time axis to model timeta-
bles. Using a discretization of one minute over a time horizon, we construct
multiple copies of the infrastructure node set, one node set for each minute.
The arcs of the infrastructure network are also copied, connecting nodes
in time layers that fit with the driving times. The result is a space-time
network in which railway slots correspond to directed paths, proceeding in
time.

6The driving time is the time needed to traverse the arc using a standardized driving
style for the respective train type.

7The diagonal entries denote the headways for single arcs, i.e., be,e
y,z is the headway for a

train of type z following a train of type y on arc e, while the off-diagonal entries record the
headways for ordered pairs of arcs, i.e., be,f

y,z is the headway for a train of type z entering
arc f after a train of type y entered arc e.

8There is one such instance in our sample network, the so-called “Hildesheimer Kurve”.
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The formal construction is as follows. We denote the time horizon by
T = {t0, . . . , tmax} ⊆ Z, i.e., t0 is the first minute of the time horizon and
tmax the last. The set of time-nodes is VH = VN × T = {(v, t) : v ∈ VN , t ∈
T}, i.e., (v, t) is the copy of infrastructure node v at minute t. Waiting
at node v ∈ VN is modeled by a time-arc ((v, t), (v, t + 1), y) for each train
type y ∈ Y and for all t ∈ {t0, . . . , tmax − 1}. We connect two time-nodes
(u, τ) and (v, t) by a time-arc ((u, τ), (v, t), y) of type y if nodes u and v are
connected by an arc uv in the infrastructure network and if the driving time
duv

y from u to v for a train of type y is equal to t− τ , i.e., if duv
y = t− τ ; we

denote the set of all such arcs by AH . The space-time network consisting of
all such time-nodes and time-arcs is denoted by H = (VH , AH). We finally
denote by A

y
H = {((u, τ), (v, t), z) ∈ AH : z ∈ F (y)} the set of all time-arcs

that a train of type y can use, driving as a train of its own type or mimicking
some inferior type z ∈ F (y), and by Hy = (VH , A

y
H) the space-time graph

restricted to this set of arcs.
A first important property of this construction is that it captures the

complete information that is needed to construct a feasible route for an in-
dividual train through our macroscopic infrastructure network. Namely,
a slot for a train of type y corresponds to a directed path in the net-
work Hy (and vice versa, i.e., macroscopic slots and space-time paths are
in one-to-one correspondence). We will denote such a slot as a sequence
s = (y, (v1, t1), (v2, t2), . . . , (vn, tn)); it is understood that the time-arcs
((vi, ti), (vi+1, ti+1), y) underlying a slot must exist.9 Note that vi+1 = vi

means that a train is waiting at vi.
In a similar way, the space-time network can also be used to make all

potential conflicts between two or more train slots explicit. In fact, each
conflict corresponds to a so-called packing constraint, stating that a conflict
free set of train slots can use only a certain maximum number of arcs out of
an appropriately chosen set of space-time arcs. This works as follows. For a
headway conflict, consider two train slots of type y1 and y2 running into the
same infrastructure node v via arcs a1 and a2, arriving at times t1 and t2,
respectively; let t1 ≤ t2. There is a headway conflict between these slots if
t2 < t1 + b

a1,a2
y1,y2 . This conflict can be ruled out by stipulating the constraint

that a conflict free set of slots can use only one of the arcs a1 and a2. Doing
this for all pairs of conflicting arcs enforces correct minimum headways. For
a capacity conflict, consider train slots si, i = 1, . . . , k, entering a time-node
(v, t) of capacity κv. The capacity of node v at time t is exceeded if more
than κv trains arrive at this station at time t. This conflict can be ruled out
in a similar way as before by stipulating the constraint that a conflict free
set of slots can use at most κv of the arcs that enter node v at time t. We

9For clarity we point out that a (planned) slot of an actual timetable s must be distin-
guished from a slot request r, to be explained in the next section. The latter one will also
specify a monetary bid; on the other hand, the time-nodes of a slot request need not be
fully specified so as to leave some room for the optimization procedure to arrange slots.
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denote such a conflict by c, the set of all conflicts by C, the set of conflict
arcs associated to conflict c by Ac, and the maximum number of arcs from
Ac that a conflict-free set of slots can use by κc.

We can now define that two slots s and s′ are in conflict if they contain
more than κc arcs from some conflict arc set Ac; otherwise, s and s′ are
conflict-free. A slot or track allocation is a set of mutually conflict-free
slots.

With these defintions, our final, time-expanded macroscopic railway
model is quite simple to state: It consists of a space-time network H =
(VH , AH) over a time horizon T = {t0, . . . , tmax}, with subnetworks Hy =
(VH , A

y
H) for each train type y out of some set of train types Y , and a set

of conflicts C with associated limits κc for each c ∈ C.

4 Auction Design

Auctions can be understood as formalized negotiation procedures. The auc-
tion design describes the rules which these negotiations follow. It can be
crucial about the auction’s success or failure. Two aspects characterize a
negotiation: the economic good that is negotiated about, and the negotiation
procedure, that is, the sequence of offers and counter offers and their varying
levels of commitment. In an auction, the bidding language describes the
subjects or goods that are auctioned, and the auction procedure describes
the rules for submission of bids and how final contracts, including payment
obligations, are constructed.

