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Abstract 

This paper surveys frequency assignment problems coming up in 
planning wireless communication services. It particularly focuses on 
cellular mobile phone systems such as GSM, a technology that revo­
lutionizes communication. Traditional vertex coloring provides a con­
ceptual framework for the mathematical modeling of many frequency 
planning problems. This basic form, however, needs various exten­
sions to cover technical and organizational side constraints. Among 
these ramifications are T-coloring and list coloring. To model all the 
subtleties, the techniques of integer programming have proven to be 
very useful. 

The ability to produce good frequency plans in practice is essential 
for the quality of mobile phone networks. The present algorithmic 
solution methods employ variants of some of the traditional coloring 
heuristics as well as more sophisticated machinery from mathematical 
programming. This paper will also address this issue. 

Finally, this paper discusses several practical frequency assignment 
problems in detail, states the associated mathematical models, and also 
points to public electronic libraries of frequency assignment problems 
from practice. The associated graphs have up to several thousand 
vertices and range form rather sparse to almost complete. 
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1. INTRODUCTION 

More than a century ago, in the early 1890s, several researchers started to 
experiment with wireless communication via radio waves. In 1909, Marconi 
and Braun received the Nobel Prize in Physics for their pioneering work on 
the wireless telegraph. Continuing improvements of the equipment resulted 
in the establishment of wireless (long distance) telephony as well as radio 
and television broadcasting. In the last 50 years, the radio spectrum has 
been explored for wireless communication in many different ways. Nowadays 
radio waves are not only used for the already mentioned applications, but 
also for cellular telephone networks, radar, navigational systems, military 
communication, and space communication. 

All these applications use frequencies in the radio spectrum to establish 
wireless communication. The frequencies that are applicable are limited, 
however. They range roughly from 3 kHz to 300 GHz, corresponding to 
wavelengths between 100 km and 1 mm. Interference of radio signals calls 
for a strict management of frequency use at all levels: global, national, and 
regional. At the global level, the International Telecommunication Union 
(ITU) regulates the frequency use, whereas national agencies do the same 
within a country. They issue licenses to use certain frequencies for specific 
applications. Figure 1 gives an overview of which frequencies are currently 
used for which applications. For example, the most popular applications, 
radio, television, and cellular phone, use frequencies in the very high fre­
quency (VHF) spectrum and ultra high frequency (UHF) spectrum. New 
applications such as the much discussed Universal Mobile Telecommunica­
tion System (UMTS) have to be fitted into the spectrum, whereas licenses 
for hardly used (ancient) applications can be retracted. 

Figure 1. The radio spectrum applicable for wireless communication 



Wireless communication between two points is established with the use of 
a transmitter and a receiver. The transmitter emits electromagnetic oscilla­
tions. These oscillations can be modulated either via the amplitude or via 
the frequency itself. The receiver detects these oscillations and transforms 
them into either sounds or images. When two transmitters use frequencies 
close to one another (or to their harmonics), their signals may interfere. The 
level of interference depends on many aspects such as the distance between 
the transmitters, the geographical position of the transmitters, the power 
of the signals, the direction in which the signals are transmitted, and the 
weather conditions. In case the level of interference is high, the signal's 
quality may be so poor at the receiver that a proper reception is impossible. 
(The strength of a signal in comparison to the sum of the strengths of the 
interfering signals, also called noise, is expressed by a signal-to-noise ratio.) 

The commercially usable radio spectrum is very scarce. As a conse­
quence, frequencies are typically reused by many transmitters within one and 
the same network. A high performance of a network can only be achieved by 
carefully planning the assignment of frequencies to transmitters. The selec­
tion of the frequencies in such a way that interference is avoided or, second 
best, minimized, is called the Frequency Assignment Problem (FAP). The 
conditions to be satisfied by a frequency plan vary depending on the appli­
cation. Therefore, it is not surprising that many different approaches have 
been suggested in the literature to solve this problem. All models, however, 
have one feature in common: in some way or another they are generalizations 
of the well known vertex coloring problem in an undirected graph. 

In this paper, we survey the evolution of frequency assignment problems 
from standard vertex coloring to advanced models aiming at the minimiza­
tion of the interference in a cellular radio network. Section 2 gives a glimpse 
on the technical side constraints that turn frequency planning into a hard 
combinatorial problem. The presently very important application of GSM 
cellular phone networks serves as our example. Next, we turn to the math­
ematical aspects of frequency planning. In Section 3, the development of 
mathematical models for frequency assignment is discussed. The theoretical 
and practical hardness of the problems is the topic of Section 4. We discuss 
the computational complexity of the presented models and characteristics of 
practical instances. Finally, upper and lower bounding techniques applied 
to the optimization problems at hand are discussed in Sections 5 and 6, 
respectively. The paper closes with remarks on the current state of theory 
and practice of frequency planning. 



