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CLIQUE-WEB FACETS FOR MULTICUT POLYTOPES*

M. DEZA, M. GROTSCHEL ano M. LAURENT

Let G = (V, E) be a graph. An edge set {uv € Elue S,veS,i+ i}, where Sy,..., S, is
a partition of V, is called a multicut with k shores. We investigate the polytopes MC Sn)
and MC/ (n) that are defined as the convex hulls of the incidence vectors of all multicuts
with at most k shores and at least k shores, respectively, of the complete graph K,. We
introduce a large class of inequalities, called clique-web inequalities, valid for these poly-
topes, and provide a quite complete characterization of those clique-web inequalities that
define facets of MCS (n) and MC (n). Using general facet manipulation techniques like
collapsing and node splitting we construct further new classes of facets for these multicut
polytopes. We also exhibit a class of clique-web facets for which the separation problem can
be solved in polynomial time.

Introduction and notation. We denote graphs by G = (V, E); V is the node set
and E the edge set of G. An edge between nodes i and j is denoted by . If this
notation leads to ambiguities we write {i, j} instead. All graphs we consider are
undirected and have neither loops nor multiple edges. The complete graph on n
nodes is denoted by K. The set [1, n] = {1,2,...,n} will usually be considered as the
node set of K,. The edge set of K, will be denoted by E,. An interval in the set
[1,n] is a subset of [1,n] of the form {i,i+ 1,...,j} if i <j or of the form
{i,i + 1,...,m 1, jHif j <i.

A partition of a set § is a system S-S, of subsets of § such that S; # &
Gi=1,...,k),8;n§; = g0 <gi<j<k)andS= Uk,S. If Sisasetand b, eR
are weights for all i € § then, for any T C S, b(T) denotes the sum ¥, c 7b;.

If G=(V,E)is a graph and Si.--, S, a partition of V then 8(S,...,8,) =
{uv € E| i #j with u & S, VE Sj} is called the k-cut of G associated with
Sy - .., Sy The sets Sy..-, 8, are called the shores of the k-cut. If we do not want to
specify the number & of the shores we will simply speak of a multicut.

To make notation easier we will sometimes speak of a <k-cut and a ~ k-cut if
8(S,,...,S,) is an h-cut with # < k and h > k, respectively. The (standard) cuts
usually considered in graph theory are our < 9-cuts. The symbol most frequently used
to denote these cuts is 8(S), i.e., 8(8) = {jicElies, jeS)ForS+V,we will use
either 8(S) or 8(S,¥V\ S) to denote standard cuts depending on which notation is
more convenient.

In the remainder of the paper we will only study multicuts of the complete graph
K,. Thus we will frequently drop reference to the graph with respect to which a
multicut is considered.

n
Let R(z) denote the vector space where each of the n(n — 1)/2 components is
indexed by an edge of the complete graph K,. The incidence vector of a multicut

8(S,,. .., Sy) is the vector x> %) € R(3) with x2S = 1if e € 8(Sy, ..+, Si)
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982 M. DEZA, M. GROTSCHEL & M. LAURENT
and y%Sv-S) =0 otherwise. Since this (standard) notation is so clumsy and
inconvenient in our case we slightly change the symbol to denote the incidence vector
and write

X(Sy,...,8,) == x?Sv S0,

To shorten notation we call x(S,,...,S,) a multicat or k-cut vector or simply
(abusing language) also a multicut. The incidence vector x(§) of a 2-cut is called a cut
vector.

There are a number of interesting combinatorial optimization problems associated
with multicuts. Given weights ¢, for all edges e of K,, one can ask to find a
maximum weight multicut or a maximum weight multicut with at most, at least, or
exactly k shores. We introduce here the polytopes associated with these problems.
Let “conv”’ denote the convex hull operator and let » and k be positive integers with
1<k <n. Set

MC(n) = conv{x(S,,...,S,)I8(S,,...,S,) a multicut of K,},
MC (n) = conv{x(S,...,Sx)I8(Sy,...,S,) a Sk-cut of K,},
MC? (n) = conv{x(S,,..., S,)I8(S,...,8,) a > k-cut of K,},
MCy (n) = conv{x(S,, ..., S)I8(S,,...,S,) a k-cut of K},
EMC(n) = conv{x(Sy,...,8,)18(S},...,S,) a multicut with

IS —1Sl<1,1<i<j<h}

We call MC(n) the multicut polytope, MC S (n) the < k-cut polytope, MC7 (n) the
* k-cut polytope, and EMC(n) the equi multicut polytope of K. If it is not necessary
to be precise about the name we will simply speak of a multicut polytope
MCg (n), MC? (n), etc. Moreover, to save parameters we will sometimes drop the
“n” and write MCS instead of MC S (n), etc., if it is clear from the context what the
underlying complete graph K, is.

In this paper we will study the polytopes MC2 (n) and MC S (n). (Note that the
polytopes MC = (n) and MC > (n) are trivial. They consist of a single point and, thus,
they will not be considered further.) The two extreme cases MC(n) = MC5 (n) =
MC? (n) and MC; (n) have been investigated intensively before.

MC 5 (n) is nothing but the standard cut polytope studied, e.g., in [BM], [DL1],
[DL2], [DDL] and other papers mentioned in these references. MC(#n) is the “com-
plement” of the clique partitioning polytope. A clique partitioning is an edge set
E(S,...,8) = E,\&S,,...,S,), where E, is the edge set of the complete graph
K,, and the clique partitioning polytope &2, is nothing but &, = {1 — x|x € MC(n)}.
(1 denotes the vector all of whose components are 1.) The polyhedron &2, has been
studied in {GW1], {GW2], and [W]. Due to the simple relationship between MC(n)
and &, it is easy to transform a result about &2, into a result about MC(n) and vice
versa. Multicut polytopes (for general graphs) have been studied in [CR1] and the
polytope MC g (n) in [CR2]; in particular, see [CR1] for integer programming formu-
lations of multicut polytopes.

The standard cut problem has many real world applications, see, for instance,
[BGJR], and so does the clique partitioning problem, see [GW3]. Equicut problems
come up in physics and VLSI-design, see [BGJR], and multicut problems with upper
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or lower bounds on the number of shores appear frequently, e.g., in cluster and
quantitative data analysis. It is not the purpose of this paper to describe these
applications and their (sometimes complicated) modeling. We provide theoretical
results on the associated polytopes that will eventually form the basis of a cutting
plane algorithm to solve these problems. The present paper is a follow-up work of the
papers [DL2] and [GW1] that study MC (n) for k =2 and k = n. We investigate
here the “intermediate” cases.

We use the standard notation of polyhedral theory. We say that an inequality
aTx < « is valid for a polyhedron P if P C {xla"x < a}; a valid inequality a'x <«
defines (or induces) a facet of P if the dimension of {x € Pla”x = a} is one less than
the dimension of P. An inequality aTx < a is called pure if all coefficients of a are
elements of {0, +1, —1}. If aTx < a is valid for some multicut polytope and if
8(S,,...,S;) is a multicut such that its incidence vector satisfies this inequality with
equality, then we call the multicut vector x(S,,.-.,S,) aroot of a’x < a.

The main aim of our paper is to produce large classes of inequalities that define
facets of MC S (n) and MC (n).

Let us begin with some easy but important facts that we will use in the sequel.

If an inequality is valid for MC(n), then it is also valid for all polytopes MC (n),
MC?Z (n) and MCy (n) since MC(n) contains all polytopes MC g (n),MCZ (n),
MCy (n).

