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The line-planning problem is one of the fundamental problems in strategic planning of public and rail transport.
It involves finding lines and corresponding frequencies in a transport network such that a given travel

demand can be satisfied. There are (at least) two objectives: the transport company wishes to minimize operating
costs, and the passengers want to minimize traveling times. We propose a new multicommodity flow model for
line planning. Its main features, in comparison to existing models, are that the passenger paths can be freely
routed and lines are generated dynamically. We discuss properties of this model, investigate its complexity, and
present a column-generation algorithm for its solution. Computational results with data for the city of Potsdam,
Germany, are reported.
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1. Introduction
The strategic planning process in public and rail trans-
port is usually divided into consecutive steps of
network design, line planning, and timetabling. Each
step can be supported by operations research meth-
ods, see for instance the survey articles of Odoni,
Rousseau, and Wilson (1994) and of Bussieck, Winter,
and Zimmermann (1997).
This article is about the line-planning problem (LPP)

in public transport. The problem is to design line
routes and their frequencies in a street or track net-
work such that a transportation volume, given by a
so-called origin-destination matrix (OD-matrix), can be
routed. The frequency of a line is supposed to indicate
a basic timetable period and controls the lines’ trans-
portation capacity. There are two competing objec-
tives: on the one hand to minimize the operating costs
of lines and on the other hand to minimize user dis-
comfort. User discomfort is usually measured by the
total passenger traveling time or the number of trans-
fers during the ride, or both.
The recent literature on the LPP mainly deals with

railway networks. One common assumption is the
so-called system split, which fixes the traveling paths
of the passengers before the lines are known. A second
common assumption is that an optimal line plan can
be chosen from a (small) precomputed set of lines.
Third, maximization of direct travelers (that travel
without transfers) is often considered as the objective.
In such an approach, transfer waiting times do not
play a role.
This article proposes a new, extended multicom-

modity flow model for the LPP. The model minimizes

a combination of total passenger traveling time and
operating costs. It generates line routes dynamically,
handles frequencies by means of continuous fre-
quency variables, and allows passengers to change
their routes according to the computed line system;
in particular, we do not assume a system split. These
properties aim at line-planning scenarios in public
transport, in which we see less justification for a sys-
tem split and fewer restrictions in line design than
one seems to have in railway line planning. The
goal of this article is to show that such a model is
tractable and can be used to optimize the line plan of
a medium-sized town.
The paper is organized as follows. Section 2 sur-

veys the literature on the LPP. Section 3 introduces
and discusses our model. Section 4 presents a column-
generation solution approach. We show that the pric-
ing problem for the passenger variables is a shortest
path problem, while the pricing problem for the lines
turns out to be an NP -hard longest path problem.
However, if only lines of logarithmic length with
respect to the number of nodes are considered, the
pricing problem can be solved in polynomial time. In
§5, computational results on a practical problem for
the city of Potsdam, Germany, are reported. We end
with conclusions in §6.

2. Related Work
This section provides a short overview of the litera-
ture for the LPP. Additional information can be found
in the article of Ceder and Israeli (1992), which covers
the literature up to the beginning of the 1990s; see also

123



Borndörfer, Grötschel, and Pfetsch: A Column-Generation Approach to Line Planning in Public Transport
124 Transportation Science 41(1), pp. 123–132, © 2007 INFORMS

Odoni, Rousseau, and Wilson (1994) and Bussieck,
Winter, and Zimmermann (1997).
The first approaches to the LPP had the idea

to assemble lines from short pieces in an iterative
(and often interactive) process. An early example is
the so-called skeleton method described by Silman,
Barzily, and Passy (1974), that chooses the endpoints
of a route and several intermediate nodes, which are
then joined by shortest paths with respect to length
or traveling time; for a variation see Dubois, Bel, and
Llibre (1979). In a similar way, Sonntag (1979) and
Pape, Reinecke, and Reinecke (1995) constructed lines
by adjoining small pieces of streets/tracks to maxi-
mize the number of direct travelers.
Successive approaches precompute some set of

lines in a first phase and choose a line plan from this
set in a second phase; all articles discussed in the
remainder of this section use this idea. For example,
Ceder and Wilson (1986) described an enumeration
method to generate lines whose length is within a cer-
tain factor from the length of the shortest path, while
Mandl (1980) proposed a local search strategy to opti-
mize over such a set. Ceder and Israeli (1992) and
Israeli and Ceder (1995) introduced a quadratic set
covering approach.
An important line of developments is based on the

concept of the so-called system split. Its starting point
is a classification of the links of a transportation sys-
tem into levels of different speed, as is common in
railway systems. Assuming that travelers are likely to
change to fast levels as early and leave them as late as
possible, the passengers are distributed onto several
paths in the system—using Kirchhoff-like rules at the
transit points—before any lines are known. This fixes
the passenger flow on each individual link in the net-
work. The system split was promoted by Bouma and
Oltrogge (1994), who used it to develop a branch-
and-bound-based software system for the planning
and analysis of the line system of the Dutch railway
network.
Recently, advanced integer programming tech-

niques have been applied to the LLP. Bussieck,
Kreuzer, and Zimmermann (1997) (see also Bussieck
1997) and Claessens, van Dijk, and Zwaneveld (1998)
both propose cut-and-branch approaches to select
lines from a previously generated set of potential lines
and report computations on real-world railway data.
Both articles deal with homogeneous transport sys-
tems, which can be assumed after a system-split is
performed as a preprocessing step. Bussieck, Lindner,
and Lübbecke (2004) extend this work by incorporat-
ing nonlinear components into the model. Goossens,
van Hoesel, and Kroon (2002, 2004) show that prac-
tical railway problems can be solved within reason-
able time and quality by a branch-and-cut approach,
even for the simultaneous optimization of several

transportation systems. Schöbel and Scholl (2005) and
Scholl (2005) study a Dantzig-Wolfe decomposition
approach to route passengers through an expanded
line-network to minimize the number of transfers or
the transfer time.