2. GSM CELLULAR MOBILE PHONE NETWORKS 

In this section, we concentrate on terrestrial mobile cellular networks, an ap­
plication that has revolutionized the telephone business in the recent years 
and is going to have further significant impact in the years to come. Even 
in this special application the frequency assignment problem has no uni­
versal mathematical model. We focus on the GSM standard (GSM stands 
for "General System for Mobile Communication"), which has been in use 
since 1992. GSM is the basis of almost all cellular phone networks in Eu­
rope. It is employed in more than 100 countries and serves several hundred 
million customers. The new worldwide standard UMTS (Universal Mobile 
Telecommunication System) is expected to become commercially available 
around 2002. UMTS is frequently covered in the public press at present 
because of the enormous amounts of money telephone companies are paying 
in the national frequency auctions. UMTS handles frequency reuse in an 
even more intricate manner than GSM: frequency or time division are used 
in combination with code division multiple access (CDMA) technology. 

2.1. Channel Spectrum 

The typical situation in GSM frequency planning is as follows. A telephone 
company (let us call it the operator) has acquired the right to use a certain 
spectrum of frequencies [fmin, fmax] in a particular geographical region, e.g., 
a country. The frequency band is—depending on the technology utilized— 
partitioned into a set of channels, all with the same bandwidth A. The avail­
able channels are here denoted by 1,2,..., AT, where N = (fmax — fmin)/&-
In Germany, for instance, an operator of a mobile phone network owns about 
100 channels. On each channel available, one can communicate information 
from a transmitter to a receiver. For bidirectional traffic a second chan­
nel is needed. In fact, if an operator acquires a spectrum [fmin, fmax] n e 

automatically obtains a paired spectrum of equal width for bidirectional 
communication. One of these spectra is used for mobile to base station 
(up-link), the other for base station to mobile (down-link) communication. 

It is customary to ignore the subtle difference between channels and 
frequencies and to use the words as synonyms. 

2.2. BTSs, TRXs, and Cells 

To serve his customers an operator has to solve a number of nontrivial prob­
lems. In an initial step the geographical distribution of the communication 



demand for the planning period is estimated. Based on these figures, a 
communication infrastructure has to be installed capable of serving the an­
ticipated demand. The devices handling the radio communication with the 
mobile phones of the customers are called Base Transceiver Stations (BTS). 
They have radio transmission and reception equipment, including antennas 
and all necessary signal processing capabilities. An antenna of a BTS can be 
omni-directional or sectorized. The typical BTS used today operates three 
antennas, each with an opening angle of 120 degrees. Every such antenna 
defines a cell. These cells are the basic planning units (and that is why 
mobile phone systems are also called cellular phone systems). 

The capacity of a cell is defined by the number of transmitter/receiver 
units, called TRXs, installed for its antenna. The first TRX handles the 
signaling and offers capacity for up to six calls (by time division). Additional 
TRXs can typically handle 7 or 8 further calls—depending on the extra 
signaling load. No more than 12 TRXs can be installed for one antenna, 
i.e., the maximum capacity of a cell is in the range of 80 calls. That is why 
areas of heavy traffic (e.g., airports, business centers of big cities) have to 
be subdivided into many cells. 

2.3. BSCs, MSCs, and the Core Network 

In a next planning step, the operator has to locate and install the so called 
Base Station Controllers (BSCs). Each BTS has to be connected (in general 
via cable) to such a BSC, while a BSC operates several BTSs in parallel. 

Every BSC, in turn, is connected to a Mobile Service Switching Center 
(MSC). The MSCs are connected to each other through the so called core 
network, which has to carry the "backbone traffic." The location planning 
for BSCs and MSCs, the design of the topology of the core network, the 
optimization of the link capacities, routing, failure handling, etc., constitute 
major tasks an operator has to address. We do not discuss here the roles 
of all the devices that make up a mobile phone network and their mutual 
interplay in detail. This brief sketch is just meant to indicate that telecom­
munication network planning is quite a complex task. 

2.4. Channel Assignment, Hand-Over 

We have seen that the TRXs are the devices that handle radio communica­
tion with the mobile phones of the customers. The operators in Germany 
maintain networks of about 5,000 to 15,000 TRXs and have around 100 



channels available. Thus, the question arises how to best distribute the 
channels to the TRXs. 