Every multicut vector XS, 8D, k> 2, can be written as a nonnegative linear
combination of usual cut vectors, namely:

=

™=

(%) X(Sli""Sk)zél X(Sia[lv”]\si)=%_ x(S:),

1

i
1

and, similarly, every incidence vector of a k-cut, k >3, can be expressed as a
nonnegative linear combination of incidence vectors of (k — 1)-cuts

(x*)
1

x(Sp,--sS8) = Pcz—)—_-;

x ¥ x(Su s,,sl,...,s,._l,sm,...,sj.,l,s,.H,...,sk),

1<gi<jsk

and hence as a nonnegative linear combination of incidence vectors of h-cuts for all
2 < h < k. Clearly, such an expression is not unique.

An immediate consequence of () is that, for each fixed k, 2 < k < n, the cone
generated by all <k-cuts coincides with the cut cone C, (the cone generated by all
<2.cuts). In other words, all multicut polytopes MCg (n) have the same set of
homogeneous facets, i.e., facets of the form a”x < 0, as the cut cone C, Similarly,
( +) implies that the cone generated by the k-cuts is the same as the cone generated
by the * (k — 1)-cuts.

A remarkable property of the cut polytope MC 5 (n) is that all its nonhomogeneous
facets can be obtained from its homogeneous ones via the so-called switching
operation [BM]. It would be nice to have such a tool for multicuts. However, we could
not find a natural extension of this property for the case k > 3. Indeed, it is shown in
[DGL] that the only symmetries of the multicut polytope MCS (n), 3 <k <n, are
those induced by permutations of the # nodes.
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From (#) and (* *} also follows that if a k-cut vector x(S,,.. .,8,) is a root of a
valid homogeneous inequality a’x < 0 then the 2-cut x(S,,[1, n] \ S,) and the (k —
D-cut vectors x(S; U S, 8,81, 801,...,8, 8. 1,...,8,) are also roots of
a’x < 0. . .

It is well known that the cut polytope MC5 (x) is full dimensional, see [BM]. Since
MCF(n) 2 MC5 (n) for 2 < k <n we see that the dimension of l\’/lIC,f (n) is also
equal to (2) The polytope MC,>_ ,(n) is nothing but the simplex in r(2) generated by
the (1) vectors 1 —e;, where e; is the ith unit vector, and by the n-cut vector
[ = )(.({1}, ...,{n}). Thus MC?>_ (n) is of full dimension. And since MCZ(n) 2
MC;_(n), 1 <k <n — 1, the multicut polytopes MC? (n), 1 < k <n — 1, are full
dimensional as well.

After these preliminaries let us survey the contents of our paper. In the first
section, we introduce clique-web inequalities (CW-inequalities for short); they are a
generalization of those homogeneous clique-web inequalities introduced in [DL1] and
proved to be facet-inducing for the cut polytope MC5 (n) in [DL2]. We prove that
clique-web inequalities are valid for the multicut polytope MC(n) (cf., Proposition
(1.5)) and, hence, for all polytopes MC 5 (n), MC? (n) for 2 < k < n. Then we study
whether CW-inequalities induce facets of MC S (n) and MC? (n) and we group the
results in our main Theorem (1.20). For example, concerning facethood for MC g (n),
there are only two values of k for which facethood is undecided. We also exhibit a
class of CW-facets, the so-called odd wheel facets (cf. Proposition (1.23)), for which
the separation problem can be solved in polynomial time.

In the second section we extend to multicut polytopes the operation of collapsing
valid inequalities considered in [DL2], [DDL] for the cut polytope MC 5 (n); it
enables us to construct general (collapsed) clique-web inequalities. The inverse
operation to collapsing is a special case of lifting. Using this special lifting procedure,
we prove facethood for some classes of CW-inequalities.

1. Clique-web facets. Clique-web inequalities, introduced in [DL1], were proved
to be facet-inducing for the cut cone C, in [DL2]. Because of (*) and since they are
homogeneous, they are valid and thus they also induce facets of the multicut
polytopes MC £ (n) for all k < 7 and hence of MC(n). By relaxing conditions on their
parameters, we construct a nonhomogeneous version of these inequalities and prove
that they induce facets of MC(x) and MCg (n), MC (n) for suitable .

L.1.  Clique-web inequalities. Given nonnegative integers p, r such that p > 2r +
L, let ({1, p], AW) denote the antiweb with parameters p, r, i.e., the circular graph
on node set [1, p] with edges {i,i + 1},{i,i + 24 .., i, i+ r) for i €1, p] (setting
P+ 1=1). The complement of (1, pl, AW,) is the web (1, p], W)). To shorten
notation we will simply use W,” or AW, to denote a web or antiweb since the edge set
implicitly defines the node set. It will be clear from the context whether we mean the
sraph or its edge get. Antiwebs are Cayley graphs on the additive group z,

(1.1) DeFiNiTION. Let n,p,q > 1, r > 0 be integers such that

(1.2) n=p+gq, p—q>2r+1.

The C,lique-web inequality (CW-inequality, for short) with parameters p, g, r satisfying
(1.2} is the inequality

Yjtiy
l<i<jsn ij €AW

r - ~ —2 -1
(13) CW, ,ox = Y ppr y x[jg(l’ a)(p 4= )

[ 2 T

e O O O

—_— b b ey
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; with b =(1,...,1, = 1,..., =17, where the first p coefficients of b are +1 and the
j last g coefficients are —1.

: To make technical arguments more transparent we shall use the following notation
concerning CW-inequalities. In the sequel we denote by [1, p] the set of nodes i with
b, = +1 (the “positive” nodes) and by [1', ¢'] (or [p + 1, n] the set of nodes with
b, = —1 (the “negative” nodes). Thus the coefficients of the edges of E, in (1.3) are
as follows. All edges of the web W, on [1, pl have value +1; the edges of its antiweb
AW, have value zero; the edges with one endnode in [1, plandone in[p + 1,n] =
[, ¢'] have value — 1, the edges in the clique [p + 1, n] have value +1.

(1.4) Remark. (i) In case the parameters p, g, r of the CW-inequality (1.3) satisfy
p—q=2r+ 1, then the right-hand side of inequality (1.3) is equal to 0 and
inequality (1.3) coincides with the clique-web inequality CW, . -x < 0 proved to be
facet-inducing for MC 5 (n) in [DL2] for g > 2. In the following we shall therefore
restrict ourselves to the case p —gq > 2r + 1, ie., to the nonhomogeneous CW-
inequalities for multicut polytopes.

(i) Inequality (1.3) for the case r = 0 coincides (after transformation x — 1 — x)
with the [S, T l-inequality (with S U T = [1, n], S} # |T]) introduced in [GW1] and
shown there to be facet-inducing for MC(#n). Also, inequality (1.3) for the case r = 0
is a subcase of the generalized hypermetric inequality introduced in [CR2] and proved
there to be facet-inducing for MC S (n) for k satisfying p —g + 1 < k <p.

(ii) In case the parameters satisfy p — g = kr + 1 and r > 1 then inequality (1.3)
coincides with the antiweb inequality introduced in [CR2] and proved there to be
valid for MCg(n) and facet-inducing for MC (n) if the additional condition
p>2krand r <k — 2holds. O

To prove validity and characterize the roots of CW-inequalities for MC(n) we use
the following two facts about homogeneous CW-inequalities for the cut polytope
MC 5 (n). As before, AW, denotes the edge set of the antiweb on the node set [1, pl
with parameters p, r.