3. Line-Planning Model
We typeset vectors in bold face, scalars in normal face.
If v ∈ �J is a real-valued vector and I a subset of J ,
we denote by v�I� the sum over all components of v
indexed by I , i.e., v�I� �=∑

i∈I vi.
For the LPP, we are given a numberM of transporta-

tion modes (bus, tram, subway, etc.), an undirected
multigraph G= �V E�= �V E1∪̇ · · · ∪̇EM� representing
a multimodal transportation network, terminal sets
�1 � � � �M ⊆ V of nodes for each mode where lines
can start and end, line operating costs c1 ∈ �E1+ 
� � �  cM ∈ �EM+ on the edges, fixed costs C1 � � � 
CM ∈�+ for the set-up of a line for each mode, vehi-
cle capacities �1 � � �  �M ∈�+ for each mode, and edge
capacities � ∈�E

+. Denote by Gi = �V Ei� the subgraph
of G corresponding to mode i. See Figure 1 for an
example network and Table 1 for a list of notation
that we use throughout the paper.
A line of mode i is a path in Gi connecting two (dif-

ferent) terminals of �i. Note that paths are always
simple, i.e., the repetition of nodes is not allowed; it
is possible to consider additional constraints on the
formation of lines such as a maximum length, etc. Let
cl �=

∑
e∈l cie be the operating cost of line l of mode i,

Cl �= Ci be its fixed cost, and �l �= �i be its vehicle
capacity. Let � be the set of all feasible lines. Further-
more, �e �=

⋃
�l ∈�� e ∈ l� is the set of lines that use

edge e ∈ E.

Figure 1 Multimodal Transportation Network in Potsdam
Notes. Black: tram, light grey: bus, dark grey: ferry, large nodes: terminals,
small nodes: stations, grey: rivers and lakes.
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The problem formulation further involves a (not
necessarily symmetric) OD-matrix �dst� ∈ �V×V

+ of
travel demands; i.e., dst is the number of passengers
who want to travel from node s to node t. Let D �=
��s t� ∈ V ×V � dst > 0� be the set of all OD-pairs.
Finally, we derive a directed passenger route graph

�V A� from G = �V E� by replacing each edge e ∈ E
with two antiparallel arcs a�e� and ā�e�; conversely, let
e�a� ∈ E be the undirected edge corresponding to a ∈
A. For simplicity of notation, we denote this digraph
also by G = �V A�. We are given traveling times �a ∈
�+ for every arc a ∈ A. For an OD-pair �s t� ∈ D, an
�s t�-passenger path is a directed path in �V A� from s
to t. Let �st be the set of all �s t�-passenger paths, � �=⋃
�p ∈�st � �s t� ∈D� the set of all passenger paths, and

�a �=
⋃
�p ∈�� a ∈ p� the set of all passenger paths that

use arc a. The traveling time of a passenger path p is
defined as �p �=

∑
a∈p �a.

With this notation, the LPP can be modeled using
three kinds of variables:

yp ∈�+ the flow of passengers traveling from s to
t on path p ∈�st ,

fl ∈�+ the frequency of line l ∈�,
xl ∈ �01� a decision variable for using line l ∈�.

�LPP� min �Ty+CTx+ cTf
y��st�= dst ∀ �s t� ∈D (1)

y��a�−
∑

l� e�a�∈l
�lfl ≤ 0 ∀a ∈A (2)

f��e�≤�e ∀ e ∈ E (3)

f≤ F x (4)

xl ∈ �01� ∀ l ∈� (5)

fl ≥ 0 ∀ l ∈� (6)

yp ≥ 0 ∀p ∈�� (7)

The passenger flow constraints (1) and the nonneg-
ativity constraints (7) model a multicommodity flow
problem for the passenger flow, where the commodi-
ties correspond to the OD-pairs �s t� ∈ D. This part
guarantees that the demand is routed. The capacity
constraints (2) link the passenger paths with the line
paths to ensure sufficient transportation capacity on
each arc. The frequency constraints (3) bound the total
frequency of lines using an edge. Inequalities (4) link
the frequencies with the decision variables for the use
of lines; they guarantee that the frequency of a line
is zero whenever it is not used. Here, F is an upper
bound on the frequency of a line; for technical rea-
sons, we assume that F ≥ �e for all e ∈ E, see §4 for
more information.
Let us discuss some properties of the model before

we investigate its algorithmic tractability.