Operating trains involves, like any other enterprize, risks. The philoso-
phy of our auction design is that train operating companies (TOCs) should
bear those risks that they possess means to control: it is in the operator’s
core competence to have some estimation about demand for a certain con-
nection, and consequently, a train operator should bear the risk involved
by such a prognosis. Similarly, a train operator has to take into considera-
tion the competitive situation. Therefore, we will allocate as many slots as
feasible rather than selling exclusive rights for certain lines.

On the other hand, the risk of getting slots that are technically infeasible
to operate should not be put on operators. No TOC can generate social
welfare from, say, the right to use an isolated track segment without any
connecting segments. We have designed our auction language with the goal
of minimizing these risks of “technical nature”: operators submitting a bid
for a tour can be certain that it will be technically feasible to run their trains
as planned, if they provide for suitable rolling stock. We have also included
possibilities to bid for connections and regular services in order to allow that
positive network effects can be realized.
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4.1 Bidding Language

The economic good that is auctioned in the railway slot exchange is the
right to run scheduled trains. The bidding language allows train operators
to describe their preferences on running their business. Its design is based
on the following principles:

• Flexibility and tractability. Train operators are often indifferent about
the exact route of a train between two scheduled stops (as long as it
is consistent with the specified rolling stock) or about the exact tim-
ing of a train. For network optimization it is very important to know
about bidders’ degrees of flexibility. In principle, it would be possi-
ble to express such flexibility as exclusive “either-or” bids (“XOR”).
However, for tractability, bidders should be given the opportunity to
express flexibility about route and time in a more concise way. At the
same time, flexibility in other, less essential aspects will be restricted
in order to reduce the complexity of bidding and optimization. For
example, we will not allow a bid for “either a slot from A to B, or
one from C to D”. In a similar vein we will also restrict the ability to
make “AND” bids for different slots; we will consider bids that allow
for rolling stock management and for some important interdependen-
cies between different trains, but not for arbitrary interdependencies.

• Bids that allow rolling stock management. For instance, an operator
may specify that scheduled trains from A to B and back are served by
a shuttle. This has the consequence that the arrival in B must take
place before the departure from there, plus some time for turn-around.

• Bids can express specified interdependencies between trains. For in-
stance, an operator may request that a train arriving in B has connec-
tion to C for passengers, or an operator prefers that his train is part
of a regular service timetable.

• Only “socially desirable” interdependencies should be expressible. A
dominant firm may be tempted to make all bids contingent on each
other, such that they would have to be accepted en block. In order to
avoid this, rules should be set up that will confine interdependencies
of bids.

In what follows, the bidding language will be outlined and discussed, but
not formalized. In fact, instead of mathematical formulation the bidding
language will be implemented as software package. Flexibility of bids, as
well as its limits, will take the form of limited options on a user (bidder)
interface.
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4.1.1 Slot requests and tours

A slot request describes a certain scheduled train. A slot request must
specify (at least): a monetary base bid, a train type, a route, and time-
value specifications. The monetary base bid is a sum of bse the operator
is willing to pay for the slot s, aside any additions or reduction. The train
type specifies the technical characteristics like maximum speed, acceleration,
braking distance, weight etc. of a scheduled train; see section 3.2. The route
of the train is given by a sequence of stations, denoted v1, v2, . . . , vn. A
station can be mandatory or optional. In the latter case, an additional
monetary value is assigned to the bid if the allocation allows serving the
station.

Modelling time flexibility. Railway schedules are precise up to the
minute. Train operators, however, will allow some flexibility regarding
departure and arrival times of their trains: it is generally not important
whether a train is scheduled for 8:03 or 8:13. Flexibility can be expressed
via time-value specification which describes a preference, expressed in mon-
etary terms, for an arrival or departure time. A time-value specification can
be either absolute (“9:00 in the morning”) or relative to some other time
(“one hour after departure”). We assume that the functional dependency
between value and time is piecewise linear and can be expressed by

v(t) =











−slminpref(tminpref − t) if t < tminpref

0 if tminpref ≤ t ≤ tmaxpref

−slmaxpref(t − tmaxpref) if t > tmaxpref

(1)

for a tuple (tminpref , tmaxpref , slminpref , slmaxpref). This means indifference be-
tween tminpref and tmaxpref , and a linearly decreasing value, with rate sl

(“slope”), for deviation outside these boundaries. Figure 4 shows some typ-
ical time value specifications: Figure 4(a) shows the “general” type, figure
4(b) a preference for a peak time with flexibility to both sides, and figure
4(c) shows a value for “anytime after”.

