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Models for Line Planning in Public Transport∗

Ralf Borndörfer Martin Grötschel Marc E. Pfetsch

Abstract

The line planning problem is one of the fundamental problems in strate-
gic planning of public and rail transport. It consists of finding lines
and corresponding frequencies in a public transport network such that
a given travel demand can be satisfied. There are (at least) two objec-
tives. The transport company wishes to minimize its operating cost;
the passengers request short travel times. We propose two new multi-
commodity flow models for line planning. Their main features, in com-
parison to existing models, are that the passenger paths can be freely
routed and that the lines are generated dynamically.

1 Introduction

The strategic planning process in public and rail transport, i.e., the long
and medium term design of the infrastructure and the service level of a
transportation network, is usually divided into the following consecutive
steps: network design, line planning, and timetabling. In each of these steps
operations research methods can support the planning decisions, see for
instance the survey article of Bussieck, Winter, and Zimmermann [6], which
discusses the case of rail traffic. This article is about line planning in public
transport. We start by briefly explaining the strategic planning process in
this area to put our work into perspective.

All steps of strategic planning are generally based on so-called origin-
destination data in the form of OD-matrices; each entry in an OD-matrix
gives the number of passengers that want to travel from one point in the
network to another point within a fixed time horizon. It is well known that
such data have certain deficiencies. For instance, OD-matrices depend on
the discretization used, they are highly aggregated, they give only a snapshot
type of view, they are only valid when the transportation demand is fixed
and does not depend on the service or price level, and it is often questionable
how well the entries represent the real transportation demand. On can surely
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hope for better data, but gathering OD-matrices currently seems to be the
best feasible choice for estimating transportation demand. Assembling such
high quality data is quite an art and rather costly. Public transportation
companies do this routinely and employ OD-matrices as input for strategic
planning.

Based on this demand data, the first step of the strategic planning pro-
cess is the network design problem. It deals with the layout of the transporta-
tion system. Decisions are made about choosing streets/providing tracks of
sufficient capacity to transport the number of passengers given by an OD-
matrix such that construction costs are minimized. Typically, one considers
extensions of existing, historically grown networks; designs from scratch,
however, are also interesting, not only for the construction of completely
new systems, but also for the evaluation of existing networks.

The line planning problem (LPP) that we discuss in this article is the sec-
ond step in the strategic planning process for public transport. It consists of
designing line routes and their frequencies in a given street or track network
such that a given transportation volume, again given by an OD-matrix, can
be satisfied. The lines include forward and backward directions and they
start and end at designated terminal points in the network. To each po-
tential line we associate a certain transportation mode, such as tram, train,
or different bus types, e.g., double-decker or kneel bus. Each such mode
has a capacity, and the capacity of a line is computed as the product of its
mode capacity with an operation frequency; this frequency is supposed to
indicate a basic timetable period. Restrictions on timetable periods, such
as divisibility constraints and safety margins, may come up. Furthermore,
the number of available vehicles for a mode may result in bounds on the
frequencies. There are two competing objectives: on the one hand to mini-
mize user discomfort and on the other hand to minimize the lines’ operating
costs. User discomfort is usually measured by the total passenger traveling
time or the number of transfers during the ride, or both.

The third step is to refine the frequencies of a given line plan into a de-
tailed timetable. The objective is either to minimize the number of necessary
vehicles or to minimize the transfer times of the passengers. This timetable
is the basis for the succeeding steps of operational planning such as vehicle
scheduling, crew scheduling, rostering, and assignment, see for instance the
survey article of Desrosiers, Dumas, Solomon, and Soumis [11].

In the recent literature on the LPP often a distribution of the passengers
is estimated by a so-called system split. The system split fixes the traveling
paths of the passengers before the lines are known, see Section 2. A sec-
ond common assumption is that an optimal line plan can be chosen from
a (small) precomputed set of lines. Third, maximization of direct travelers,
i.e., travelers without transfers, is frequently considered as the objective. In
such an approach, transfer waiting times do not play a role.

This article proposes two new multi-commodity flow models for the LPP.
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These models minimize a combination of total passenger traveling time and
operating costs. The first model is compact in the sense that it uses arc vari-
ables for both lines and passenger paths; it can be used to compute lower
bounds. The second model uses path variables for both lines and passen-
ger paths; it is intended to deal with constraints on the line routes. The
model also handles frequencies implicitly by means of continuous frequency
variables. Both models allow a dynamic generation of lines, and they allow
passengers to change their routes according to the traveling times on the
computed line system. They do, in particular, not assume a system split,
but compute a“best”passenger flow in the sense of a system optimum. These
properties aim at line planning scenarios in public transport, where we see
less justification for a system split and fewer restrictions in line design than
one seems to have in railway line planning.