Table 1 Notation and Terminology

G multimodal transport network Gi subnetwork for mode i
�i terminals for mode i ci line operating costs for mode i
cl operating costs for line l Ci line fixed costs for mode i
�i vehicle capacity for mode i �l vehicle capacity for line l
� set of all lines �e lines using edge e
D set of OD pairs dst travel demand between s and t

�a traveling time on arc a �p traveling time on path p

� set of all passenger paths �st paths between s and t

yp passenger flow on path p xl whether line l is used
fl frequency of line l �e frequency bounds for edge e

Objectives. The objective of the model has two
competing parts, namely, to minimize total passenger
traveling time �Ty and to minimize costs CTx + cTf.
Here, CTx is the fixed cost for setting up lines, and cTf
is the variable cost for operating these lines at frequen-
cies f. The model allows to adjust the relative impor-
tance of one part over the other by an appropriate scal-
ing of the respective objective coefficients. Including
fixed costs allows to consider objectives such as min-
imizing the number of lines; note that LPP is a linear
program (LP) if all fixed costs are zero.
OD-Matrices. Each entry in an OD-matrix gives

the number of passengers who want to travel from
one point in the network to another point within a
fixed-time horizon. It is well known that such data
have certain deficiencies. For instance, OD-matrices
depend on the geometric discretization used, they
are highly aggregated, they give only a snapshot
type of view, it is often questionable how well the
entries represent the real situation, and they should
only be used when the transportation demand can
be assumed to be fixed. However, OD-matrices are
at present the industry standard for estimating trans-
portation demand. It is already quite an art and rather
costly to assemble this data, and currently, no alter-
native is in sight.
Time Horizon. The LPP implicitly contains a time

horizon via the OD-matrix. Usually, OD-data are
aggregated over one day, but it is similarly appropri-
ate to consider, for instance, peak traffic in rush hours.
In fact, the asymmetry of demands in rush hours was
one of the reasons why we consider directed passen-
ger paths.
Passenger Routes. Because the traveling times �

are nonnegative, we can assume passenger routes to
be (simple) paths.
Our model does not fix passenger paths according

to a system split, but allows to freely route passen-
gers according to the computed lines. This is targeted
at local public transport systems, where, in our opin-
ion, people determine their traveling paths according
to the line system and not only according to the net-
work topology. Except for the work of Schöbel and
Scholl (2005) and Scholl (2005), which is independent
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of ours, such routings have not been considered in the
context of line planning before.
Our model computes a set of passenger paths that

minimize the total traveling times �Ty in the sense
of a system optimum. However, in our case, with a
linear objective function and linear capacities, it can
be shown that the resulting system optimum is also
a user equilibrium, namely, the so-called Beckmann
user equilibrium, see Correa, Schulz, and Stier Moses
(2004). We do not address the question of why pas-
sengers should choose this equilibrium out of sev-
eral possible equilibria that can arise in routing with
capacities.
The routing in our model allows for passengers

paths of arbitrary travel times, which may force some
passengers to long detours. We remark that this prob-
lem could be handled by introducing appropriate
bounds on the travel times of paths. This would, how-
ever, turn the pricing problem for the passenger paths
into an NP -hard resource-constrained shortest path
problem; see §4.1. Note also that such an approach
would measure travel times with respect to shortest
paths in the underlying network (independent of any
line system). Ideally, however, one would like to com-
pare arbitrary travel times to the shortest paths using
only arcs covered by the computed line system.
Line Routes. The literature generally takes line

routes as (simple) bidirected paths, and we do the
same in this article. In fact, a restriction forcing some
sort of simplicity is necessary to prevent repetitions
around cycles. As a slight generalization of the con-
cept of simplicity, one could investigate the case in
which one assumes that every line route is bounded
in length or “almost” simple; i.e., no node is repeated
within a given interval.
It is easy to incorporate additional constraints on

the formation of individual lines and constraints on
sets of lines; e.g., that the length of a line should not
deviate too much from a shortest path between its
endpoints or bounds on the number of lines using
an edge. Such constraints are important in practice.
In this article, we consider bounds on the number of
edges in a line. Let us give two arguments why this
case is practically relevant.
The first argument is based on an idea of a trans-

portation network as a planar graph, probably of high
connectivity. Suppose this network occupies a square,
in which n nodes are evenly distributed. A typical
line starts in the outer regions of the network, passes
through the center, and ends in another outer region;
we would expect such a line to be of length O�

√
n�.

Real networks, however, are not only (more or less)
planar, but often resemble trees. Moreover in a bal-
anced and preprocessed tree, where each node degree
is at least three, the length of a path between any two
nodes is only O�logn�.

Transfers. Transfers between lines are currently
ignored in our model, because constraints (4) only
control the total capacity on edges and not the assign-
ment of passengers to lines. The problem is not trans-
fers between different modes, which can be handled
by linking the mode networks Gi with appropriate
transfer edges, weighted by estimated transfer times.
In principle, a similar trick could be used for trans-
fers between lines of the same mode, using an appro-
priate expansion of the graph. However, this greatly
increases the complexity of the model, and it intro-
duces degeneracy; it is unclear whether such a model
remains tractable for practical data.
Frequencies. Frequencies indicate the (approxi-

mate) number of times vehicles need to be employed
to serve the demand over the time horizon. In a real-
world line plan, frequencies often have to produce
a regular timetable and, hence, are not allowed to
take arbitrary fractional values. Our model, however,
treats frequencies as continuous values. This is a sim-
plification. We have introduced fixed costs to reduce
the number of lines and decrease the likelihood of
low frequencies. In addition, we could have forced
our model to accept only a finite number of frequen-
cies by enumerating lines with fixed frequencies in a
similar way as Claessens, van Dijk, and Zwaneveld
(1998) and Goossens, van Hoesel, and Kroon (2002,
2004); but the resulting model would be much harder
to solve. However, as the frequencies mainly are used
to adjust line capacities, we do (at present) not care
so much about “nice” frequencies and view the frac-
tional values as approximations or clues to “sensible”
values.