Example 4.1 (An ICE train). An operator who wishes to run a long-distance
high-speed train between two major cities A and B may formulate a slot
request as follows:

• depart at A between 7:45 and 8:15; with every minute earlier or later
involves a 100e penalty

• arrive at B 3 hours after departure, with every additional minute of
journey time involves a 200e penalty

• optionally stop at C for an additional value of 1000e
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(a) General (b) Peak
(tminpref = tmaxpref)

(c) Anytime after
(slminpref = ∞,
slmaxpref = 0,
tminpref = tmaxpref)

Figure 4: Example time-value specifications

• use rolling stock type ICE-Series 402 (with well-known maximum
speed, acceleration, etc.

• base bid 13000e

Example 4.2 (An overnight cargo express). An operator who wishes to run
an overnight cargo express that connects a port P and a factory F may
formulate the following slot request:

• depart at P anytime after 20:00, no flexibility for early departure

• arrive at F anytime before 8:00, with every minute late involving a
1000e penalty

• use rolling stock type cargo, weight 1000 tons

• base bid 8000e

Tours. Suppose a train operator wants to run a train from A to B and
split it in B with one part continuing to C and another part continuing to D.
He could submit three independent slot requests from A to B, from B to C,
and from B to D. If there is flexibility in the arrival time at B, the operator
would have to schedule his trains departing from B with an excessive buffer
time to make sure that no matter when arrival at B takes place there is
sufficient time for splitting the train and getting off with the two parts (not
knowing the exact pieces of track that are used for the arriving and departing
trains). This would lead to inefficient schedules.

Therefore, we allow train operators to explicitly group slot requests to
tours. A tour is a group of slot requests connected by the → relation. Figure
5(a) shows a tour where r1 and r2 are merged into train r3, r4 reuses stock
from r3 and is split into r5 and r6. To avoid that operators arbitrarily
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(a) An example tour (b) Not a tour (c) Corrected

Figure 5: Tour bids

group slot requests to tour bids, we require that all slot requests in a tour
are connected via the → relation, that is, any two slots have a common
predecessor or successor in regard to →. Figure 5(b) shows an example
where this condition is violated: Indeed, r7 and r8 don’t share stock with
r1 to r6, and these slot requests should not be combined into one tour. The
situation changes in figure 5(c): now r2 and r7 have a common predecessor
r0 that they share stock with.

Note that a tour bid specifies re-arrangement of rolling stock, but does
not specify the shunting moves that may be necessary to temporarily remove
stock from a platform. We assume that slots necessary for shunting moves
are reserved from the side of the auction mechanism and are included in the
payment for the bid. The general business terms will give details on reason-
able shunting moves in regard of fuel consumption and staff requirements.

So the economic goods that train operators bid for are tours. A tour
bid consists of a bid amount and a set of slot requests, including time-value
specifications to describe flexibilities, grouped to a tour via a → relation.
The overall size of tours will, however, be restricted.

4.1.2 Operator-neutral connection requests

A major strength of railways is the ability to offer interlining connections for
passengers with lower transfer times than busses or planes. In comparison to
busses, rail schedules are more reliable and thus less buffer time is required
than for bus connections. Transfer between planes is subject to security
considerations: passengers can’t walk across the airport from one plane to
another; they have to pass through arrival and departure gates. Of course,
also the handling of luggage takes time, while rail passengers generally carry
their luggage from train to train or use porters.

Optimizing connections is part of the schedule design process. We can’t
expect that the same quality will result as an outcome of an auction for
independent point-to-point connections. On the other hand, a dominating
market player should not be allowed to make all his bids contingent on
each other by connection requests. Therefore, connection requests will be
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operator-neutral, that is, ask for destinations rather than for specific trains.
As a consequence, a connection request may be satisfied by the same oper-
ator asking for it or by any other train operating company.

A connection request for a certain slot consists of the following parts:

• a value that is added to the bid if the request is satisfied,

• a type which is either connection-from, or connection-to,

• a branching station, and

• a connection target station with a connection time-value specification.

The branching station determines where the transfer takes place: for connection-
from request, transfer can take place at or before the branching station, and
for connection-to requests, transfer can take place at or after the branching
station. The connection time-value specification describes the preference
about when the connecting train departs (for connection-from requests), or
arrives (for connection-to requests) at the target station.

Example 4.3 (A connection-from request). For a slot request running from
V1 through V2, . . . , V5 to V6, a connection-from request may require that

• passengers from O (the target station) may reach the train at or before
station V4 (the branching station)

• having to leave O no earlier than 8:00, with every minute earlier in-
volving a 100e penalty (this is expressed in the connection time-value
specification)

• if the request is satisfied, an additional 1000e is added to the tour bid

Example 4.4 (A connection-to request). For a slot request running from V1

through V2, . . . , V5 to V6, a connection-to request may require that

• at or after station V2, passengers may transfer to a train for D

• reaching D three hours after departure at V1, with every late minute
involving a 200e penalty

• if the request is satisfied, an additional 500e is added to the tour bid
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4.1.3 Regular service conditions

Regular (basic interval) services give travellers (or users of freight services)
predictability on the availability of services during the day. Although not
undisputed, there is evidence that, at least for mass transit, availability of
regular services through the whole day is attractive to passengers. Train
operators can compose regular services by placing bids with regular service
conditions. As in the case of the connection requests, regular service condi-
tions are operator-neutral. It is perfectly feasible that some operator has a
service to B leaving station A 12 minutes after the full hour from 8:12 to
17:12, except for the 9:12 service that is served by a competitor who outbade
him.