This paper is organized as follows. Section 2 gives an overview of the
literature on the LPP. In Section 3 we describe and discuss our models.
Section 4 discusses aspects of a column generation solution approach for the
second model. We show that the pricing problem for the passenger variables
is a shortest path problem. The line pricing problem turns out to be a longest
path problem and it is, in fact, already NP-hard to solve the LP relaxation
of the second problem. However, if only lines of logarithmic length with
respect to the number of nodes are considered, the pricing problem can be
solved in polynomial time. We close with some final remarks in Section 5.

2 Related Work

This section provides a short overview of the literature for the line planning
problem. More information can be found in the survey article of Ceder and
Israeli [7], which covers the literature up to the beginning of the 1990ies; see
also Bussieck, Winter, and Zimmermann [6].

The first approaches to the line planning problem had the idea to assem-
ble lines from shorter pieces in an iterative (and often interactive) process.
An early example is the so-called skeleton method described by Silman,
Barzily, and Passy [20], that chooses the endpoints of a route and several
intermediate nodes which are then joined by shortest paths with respect to
length or traveling time; for a variation see Dubois, Bel, and Llibre [12].
In a similar way, Sonntag [21] and Pape, Reinecke, and Reinecke [18] con-
structed lines by adjoining small pieces of streets/tracks in order to maximize
the number of direct travelers.

In the literature it is common to work in two-step approaches that pre-
compute some set of lines in a first phase and choose a line plan from this
set in a second phase. For example, Wilson [8] described an enumeration
method to generate lines whose length is within a certain factor from the
length of the shortest path, while Mandl [17] proposed a local search strategy
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to optimize over such a set. Ceder and Israeli [7, 15] introduced a quadratic
set covering model to choose among direct connections between destinations
and transfer connections; they also proposed a heuristic to solve their model.

The next phase of developments is related to the so-called system split,
which distributes the passengers on paths in the transportation network
before the lines are known. The system split is based on a classification
of the transportation system into levels of different speed, as common in
railway systems. Assuming that travelers are likely to change to fast levels as
early and leave them as late as possible, the passengers are distributed onto
several paths in the system, using Kirchhoff-like rules at the transit points.
Note that this fixes, in particular, the passenger flow on each individual
link in the network. The system split approach was promoted by Bouma
and Oltrogge [2], who used it to develop a branch-and-bound based software
system for the planning and analysis of the line system of the Dutch railway
network.

Recently, advanced integer programming techniques have been applied
to the line planning problem. Bussieck, Kreuzer, and Zimmermann [4] (see
also Bussieck [3]) and Claessens, van Dijk, and Zwaneveld [9] both proposed
cut-and-branch approaches to select lines from a previously generated set
of potential lines and report computations on real world data. They also
both assume a homogeneous transport system, which can be assumed after
a system-split is performed as a preprocessing step. Bussieck, Lindner, and
Lübbecke [5] extend this work by incorporating nonlinear components into
the model. Goossens, van Hoesel, and Kroon [13, 14] show that practical
problems can be solved within reasonable quality and time by a branch-and-
cut approach, even for the simultaneous optimization of several transporta-
tion systems.

3 Two Models for the LPP

In this section we present two integer programming formulations for the line
planning problem.

3.1 Notation and Terminology

We typeset vectors in bold face, scalars in normal face. If v ∈ � J is a
real valued vector and I a subset of J , we denote by v(I) the sum over all
components of v indexed by I, i.e., v(I) :=

∑

i∈I vi.
In line planning, we are given an undirected multigraph G = (V,E)

which is supposed to model the topology of a transportation network; this
graph is used to express line paths, which we assume to be undirected (or
bidirectional). We consider also a symmetric directed version (V,A) of this
graph, where each edge e in E is replaced by two antiparallel arcs a(e) and
a(e); the directed version is used to model passenger paths, which are not
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symmetric. We use the notation G to refer to both the directed or undirected
graph depending on the context, i.e., for line paths we refer to the undirected
version, while for passenger paths we use the directed version. If a = (u, v)
is an arc in the directed (multi)graph, we denote its antiparallel counterpart
by a = (v, u) and by e(a) = {u, v} ∈ E the undirected edge corresponding
to a.

The nodes of G represent stops, stations, terminals (start and end points
of lines), and origins or destinations of passenger flows (OD-nodes, i.e., “cen-
troids” of certain traffic cells). The edges/arcs of G correspond to physical
transportation links between two stations, to the formation or termination
of lines at a terminal, or to the passenger in- and outflow between OD-
nodes and stations. Associated with each edge e in E is a mode me of
transportation, such as tram, train, double-decker bus, pedestrian traffic,
etc.; we assume multiple edges between two nodes, one for each mode us-
ing the underlying link. We denote the set of all modes by M and by Gm

the subgraph of G defined by the edges e with me = m. Furthermore, we
have a traveling time τa for each arc a ∈ A, an (operating) cost ce, and a
capacity λe for each edge e ∈ E; all three, τa, ce, and λe, are assumed to be
nonnegative. The values λe bound the total frequency of lines using edge e,
to be explained below.