4. Column Generation
The LP relaxation of �LPP� can be simplified by elim-
inating the x-variables. In fact, since �LPP� minimizes
over nonnegative costs, one can assume w.l.o.g. that
inequalities (4) are satisfied with equality; i.e., there
is an optimal LP solution such that Fxl = fl ⇔ xl =
fl/F for all lines l. Substituting for x, we observe that
the inequalities fl ≤ F remaining after the elimination
are dominated by inequalities (3) and, hence, can be
omitted (recall that we assumed F ≥�e). Setting 'l =
Cl/F + cl, we arrive at the following equivalent, but
simpler, LP:

�LP� min �Ty+�Tf

y��st�= dst ∀ �s t� ∈D (8)

y��a�−
∑

l� e�a�∈l
�lfl ≤ 0 ∀a ∈A (9)

f��e�≤�e ∀ e ∈ E (10)

fl ≥ 0 ∀ l ∈� (11)

yp ≥ 0 ∀p ∈�� (12)



Borndörfer, Grötschel, and Pfetsch: A Column-Generation Approach to Line Planning in Public Transport
Transportation Science 41(1), pp. 123–132, © 2007 INFORMS 127

Note that �LP� contains only a polynomial number of
inequalities (apart from the nonnegativity constraints
(11) and (12)).
We aim at solving �LP� with a column-generation

approach (see Barnhart et al. 1998 for an introduc-
tion) and therefore investigate the corresponding pric-
ing problems. These pricing problems are studied in
terms of the dual of �LP�. Denote the variables of the
dual as follows: � = �(st� ∈ �D (flow constraints (8)),
� = �)a� ∈ �A (capacity constraints (9)), and � ∈ �E

(frequency constraints (10)). The dual of �LP� is

maxdT�−�T�

(st −��p�≤ �p ∀p ∈�st �s t� ∈D

�l��l�−��l�≤ 'l ∀ l ∈�

��≥ 0

where
��l�=∑

e∈l
�)a�e� +)ā�e���

It will turn out that the pricing problem for the
line variables fl is a longest path problem; the pricing
problem for the passenger variables yp, however, is a
shortest path problem.

4.1. Pricing of the Passenger Variables
The reduced cost ��p for variable yp with p ∈ �st ,
�s t� ∈D, is

��p = �p −(st +��p�= �p −(st +
∑

a∈p
)a

= −(st +
∑

a∈p
�)a + �a��

The pricing problem for the y-variables is to find a
path p such that ��p < 0 or to conclude that no such
path exists. This can be done easily in polynomial
time as follows. For all �s t� ∈ D, we search for a
shortest �s t�-path p with respect to the nonnegative
weights �)a+�a� on the arcs; we can, for instance, use
Dijkstra’s algorithm. If the length of this path p is less
than (st , then yp is a candidate variable to be added to
the LP, otherwise, we proved that no such path exists
(for the pair �s t�). Note that we can assume that each
passenger is simple: just remove cycles of length 0–or
trust Dijkstra’s algorithm, which produces only sim-
ple paths.

4.2. Pricing of the Line Variables
The pricing problem for line variables fl is more com-
plicated. The reduced cost �'l for a variable fl is

�'l = 'l −�l��l�+��l�= 'l −
∑

e∈l
��l�)a�e� +)ā�e��−+e��

The corresponding pricing problem consists of find-
ing a (simple) path l of mode i such that

0> �'l = 'l −
∑

e∈l
��l�)a�e� +)ā�e��−+e�

= Cl/F + cl −
∑

e∈l
��l�)a�e� +)ā�e��−+e�

= Ci/F +∑

e∈l
cie −

∑

e∈l
��i�)a�e� +)ā�e��−+e�

= Ci/F +∑

e∈l
�cie −�i�)a�e� +)ā�e��++e�

⇔ ∑

e∈l
��i�)a�e� +)ā�e��−+e − cie� > Ci/F �

This problem turns out to be a maximum weighted
path problem, because the weights ��i�)a�e� +)ā�e��−
+e − cie� are not restricted in sign. Hence, the pricing
problem for the line variables is NP -hard (Garey and
Johnson 1979). This shows that solving the LP relax-
ation �LP� is NP -hard as well. In fact, we can prove
the stronger result that the LPP itself is NP -hard,
even with fixed costs zero, independent of the model
(Proposition 4.1 implies that �LP� is NP -hard, because
�LPP� is equivalent to �LP� for fixed costs 0).

Proposition 4.1. The line-planning problem LPP is
NP -hard, even with fixed costs 0.