(1.5) ProrosiTion (See [A]). Let S be a subset of [1,p] of size s. The following
assertions hold.:

M) If s <, then |8(S) N AW,| > s@r+1-s)

(i) If r <s < p ~ r then |8(S) N AW, | > r(r + 1).

(1.6) Provosition (See [DL2, Theorem 18)). Given integers p,q,r,n > 1 with
p—q=2r+1 and n=p +gq, consider the CW-inequality (1.3) CW, - x <0 de-
fined on the nodes (1, p} U [1, '} The roots in MC; (n) of this inequality are the cut
vectors x(S) for which the node set S is of one of the following two types:

(R1) S or [1,n]\ S induces a clique of the antiweb AW, (i.e., any two nodes are
adjacent in AW)).

(R2) S = S*U S~ where S* is an interval of 1, p] of sizes withr + 1 <s*<p —
r—1and S~ is a subset of [V, q'] of size s~ with st—s"ef{r,r +1}.

Note that any subset of [1, p] of type (R1) has size less than or equal to r + 1; also
any subset of an interval of size r + 1 of [1, p] is of type (R1).

It follows from (*) that for homogeneous CW-inequalities CW, ;X < 0 with
p—q=2r+1, a multicut vector x(Sy,..., S,) is a root if and only if, for all
ie{l,...,k}, the cut vector x(S,) is a root of CW; , - x <0, ie., S, is of type (R1) or

of type (R2).

(1.7) Proposition. The cligue-web inequality (1.3) is valid for the multicut polytope
MC(n).
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(1.8) ProrosiTiON.  Given integers p,q,r > 1 with p — q > 2r + 2, the multicut
vector x(S,,...,8,) is a root of the CW-inequality (1.3), i.e., satisfies

Pp—q)(p—q—2r—1)
Cwﬂr.q'X(Sl,--.,Sk) = ( ) > ’

if and only if, for all i € [1, k], one of the following assertions holds:

(R1) S; induces a clique of the antiweb AW,

(R2) §; = $7U S;” where S;" is an interval of size s of [1, pl with r + 1 < s}t <
p—r—land S isa subset of size s of [V, q'] withs}—s7 € {r,r + 1}.

ProoF oF ProrosiTions (1.7) anp (1.8).  The proof relies upon (*), i.e., the fact
that every multicut vector x(S,,...,S,) can be expressed as a linear combination of
cut vectors, namely

(1.9) X(Sis--08,) =%

™M=

x(S).
1

I

Take a multicut vector x(S§,, ..., §,). Using (1.9) and T*_,b(S,) = p — ¢ we obtain

1 &
C“/,;,q 'X(SIV'"Sk) = 7 Z C\Vp.q X(Sl)

1 & 1 X
=3 Lb(S)(p—a-5(5)) - 5 L |5(5) nAW!|

i=1 i=1

k
b(S,)* - % }_:1 [8(S) N AW,

Hence, proving validity of inequality (1.3) amounts to verifying that the following
inequality holds:

%AW N 5(5)] > 5 b(S)(r + 1 - b(5)).

For this, it is enough to show that for all i € [1, k] the following inequality holds:
(1.10) |AW, N 8(S,)| = b(S)(2r + 1 - b(S,)).

For each i € [1, k] set §;:= $; N1, pland §7:= S, N [T, q'] with respective cardi-
nalities 5,7, s7; hence b(S) = s;"— 5;. Define the following index sets: J = {i e[1,k]
st<r), Je={ie[l, k] st2p—r+1)}, and K={iell,kl r+1<« st<p-—r)
We show that relation (1.10) holds by distinguishing the cases whether i is in I, J
or K.

First, if i € [, i.e,, s} < r, then s;"— 57 < s} < r, implying that

[8(S,) N AW,

25 (2r+1-s) > (s —s7)@r+1- (sF=s7)),

the first inequality following from Proposition (1.5)(i) and the second inequality from
the fact that the function x(2r + 1 — X) is monotone nondecreasing for x < r. i




F B

CLIQUE-WEB FACETS FOR MULTICUT POLYTOPES 987

Then, if i € J, i.e., s;>p —r + 1, then, since 8(S,) = 8(1, n]\ S)), we obtain that
‘S(Si) al AWp’| =(p-s)@2r+1-p+ ) = (st—s7)(2r+1- (sF=s57))s

the first inequality following from Proposition (1.5)(Q) and the second one from the
fact that x(2r + 1 — x) is monotone nonincreasing for x > r + 1 and relation r +
1<2r+1—p+s<s—s.

Finally, if i € K, ie,r+1<s/<p—r,then

|8(S;) N AW | > r(r+1) > b(S)(2r +1 - b(S))),

the first inequality following from Proposition (1.5)Gi) and the second one from the
fact that x(2r + 1 — x) < r(r + 1) for all integers x.

This concludes the proof of validity of inequality (1.3) for MC(n).

We now identify the multicut vectors x(S,,..., S,) which are roots of inequality
(1.3) in the case p — g > 2r + 2. From the above observations, x(S;,..., S,) is a root
of inequality (1.3) if and only if 18(S) N AW| = B(S)2r + 1 — b(S)) for all i €
[1, k], i.e., equality holds in (1.10) for all i € [1, k]. We again distinguish the cases
whether i € I, J or K.

— If i € I, equality holds in (1.10) if and only if s, = 0 and [6(S;) N AW, | =
st @r+1—s7), ie., S; defines a root of inequality CW/ ,_,,_, - x < 0. It follows
from Proposition (1.6) that §; induces a cligue of AW,

— If i €J, equality in (1.10) implies that sf—s;=2r+1-p+ s and thus
s;=p—2r—12q+ 1, yielding a contradiction; therefore, J must be empty.

— If i € K, equality holds in (1.10) if and only if sf—s7=r,r+ 1and [6(S,) N
AWl =r(r + 1), i.e., S; defines a root of inequality CW, ,_g,— x<0 and, thus,
from Proposition (1.6)(R2), S; is as in Proposition (1.8)(R2). This concludes the proof.

a

1.2. Clique-web facets.

(1.11) TueoreM. For any integers p,q > land r>0withn=p+gq, p—q=
2r+1andq=2ifp—q=2r+1, the clique-web inequality (1.3) defines a facet of
MC(n).

Proor. In view of Remark (1.4){), (ii), we can suppose that p — g > 2r + 2 and
r > 1. Take an inequality b7x < b valid for MC(n) such that

{xEMC(n):CWp’M-x=(p‘q)(P—zq—Zr—l)}

is contained in {x € MC(n): bTx = b,}; we prove through the following claims that,
for some positive scalar a, b’x = aCW, - x holds, henceforth inequality (1.3)
defines a facet of MC(n).

(1.12) Claim. b, =(0forall j € AW,

Proor. Let x; denote the root of inequality (1.3) (and hence of b"x < by)
defined by the partition of [1,p]U (V,q'] with classes: [p—g—r1+1, pluU
[, q'),{i}, for 1 <i<p—gq—r and, given some u with 2<u<r+1, let x,
denote the root defined by the partition with classes [p—gq-r+1,plu
[1,q'),{1,u},{i), for2<i<p—qg—randi+#u Hence, 0 = b"x, — b"x,, implying
that b,, = 0. Then Claim (1.12) follows by symmetry. O

L‘ e
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(1.13) Claim.  For some scalar a, b, = a for all i € [1, pl, i’ € [T, g'].

Proor. Set A:==[p —q—r+ 1,p]U[l, g1\ {i'}, where i is a given element
of [V, ¢']. Consider the roots x;, x,, xs defined, respectively, by the following parti-
tions:

— with classes A, [1,r + 1JU {i"}{r + 2},{i}, with r + 3 <i<p — g — r,

— with classes A, [2,r + 2] U {i'L, {1}, (i}, with r+ 3 <i <P — g — r,

— with classes A, [1,r + 2] U {i"},{i}, with r + 3 <i<p —q — r.