A regular service condition for a slot request for stations V1, . . . , Vn has
the following components:

• a subset of the stations V1, . . . , Vn that is targeted by the condition,

• the offset of the first and last services required,

• the service interval,

• an elasticity term that states how much value is lost for a minute
deviation from the rule (per station and service).

Example 4.5 (A slot request with regular service conditions). An operator
wants to run hourly service between stations V1 and V4. Stations V2 and V3

should be served alternatingly, that is, in two-hour intervals. Service should
commence 8:00 in the morning and terminate about 20:00. The operator
will submit bids for all services involved. Even if only part of his bids are
accepted, he may be sure that all stations are served as requested. The bid
for the 9:00 (i.e. the second) service may look as follows:

• slot request for V1, V2(optional), V3, V4. Departure at V1 between 7:55
and 8:05, reaching V4 at most 1 hour later

• regular service condition for V1, V2, V4 with offset -1 and +13 for first
and last services, 120 minutes service interval and elasticity 100e per
minute

• regular service condition for A1, A3, A4 with offset 0 and +12 for first
and last services, 120 minutes service interval and elasticity 100e per
minute

4.1.4 Interpretation of the language and sector-specific views of

the bidding language

To understand the bidding language set out above, it is important to note
that the language is complemented by a set of interpreting rules that ensure
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that train operators use the acquired slots in the intended way. These rules
may, among other things,

• state conditions on returning acquired slots and possibly penalties for
unused slots

• set default times for the duration of intermediate stops for the differ-
ent train types (examples are standard stopping times at stations for
passenger trains or standard switching times between two slots of a
tour for passenger resp. freight trains),

• define restrictions for expressing tour bids, connection requests, or
regular service for different train types

There are two reasons to restrict bids in regard of tour size and the
number of connection requests and regular service rules:

• Nested bids put strain on the optimization procedure, both by increas-
ing its complexity and reducing its flexibility (these are, in fact, two
kinds of potential negative externalities of bid interdependency on the
overall allocation).

• Some bidders may have strategic reasons to tie bids that are in reality
unconnected or only loosely connected.

However, rather than blanket restrictions for all train operators, we de-
fine sector-specific views of the bidding language. A view here is a subset of
the expressive power of the unrestricted language.

For instance, in passenger services, a slot is intended to be a simple run of
an unchanged train from A to B. Tours for passenger trains typically connect
two slots to implement a trip and its return, while the number of branches
and merges along the route is small. Connection requests and regular service
conditions play an important role in passenger services. Thus a passenger
train operator’s view of the language could allow only a few slots per tour
bid while being as generously as computation power permits in regard of
connection requests and regular service rules.

On the other hand, single wagon load transport might require more
complex tours for those slots that are scheduled periodically (the slots that
are acquired spontaneously on a day-to-day basis are outside the scope of
this paper). The corresponding view would allow quite complex construction
of tours but disallow connection requests and regular service rules.

4.1.5 No exclusive bids

Apart from the tours, connection requests, and regular service conditions,
no other interdependencies of slots will be allowed. In particular, “exclusive
bids” are ruled out. This has two aspects. First, it is not possible to bid
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for non-connectivity of a competitor’s train. In contrast, a competitor’s
quest for connectivity will be honored. Thus, our bidding language fosters
both competition and cooperation between competitors. It is left to the
TOCs whether they will offer some kind of through-ticketing to passengers
or not.10 A second aspect of non-exclusivity is that TOCs cannot make
their bids contingent on being the sole provider on a line (or more general,
on the number of competitors). As in other markets, the risks of competition
should not be removed from firms.

This may lead to excessive entry on particular lines up to the point
that TOCs will not break even. Consider, for example, a line in a sparsely
populated area. It might be that only one passenger train every two hours
will be able to cover costs. However, there are many more slots available,
so it is possible that two TOCs enter and make losses. Such phenomena are
well known from other markets, and firms usually find ways to coordinate
(for example, once a firm is in, others will stay out). However, due to
the simultaneity of an auction there is danger that too many bidders get
allotted. To avoid such accidents, bidders may be allowed to announce and
partly coordinate (by cheap talk) their plans in advance. One might also
allow some kind of corrections after the auction.

4.2 Auction procedure

The procedure envisioned for the railway slot auction is an iterative com-
binatorial auction in the flavor of Parkes’ “ibundle” auction. It will only
be sketched here. Figure 6 gives an overview. The auction takes place in a
sequel of rounds. A round consists of two stages:

• In the first stage, operators simultaneously submit each a set of bids.
The set of newly submitted bids together with the set of standing bids
from the previous round forms the set of live bids.

• The allocator applies his optimization machinery on the set of live
bids and computes the set of bids that are accepted in this round11,
that is, the set of standing bids for this round. Rejected bids are
considered dead, that is, they are not considered in further rounds, and
the submitter has no commitment to them anymore. Every participant
gets full information about all submitted bids and their state.