Proof. We reduce the Hamiltonian path problem,
which is strongly NP -complete (Garey and Johnson
1979), to the LPP with fixed costs 0. Let �H s t� be
an instance of the Hamiltonian path problem; i.e.,
H = �V E� is a graph and s and t are two distinct
nodes of H .
For the reduction, we are going to derive an appro-

priate instance of LPP. The underlying network is
formed by a graph H ′ = �V ′E ′�, which arises from H
by splitting each node v into three copies v1, v2, and
v3. For each node v ∈ V , we add edges �v1v2� and
�v2v3� to E ′ and for each edge �uv� the edges �u1v3�
and �u3v1�, see Figure 2. Our instance of LPP con-
tains just a single mode with only two terminals s1
and t3 such that every line must start at s1 and end
at t3. The demands are dv1v2

= 1 (v ∈ V ) and 0 other-
wise, and the capacity of every line is 1. For every
e ∈ E ′, we set �e to some high value (e.g., to �V ′�). The

u v

u1 v1

u2 v2

u3 v3

Figure 2 Example for the Node-Splitting Gadget in the Proof of
Proposition 4.1
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cost of all edges is set to zero, except for the edges
incident to s1, for which the costs are set to one. The
traveling times are set to zero everywhere. It follows
that the value of a solution to LPP is the sum of the
frequencies of all lines.
Assume that p= �sv1 � � �  vk t� (for v1 � � �  vk ∈ V )

is an �s t�-Hamiltonian path in H . Then p′ = �s1 s2
s3v

1
1v

1
2v

1
3 � � �  v

k
1v

k
2v

k
3 t1 t2 t3� is an �s1 t3�-

Hamiltonian path in H ′, which gives rise to an
optimal solution of LPP. Namely, we can take p′ as
the route of a single line with frequency 1 and route
the demands dv1v2

= 1 for every v ∈ V on this line
directly from v1 to v2. As the frequency of p′ is one,
the objective value of this solution is also one. On the
other hand, every solution to LPP must have value
at least one, because every line has to pass an edge
incident to s1 and the sum of the frequencies of lines
visiting an arbitrary edge of type �v1v2�, for v ∈ V ,
is at least 1. This proves that LPP has a solution of
value one, if �H s t� contains a Hamiltonian path.
For the converse, assume that there exists a solu-

tion to LPP of value one, for which we ignore lines
with frequency zero. We know that every edge �v1v2�
(v ∈ V ) is covered by at least one line of the solution.
If every line contains all edges �v1v2� (v ∈ V ), each
such line gives rise to a Hamiltonian path (because
the line paths are simple) and we are done. Oth-
erwise, there must be an edge e = �v1v2� (v ∈ V )
that is not covered by all of the lines. Because the
lines have to provide enough capacity, the sum of
the frequencies of the lines covering e is at least one.
However, the edges incident to s1 are covered by the
lines covering edge e plus at least one more line of
nonzero frequency. Hence, the total sum of all fre-
quencies is larger than one, which is a contradiction
to the assumption that the solution has value one.
This shows that there exists an �s t�-Hamiltonian path
in H if and only if an optimal solution of LPP with
respect to H ′ has value one. �

4.3. Pricing of Length-Restricted Lines
Let us now consider the pricing problem for LPP
with bounds on the lengths of the lines, i.e., the num-
ber of edges of a line. Consider for this purpose the
graph G= �V E� (for simplicity of notation with only
one mode) with arbitrary edge weights we ∈� for all
e ∈ E, and a source node s and a sink node t. We let
n = �V � and m = �E�. In this setting, the line-pricing
problem is to find a maximum weight path from s to t
with respect to w. We first show that this problem is
NP -hard for the case in which the length of a line is
bounded by O�

√
n�.

Proposition 4.2. It is NP -hard to compute a maxi-
mum weight path from s to t of length at most k, if k ∈
O�n1/N� for any fixed N ∈�\�0�.

Proof. Let �H s t� be an instance of the Hamilto-
nian path problem, where H is a graph with n nodes.
We add �nN −n� isolated nodes to H in order to obtain
a graph H ′ with nN nodes; note that nN is polyno-
mial in n for fixed N . Let the weights on the edges
be 1. If we could find a maximum weight path from s
to t with at most k= �nN �1/N = n edges in polynomial
time, we could solve the Hamiltonian path problem
for H in polynomial time. �

We now provide a result that shows that the max-
imum weighted path problem can be solved in poly-
nomial time in the case when the lengths of the paths
are at most O�logn�. Our method is a direct general-
ization of work by Alon, Yuster, and Zwick (1995) on
the unweighted case; it works both for directed and
undirected graphs.
Alon, Yuster, and Zwick (1995) consider the prob-

lem to find simple paths of fixed length k − 1 in a
graph. Their basic idea is to randomly color the nodes
of the graph with k colors and only allow paths that
use distinct colors for each node; such paths are called
colorful with respect to the coloring and are neces-
sarily simple. Choosing a coloring c� V → �1 � � �  k�
uniformly at random, every path using at most k− 1
edges has a chance of at least k!/kk > e−k to be colorful
with respect to c. If we repeat this process 1 · ek times
with 1> 0, the probability that a given path p with at
most k− 1 edges is never colorful is less than

�1− e−k�1·e
k

< e−1�

Hence, the probability that p is colorful at least once is
at least 1− e−1. The search for such colorful paths can
be performed using dynamic programming, which
leads to an algorithm running in m · 2��k� expected
time. This algorithm is then derandomized.
These arguments yield the following result for the

weighted undirected case, which is easily seen to be
valid for directed graphs as well.

Proposition 4.3. Let G = �V E� be a graph with m
edges, k be a fixed number, and c� V → �1 � � �  k� be a
coloring of the nodes of G. Let s be a node in G and �we�
be edge weights. Then, a colorful maximum weight path
with respect to w using at most k−1 edges from s to every
other node can be found in time O�m · k · 2k�, if such paths
exist.