Using Claim (1.12) and relations 0 = b”y; — b7y, and 0 = b" x4 — b7y, we obtain,

respectively, that by, = b, ,, and b, = —b,,,,, hence implying that b, = ¢, is 4
constant that does not depend on the choice of i’ in[l', '] and a; = A= —b,,
similarly, b, = ay =a,,;, = —b,, .5 fori' €[l',q']

Set B:=[p—q—r+3,p]UI[3, ¢] and consider the roots xg, x, Xy defined
respectively by the following partitions:

— with classes B, [L,r + 3JU {12}, (i}, forr+4<i<p—qg—r+ 2,

— with classes B, [2,r + 3]U {1, 2}, {1}, {i}, forr+ 4 <i<p—q—7r + 2,

— with classes B, [I,r + 2] U{Y, 2}, {r + 3}, {i},forr+ 4 <i<p —q—r +2.

From relations 0 = by, — b"x; and 0 = b”y, — b”x,, we obtain that ', = ~by, s
@,,3= —b,; and thus «, = @, = a,. By symmetry, we can conclude that all a;
are equal. This proves Claim (1.13). o

(1.14) Claim. For some scalar 8, byy=BforallI'<i' <j <4q'.

Proor. Take 7, with I'<i'<j <q, set C=[p—-—q—r +2 plu
[V, g'IN{#, '} and consider the roots xq, x,, defined by the following partitions:

— with classes C U {j'},[1,r + 2JU {i'},{i}, for r+ 3 <i<p—q ~ r + 1,

— with classes C, [I,r + 2] U {, j){il, forr+3 <i<p—gqg—r + 1.

Then 0 = b"x, — b'x,,, yielding relation

hil]t = ((I - 3)a + Z bj'll' = (q - 3)(1 + bj'k' + Z bj'/l'
Hell.q' N '} nell, g\, 7. k')

where k' is an element of [I', ¢'] \ {, j'}. Similarly, one has by =(q ~ 3a + by +
i e i, 7. kybj- henceforth yielding that byy = byy = b — by, and thus b, =
by, Hence Claim (1.14) is proved. o

(1.15) Claim. o = —B.

Proor.  Obviously, we can suppose that g > 2. With 4 = [p—gqg—r+1,plu
[1',4'], x\1» x,, are the roots defined by the partitions:

— with classes A, [I,r + 1] {i}, forr+2<i<p—q —r,

— withclasses 4 — {IL[1,r + JU{IL{)}, forr+2<i<p—gq —r.

From relation 0 = b"y,, ~ b"y,,, we deduce that @ = — 8.

(1.16) Claim.  b;; = —a forall j € W = E,\ AW/,

Proor.  We alrcady know that b, ,,, = —a (cf. proof of Claim (1.13)). We show
by induction on u, r + 2 < u < (p + 1)/2, the following assertion:

1

(H,)) b= —-a foralll <i <j < usuchthat jj & AW,

Asscrtion (H,, ,) holds. Assume (H, _,) holds; we prove that (H,) holds, i.e., that
by, = —aforall | <i<u—r— 1. For this, given i €[,y — r—1]set D :=[u+
Log +i+ 2r](interval of [1, p] of size g +i + 2r — u Starting at point © + 1) and
fet xy3. x4 denote the roots defined by the following partitions:

— with classes DUl (g+r+i—uVlli+ Lulu Kg+r+i—u+1), q'l
{i}. tor je [LpIN(D Ui + 1, u)),
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_ withclasses DU [V,(g +r+i—wlli,ulullg+r+i-u+1), q'],{j}, for
jell, pI\(D U li,uD.

Using the induction assumption and relation 0 = b'x;; — bTx,,, we deduce that
b, = —a, hence showing assertion (H). ©

This finishes the proof of Theorem (1.11). ©

Theorem (1.11) states that the CW-inequalities (1.3) define facets of the multicut
polytope MC(n). In fact, by looking closely at the proof, we can refine this result and
prove that inequality (1.3) is, in fact, facet-inducing for MC & (n) and MC} (n) for
suitable k. More precisely, we can show the following.

(1.17) TueoReM.  Given integers p, 4, r,n > 1withp —q > 2r + 2andn=p +gq,
the following assertions hold:

G) If 2 <k <p — q — 2r, then inequality (1.3) is facet-inducing for MCZ (n).

G) If [(p — @)/(r + DI+ 2 < k < n, then inequality (1.3) is facet-inducing for

MCg (n).

Gi) If p—g—r+2<k<n, then inequality (1.3) is not facet-inducing for
MCZ (n).

Gv) If 2<k <[(p —q)/(r + DI — 1, then inequality (1.3) is not facet-inducing for
MC g (n).

W) Fp—q=k(r+1) and k > 2, then inequality (1.3) is not facet-inducing for
MCg (n).

Proor. (i) By simply checking the roots x; (i = 1,2,..., 14) used in the proof of
Theorem (1.11), one can notice that all of them are incidence vectors of A-cuts for A
taking one of the following values: p —¢q — 2r,p—q-2r+1, p—q-2r+2,
p—q-—r,p—q—r+ 1 This simple observation implies ().

(ii) We can reformulate the proof of Theorem (1.11), such that all arguments
remain correct and each root used in the newly formulated proof has at most
[(p — q)/(r + D] + 2 shores. Thus we obtain a proof for (ii). The reformulation is
simple. Each root used in the proof of Theorem (1.11) has to be changed by just
grouping singleton-shores into larger shores satisfying property (R1) of Proposition
(1.8). We leave the easy-to-find details to the reader.

(iii) and (iv) We show that under the conditions of (iii) and (iv) inequality (1.3)
does not have a root at all. Namely, suppose the k-cut x(8,,...,8,) is a root of
inequality (1.3). We use the description of roots from Proposition (1.8). We can
suppose that S,,...,S, are of type (R1) while Sy, ,..., S, are of type (R2) with
O<h<k—1ThenS,=S87US; foralliands;=0,1<s'<r+1forie (1, Al,
while s;— s; € {r,r + 1} fori € [h + 1, k). Then we have that

K k
p=Ysi< Lst+ L si+(k-h)(r+1)
i=1 i=1 i=h+1

<h(r+1)+q+(k=h)(r+1)=a+k(r+1),

implying that k > (p — @)/(r + 1). We also have that

k k
p=Ys=h+ L sT+(k—hyr=q+h+ (k—h)r

i
i=1 i=h+1

implyingthatp—q>h+(k—h)r>k+r—1andthusk<p*q—r+1.

|
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(v) Take a muiticut vector x(S,,..., S,) which is a root of inequality (1.3), suppose
that §,,..., S, are of type (RD) and S, , ,..., S, are of type (R2) with0 < h < ¢ — 1
(cf. Proposition (1.8)); then p = X!_,s7< h(r + 1) + q — (t = h)(r + 1), yielding
that p~q=k(r+ 1) <t(r+1) and thus ¢ > k. Therefore, the multicuts of
MC (n) that define roots of inequality (1.3) are k-cuts 8(Sy,...,S,) satisfying
s—s7=r+1for all i €[1, k] and, henceforth, every root of inequality (1.3) for
MC§ is, in fact, root of the following inequality:

(pP-—a)(p—qg-r—-1)
Y bibx;; < )

I<i<j<n

where b = (1,...,1, —1,..., —=1)T consists of p coefficients +1 and g coefficients
—1. To see this, observe that

1k
)y bibix(Si- -, k)i = 5 Lb(S)(p—a~- b(S,))
I<i<j<n i=1
k
=5(r+1)(p-g-r—-1)
_p-a)p-g-r-1)
2
at all roots x(S,,...,S,) of inequality (1.3) for MC;=(n). Since r > 1, the linear
forms CW, , x and ):lg,-gjgb,-bjx,-j are distinct, hence implying that inequality

(1.3) is not facet-inducing for MC S (n). o

There remain only two values of k for which facethood for MC = (n) is undecided,
namely k = [(p —q)/(r + Dl and k =[(p — q)/(r + D] + 1. In both cases, some
roots indeed exist. For the first case k = [(p — q)/(r + 1)], we believe that inequality
(1.3) is not facet-inducing for MC & (n).