The auction ends if for a fixed number of rounds, the total proceed does
not change12. The procedure of optimization implies that the proceed is

10There might be some general rules calling for standardized tickets or through-ticketing.
This is not our main field of interest, though.

11We assume that in case of ties, the allocator prefers to leave the set of standing bids
unchanged.

12Note that to make this happen, it is sufficient but not necessary that the set of standing
bids changes.
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Figure 6: Auction procedure overview

non-decreasing from round to round.

5 Optimal Track Allocation

In every round of our rail track auction the auctioneer has collected a set
of bids for slots and must determine a conflict-free slot schedule that max-
imizes the network proceeds. This winner determination problem, that we
denote as the optimal track allocation problem (OPTRA), is a combinato-
rial optimization problem, namely, a so-called multi-commodity flow problem
with additional constraints. Such problems can be solved with integer pro-
gramming techniques. In a concrete auctioning approach, a generic track
allocation model will be extended in various ways to handle the particu-
lar types of bids that are allowed and the auction rules that are used. We
will first introduce a basic model for a simple setting, and then discuss an
extended version that we are currently using. Even more complex models
along the lines of Section 4 can be constructed in a similar way.

5.1 Basic Integer Programming Model

Consider a basic rail track auction setting that allows only simple bids for
individual slots of the following form: bid i specifies a train type yi, a mon-
etary value bi, a departure station vi

1 and time ti1, and an arrival station vi
2

and time ti2; denote by di := (vi
1, t

i
1) and ai := (vi

1, t
i
1), the time-nodes as-

sociated with the departure and the arrival of a slot associated with bid i,
respectively. Let I be the set of all bids. If bid i gets assigned, the auc-
tioneer must provide a conflict-free slot according to the bid specifications,
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and the value of the bid is bi. The degrees of freedom in this setting are bid
assignment and slot routing in space and time.

To formulate the track allocation problem for each round of such an
auction as an integer program, we introduce a zero-one variable xi

a (i.e., a
variable that is allowed to take values 0 and 1 only) for each bid i and each
arc a of the space-time network. If xi

a takes a value of 1 in an OPTRA
solution, this means that a slot associated with bid i passes through arc a;
clearly, this implies that bid i has been assigned. xi

a = 0, on the other hand,
means that arc a is not used by a slot associated with bid i, independent of
whether bid i is assigned or not. We further introduce proceedings values pi

a

for each bid i and each arc a in order to account for the overall proceedings of
a track allocation. We set pi

a = bi for each arc of the form ((vi
1, t

i
1), (w, t), z)

with z ∈ F (yi), i.e., each arc that qualifies as a first arc (an arc leaving the
starting node vi

1 at time ti1) in a slot associated with bid i. On all other arcs,
we set pi

a = 0. In a slot associated with bid i, the first arc will contribute a
proceedings value of bi, while all other arcs contribute 0. Hence, summing
over all arcs of a slot yields exactly the value of the associated bid.

Let us finally denote by δi
in(v, t) := {((u, s), (v, t), z) ∈ Ayi

: z ∈ F (yi)}
the set of all arcs entering a time-node (v, t) that are compatible with train
type yi. Similarly, let δi

out(v, s) := {((v, s), (w, t), z) ∈ Ayi
: z ∈ F (yi)} be

the respective set of arcs leaving time-node (v, t).
With these definitions the track allocation problem can be formulated

as the following integer program:

(OPTRA) (i) max
∑

i∈I

∑

a∈AH

pi
ax

i
a

(ii)
∑

a∈δi
out(d

i)

xi
a ≤ 1, ∀i ∈ I

(iii)
∑

a∈δi
in(ai)

xi
a ≤ 1, ∀i ∈ I

(iv)
∑

a∈δi
out(v)

xi
a −

∑

a∈δi
in(v)

xi
a = 0, ∀i ∈ I, v ∈ VH \ {di, ai}

(v)
∑

i∈I

∑

a∈Ac

xi
a ≤ κc, ∀c ∈ C

(vi) xi
a ∈ {0, 1}, ∀i ∈ I, a ∈ AH

In this model, the integrality constraints (vi) state that the arc variables
take only values of 0 and 1. Constraints (ii)–(iv) are flow constraints for each
bid i; together, they guarantee that, in any solution of the problem, the arc
variables associated with bid i are either set to 1 if and only if they lie on a
path from the departure to the arrival time-node in the space-time network,
i.e., they describe a feasible slot associated with bid i, or, otherwise, they
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are all set to 0, i.e., no slot is assigned to bid i13. Constraints (v) rule out
headway and node capacity conflicts as discussed in Section 3. The objective
function (i) maximizes total network proceedings by summing over all arcs
proceedings.