An operational mobile phone emits signals that allow the network to 
roughly keep track of which cell the mobile phone is currently "listening" 
to. This is done via so called control channels. If a call arrives, the net­
work searches for the mobile phone. The device answers to the cell it was 
previously inactively listening to. Provided spare capacity is available, the 
mobile phone is assigned to one of the TRXs of the cell. If the phone moves 
(e.g., in a car) the communication with its current TRX may become poor. 
The system monitors the reception quality and may decide to use a TRX 
from another cell. Such a switch is called hand-over. 

This short discussion shows that a mobile phone typically is not only 
in one cell. In fact, some cells must overlap, otherwise hand-overs were not 
possible. 

2.5. Interference 

Whenever two cells overlap and use the same channel, interference occurs 
in the area of cell intersection. Moreover, antennas may cause interference 
far beyond their cell limits. The computation of the level of interference is a 
difficult task. It depends not only on the channels, the signals' strength and 
direction, but also on the shape of the environment, which may strongly 
influence wave propagation. There are a number of theoretical methods 
and formulas with which interference can be quantified. Most mobile phone 
companies base their analysis of interference on some mathematical model 
taking transmitter power, distances, as well as fading and filtering factors 
into account. The data for these models typically come from terrain and 
building data bases but may also include vegetation data. Such data are 
combined with practical experience and extensive measurements. The re­
sult is an interference prediction model with which the so called co-channel 
interference, which occurs when two TRXs transmit on the same channel, 
is quantified. There may also be adjacent-channel interference when two 
TRXs operate on channels that are adjacent (i.e., one TRX operates on 
channel i, the other on channel i + 1 or i — 1). 

Reality is still a bit more complicated than sketched before. Several 
TRXs (and not only two) operating on the same or adjacent channels may 
interfere with each other at the same time. And what really is the interfer­
ence between two cells? It may be that two cells interfere only in 10% of their 



area but with high noise or that they interfere in 50% of their area with low 
noise. What if interference is high but almost no traffic is expected? How 
can a single "interference value" reflect such a difference in the interference 
behavior? There is no clear answer. 

The planners have to investigate such cases in detail and have to come 
up with a reasonable compromise. The result, in general, is a number, the 
interference value, which is usually normalized to be between 0 and 1. This 
number should—to the best of the knowledge of the planners—characterize 
the interference between two TRXs (in terms of the model, the technological 
assumptions, etc., used by the operator). 

2.6. Separa t ion and Blocked Channe l s 

If two or more TRXs are installed at the same location (or site), there are 
restrictions on how close their channels may be. For instance, if a TRX 
operates on channel i, a TRX at the same site is not allowed to operate 
on channels i — 2 , . . . , i + 2. Such a restriction is called co-site separation. 
Separation requirements may even be tighter if two TRXs are not only co-
site, but also serve the same cell. Separation requirements may apply also 
to TRXs that are in close proximity. 

Moreover, due to government regulations, agreements with operators 
in neighboring regions, requirements from military forces, etc., an operator 
may not be allowed to use its whole spectrum of channels at every location. 
This means that, for each TRX, there may be a set of so called blocked 
channels. 

2.7. A first S t ep into M a t h e m a t i c s : T h e In te r fe rence G r a p h 

A feasible assignment of channels to TRXs clearly has to satisfy all separa­
tion constraints. Blocked channels also must not be used. What should one 
do about interference? 

On our way to an adequate mathematical representation of all technical 
constraints, let us first introduce the interference graph G — (V,E). G has a 
vertex for every TRX, two vertices are joined by an edge if interference occurs 
when the associated TRXs operate on the same channel or on adjacent 
channels or if a separation constraint applies to the two TRXs. With each 
edge vw € E, two interference values, denoted by cco(vw) and cad(vw), are 
associated; the number cco(vw) is the co-channel interference that occurs 
when TRXs v and w operate on the same channel, while cad(vw) denotes 



the interference value coming up when v and w operate on adjacent channels. 
In general, cco(vw) > cad(vw). If a separation constraint applies to v and w 
then a suitable large number is allocated to cco(vw) and cad(vw). 

3. EVOLUTION OF MATHEMATICAL MODELS 

The modeling of frequency planning problems as mathematical optimiza­
tion problems has a long tradition. Metzger [44] appears to be the first 
to bring frequency assignment to the attention of the operations research 
community. Hale [27] compiled an extensive classification of the frequency 
planning problems of that time, phrased many of them in the graph color­
ing framework, and introduced notions such as T-coloring. In this section, 
we discuss the major generalizations of graph coloring introduced over the 
years in order to cover more and more aspects of frequency planning. We 
discuss a few theoretical results obtained for these problems. It soon turned 
out, though, that the various generalizations are not able to completely ad­
dress all the requirements in practice. As a consequence, other modeling 
approaches were proposed, some of which are discussed in Subsections 3.5 
and 3.6. Alternative ways to model frequency planning problems are pre­
sented in Subsection 3.7. 