Concerning facethood of inequality (1.3) for MCZ (n), there is the interval
[p—qg—-2r+1, P —q —r + 1] of undecided values of k. Probably, one could
improve Theorem (1.17)(i) by suitably modifying the roots used in the proof of
Theorem (1.11) (but, this time, trying to increase the number of classes in the
partitions defiring the roots) in a similar manner as we did for Theorem (1.17)(i).

(1.18) Remark. We would like to mention again that, in the case p — g = hr + 1,
p > 2hr and 1 < r < h — 2, the CW-inequality (1.3) was shown to be facet-inducing
for MC = (n) in Theorem 6.3 of [CR2]. Actually, if p — g = hr + 1, then

2] =n- | 2]

and Theorem (1.17)(ii) implies that inequality (1.3) is facet-inducing for MC g (n) for
al k >h+2—|(h - 1)/(r + DI. Therefore, if |(h — 1D/(r + 1)] = 1, then Chopra
and Rao’s result mentioned above solves one of the two undecided cases, namely
facethood for MC,s (n). The case k = h — 1 remains still undecided, and, probably,
(1.3) does not define a facet (recall (1.17) V). If Ik ~ 1)/(r + DI =2 and p > 2hr,
then Theorem (1.17) (ii) coincides with Chopra and Rao’s result for this case. But, if
I(h = 1)/(r + 1)] » 3, then Theorem (1.17) (i) is more general than Chopra and
Rao’s result.

(1.19) ReEmark. In all preceding results we considered all inequalities with r > 1.
For the case r = 0, which corresponds to the class of [S, T}-inequalities studied in
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[GW1], we can do a similar work of counting the number of partitions forming the
roots used for the proof of facethood of inequality CWIE 4 X< (p—gXp—q-—1)/2
By simply looking at the roots used in the proof of Theorem (4.2) (GW1]), one can
check that they are all A-cuts with h taking values p,p — 1, hence implying that
inequality CW,', - x <(p —gXp — g - 1)/2 is facet-inducing for MCZ (n) for all
k < p — 1. On the other hand, by suitably modifying the roots in such a way that they
are h-cuts with A small, it is not hard to see that the proof of Theorem (4.2) (GW1])
can be modified so that it uses only A-cuts as roots with 4 taking values p — g + 1,
p — q + 2 and, therefore, inequality CW,, - x <(p—¢g)p —q— 1)/2 is facet-
inducing over MC S (n) for all k > p — g + 2. Furthermore, in a similar way as we
did for CW-inequalities with » > 1, one can give an alternative proof for the validity
for MC(n) of inequality CW, - x <(p —qXp —q ~ 1)/2 and derive the full de-
scription of its roots (the details are left to the reader); so a multicut vector

x(S,,...,S,) is a root of inequality W) x<(p—-qXp—-q—1)/2if and only if
b(S,) =s;—s €0, 1} foralli e, k], where b = (1,...,1, —1,..., —1). An imme-
diate consequence is that the roots are k-cuts with p — g < k < p. We summarize all
above observations in the next theorem. ﬁ

(1.20) TueoreM. Given integers n =p +q, p,q > 1 with p — q > 2, the roots of
inequality CW,) - x <(p — qXp —q— 1)/2 are the multicut vectors xS S
for which s;—s7€{0,1}, for all i €[1,k] and, hence, they satisfy p —q <k < p.
Furthermore, inequality CWI,O’q -x<(p—gXp—q—1/2 is facet-inducing for
MCs (n) forallk > p — q + 2, is not facet-inducing for MCE (n) fork <p —q — 1,
and is facet-inducing for MCZ (n) fork <p — 1.

(1.21) Remark. It follows from (1.20) that—by our proof—there remain only two
values of k for which facethood of the inequality CWp”,q -x < oo —1)/2 for
MCS (n) is undecided, namely & € {o,0 + 1}, where o =p —q. In fact (recall
Remark 1.4(ii)) Chopra and Rao [CR2] proved facethood of the above inequality for
MCZ, (n), hence solving one of the two undecided cases.

1.3. A class of CW facets that is polynomially separable. Given an integer r > 0, let
C be a cycle of length p = 2r + 3 with nodeset V(C) c[1, n] and i, be a node of
[1, n]\ V(C). The following inequality

IC] -1
(1.22) in,'_ )y Xii S T3

jecC ie(C)

is called p-wheel inequality or just, if we do not want to specify the cycle length p,
odd wheel inequality.

Since the web W, = E,\ AW/ is just a cycle of length 2r + 3, the CW-inequality
CWj, .3, - X < r+ 1, with parameters p = 2r + 3, g = 1, r, coincides (up to permu-
tation of the p positive nodes) with the p-wheel inequality (1.22). In fact, the only
cases where the web W/ is a cycle are given by the parameter relation p = 2r + 3;
and thus, since p — g = 2r + 1, the only CW-inequalities for which W is a cycle are
determined by the parameters p =2r +3 and g € {1,2). The case g = 1 is the
above odd wheel inequality while the case g = 2 is (up to switching) the known
bicycle odd wheel inequality introduced in {BGM), [BM] for the bipartite subgraph
polytope and the cut polytope MC 5 (n) (and shown to define a facet). The bicycle
odd wheel inequality, being a homogeneous facet for MC 5 (n), is therefore facet-
inducing for MC S () for all 2 < k < n. On the other hand, the odd wheel inequality
(1.22) is facet-inducing for MCS(n) for 4 <k <n (see [CR1] and also Theorem

]
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(1.17)ii)), and is not facet-inducing for MC;(n) (cf. Remark 1.6 in [DL2] and
Theorem (1.17)(v)).

Both the odd wheel and the bicycle odd wheel inequalities share the remarkable
property that they can be tested for separation in polynomial time. This fact was
proved for bicycle odd wheel inequalities by Gerards ((G]). By the same type of
argument (see also [GLS] for the related odd wheel inequalities for the stable set
polytope) we can prove

(1.23) ProrosITION.  The separation problem for the following set of inequalities
@ x,;<1lforall 1 <i<j<n,
(i) x;; — x4 — x; <O for all distinct i, j, k in [1, n),
(i) Ljjecx; — Zie weyXiy < (UCI = 1)/2 for every node iy € [1,n] and for every
odd cycle C with node set V(C) C [1, n]\ {i,},
can be solved in polynomial time.

Proor. Given a vector y € Q(g), one can obviously test in polynomial time
whether y satisfies inequalities (i), (ii). If some inequality (i) or (i) is violated, then we
are finished. We now suppose that y satisfies all inequalities @), ().