5.2 Extended Integer Programming Model

A main point in the discussion on combinatorial railway auctions is whether
it is possible to deal with complex technical and economical constraints in a
real-world setting or not. We do, of course, not claim that we can give a real
answer to this question, but we want to give an example of a more realistic
scenario to indicate that our approach has potential in this direction. To
this purpose, we discuss a setting that extends the previous one by allowing
for bids with stops at intermediate stations, time windows and penalties
for deviations from desired departure and arrival times, and combinatorial
AND and XOR bids. This extended model is the one that we use in the
computational experiments in Section 6.

With these extensions, it is possible to model most features of the bidding
language described in section 4.1. Bids for complete tours can be expressed
as AND-connected bids, and an optional stop can be expressed as a XOR-
connection of requests for slots with and without this stop. However, it is
at present not possible to express an operator-neutral bid for connections or
regular service. We hope to remove these limitations in the future.

Let bid i for a single slot specify a train type yi, a basic monetary
value bi, a departure station vi

1, an ordered sequence of intermediate stations
vi
2, . . . , v

i
ki−1, possibly empty, and an arrival station vi

ki
, a departure time

window [si
1, t

i
1], halting time windows [si

j , t
i
j] and halting durations hi

j at the

intermediate stations j = 2, . . . , ki − 1, an arrival time window [si
ki

, tiki
], a

penalty for αi for each minute of travel time stretching, and a penalty βi

for each minute of delay at the departure station. A slot corresponding to
such a bid must start at the departure station, pass through and stop at the
intermediate stations, and stop at the arrival station. The slot must provide
for a stop of at least hi

j minutes at each intermediate station vi
j within the

time interval [si
j , t

i
j]. It is allowed to depart and arrive later within the arrival

and the departure time windows, respectively. However, for each minute of
lateness with respect to the earliest departure and arrival time, a penalty
of αi and βi is subtracted from the bid value bi, i.e., a slot for bid i that
departs δi minutes later than the earliest departure time si

1, and arrives γi

minutes later than the earliest arrival time si
ki

, costs only bi − αiδi − βiγi

instead of bi.
Let a combinatorial bid j refer to some subset Ij ⊆ I of bids for single

13Note that the underlying space-time network H is acyclic such that no directed cycles
can come up.
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slots; it may either be an AND or an XOR bid. An AND-bid stipulates
that either all single slot bids in Ij must be assignend or none of them. A
XOR-bid states that at most one of the bids in the set Ij can be assigned.
Let JAND denote the set of AND bids, and JXOR the set of XOR bids.

To model this situation, it is convenient to extend the space-time network
H by nodes and arcs that model departures and arrivals of slots explicitly.
For every bid i, we introduce corresponding departure and arrival time-
nodes di := (vi

d, s
i
1) and ai := (vi

a, t
i
k1

), departure arcs ((vi
d, s

i
1), (v

i
1, t), y

i) for

si
1 ≤ t ≤ ti1, and arrival arcs ((vi

ki
, t), (vi

a, t
i
ki

), yi) for si
ki

≤ t ≤ tiki
; let Ai

d and

Ai
a denote the set of such departure and arrival arcs for bid i, respectively.

We also introduce corresponding zero-one variables xi
a for a ∈ Ai

d ∪Ai
a. Let

moreover Ai
j := {((vi

j , t), (v
i
j , t + 1), z) : si

j ≤ t ≤ t + 1 ≤ tij, z ∈ F (yi)}
denote the set of arcs that correspond to a stop of a slot associated with
bid i at the intermediate station j, j = 2, . . . , ki − 1.

Arc proceedings are defined as follows:

pi
a :=











bi − βi(t − si
1) + αi(si

ki
− t), ∀a = ((vi

d, s
i
1), (v

i
1, t), y

i),

−αi(t − s), ∀a = ((u, s), (v, t), z) ∈ AH , z ∈ F (yi),

0, ∀((vi
ki

, t), (vi
a, t

i
ki

), yi).

Departure arcs bear the bid value, minus a delay penalty, plus a bonus term
for the driving time up to the earliest arrival time, i.e., the time difference
between the earliest arrival and departure times stated in the bid. This
bonus is reduced by summing over the network arcs associated with a slot;
at the earliest stated arrival time si

ki
, the bonus has vanished, and every

additional minute of delay is penalized.
Finally, we introduce a zero-one variable zi for each bid i that is 1 if bid i

is assigned and 0 else; these variables are useful in dealing with combinatorial
bids.

With these definitons, our extended track allocation model reads:
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(xOPTRA) (i) max
∑

i∈I

∑

a∈AH

pi
ax

i
a +

∑

i∈I

∑

a∈Ai
d

pi
ax

i
a

(ii)
∑

a∈δi
out(d

i)

xi
a = zi, ∀i ∈ I

(iii)
∑

a∈δi
in(ai)

xi
a ≤ 1, ∀i ∈ I

(iv)
∑

a∈δi
out(v)

xi
a −

∑

a∈δi
in(v)