Proof. We find the maximum weight of such paths
by dynamic programming. Let v ∈ V , i ∈ �1 � � �  k�,
and C ⊆ �1 � � �  k� with �C� ≤ i. Define w�vC i� to be
the weight of the maximum weight colorful path with
respect to w from s to v using at most i−1 edges and
using the colors in C. Hence, for each iteration i, we
store the set of colors of all maximum weight colorful
paths from s to v using at most i− 1 edges. Note that
we do not store the set of paths, only their colors.
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Hence, at each node, we store at most 2i entries. The
entries of the table are initialized with minus infinity,
and we set w�s �c�s��1�= 0.
At iteration i ≥ 1, let �uC i� be an entry in the

dynamic programming table. If for some edge e =
�uv� ∈ E we have c�v��C, let C ′ =C ∪ �c�v�� and set

w�vC ′ i+ 1� = max�w�uC i�+wew�vC ′ i+ 1�
w�vC ′ i���

The term w�vC ′ i + 1� accounts for the cases in
which we already found a path to v (using at
most i edges) with higher weight, whereas w�vC ′ i�
makes sure that paths using at most i− 1 edges to v
are accounted for. After iteration i = k, we take the
maximum of all entries corresponding to each node v,
which is the wanted result. The number of updating
steps is bounded by

k∑

i=0
i · 2i ·m=m · �2+ 2k+1�k− 1��= ��m · k · 2k��

The sum on the left side of this equation arises as
follows. In iteration i, m edges are considered; each
edge �uv� starts at node u, to which at most 2i labels
w�uC i� are associated, one for each possible set C;
for each such set, checking whether c�v� ∈ C takes
timeO�i�. The summation formula itself can be proved
by induction, see also Petkovsek, Wilf, and Zeilberger
(1996, Exc. 5.7.1, p. 95). The algorithm can be eas-
ily modified to actually find the maximum weight
paths. �

We can use Proposition 4.3 to produce an algorithm
that finds a maximum weight path in 1ekO�mk2k� =
1O�m · 2��k�� time with high probability. Then a deran-
domization can be performed by a clever enumera-
tion of colorings such that each path with at most k−1
edges is colorful with respect to at least one such col-
oring. Alon et al. combine several techniques to show
that 2��k� · logn colorings suffice. Applying this result
we obtain the following.

Theorem 4.1. Let G= �V E� be a graph with n nodes
and m edges and k be a fixed number. Let s be a node in G
and �we� be edge weights. Then a maximum weight path
with respect to w using at most k−1 edges from s to every
other node can be found in time O�m · 2��k� · logn�, if such
paths exist.

If k ∈ O�logn�, this yields a polynomial time algo-
rithm. Hence, by the discussion above, we get the fol-
lowing result.

Corollary 4.1. The LP relaxation of �LPP� can be
solved in polynomial time, if the lengths of the lines are
most k, with k ∈O�logn�.

4.4. Algorithm
We used the results of the previous subsections to
implement a column-generation algorithm for the
solution of the model �LPP� with length-restricted
lines. As an overall objective function, we used the
weighted sum

2�CTx+ cTf�+ �1−2��Ty

where 2 ∈ 3014 is a parameter weighing the two
parts.
The algorithm solves the LP relaxation in a first

phase and constructs a feasible line plan using a
greedy type heuristic in a second phase. To solve
the LP relaxation, our algorithm iteratively prices out
passenger and line path variables until no improv-
ing variables are found. We solve the master LP with
the barrier algorithm and, toward the end of the pro-
cess, with the primal simplex algorithm of CPLEX 9.1.
We check for new passenger path variables for all
OD-pairs using Dijkstra’s algorithm, see §4.1, until no
more improving passenger paths are found. If we do
not find an improving passenger path, we price out
line variables for all line modes and all feasible termi-
nal pairs. We have implemented two different meth-
ods for the pricing of (simple) line paths, namely, we
either use an enumeration or the randomized coloring
algorithm of §4.3 (we do not derandomize the algo-
rithm). If an improving passenger or line path has
been found, another iteration is started; otherwise, the
LP is solved.
In the second phase, our algorithm tries to construct

a good integer solution from a line pool consisting of
the lines having nonzero frequencies in the optimal
LP solution. The heuristic is motivated by the obser-
vation that the solution of the LP relaxation of an LPP
often contains lines with very low frequencies. We
try to remove these lines by a simple greedy method
based on a strong branching selection criterion. In the
beginning, the x-variables of all lines in the pool are
set to one. In each iteration, we tentatively remove
a line (set its x-variable to zero), compute the objec-
tive 2cTf + �1 − 2��Ty of the LP obtained by fixing
the line variables as described, pricing passenger vari-
ables as needed, and add the fixed costs CTx of all
lines that are fixed to one. After probing candidate
lines with the smallest f-values in this way, we per-
manently delete the line whose removal resulted in
the smallest objective. We repeat this elimination as
long as the remaining set of lines is still feasible; i.e.,
all demands can be routed, and the objective function
decreases.