For each node pair s, t ∈ V we assume a nonnegative demand dst of
passengers to be given that want to travel from s to t, i.e., (dst) is the
OD-matrix of our system. We do not assume this matrix to be symmetric.
For notational convenience we let D := {(s, t) ∈ V × V : dst > 0} be the
set of all OD-pairs, i.e., node pairs with nonzero transportation demand.
For such an OD-pair (s, t) ∈ D, an (s, t)-passenger path is a directed path
in G starting at node s and ending at node t, which visits exactly two OD-
nodes, namely, s and t. Since passenger paths will correspond to shortest
paths with respect to some nonnegative weights, we assume them to be
simple, i.e., without node repetitions. Let Pst be the set of all (s, t)-passenger
paths, P :=

⋃{p ∈ Pst : (s, t) ∈ D} the set of all passenger paths, and
Pa :=

⋃{p ∈ P : a ∈ p} the set of all passenger paths that use arc a. The
traveling time of a passenger path p is defined as τp :=

∑

a∈p τa.
For each mode m there is a set of terminals Tm ⊂ V , where lines of

mode m can start, end, or change direction; let T :=
⋃{v ∈ Tm : m ∈ M}

be the set of all terminals. A line of mode m is an undirected path in Gm,
starting and ending at a terminal from Tm; we stipulate that the lines must
be simple. Let Lm be the set of all lines of mode m, L :=

⋃{` ∈ Lm :
m ∈ M} the set of all lines, and Le :=

⋃{` ∈ L : e ∈ `} the set of lines
that use edge e. We assume that there are fixed costs C` and capacities κ`

for one unit/vehicle/train of line `, which depend only on the mode, i.e.,
C` = Cm and κ` = κm for ` ∈ Lm. We further associate a frequency f`

with every line ` that is supposed to indicate the (approximate) number of
times vehicles are employed to serve the demand over the underlying time
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horizon T . This not necessarily has to lead to a regular timetable period, but
an estimate for such a period for line ` can be computed from this frequency
as T/f`.

3.2 Service Network Design Model

In this section we present a model for the line planning problem in which
lines are modeled as integer flows in the mode networks Gm; it is aimed at
efficiently computing lower bounds. In order to achieve this goal, we have
to circumvent several complications that are discussed at the end of this
section. The model is related to a service network design model by Kim and
Barnhart [16].

We assume in this model a fixed finite set of possible frequencies F ⊂ �
+

for the lines of the transportation system. Furthermore, let Q be an upper
bound on the number of lines that start and end in two given terminals. For
mode m, let Rm := {(u, v, q, f) ∈ Tm ×Tm ×{1, . . . , Q}×F : u < v}, where
the nodes in V are ordered arbitrarily, and let R :=

⋃{Rm : m ∈ M}. The
set R represents all possible line-frequency combinations. For convenience,
define mr := m and r =: (ur, vr, qr, fr) for r ∈ Rm; r indexes the line
numbered qr of mode m with frequency fr starting a ur and ending in vr.
Moreover, we let R′

m := {(u, v, q) ∈ Tm × Tm × {1, . . . , Q} : u < v}. For
this model, we handle fixed costs by adding them to the costs on the arcs
that emanate from the terminals Tm.

There are two kinds of variables:

yst
a ∈ �

+: the flow of passengers from s to t ((s, t) ∈ D) using arc a ∈ A,
zr
a ∈ {0, 1}: the flow of line numbered qr (of mode mr = me(a)) with fre-

quency fr, starting at ur and ending at vr, passing through arc a ∈ A.

The model is:

(LPP1) min
∑

(s,t)∈D

τTyst +
∑

r∈R

cTzr

yst(δ+(v)) − yst(δ−(v)) = δst
v ∀ v ∈ V (i)

∑

(s,t)∈D

yst
a −

∑

r∈R

κmr
fr(z

r
a + zr

a) ≤ 0 ∀ a ∈ A (ii)

zr(δ+(v)|Gmr
) − zr(δ−(v)|Gmr

) = 0 ∀ v ∈ V \ {ur, vr}, r ∈ R (iii)
zr(δ−(ur)) = 0 ∀ r ∈ R (iv)

zr(A(W )|Gmr
) ≤ |W | − 1 ∀W ⊆ V \ {ur, vr}, r ∈ R (v)

∑

r∈R

fr(z
r
a + zr

a) ≤ λe(a) ∀ a ∈ A (vi)