3.1. FAP and Coloring 

One of the main difficulties in operating a wireless network is that signals 
within the same geographical region may interfere, resulting in a loss of 
quality of the received signal. In case the signal-to-noise ratio drops be­
low a certain value (depending on the technology used), the signal may be 
too poor to enable communication. In particular, signals transmitted at 
the same frequency in the "same area" (what this means needs definition, 
the precise definition again depends on the technology employed) lead to 
substantial interference rates, the co-channel interference. To avoid these 
interferences, transmitters in the same area have to operate on different fre­
quencies. Hence, neglecting all other aspects, the FAP may be reduced to 
coloring the vertices of a graph. Here, every vertex represents a transmitter 
and two vertices are connected by an edge if their transmitters are in the 
same area, i.e., their signals interfere if they are transmitted at the same 
frequency. We call this resulting graph the conflict graph, which clearly is a 
special case of the interference graph. Colors simply correspond to frequen­
cies. 
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Now, a conflict-free coloring of the vertices corresponds to an assignment of 
frequencies to the transmitters without co-channel interference. Note that 
specific channels do not play any role in this assignment, only the fact that 
neighboring vertices are assigned different frequencies is important. As a 
consequence, the minimum number of frequencies needed to obtain such 
an assignment is given by the chromatic number of the conflict graph G. 
If we define the span of an assignment (denoted by sp(G)) as the differ­
ence between maximum and minimum channel number used, then clearly 
the minimum span equals the chromatic number of the graph minus one 
(cf. Hale [27]). 

3.2. FAP and T-Coloring 

The signal-to-noise ratio does not only depend on the co-channel interfer­
ence, but also on the adjacent-channel interference. Even farther away fre­
quencies can influence the reception quality of the signal. In particular, 
frequencies that are harmonics may cause interference. So, in general not 
only frequencies that are equal cannot be assigned to neighboring vertices, 
but certain distances between the frequencies have to be obeyed. The con­
sequences of this extension of the FAP for the vertex coloring problem are 
twofold. First, to measure distances, the colors have to be ordered. Assum­
ing the channels are evenly spaced in the frequency band, the channels/colors 
can be numbered 1 to N. Second, a finite set Tvw C Z is associated with 
every edge vw e E. This set contains the forbidden distances for frequen­
cies fv and fw assigned to v and w, i.e., fv — fw $. Tvw. Typically Tvw is 
symmetric, i.e., t e Tvw <=$■ — t e Tvw. In such a case Tvw is reduced to 
the non-negative elements only, and \fv — fw\ £■ Tvw is required. Moreover, 
from a practical point of view, we can assume 0 € Tvw. The (ordinary) 
coloring problem is the special case, where Tvw = {0} holds for all vw 6 E. 
This generalization of vertex coloring to practical frequency assignment is 
called T-coloring and was introduced by Hale [27]. For a survey, we refer to 
Roberts [49]. 

Although T-coloring is a proper generalization of vertex coloring, these 
two concepts have a fundamental property in common: Cozzens and Roberts 
[18] proved that the T-chromatic number of a graph G, xT(G), is equal to 
the chromatic number x(G). Hence, minimizing the number of frequencies 
needed for a T-coloring is equivalent to minimizing the number of frequen­
cies necessary for an assignment without co-channel interference. Minimiz-



ing the span of a T-coloring (denoted by SPT{G)), however, is quite different 
from minimizing the span of a coloring. Figure 2 shows an example. The 
graph displayed in Figure 2(a) has chromatic number 3. By adding 1 to the 
forbidden distances Tvw for the edges of the cut S({a, c}) (the sets Tvw are 
displayed along the edges vw in Figure 2(b)), we obtain a (more general) 
T-coloring problem. In this case, spr{G) > x{G) ~ 1- Moreover, no solution 
exists that minimizes both, the span and the number of colors, simultane­
ously. Every solution that uses only 3 colors has span at least 4 (for instance 
the coloring / = (1,3,5,1)), whereas every solution with span 3 uses 4 colors 
(e.g., (2,4,1,3) or (3,1,4,2)). 

(a) coloring problem (b) T-coloring problem (c) list-T-coloring problem 

Figure 2. Example coloring, T-coloring, list-T-coloring 

The special case of T-coloring, where Tvw = { 0 , 1 , . . . , d(vw) — 1} for some 
d(vw) for all vw G E has received a lot of attention. The values d(vw) are 
then called the separation distances and the constraints reduce to \f — g\ > 
d(vw) for all vw e E. 