For each node i, € [1, n], we define a weighting of the edges of K, — {iy} by

wio =5 — vy + %(y,-“,. +y,;) forallij e E,\ 8(iy).
By assumption, y satisfies (i) and (ji), thus w[f > 0. The construction of the weights
w;? implies that y violates an inequality of type (iii) if and only if there exist a node

iy € [1,n] and an odd cycle C ¢ E, \ 8(i,) such that

i IC| 1
wi(C) =F =0+ X <5
‘ ieV(C)
Using the algorithm described in [GP] one can decide in polynomial time whether or
not such a node i, and an odd cycle C exist. If so, any odd cycle C* with w'(C*) < §
defines an odd wheel inequality

*| _
Z Xij— Z xi(,i<lCITl

jec* ieV(C*)

that is violated by y. 0

Combining polynomial time separation algorithms for various classes of inequalities
for multicut polytopes (e.g., the algorithms described in [GP], [BM], and [G]) with the
algorithm of Proposition (1.23) and the ellipsoid method yields (see [GLS]) polyno-
mial time algorithms that optimize linear objective functions over certain LP-relaxa-
tions of multicut optimization problems. Since this paper is not intended to treat
computational aspects, we do not go into further detail here.

2. Collapsing and lifting. There are various techniques known with which valid
or facet-defining inequalities can be manipulated such that new valid or facet-defining
inequalities are obtained. The operations “collapsing” and “lifting” have been
studied in [DL1], [DL2], and [DDLY], for the cut polytope MC < (n). We extend these
operations in this section to the case of multicuts.
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2.1. Collapsing. We first recall the definition of collapsing of a vector or a graph
from [DL2], [DDL]. Given integers N > n, let 7 be a partition of the set [1, N] into

N n
n parts I, ..., I,. Given a vector v € R( 2), its 7r-collapsing is the vector v_ of R(z)
defined by
(2.1) (v,)ij= Y up forl<i<j<n.
hel, kel;

In particular, if G = (V, E) is an edge weighted graph on node set [1, N] and v is its
edge weight vector, where, for 1 <i <j < N, v;; denotes the weight of edge §j € E
and v; = 0 for j & E, then the m-collapsing of G is the weighted graph G, on node
set [1, n] whose edge weight vector is v,.

For a subset S of [1, N]weset S_ = {i € [1,n]: S N I, # &} and, for a subset S of
[1,n], we set S := U ;5]

The next definitions are extensions to the multicut case of corresponding defini-
tions for the case of ordinary cuts. A partition S|, ..., S, of [1, N]is called -admis-
sible if for all i € [1,n]and all j € [1,k], I, N S, # & implies [,  S;. If §,..., S, is
a m-admissible partition of [1, N1, then the family (S,).,,...,(S,), defines a partition
of [1, n). The following relations can be easily checked.

(22) Uax(Sp,-- - Sk) ‘_‘UTX((Sl)w:---:(Sk)W)

for every partition S,,..., S, of {1,n] and every v € R(Q/)

An immediate consequence of relation (2.2) is that, if vTx < @ is a valid inequality
for MC S (N) (respectively, MCZ (N), MC} (N)), then its mr-collapsing Ix<aisa
valid inequality for MCg (n) (respectively, MC? (n), MCj (n)); furthermore, the
roots of inequality v7x < a are the multicut vectors x((S,),...,(S,),) for which
S,...,S, is a w-admissible partition of [1, N] and x(8;,...,8,) is a root of
inequality v7x < a.

The collapsing operation enables us to define the general CW-inequalities
CW, (b) - x < oo — 2r — 1)/2 where b = (b,,...,b) are n = p + q integers sat-
isfying o ==X b= 2r+1, by,...,b,>0 and pr,...,b,, < 0. For this we use
the notion of a collapsed antiweb AW’ (b,...,b,) (see [DL2]). Setting P := L{_b;
and letting ,(b) denote the partition of [1, P] into the p intervals [, := [1, 5,],
L=1[b, + - +b+1,b + -+ +b+b, ] for i=12...,p—1, the antiweb
AW (b, ..., b,) is the weighted graph on node set {1, p] obtained by 7, (b)-collaps-
ing of the antiweb AWS on node set [1, Pl. We set Q = L7, lbf, N=P+ Q=
rr_Ibland o =P - Q=X b.

(2.3) ProposITION. With the above notation, the general CW-inequality
a(oc—2r-1)

(24) CWI (b)-x= Y bbx,- L x;< )
1<i<jsn (i, ))e AW,/ (b)

is valid for the multicut polytope MC(n), and, hence, for MCg (n), MCj (n), and
MC? (n) for all k < n, where b = (b,,...,b), o ==X/ \b;>2r + 1.
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Observe that inequality (2.4) is, in fact, the 7(b)-collapsing of the valid inequality
(1.3)

Wi P02 2D (PP 0-2r2 1) ey,

where w(b) is any partition of [1,N]=[1,PlU[l,Q'] into the p intervals
ly,..., I, , (forming the previously considered partition 7, (b) of [1, P]) and q
arbitrary parts of sizes |b,,|,...,|b,| partitioning [, Q']. Therefore, validity of
inequality (2.4) follows from Proposition (1.7) and the observations described after
relation (2.2) above. Observe that the CW-inequalities defined in (1.3) are exactly the
pure (general) CW-inequalities defined in (2.4).

Another immediate consequence (using the bounds given in Proposition (1.17)(ii)
and (iv), Theorem (1.20) on the number k of parts in partitions defining roots of pure
CW-inequalities) is that, for any multicut 8(S|, ..., S,) that defines a root of inequal-
ity (2.4), the following relation holds

T
r+1

(2.5) Sk<o-r+1 ifr>1, and o<k<p ifr=0.

Consequently, inequality (2.4) does neither induce a facet of MC . + 1= (n) nor of
MC;7_, 5 (n)if r > 1, and it is not facet-inducing for MCS_ (n) nor for MC2, (n) if
r=20.

Also, using Proposition (1.8) and Theorem (1.20) we deduce that every multicut
8(S,...,8,) that defines a root of inequality (2.4) with r > 1 (resp., r = 0) satisfies
b(S,) €[1,r + 1] (resp,, b(S;)) € (0,1} for all i €[1,k]. This simple observation
enables us to derive the following necessary condition for a general CW-inequality
(2.4) to define a facet.

(2.6) ProposiTiON.  Take an integer r > 0 and an integral vector b = (b,...,b )T

with by,...,b,> 0, b,,\,...,b, <0, and assume that o = ¥"_ b, > 2r + 2 holds.
Suppose that b, b, are the largest two integers among by,...,b, and that b,_,, b, the
smallest two among b, ,...,b,. If inequality (2.4) CW, (b)) x <o(oc—2r-1)/2

defines a facet for MCS(n) or MCZ (n) for some 2 < k < n, then the following
assertions hold:

M by +b,+ I, b<r+1,

(i) b, |, +b, + L2 ,b, > min(r, 1).