∑

f∈F

z(r′,f)
a ≤ 1 ∀ a ∈ A, r′ ∈ R′

m (vii)

zr
a ∈ {0, 1} ∀ a ∈ A, r ∈ R (viii)

yst
a ≥ 0 ∀ a ∈ A, (s, t) ∈ D (ix)
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Here, (A(W )|Gmr
) are the arcs in Gmr

with both endpoints in W ⊆ V and
similarly for (δ+(v)|Gmr

).
The passenger flow constraints (i) and the nonnegativity constraints (ix)

model a multi-commodity flow problem for the passenger flow, where the
commodities correspond to the OD-pairs (s, t) ∈ D. Here δst

v is zero except
that δst

s = dst and δst
t = −dst. This part guarantees that the demand is

satisfied. The lines are modeled as 0/1-flows in the z-variables for each
r ∈ R: the line flow conservation constraints (iii) ensure that every line
that enters a non-terminal node also has to leave it. Constraints (iv) ensure
that the line-flow is directed from the start node ur towards the end node
vr of the line indexed by r. The “subtour elimination” constraints (v) rule
out isolated line circuits, i.e., circuits in the mode graphs Gmr

that are not
connected to the terminal set {ur, vr}. The frequency constraints (vi) bound
the total frequency of lines using each edge. Constraints (vii) ensure that at
most one frequency for each line is used. The passenger and the line parts
of the model are linked by the capacity constraints (ii) in such a way that
the total passenger flow on each arc is covered by lines of sufficient total
capacity.

The formulation (LPP1) models undirected line routes as directed paths
in 0/1 variables. The reason for this choice of variables is that it is the
easiest way to model simple paths between terminals. Namely, it allows to
eliminate isolated line circuits by constraints of the form (iv). The model
of Kim and Barnhart, referred to above, does not incorporate terminals and
can arbitrarily decompose any line flow into simple paths and cycles. The
Kim and Barnhart model can therefore model lines using integer variables
and does not need to resort to subtour elimination constraints. Note also
that the discretization of the frequencies is used to linearize the capacity
constraints (ii).

Formulation (LPP1) is of polynomial size except for the “subtour elim-
ination” constraints. These constraints are well known from the traveling
salesman problem and can be separated in polynomial time. It follows that
the LP relaxation of (LPP1) can be solved in polynomial time to provide a
lower bound for the line planning problem.

We also remark that the model is ready to accommodate a number of
additional constraints. We mention as an example a restriction L on the
total number of lines, which can be modeled as z(δ+(T)) ≤ L.

3.3 A Path Based Frequency Model

Our second model treats the lines by means of path and frequency variables.
There are three kinds of variables:

yp ∈ �
+: the flow of passengers traveling from s to t on path p ∈ Pst,

x` ∈ {0, 1}: a decision variable for using line ` ∈ L,
f` ∈

�
+: frequency of line ` ∈ L.
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This allows to model the cost of line ` of mode m directly as x` C`+f` c`.
Here, c` :=

∑

e∈` ce is the total operating cost of line `. Similarly, the
capacity of line ` ∈ Lm is κ` f` = κm f`.

The model now reads:

(LPP2) min τ Ty + CTx + cTf

y(Pst) = dst ∀ (s, t) ∈ D (i)

y(Pa) −
∑

`:e(a)∈`

κ`f` ≤ 0 ∀ a ∈ A (ii)

f(Le) ≤ λe ∀ e ∈ E (iii)
f ≤ Fx (iv)
x` ∈ {0, 1} ∀ ` ∈ L (v)
f` ≥ 0 ∀ ` ∈ L (vi)
yp ≥ 0 ∀ p ∈ P (vii)

As in (LPP1), the flow constraints (i) together with the nonnegativity con-
straints (vii) guarantee that the demand is satisfied for each OD-pair (s, t) ∈
D. The capacity constraints (ii) link the passenger paths with the line paths
to ensure sufficient transportation capacities on each arc. The frequency
constraints (iii) bound the total frequency of lines using each edge. Inequal-
ities (iv) link the frequency with the decision variables for the use of lines;
they guarantee that the frequency of a line is 0 whenever it is not used. Here,
F is an upper bound on the frequency of a line; for technical reasons, we also
assume that F ≥ λe for all e ∈ E, see Section 4 for a detailed discussion.

The main advantage of (LPP2) over (LPP1) is that it is easy to incor-
porate additional constraints on the formation of individual lines such as
length restrictions, as well as constraints on sets of lines, e.g., constraints
on numbers of lines of certain types. As such constraints are important in
practice, we are currently using (LPP2) as the basis for the development of
a branch-and-price algorithm. The disadvantage of the model is, however,
that it is already NP-hard to solve the LP relaxation, as we will show in
Section 4.

3.4 Discussion of the Models

We discuss in this section advantages and disadvantages of the two models.

Objectives: Both models have objectives with two competing parts, namely,
to minimize total passenger traveling time and to minimize operation costs.
The models allow to adjust the relative importance of one part over the
other by an appropriate scaling of the respective objective coefficients.
Passenger Routes: Previous approaches to the LPP often fixed the trav-
eling paths of the passengers in advance by employing a system split. In
contrast, our two models allow to freely route passengers in the line network
in order to compute an optimal routing. To our knowledge, such routings
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have not been considered in the context of line planning before. Our models
are targeted at local public transport systems, where, in our opinion, people
determine their traveling paths according to the line system and not only
according to the network topology.