xi
a = 0, ∀i ∈ I, v ∈ VH

(v)
∑

a∈Ai
j

xi
a ≥ di

jz
i, ∀i ∈ I, j = 2, . . . , ki − 1

(vi)
∑

i∈I

∑

a∈Ac

xi
a ≤ κc, ∀c ∈ C

(vii) zi − zk = 0, ∀j ∈ JAND, i, k ∈ Ij

(viii)
∑

i∈Ij

zi ≤ 1, ∀j ∈ JXOR

(ix) xi
a ∈ {0, 1}, ∀i ∈ I, a ∈ AH ∪ Ai

d ∪ Ai
a

(x) zi ∈ {0, 1}, ∀i ∈ I

Similar as before, the flow constraints (ii)–(iv) ensure that if bid i is
assigned, its associated slot corresponds to a single path between the stated
departure and arrivals nodes, this time in the extended space-time network;
note that constraints (ii) couple the bid and the slot variables. Constraints
(v) force appropriate stops at intermediate nodes, (vi) rules out headway
and capacity conflicts. Constraints (vii) and (viii) enforce combinatorial
AND and XOR bids. The final constraints (ix) and (x) are the integrality
constraints.

5.3 Solution Method

It is well known that multi-commodity flow problems such as the optimal
track allocation problem and its variants are difficult in a mathematically
precise sense: they belong to a class of so-called NP-hard optimization prob-
lems ([Garey & Johnson 1979, ND38]). This means that nobody can guar-
antee to solve an arbitrary instance of such a problem in reasonble time to
proven optimality. This does, however, not mean that one can not tackle
such problems; it only means that it may happen that one encounters very
hard instances. How often this will occur in practice, and how large and
complex the problems one can solve will be is a matter of computational
experimentation and, of course, skill.

We have implemented a program to solve instances of the extended track
allocation model (xOPTRA) using state-of-the-art mathematical program-
ming tools. In our track allocation system, the integer programming model
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(xOPTRA) is set up using the publicly available model generator zimpl,
see Koch [2001] for details. Such a model can be solved using any of several
available powerful commercial integer programming solvers; we use CPLEX,
see CPLEX [2005]. Even larger scenarios can probably be solved using spe-
cial purpose methods; this will be a topic of future research.

6 Computational Results

We have performed a number of simulation experiments to put our auction-
ing approach to the test. The experiments investigate (i) the size and com-
plexity of track allocation problem that can/can not be handeld at present,
(ii) the practicability of our rail track auction, and (iii) the existence of ec-
nonomic potentials for a better utilization of the railway infrastructure, see,
e.g., Fig. 7.

Figure 7: Bundling effects in a rail track auction.

All of our experiments are based on a macroscopic model of a subnetwork
of the German long-distance railway network in the area around Hannover-

Kassel-Fulda as described in Section 3. This network contains 31 station
nodes and 90 arcs corresponding to 45 line segments. We consider the op-
eration of this network over a time horizon of six hours (09:00–15:00) on a
week-day containing 310 trains basing on the 2002 timetable of the Deutsche
Bahn AG.

The computations themselves were made single threaded on a Dell Pre-
cision 650 PC with 2GB of main memory and a dual Intel Xeon 2.6 GHz
CPU running SUSE Linux 9.3. The track allocation problems were solved
with CPLEX 9.1.
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6.1 Tripling

Our first test is a simple artificial experiment that looks for capacity reserves
in the current timetable. We took the 310 train slots of the DB timetable
and tripled them by adding two copies for each slot, the first 15 minutes
later, and the second 30 minutes later. Adding some more trains that we
knew had run earlier in our test scenario produced a set of 946 candidate
train slots.

We turned these slots into bids by fixing the departure and the arrival
station, no intermediate stations were specified. The departure time window
for each bid was set to [t, t+d], where t is the departure time of the underlying
slot and d ist a parameter that defines the size of the departure window (in
minutes); arrival time windows were set to [t, tmax], were t is the arrival time
of the underlying slot; the penalites for late departure and arrival were set
to 0. Setting parameter d = 0, 1, 2, 3, 4, 5 uniformly for all bids produces five
sets of bids with increasing flexibility. A willingness to pay was assigned to
the bids at random from a uniform distribution.

Table 1: Results of the tripling experiment.

d computing time # scheduled trains objective value

0 6 sec. 420 52.066
1 8 sec. 496 60.612
4 1 day 617 67.069
5 3 days 737 67.975

Table 1 lists the results of a corresponding 1-round auction. We are aware
that the tripling experiment is crude and do not want to overinterpret the
results. We nevertheless find the increase in the number of scheduled slots
as well as in network proceedings remarkable and encouraging. We also note
that the computation time increases rapidly if more degrees of freedom are
introduced; this is due to more complex track allocation problems. The
scenario for d = 5 marks about the limits of size and complexity that our
current implementation can handle.

6.2 Competition

Our second experiment is based on a bid generator that tries to anticipate
bids of potential future participants in a railway auction, such as point-to-
point low cost passenger and cargo carriers, regional carriers, etc. Space
limitations prevent us from giving a comprehensive description here; suffice
it to say that the generator uses a gravitational demand model, based on
population and production statistics, to estimate costs and sales, and to pro-
duce ’reasonable’ bids using several line generation techniques; a thorough
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description can be found in Reuter [2005]. The generator supports two ways
of assigning a willingness to pay to a bid: by expected revenues as sketched
above, and by applying the track price system TPS 2005 of Deutsche Bahn
AG; the track prices were retrieved from the internet.