Proor.  We use the fact that, if x(S,,...,S,) is a root of inequality (2.4), then
b(S)ell,r+1]if r>1 and b(S)e{0,1) if r=0, for all i e[1,k]. Assume
condition (i) is violated; then, if for some root x(S,,...,S,), nodes 1,2 belong to the
same part §;, we have that b(S;) > b, + b, + L}_,, b, > r + 1, yielding a contradic-
tion. Hence, if (i) is violated, then inequality (2.4) is dominated by the valid inequality
X2 < 1 and thus is not facet-inducing. Similarly, if condition (i) is violated, then
nodes n — 1,n belong to distinct parts of every partition defining a root of (2.4),
implying that (2.4) is dominated by inequality X, .<1l o

In §5 of [CR2] the following inequality is considered (as a special case of the class
of general cycle inequalities)

rir+1
(2.7) Y b - (—2*)— Y x; <0,

I<i<jgn jel

where, in our notation, b = (b,,...,b,)7 are n integers satisfying 37_,b, = 2r + 1,
1 n i=1Yi
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by,...,b, >0, bpﬂ,...,bn <0 and C is a cycle on [1, p]. In the case b; » r for all
i €[1, p], the collapsed antiweb AWp’(bl,...,bp) is just the cycle C = (1,2,..., p)
with weight r(r + 1)/2 on its edges (see Example 1.5 in [DL2] and, for the roots,
Proposition 1.19, [DL2]) and, therefore, the general cycle inequality (2.7) of [CR2]
coincides with the CW-inequality CW[,"q(b) . x < 0. Otherwise, if b, <r for some

i € [1, p), the general cycle inequality (2.7) is not facet-inducing for MC S (n) in view
of the following fact.

(2.8) Lemma. Given by,...,b, > 0 with Y2 b, 2 2r+1 and the cycle C =
1,2,...,Dp), then

r(r+1

|5(S) N AW, (by, ..., b,)| < —(—2—~)|5(5) NnC|

holds for all subsets S < (1, pl.
Proor. We assume first that by = -+ =b, = 1. If S is an interval of [1,p],
then
L(—’Z”L—lllzs(S) AC|=r(r+1),
|8(S) N AW;|=r(r+1) ifr<ISl<p—r and
|5(5) N AW =s(2r +1—s) <r(r+1) if ISl <r.

Therefore, [8(S) N AW, < r(r + 1) holds for any interval § of [1, p]. Take now an
arbitrary subset S of [1, p]. Then § can be viewed as a union § =S, U --- U S, of
u > 2 intervals S; of [1, p]. Hence,

15(8) N cli’-;—ll = r(r + Du,

while

[8(S) N AW, =‘Awp' N (U 8(S,) \a(sl,...,su))

u
< ¥ |AW; n ()| < r(r + Du,
i=1
since each S, is an interval. Therefore, we have that

|8(S) N AW, | < f(—r—;—l)lS(S) A C| forall S c[1,p].

We now consider the general case by,...,b, > 1. Set P = YP b, and let m
denote a partition of [1, P]into p consecutive intervals of sizes by, ..., b,. Then the
m-collapsing of the antiweb AW, and of the cycle C' = (1,2,..., P) are, respectively,
the weighted antiweb AW, (b,..., b,) and the cycle C = (1,2,..., p). Then, using

e
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the properties of collapsing, we have that for S C [1, p],

|AW, (b,,...,b,) N 8(S)| =|AWE N §(S™)|
<L sy et = 2 Discs) nel.

This proves the claim. O

We deduce from Lemma (2.8) that the general cycle inequality (2.7) is dominated
by the CW-inequality CW, (b) - x < 0. Therefore, the general cycle inequality (2.7)
is not facet-inducing unless it coincides with the CW-inequality CW, (b) - x < 0, i.e,,
unless AW, (b,,...,b,) coincides with the weighted cycle C =(1,2,..., p) with
weight r(r + 1)/2 on all edges which occurs if and only if b,,..., b,>r.

2.2. Construction of facets by collapsing-lifting. In this section we give a general
method for characterizing facets of multicut polytopes which is based on collapsing
(cf. Theorem (2.9)). We derive from it a lifting procedure for constructing clique-web
facets (cf. Theorem (2.11)). In general, lifting means any procedure permitting us to
construct facets for MC S (n + 1) (or MCZ (n + 1)) from given facets for MC & (n)
(or MCZ (n)). The lifting we consider is based on the following node-splitting

operation which is, in fact, the converse operation to the collapsing operation from
n n+1 .
the preceding section. Given vectors v € R(2), v e R( 2 ), we say that o' is

obtained from v by splitting node 1 into nodes 1, n + 1 if v,; = v}, + v}, holds for
all i e€[2,n], or, in other words, if v is obtained from v’ by {{I,n +
1},{2}, {3}, ..., {n}}-collapsing. The easiest example of such a lifting is zero-lifting. In
this case v, v’ satisfy vj; =v;,; for 1 <i<j<n and v},,, =0 for i €[1,n]. If an
inequality v”x < a is facet-inducing for MCS (n) (resp., MC? (n)) and v’ obtained
from v by zero-lifting (and, for the case MCZ(n + 1), (v')7x < a is valid) then
(v")x < a is facet-inducing for MC S (n + 1) (resp., MCZ (n + 1)). In other words,
zero-lifting preserves facethood (this result was proved for polytopes MCS , for k = 2
in Theorem 2.2 ([DL1]), for k = n in Theorem 3.9 ((GW], with some additional
condition), for arbitrary k in Theorem 4.1 ((CR2]); the general result follows
immediately from Theorem (2.9) below, cf. Remark (2.10)).

In general, collapsing does not preserve facethood. However, under some condi-
tions, collapsing can be used as a tool for proving facethood, as the following result
shows, which is, in some sense, a companion result to Theorem 4 ((DDL]).

(2.9) THeOREM. Let v7x < a be a valid inequality for MC S (n) (resp., MC?Z (n))
and j, j,, J3, J4 be distinct elements of [1, n]. Assume that the following conditions hold:

(i) a # 0 or, for somei,j & {j,, iz, j3 Jahs v; # 0.

(ii) The three inequalities obtained from inequality v'x < a by collapsing nodes
{j1» 75}, nodes {j,, j3}, or nodes {j,, j,}, respectively, are facet-inducing for MCg(n—1)
(resp. MC2 (n — 1)).

Then inequality v"x < a is facet-inducing for MC g (n) (resp., MC? (n)).

Proor. We give the proof for MCS(n); the proof for the case MC7? (n) is
identical. Take an inequality w’x < B which is valid for MC ¢ (n) and such that

{(x e MCE(n): vx = a} € {x € MCE (n): wix = B}.

We show the existence of a scalar A > 0 for which w = Av, B = Aa. We can suppose
without loss of generality that j, = 1, j;, j,, j; € [2, n]. For u = 1,2,3 denote by ™,
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the partition of [1, n] with classes {1, j,} and singletons {i} for i € [2,7]\ {j,}. Then
inequality w;lx < B obtained from wlx < B by m,-collapsing is valid four MC;:
(n — 1). Furthermore, every root of inequality vIx <e is, in fact, a root of
inequality w,flx < B. Therefore, since by assumption inequality u;x < a is facet-
inducing for MCS (n — 1), we deduce the existence of a scalar A, > 0 for which
B = Aya and

(@ w,, =Av,.
Similarly, there exist scalars A,, A; > 0 such that B = A,a = Aja and

(b) w,, = A, and

(©) Wy, = Aslp
Using assumption (i) one deduces easily that A, = A, = A; = A. From (a) we obtain
that

(d) wy; = Av;; for all i with i, j & {1, j,, j», J3}, and from (b), that

(e) wy;, = A, for all i & {1, j,, i}
and, in particular, w; ; = Av; ;.. From (a) we have that w; +w;; = Moy, + v,
implying that wy; = Avy;,. By symmetry we can conclude that w = Av. O i

(2.10) REMARK. A trivial consequence of Theorem (2.9) is that zero-lifting pre-
serves facethood for multicut polytopes, namely, if an inequality vTx < a is facet-
inducing for MC g (n) (resp., MC{ (n)), then it is also facet-inducing for MC & (n + 1)
(resp., MCZ (n + 1)) provided @ # 0 or n > 5. (These conditions ensure that asser-
tion (i) from Theorem (2.9) holds.) ©

As an application of Theorem (2.9) we obtain the following lifting result for
CW-inequalities.