It must be pointed out, however, that models such as (LPP1) and (LPP2)
do not compute a collection of individually optimal routing decisions in the
sense of a user equilibrium. They rather route the passengers in such a way
that the total transportation time is minimized, i.e., the models compute a
system optimum. It is known from other application areas such as road pric-
ing, that this approach has the problem that a minority of passengers may
be forced to take very long routes, which are unacceptable in practice; such
phenomena appear, in particular, when line costs are large in comparison to
traveling costs.

One approach to solve this problem is to restrict the lengths of passenger
paths. For each OD-pair one computes the shortest path in G with respect
to the traveling times in advance (every path is feasible independent of the
line system) and modifies the model to only allow passenger paths whose
traveling times are within a certain range from the traveling times of the
shortest paths. This turns the pricing problem for the passenger variables
into a constrained shortest path problem; see Section 4.1. Although this
problem is NP-hard, there are reasonably fast algorithms in practice. Note,
however, that this approach does not model a range of path lengths with
respect to the shortest path in the computed line system, which is what one
would really like to achieve.
Line Routes: The literature generally takes line routes as simple paths,
with the exception of ring lines, and we do the same in this article. In fact,
a restriction forcing some sort of simplicity is necessary to solve the line
pricing problems, as otherwise the outcome will be a line that visits some
edges back and forth many times consecutively; see Section 4.2. As a slight
generalization of the concept of simplicity, one could investigate the case
where one assumes that every line route is bounded in length and “almost”
simple, i.e., when considering the sequence of nodes in a line route, no node
is repeated within a given (fixed) number of nodes. It remains to be seen
whether non-simple paths are useful in practice.

We consider lines as undirected, which implies that there are no one-
way streets/tracks. However, it is easy to extend the model by including
undirected lines as they sometimes appear in ring lines.

Transfers: Transfers between lines are currently ignored in our models.
The problem here are not transfers between different modes, which can be
handled by setting up node disjoint mode networks Gm linked by appropriate
transfer edges, which are weighted by the estimated transfer times. This does
not work for transfers between lines of the same mode. The reason is that our
models do not distinguish between lines of the same mode in the capacity
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constraints. In principle, this obstacle can be resolved by an appropriate
expansion of the graph. However, this greatly increases the complexity of
the model, and it introduces degeneracy; it is unclear whether such models
have the potential of being solvable in practice.

Time horizon: An important consideration in any strategic planning prob-
lem is the time horizon that one wants to consider. In the LPP, it comes
into play implicitly via the OD-matrix. Usually, such data are aggregated
over one day, but it is similarly appropriate to aggregate, for instance, over
the rush hour. In fact, the asymmetry of the demands in rush hours was
one of the reasons to consider directed passenger paths.

Frequencies: In a real world line plan the frequencies have to produce
a regular timetable and hence are not allowed to take arbitrary fractional
values. Our first model takes this requirement into account. The second
model, however, treats frequencies as continuous values. This is a simpli-
fication. We could have forced the second model to accept only a finite
number of frequencies in the same way as in the first model, i.e., by enumer-
ating lines with fixed frequencies. However, as the frequencies are mainly
used to adjust the line capacities, we do (at present) not care so much about
“nice” frequencies and view the fractional values as approximations or clues
to “sensible” values. We note, however, that the approaches of Claessens,
van Dijk, and Zwaneveld [9] and Goossens, van Hoesel, and Kroon [13, 14]
are able to handle arbitrary finite sets of frequencies. This feature is clearly
needed in future models that integrate line planning and timetable construc-
tion. For the time being, however, a “practical model” of this type seems to
be out of reach.

Additional Constraints: Several additional types of constraints can be
added to the models, e.g., capacity constraints on the total number or on the
frequencies of lines using an edge, on the number of lines of certain types,
or other linear constraints.

4 Pricing Problems for (LPP2)

In this section, we discuss the solution of the LP relaxation of (LPP2). For
this purpose, we have to analyze the pricing problems for the passenger
and the line variables. First computational experience indicates that the
LP relaxation gives a good approximation to an optimal solution of the line
planning problem.

The LP relaxation of (LPP2) can be simplified by eliminating the x-
variables. In fact, since (LPP2) minimizes over nonnegative costs, one can
can assume w.l.o.g. that the inequalities (iv) are satisfied with equality, i.e.,
there is an optimal LP solution such that Fx` = f` ⇔ x` = f`/F for all
lines `. Eliminating x from the system using these equations, we arrive at
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Figure 1: Example for the node splitting in the proof of Proposition 4.1

the following simpler LP (LP2):

(LP2) min τTy + γTf

y(Pst) = dst ∀ (s, t) ∈ D (i)

y(Pa) −
∑

`:e(a)∈`

κ`f` ≤ 0 ∀ a ∈ A (ii)

f(Le) ≤ λe ∀ e ∈ E (iii)
f` ≥ 0 ∀ ` ∈ L (iv)
yp ≥ 0 ∀ p ∈ P (v)

Here, γ` = C`/F + c` denotes the cost of line ` resulting from the above
substitution. After the elimination, (LP2) contains inequalities f` ≤ F for
all lines `. Since we have assumed that F ≥ λe for all e ∈ E, this exponential
number of inequalities is dominated by inequalities (iii) and can be omitted.
Hence, (LP2) contains only a polynomial number of inequalities (apart from
the nonnegativity constraints (iv) and (v)). We remark that the coupling
between x` and f` by means of the equation Fx` = f` is a typical weak point
of IP models involving fixed costs.