Our experiments add bids for trains of various types to the bids asso-
ciated with the current timetable, namely, bids for individual IC and ICE
trains (IC/ICE i.), synchronized IC and ICE trains (IC/ICE s.), individual
regional trains and commuter trains (R*/S i.), synchronized regional and
commuter trains (R*/S s.), cargo trains (ICG), and all of these types to-
gether (*); this allows to study displacement effects for different types of
railway traffic. Synchronized bids are submitted as a combinatorial AND-
bid.

All auctions were implemented as an automated iterative proxy auction
along the lines of Section 4.2. At the beginning of the auction, the proxy
agents submit minimum prices for each bid; for AND-bids, the minimum
price is the sum of the minimum prices of the individual bids. The auction
proceeds in rounds. In each round, the track allocation problem associated
with the current prices is solved and the winning bids are assigned. The
proxy agents increase all non-assigned bids by a minimum increment of 20%
up to the maximum willingness to pay, and the next round begins, until no
more bids are incremented. The auction finishes with the last set of assigned
bids.

(a) Bids prices according to German track price system

Scenario ICE ICE IC IC RE RE RB RB S S ICG #R 1 #T 2

ind. syn. ind. syn. ind. syn. ind. syn. ind. syn. ind.

Timetable 27 0 27 0 38 19 87 23 0 61 28 0 310
+24 IC/ICE i. 30 0 29 0 38 19 85 23 0 61 25 18 310
+24 IC/ICE s. 24 9 27 9 36 19 83 19 0 58 26 22 322
+27 R*/S i. 27 0 25 0 44 19 89 23 5 58 27 20 326
+27 R*/S s. 27 0 27 0 36 19 83 32 0 62 27 30 337
+15 ICG i. 27 0 25 3 38 19 87 23 0 61 42 19 343
+66 * 28 0 25 3 38 25 85 29 2 55 31 29 322

(b) Bid prices according to expected revenue

Scenario ICE ICE IC IC RE RE RB RB S S ICG #R 1 #T 2

ind. syn. ind. syn. ind. syn. ind. syn. ind. syn. ind.

Timetable 27 0 27 0 34 19 83 23 0 61 28 0 302 3

+24 IC/ICE i. 32 0 29 0 32 19 79 23 0 61 24 40 299
+24 IC/ICE s. 24 9 27 9 32 19 79 19 0 58 26 43 302
+27 R*/S i. 27 0 26 0 41 19 84 23 7 50 27 23 304
+27 R*/S s. 27 0 27 0 34 25 81 29 0 66 27 25 316
+15 ICG i. 27 0 27 0 34 19 83 23 0 61 42 9 316
+33 * 28 0 26 0 37 22 82 23 1 52 30 47 301

1 Number of rounds until auction was finished.
2 Number of trains scheduled in the solution of the last auction round.
3 Because of the revenue oriented willingness to pay some trains had a negative profit value and were not
scheduled.

Table 2: Results of bid generator-based experiments.

Tables 1(a) and 1(b) show the results of the corresponding multi-round
proxy auctions, more details can again be found in Reuter [2005]. We observe
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that synchronized traffic of any type (IC*,R*,S) seems to be stable in our
experiments. Competition is much more relevant for individual bids. In
particular, it turns out that capacities are available for flexible bids for long
distance or cargo traffic. This is the result that one would like to see in a
real-world scenario.

7 Outlook

The vision of our project is to supply a package of auction design and soft-
ware implementation that is practically ready for use. Our discussion so far
has not completely settled a couple of prerequisites for this ambitious goal:

• Our bidding language is at this point incomplete in that we don’t have
details on the sector-specific views on the full language. We will fill
these gaps.

• We have raised a couple of arguments to support our design of the
bidding language and auction procedure. We expect that the auction is
untractable for analysis of fully optimized strategic behavior of bidders.
Nevertheless we need more evidence for a superior performance of the
auction. We hope to provide this evidence by simulations with bidding
automats in a simplified economical environment, supplemented with
real experiments where people can play some of the bidders.

• So far, the optimization module is not powerful enough to deal with
the complete national railway network. Mathematical algorithms will
be further developed to enhance the solving capabilities for the optimal
allocation problem.

• An important aspect of the network description task is to ensure real
implementability of the scheduled trains. For practical purposes this
means that a timetable generated on the macroscopic network model
can always be transferred to a microscopic network description. We
are working on this step. It requires not only a suitable data transfer
and adaptation, but also adjustment of buffer times and possibly a
refinement of the network description in order to guarantee the imple-
mentation of the timetable on a microscopic level and, in a next step,
the operational stability in case of unforeseen disturbances. network
model can always be transferred to a microscopic network description.
We are working on this step. It requires not only a suitable data trans-
fer and adaptation, but also adjustment of buffer times (and possibly
refinement of network description) in order to guarantee microscopic
implementation and, in a next step, network stability with respect to
unforeseen interruptions.
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