),

(2.11) Tueorem. Take an integer r > 0, and an integral vector b = (b, ..., b
with by,...,b, >0, pr,...,bn < 0 and assume that o= XY!_b;>2r+1 holds.
Let j,, j», 3 be distinct elements of 1, n] and d be an integer such that b, = b, = d. We
define the integer vector b' € R**! by b =b; — d, b,,,=4d, and b; = b, for
i € [1,n]\ {j,} and we denote by p' (resp., q') the number of positive (resp., nonposi-
tive) coefficients b,. Assume that inequality cwW, (b) - x < o(o — 2r — 1)/2 is facet-
inducing for MC S (n) (resp., MCZ (n)) and that one of the following conditions holds:

@ r=0,

(i) r>1,d<0andbjl—d<0, or

(i) r>1,d <0 andb; >r.

Then inequality CW,, (b') - x < o(o — 2r — 1)/2 is facet-inducing for MCg(n + 1)
(resp., MCZ (n + 1)).

Before showing (2.11) we first state and prove an observation on collapsed anti-
webs.

(2.12) Lemma. Given integers by, by, by,.... b, > 1 with b, # b}, the following
assertions are equivalent:

@ AW, (b, b,, ..., b,) = AW (b}, by,...,by),

(i) by>rand b\ =r.

Proor. It is clear that the antiwebs AW, (b, b5, ..., b,) and AW (r,by,.. ., bp)
coincide, if b, > r. Hence, (ii) implies Q.

If b, < r, then from Proposition (1.5) () IAW,(by, ..., b,) N sqipl=b2r+1—
b)), since in the original pure antiweb AW, P = L7 .b,, from which AW/(by, ..., b,)
comes by collapsing, the singleton {1} corresponds to an interval of size by <r. On
the other hand, if b, > r, then from Proposition (1.5) Gi) |Aw[:(b1!b2""7bp) N
5D > r(r + 1). Therefore, if AW.(by,b,,...,b,) = AW (b, bar-oss b,), then
b, b, = r, ie., (i) implies (). o
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Proor oF Theorem (2.11). Set v’x = CW; (b), w'x = CW, (), and p :
a(a — 2r — 1)/2. The proof is based on Theorem (2 9) and hence consrsts of showmg
that the inequalities wa <p, w! X <P, wTJx p, obtained from w’x <p by
collapsing, respectively, nodes {(ji,n i 1}, nodes {j,, j,}, nodes {j,, j5}, are facet-defi-
ning.

In case (i), i.e., r =0, 1nequahty wl X<p coincides with 1nequahty vTx < p.
Inequalities w” x < p and w] X < p are permutatlon equivalent to v7x < p and all
three are henceforth facet- mducmg

In case (ii) we are in the same situation as in case (i) because, since nodes Jy, j,, J3

all belong to [p + 1,n], all three collapsmgs leave the antiweb AW, (b,,...,b,)
(occurring in both inequalities #7x < p, w'x < p) unaffected.
In case (iii) we can argue similarly for the following reason. We have
wlx = Y bbux; - Y X
I<i<jsgn FEAW (b, ..., b; _1,b;—d,...,b,)
= Z btb/xu - Z xij
1<i<jgn JEAW(by,..., bjyees b,)
=7x,
since from Lemma (2.12) the antiwebs AW (bl, ceey by = , b,) and
AW, (b,,..., b;,...,b,) coincide because b; —d N b =r. Therefore all three col-

Iapsmgs are facet inducing. This concludes the proof. O

(2.13) Remark. (1) Observe that Theorem (2.11)Gii) remains valid under the
condition that the antiwebs AW, (b,,...,b,) and AW’(b ..., b}) coincide, but this
condition is not more general than condmon b; > r since, from Lemma (2.12) both
antiwebs coincide if and only if b

(2) In the case r =0, Theorem (2 11)G) also follows from Theorem 4.2 of
[CR]. o

We now give some examples of applications of the lifting Theorem (2.11). It is not
difficult to construct other classes of facets using Theorem (2.11).

(2.14) CororLary. Take integers by, ..., b, with o == L \b, = 1 such that b, =
b;, = d for two distinct elements j, j, of [1 nl. If inequality CW0 oAb, b)) X<
olo — 1)/2 is facet-inducing for MCZ (n) (resp., MC?Z (n)) then inequality
CW? by, ...b,d, —d) - x < o(a— /2 is facet-inducing for MCS(n + 2)

(resp., MC/? (n + 2))

The proof follows directly from Theorem (2.11) and the fact that zero-lifting
preserves facethood.

(2.15) CoroLLARY. (i) Giben integers bi,by....,0,>0,q>1, n=p+gq, and

o= b — q such that 2 < p — 2, inequality CW0 (bl,...,bp,—l,...,-—l)-
(r(a -D/2is facet-ma’ucmg for MC g, ,(n) and for MC ~(n).

(11) Given integers b\,...,b, <0, q> 1, n=p +q, and cr =p+ XI_b, = 2, in-
equality CW,’ (1,...,1,b,,...,b,) - x < a(o — 1)/2 is facet-inducing for MCZ, ,(n)
and for MC, ,_ 1(n).

Proor. For assertion (i) we apply Theorem (2.11)(i) with d = —1 starting with
inequality CW, _ (1,. -1,...,-1)-x <o(oc — 1)/2 which from Theorem

(1.20) is facet-inducing for MC o and MC>

For showing assertion (11) we apply Theorem (2.11)(1) with d =1 starting with
inequality CW,},, (1,.. -1,...,-1D-x <o(ec — 1)/2 which from Theorem
(1.20) is facet-inducing for MC 2 and MCZ o

g+a—1"
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Observe that, using relation (2.5), the only undecided values of k for facethood
over MC g (n) of both inequalities from Corollary (2.15)(i) and (ii) are k = 0,0 + 1,
while the undecided values of & for facethood for MC Z(n) are k=p for the
inequality from Corollary (2.15)() and k € lq + o, p] for the inequality from Corol-
lary (2.15)Gi). In fact, using the fact that CW,), -x <(p —gXp —a— /2 is
facet-inducing for MC_, +(n) (recall Remarks (1.4) (ii) and (1.21)), one can improve
the result and state facethood of both inequalities from Corollary 2.15 (i) and (ii) for
MCZ, (n), as proved in [CR2].

(2.16) CoroLLARY. Given integers by, by,....b, >r1 > 1, n=p+gq, and q =
leiSFbi —-2r -1, inequality

CWF’;‘I(bU""bp’_17---,‘1) x<0

is facet-inducing for MC3 (n) for all p > 5.

Proor. Apply recursively Theorem (2.11)(Gii) (with d = —1) starting with in-
equality CW, (r,....7, —1,...,—1) which is facet-inducing for MC5 for p =5,
r>1, pr —q=2r+ 1(Theorem 2.2, [DL2D. ©

(2.17) CoroLLARY. Inequality CW2 . oela, 1,01, —1,...,-1Dx<0 is
facet-inducing for MC5(n) forallp >7,a 2 2,n=2p+a-—6.

ProOF. We apply Theorem (2.11)Gii) with d = —1, b, =2, ie, j, = 1, starting
with inequality CW:p,4(2, 1,...,1,—1,...,—1) - x <0 which is facet-inducing for
MC5 for all p > 7 (cf. Theorem 2.3,[DL2). ©
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