Proposition 4.1. The computation of the optimal value of (LP2) with sim-
ple line paths is NP-hard in the strong sense, even for planar graphs.

Proof. We reduce the Hamiltonian path problem, which is strongly NP-
complete even for planar graphs, to (LP2). Let (H, s, t) be an instance of
the Hamiltonian path problem, i.e., H = (V, E) is a graph and s and t are
two distinct nodes of H.

For the reduction, we are going to derive an appropriate instance of
(LP2). The underlying network is formed by a graph H ′ = (V ′, E′), which
arises from H by splitting each node v into three copies v1, v2, and v3. For
each node v ∈ V , we add edges {v1, v2} and {v2, v3} to E′ and for each edge
{u, v} the edges {u1, v3} and {u3, v1}, see Figure 1. Our instance of (LP2)
contains just a single mode with only two terminals s1 and t3 such that every
line must start at s1 and end at t3. The demands are dv1v2

= 1 (v ∈ V )
and 0 otherwise, and the capacity of every line is 1. For every e ∈ E, we
set λe to some high value (e.g., to |V |). The cost of all edges is set to 0,
except for the edges in δ(s1), for which the costs are set to 1. The traveling
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times are set to 0 everywhere. It follows that the value of a solution to (LP2)
is the sum of the frequencies of all lines.

Assume that p = (s, v1, . . . , vk, t) (for v1, . . . , vk ∈ V ) is an (s, t)-Hamil-
tonian path in H. Then p′ = (s1, s2, s3, v

1
1 , v

1
2 , v1

3 , . . . , v
k
1 , vk

2 , vk
3 , t1, t2, t3) is

an (s1, t3)-Hamiltonian path in H ′, which gives rise to an optimal solution of
(LP2). Namely, we can take p′ as the route of a single line with frequency 1
in (LP2) and route all demands dv1v2

= 1 on this line directly from v1 to v2.
As the frequency of p′ is 1, the objective value of this solution is also 1.
On the other hand, every solution to (LP2) must have value at least one,
as every line has to pass an edge of δ(s1) and the sum of the frequencies of
lines visiting an arbitrary edge of type {v1, v2}, for v ∈ V , is at least 1. This
proves that (LP2) has a solution of value 1 if (H, s, t) contains a Hamiltonian
path.

For the converse, assume that there exists a solution to (LP2) of value 1,
for which we ignore lines with frequency 0. We know that every edge {v1, v2}
(v ∈ V ) is covered by at least one line of the solution. If every line contains
all the edges {v1, v2} (v ∈ V ), each such line gives rise to a Hamiltonian
path (since the line paths are simple) and we are done. Otherwise, there
must be an edge e = {v1, v2} (v ∈ V ) which is not covered by all of the
lines. By the capacity constraints (ii), the sum of the frequencies of the lines
covering e is at least 1. However, the edges in δ(s1) are covered by the lines
covering edge e plus at least one more line of nonzero frequency. Hence, the
total sum of all frequencies is larger than one, which is a contradiction to
the assumption that the solution has value 1.

This shows that there exists an (s, t)-Hamiltonian path in H if and only
if the value of (LP2) with respect to H ′ is 1.

Note that Proposition 4.1 highlights a subtle, but important difference in
the line planning parts of the LP-relaxations of the two models (LPP1) and
(LPP2). In the LP-relaxation of (LPP1), the line planning part optimizes
over a convex hull of simple paths; Proposition 4.1 shows that this is NP-
hard. As the LP-relaxation of (LPP2) is solvable in polynomial time, its
line planning part must be weaker and contain additional solutions which
are not convex combinations of simple paths. For example, an isolated
cycle C in some mode graph Gm gives rise to the vector (|C|−1)/|C| ·χ(C),
which fulfills all constraints of (LPP1), in particular the subtour elimination
constraints (v). But it ist not a convex combination of simple paths.

By Proposition 4.1, we also know that at least one of the pricing problems
associated with (LP2) must be NP-hard as well. In fact, it will turn out
that the pricing problem for the line variables x` and f` is a longest path
problem; the pricing problem for the passenger variables yp, however, is a
shortest path problem.