5. Computational Results
In this section, we report on computational experi-
ence with LPPs for the city of Potsdam, Germany. The
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experiments originate from a joint project with the
two local public transport companies, ViP Verkehrsge-
sellschaft GmbH and Havelbus Verkehrsgesellschaft
mbH, the city of Potsdam, and the software company
IVU Traffic Technologies AG.
Potsdam is a medium-sized town near Berlin; it has

about 150,000 inhabitants. Its public transportation
system uses city buses and trams (operated by ViP)
and regional buses (operated by Havelbus). Addi-
tionally, regional trains connect Potsdam to its sur-
roundings (operated by Deutsche Bahn AG) and a city
railroad (operated by S-Bahn Berlin) provides connec-
tions to Berlin. Because regional trains and the city
railroad are not operated by ViP and Havelbus, the
associated lines routes are assumed to be fixed.

5.1. Data
Our data consists of a multimodal traffic network of
Potsdam and an associated OD-matrix, which had
been used by IVU in a consulting project for plan-
ning the Potsdam network (Nahverkehrsplan). The
data represents the 1998 line system of Potsdam. It has
27 bus lines and 4 tram lines. Including line variants,
the total number of lines was 80. The network has
951 nodes, including 111 OD-nodes, and 1,321 edges.
The maximum length of a line is 47 edges.
The network was preprocessed as follows. We re-

moved isolated nodes. Then, we iteratively removed
“leaves” in the graph—i.e., nodes with only one
neighbor—and iteratively contracted nodes with two
neighbors. The preprocessed graph has 410 nodes, 106
of which were OD-nodes, and 891 edges. We remark
that although such preprocessing steps are conceptu-
ally easy, the data handling can be quite intricate in
practice; for instance, our data included information
on possible turnings of a line at road/rail crossings,
which must be updated in the course of the prepro-
cessing.
The OD-matrix was also modified. Nodes with zero

traffic were removed. The original time horizon was
one day, but we wanted to construct a line plan for the
peak hour. We therefore scaled the matrix to 40% in an
(admittedly rough) attempt to simulate afternoon traf-
fic (3 pm to 6 pm). Note that the resulting matrix is still
quite symmetric (the maximum difference between
each of the two directions was 25), whereas a real
afternoon OD-matrix would not be symmetric. The
scaled OD-matrix had 4,685 nonzeros, and the total
scaled travel demand was 42,796.
All traveling times are measured in seconds, and

we always restricted the maximum length of a line
to 55 edges. Because no data was available on line
costs, we decided on Cl = 10000 (fixed costs) for each
line l and cie = 100 (operating costs) for each edge e
and mode i. Hence, we do not distinguish between
costs of different modes (an unrealistic assumption in
practice).

Table 2 Experimental Results of Line Planning for �= 0�9978

Optimized LP solution—enumeration:
Total traveling time: 108�360�036�33 [Scaled: 238,392.08]
Total line cost: 233�776�86 [Scaled: 233,262.55]
LP objective value: 471�654�63
Active line/pass. var.: 60/4,879 Transfers: 8,777/64,607

Optimized LP solution—randomized coloring—5 trials:
Total traveling time: 108�396�741�75 [Scaled: 238,472.83]
Total line cost: 239�099�73 [Scaled: 238,573.71]
LP objective value: 477�046�54
Active line/pass. var.: 61/4,880 Transfers: 9,143/66,546

Optimized LP solution—randomized coloring—15 trials:
Total traveling time: 108�491�234�25 [Scaled: 238,680.72]
Total line cost: 237�422�50 [Scaled: 236,900.17]
LP objective value: 475�580�88
Active line/pass. var.: 62/4,885 Transfers: 9,387/68,049

Optimized integer solution—greedy heuristic:
Total traveling time: 112�581�291�50 [Scaled: 247,678.84]
Total line cost: 287�060�90 [Scaled: 286,429.37]
Integer objective value: 818�491�68
Active line/pass. var.: 30/4,767 Transfers: 8,638/60,539

Reference LP solution:
Total traveling time: 105�269�846�00 [Scaled: 231,593.66]
Total line cost: 501�376�24 [Scaled: 500,273.21]
LP objective value: 731�866�87
Active line/pass. var.: 61/4,857 Transfers: 8,618/63,310

Reference integer solution—greedy heuristic:
Total traveling time: 106�952�869�00 [Scaled: 235,296.31]
Total line cost: 562�964�54 [Scaled: 561,726.02]
Integer objective value: 1�213�221�49
Active line/pass. var.: 44/4,814 Transfers: 9,509/70,525

5.2. Experiments
Table 2 reports the results of several computational
experiments with the data and implementation we
have described. All experiments were performed on
a 3.4 GHz Pentium 4 machine running Linux. In the
table, the total traveling time is �Ty and total line cost is
�Tf, the scaled values are �1−2��Ty and 2�Tf, respec-
tively; all four values refer to the LP relaxation �LP�.
The LP objective value is 2�Tf+ �1− 2��Ty, the integer
objective value refers to 2�CTx+ cTf�+ �1− 2��Ty. The
last line in each block of results gives the number of
active (i.e., nonzero) line and passenger variables, and
the number of passenger transfers (first number) that
were needed as well as the number of transfering pas-
sengers (second number). Note that we can compute
transfers from passenger routes as an afterthought,
although our optimization model is currently insensi-
tive to them.
Let us point out explicitly that we do not claim

our results are already practically significant; we only
want to show that there is potential to apply our
methods to practical data. For example, our costs are
not realistic. Therefore, the frequencies we compute
cannot be compared to ones used in practice. To allow
some adaptation to our cost model, we let the fre-
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quencies of all lines be variable, in particular, the fre-
quencies of the city railroad and regional train lines.
In our first experiment, we solved the LP relaxation