The pricing problems for the variables of (LP2) are studied in terms of the
dual of (LP2). Denote the variables of the dual as follows: π = (πst) ∈

� D
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(flow constraints (i)), µ = (µa) ∈
� A (capacity constraints (ii)), and η ∈ � E

(frequency constraints (iii)). The dual of (LP2) is:

(DLP) max dTπ − λTη

πst − µ(p) ≤ τp ∀p ∈ Pst, (s, t) ∈ D
κ` µ(`) − η(`) ≤ γ` ∀` ∈ L

µ, η ≥ 0,

where
µ(`) =

∑

e∈`

(

µa(e) + µa(e)

)

.

4.1 Pricing of the Passenger Variables

The reduced cost τ p for variable yp for p ∈ Pst, (s, t) ∈ D, is

τp = τp − πst + µ(p) = τp − πst +
∑

a∈p

µa = −πst +
∑

a∈p

(µa + τa).

The pricing problem for the y-variables is to find a path p such that τ p < 0 or
to conclude that no such path exists. This can easily be done in polynomial
time as follows. For all (s, t) ∈ D, we search for a shortest (s, t)-path with
respect to the nonnegative weights (µa+τa) on the arcs; we can, for instance,
use Dijkstra’s algorithm. If the length of this path is less than πst, then yp

is a candidate variable to be added to the LP, otherwise we proved that no
such path exists (for the pair (s, t)). Note that each passenger path can
assumed to be simple: just remove cycles of length 0 – or trust Dijkstra’s
algorithm, which produces only simple paths.

4.2 Pricing of the Line Variables

The pricing problem for the line variables f` is more complicated. The
reduced cost γ` for a variable f` is

γ` = γ` − κ` µ(`) + η(`) = γ` −
∑

e∈`

(

κ` (µa(e) + µa(e)) − ηe

)

.

The corresponding pricing problem consists in finding a suitable path ` of
mode m such that

γ` < 0 ⇔ γ` −
∑

e∈`

(

κ` (µa(e) + µa(e)) − ηe

)

< 0

⇔ C`/F + c` −
∑

e∈`

(

κ` (µa(e) + µa(e)) − ηe

)

< 0

⇔ Cm/F +
∑

e∈` ce −
∑

e∈`

(

κ` (µa(e) + µa(e)) − ηe

)

< 0

⇔ Cm/F +
∑

e∈`

(

ce − κm (µa(e) + µa(e)) + ηe

)

< 0.

⇔ ∑

e∈`(κm (µa(e) + µa(e)) − ηe − ce) > Cm/F.

This problem turns out to be a longest weighted simple path problem, since
the weights (κ` (µa(e) + µa(e)) − ηe − ce) are not restricted in sign and the
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graph G is in general not acyclic. Hence the pricing problem for the line
variables is NP-hard (even for planar graphs). Note that longest non-simple
path problems will often be “unbounded”, e.g., because of repeated subse-
quences of the form (. . . , u, v, u, . . . ), which will lead to paths of “infinite
length”. As discussed in Section 3.4 we therefore restrict our attention to
simple paths. In the rest of this section, we explain how this problem can
be solved in practice.

For the following we fix some mode m ∈ M and, for convenience, write
G = (V,E) for Gm and T for Tm. We let n = |V | and m = |E|. We are now
given edge weights we (e ∈ E) as described above, which are assumed to
be arbitrary (rational) numbers. The pricing problem amounts to finding a
longest weighted path in G with respect to w from each node s ∈ T to each
node t ∈ T \ {s}.

Clearly, for any fixed path-length k ∈ � we can solve the problem to find
a longest simple path using at most k edges by enumeration in polynomial
time. We want to give two arguments that lines in typical transportation
networks are not too long. The first argument is based on an idea of a
transportation network as a planar graph, probably of high connectivity.
Suppose this network occupies a square, in which its n nodes are evenly
distributed. A typical line starts in the outer regions of the network, passes
through the center, and ends in another outer region; we would expect such
a line to be of length O(

√
n). Real networks, however, are not only (more or

less) planar, but often resemble trees. In a balanced and preprocessed tree,
such that each node degree is at least 3, the length of a path between any
two nodes is only O(log n).

We now provide a result which shows that the longest weighted simple
path problem can be solved in polynomial time in the case when the maximal
number of edges k occurring in a path satisfies k ∈ O(log n). This result is a
direct generalization of work by Alon, Yuster, and Zwick [1]. Their method
works both for directed and undirected graphs.

The goal of their work is to find induced paths of fixed length k − 1 in
a graph. The basic idea is to randomly color the nodes of the graph with k
colors and only allow paths that use distinct colors for each node; such paths
are called colorful with respect to the coloring and are necessarily simple.
Choosing a coloring c : V → {1, . . . , k} uniformly at random, every simple
path using at most k − 1 edges has a chance of a least k!/kk > e−k to be
colorful with respect to c. If we repeat this process α · ek times with α > 0,
the probability that a given simple path p with at most k − 1 edges is never
colorful is less than

(

1 − e−k
)α·ek

< e−α.

Hence, the probability that p is colorful at least once is at least 1−e−α. The
search for such colorful paths is performed by dynamic programming, which
leads to an algorithm running in n·2O(k) time and provides the correct result
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with high probability. This algorithm is then derandomized.
We have the following result, which can easily be generalized to directed

graphs.

Proposition 4.2. Let G = (V,E) be a graph, let k be a fixed number, and
c : V → {1, . . . , k} be a coloring of the nodes of G. Let s be a node in G
and (we) be edge weights. Then a colorful longest path with respect to w

using at most k − 1 edges from s to every other node can be found in time
O

(

m · k2 · 2k
)

, if such paths exist.

Proof. We find the length of the longest such path by dynamic programming.
Let v ∈ V , i ∈ {0, . . . , k}, and C ⊆ {1, . . . , k} with |C| ≤ i. Define w(v, C, i)
to be the weight of the longest colorful path with respect to w from s to v
using at most i−1 edges and using the colors in C. Hence, for each iteration i
we store the set of colors of all longest colorful paths from s to v using at
most i − 1 edges. Note that we do not store the set of paths, only their
colors. Hence, at each node we store at most 2i entries. The entries of the
table are initialized with minus infinity and we set w(s, {c(s)}, 1) = 0.

At iteration i ≥ 2, let (u,C, i) be an entry in the dynamic programming
table. If for some edge e = {u, v} ∈ E we have c(v) /∈ C, let C ′ = C ∪{c(v)}
and set

w(v, C ′, i + 1) = max{w(u,C, i) + wa, w(v, C ′, i + 1), w(v, C ′, i)}.
The term w(v, C ′, i + 1) accounts for the cases where we already found a
longer path to v (using at most i edges), whereas w(v, C ′, i) makes sure that
paths using at most i−1 edges to v are accounted for. After iteration i = k,
we take the maximum of all entries corresponding to each node v, which is
the wanted result. The number of updating steps is bounded by

k
∑

i=0

i · 2i · m = m ·
(

2 + 2k+1(k − 1)
)

= O
(

m · k · 2k
)

.

The sum on the left side of this equation arises as follows. In iteration i, m
edges are considered; each edge {u, v} starts at node u, to which at most 2i

labels w(u,C, i) are associated, one for each possible set C; for each such set,
checking whether c(v) ∈ C takes time O(i). The summation formula itself
can be proved by induction, see also [19, Exc. 5.7.1, p. 95]. The algorithm
can be easily modified to actually find a wanted path.

We can now follow the above described strategy to produce an algorithm
which finds a longest weighted simple path in α ek O

(

mk2k
)

= O
(

m · 2O(k)
)

time with high probability. Then a derandomization can be performed by
a clever enumeration of colorings such that each simple path with at most
k − 1 edges is colorful with respect to at least one such coloring. Alon et
al. combine several techniques to show that 2O(k) · log n colorings suffice.
Applying this result we obtain:
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Theorem 4.1. Let G = (V,E) be a graph and let k be a fixed number. Let
s be a node in G and (wa) be edge weights. Then a longest simple path with
respect to w using at most k − 1 edges from s to every other node can be
found in time O

(

m · 2O(k) · log n
)

, if such a paths exist.

If k ∈ O(log n), this yields a polynomial time algorithm. Hence, by the
discussion above, it follows that the LP relaxation (LP2) can be solved in
polynomial time in this case. On the other hand we have following result.

Proposition 4.3. It is NP-hard to compute a longest path of length at
most k, if k ∈ O

(

n1/N
)

for fixed N ∈ � \ {0}.

Proof. Consider an instance (H, s, t) for the Hamiltonian path problem,
where H is a graph with n nodes. We add (nN − n) isolated nodes to H in
order to obtain the graph H ′ with nN nodes, which is polynomial in n. Let
the weights on the edges be 1. If we would be able to find a longest simple
path with at most k = (nN )1/N = n edges starting from s, we could solve
the Hamiltonian path problem for H.

5 Conclusions

In this paper, we presented two novel models for the line planning prob-
lem, which allow to compute optimal line routes and passenger paths and
investigated their LP relaxations.

We started to implement the second model, solving the line route pricing
problem by enumeration. First computational experience shows that this
approach is feasible to solve the LP relaxation of this line planning model
for a medium sized city. We are currently working on the solution of the
integer program and on the evalutation of the practicability our approach.

Acknowledgement. We thank Volker Kaibel for pointing out Proposition 4.3.
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Verkehrswege in Praxis und Theorie, Eisenbahntechnische Rundschau 43, no. 6
(1994), pp. 369–378.

[3] M. R. Bussieck, Optimal lines in public rail transport, PhD thesis, TU Braun-
schweig, 1997.

[4] M. R. Bussieck, P. Kreuzer, and U. T. Zimmermann, Optimal lines for
railway systems, Eur. J. Oper. Res. 96, no. 1 (1997), pp. 54–63.

16



[5] M. R. Bussieck, T. Lindner, and M. E. Lübbecke, A fast algorithm
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