�LP� of the Potsdam problem, pricing lines either by
enumeration or by the randomized coloring method
of §4.3; see top of Table 2. We set 2 = 0�9978, which
roughly balances the two parts of the objective func-
tion. The resulting LP had 5,761 rows. Using enu-
meration, we obtained an optimal solution after 451
seconds and 283 iterations (i.e., solutions of the master
LP), of which 15 were used to price lines. The pricing
problems needed a total time of 183 seconds of which
most was used for the pricing of line paths. Hence,
more than half the time is spent for solving the master
LPs.
We repeated this experiment using the randomized

coloring algorithm with 5 and 15 trials for line pric-
ing. With 5 trials, we needed 397 master LPs and 394
seconds in total; line pricing used only 99 seconds.
One can see, however, that the objective is about 1%
higher than for the enumeration variant. Using 15 tri-
als resulted in 269 master LPs and 473 seconds in
total. Line pricing now uses 265 seconds, and the dif-
ference in the objective function relative to the enu-
meration variant is reduced to 0.8%. Hence, one can
achieve a good approximation of the optimal value
using randomized line pricing, although approaching
the optimum solution comes at the cost of larger com-
putation times.
We also investigated in more detail the passenger

routing of our LP solution for the enumeration vari-
ant. To connect the 4,685 OD-pairs only 4,879 paths
are needed; i.e., most OD-pairs are connected by a
unique path. The total traveling time is 108,360,036.33
seconds; see Table 2. For comparison, when we ignore
capacities and route all passengers between every
OD-pair on the fastest path in the final line system,
the total traveling time is 95,391,460 seconds. This is a
relative difference of 12%. This seems to be an accept-
able deviation.
In our second experiment, we computed two inte-

ger solutions for �LPP� associated with the parameter
2= 0�9978, as above. The first solution is obtained by
rounding all nonzero x-variables in the solution of the
LP relaxation, computed with the enumeration vari-
ant, to one. The (integer) objective of this rounded
solution is 1,058,079.69, which leads to a gap of 55%
compared to the LP relaxation value of 471,654.63.
The second solution is obtained by the greedy algo-
rithm described in §4.4, starting from the same LP
solution (only lines for city buses, trams, and regional
buses were removed). It has 30 lines (17 bus lines and
2 tram lines), down from 60 in the first solution, see
Table 2; it took 1,368 seconds to compute. The final
(scaled) operating costs are 286,429.37, while the final

fixed costs are 2 ·300000= 299340. The integer objec-
tive of 818,491.68 has a gap of 42% with respect to the
LP relaxation value of 471,654.63. Note that the results
heavily depend on the cost structure: decreasing the
fixed costs automatically reduces the gap. In our con-
text, with high fixed costs, emphasis is on reducing
the number of lines (recall that the costs were arti-
ficial). The result obtained seems to be quite good,
given that the original line system contained 27 bus
lines and 4 tram lines; it seems unlikely that one can
further reduce the number. Furthermore, the lower
bound of the LP relaxations typically is very weak
for such fixed-cost problems. Still, more research is
needed to provide better lower bounds and primal
solutions.
We compare the LP and integer solutions to “ref-

erence solutions” shown in the lower part of Table 2.
The reference LP solution is obtained by fixing the
paths of the original lines of Potsdam and then solv-
ing the resulting LP relaxation without generating
new lines, but allowing the frequencies of the lines
to change. The reference integer solution is obtained
by applying the greedy heuristic to the reference LP
solution. The results show that allowing the genera-
tion of new line paths reduces line costs in both cases
to roughly 50% and the total objective to roughly two-
thirds of the original values, while the total travel-
ing time increases by a small percent. Hence, in these
experiments, the greedy algorithm has not changed
the relative improvement obtained from optimizing
lines.
Our third experiment investigates the influence of

the parameter 2 on the solution. We computed the
solutions to the LP relaxation for 21 different values
of 2i, taking 2i = 1− �1− i/20�4, for i= 0 � � � 20. This
collects increasingly more samples near 2= 1, a region
where the total traveling time and total line cost are
about equal.
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The results are plotted in Figure 3. This figure
shows the total traveling time and the total line cost
depending on 2. The extreme cases are as expected:
For 2= 0, the line costs do not contribute to the objec-
tive and are therefore high, while the total traveling
time is low. For 2 = 1, only the total line cost con-
tributes to the objective and is therefore minimized
as much as possible at the cost of increasing the
total traveling time. With increasing 2, the total line
cost monotonically decreases, while the total traveling
time increases. Note that each computed pair of total
traveling time and line cost constitutes a Pareto opti-
mal point; i.e., is not dominated by any other attain-
able combination. Conversely, any Pareto optimal
solution of the LP relaxation can be obtained as the
solution for some 2 ∈ 3014; see, e.g., Ehrgott (2005).

6. Conclusions
We proposed a new model for line planning in pub-
lic transport that allows to generate lines dynamically
and to freely route passengers according to the com-
puted lines. The model allows to deal with manifold
requirements from practice. We showed that LLPs for
a medium-sized town can be solved within reasonable
quality with integer programming techniques. Our
computational results indicate significant optimiza-
tion potential. Our results on the polynomial time
solvability of the LP relaxation for the case of loga-
rithmic line lengths raises our hope that the model is
suited to deal with larger problems as well.
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