3.3. FAP and List-T-Coloring 

Another aspect that plays a major role in frequency planning is the 
(un)availability of certain channels at some transmitters. For example, GSM 
networks in different countries can be licensed to use the same frequencies. 
To avoid unforeseeable interference in border regions, network operators 
mutually agree not to use particular parts of their frequency bands in these 
areas. In general, this leads to a set of blocked frequencies Bv for every 
transmitter v. This generalization of coloring is known as list-coloring. List-



coloring was first discussed by Vizing [58]; Erdös, Rubin, and Taylor [22] 
independently brought the problem to the attention of a wider public. Tes-
man [53, 55] combined list-coloring and T-coloring to list-T-coloring. Figure 
2(c) shows an example with list-T-chromatic number x£T{G) = 3 and list-
T-span spir(G) = 4. The above mentioned T-colorings are the only ones 
with span 3 and are both forbidden. Except for the sets of forbidden colors 
displayed at every vertex, we assume in the example of Figure 2(c) that 
all non-positive integers as well as all integers greater or equal to 6 are 
forbidden. 

3.4. FAP and Set-Color ing 

So far, every vertex of our graph corresponds with a single transmitter need­
ing one frequency. In practice, transmitters are often bundled at the same 
location (or antenna or site, cf. Section 2). The different transmitters at the 
same site are usually assumed to be technically identical. Hence, the vertices 
in the constraint graph have the same neighborhood (except for their mutual 
relation), and so, combining them into a single vertex is an attractive way 
to reduce the graph size. In this reduced graph, multiple frequencies have to 
be assigned to a single vertex. The distance enforced between the frequen­
cies assigned to the same vertex is called the co-site distance. In the most 
simple case, where only co-channel interference is considered, the problem is 
known as set-coloring (cf. [48]). Tesman [54, 55] also combined T-coloring 
with set-coloring resulting in set-T-coloring. Many results for set-coloring 
and set-T-coloring concern the coloring of every vertex with exactly k colors, 
i.e., fc-tuple colorings [51]. 

3.5. Fixing the Span and introducing Interference Thresholds 

In all problems discussed above, the objective is either to minimize the 
number of used frequencies or to minimize the span of the used frequencies. 
In practice, however, licenses for frequency bands are usually bought for 
long-term periods and no extension (reduction) of these bands is possible. 
Increasing demand for communication sooner or later leads to a shortage of 
frequencies, i.e., a minimum span or minimum order frequency plan needs 
more frequencies than are licensed. Hence, models such as list-T-coloring 
do not really satisfy the needs for implementable frequency plans. 

One possible solution to this problem consists in fixing the span and 
introducing interference thresholds. The set of available frequencies F is 



fixed to only those that are licensed by the network operator. Let Fv :— 
F \ Bv be the set of available frequencies for a specific vertex. Problems 
such as list-T-coloring can become infeasible, because interference cannot be 
avoided by any frequency plan. Consider, for instance, the list-T-coloring 
problem of Figure 2(c). Suppose that the span is fixed to the frequencies 
{1,2,3,4}. Since sp£T(G) — 4, no feasible solution for the list-T-coloring 
problem exists. 

Now, the question is how to evaluate such "infeasible" plans. First of 
all, hard and soft constraints are distinguished. Hard constraints are those 
frequency separation constraints and frequency blockings that have to be 
respected by any frequency plan, whereas violation of the soft constraints 
can be accepted if there is no better choice. Among the soft constraints, 
acceptance of violation is measured with penalty functions. In general, for a 
pair of neighboring vertices v, w defining a soft constraint, a penalty function 
Pvw '• Fv x Fw -* K+ evaluates the interference level for every pair of frequen­
cies assigned to v and w. For our application GSM, we have hard separation 
constraints and soft co- and adjacent-channel constraints (cf. Sections 2.5 
and 2.6). If / and g denote available frequencies, then the penalty function 
pvw has the following format in this context: 

( cco(vw) if / = g, 
Pvw(f,g)=l Cad(vw) if | / - 0 | = 1, 

[ 0 otherwise. 

How the interference values cco(vw) and cad(vw) are determined has been 
indicated in Section 2.5. A precise description goes beyond the scope of this 
paper. Area-based and traffic-based ratings of interference are most often 
used. For more on this topic we refer to [20, Section 2.3] and the references 
therein. 

Given the interference values, mainly two solution approaches to the 
FAP are investigated. Frequencies are assigned to the vertices in such a 
way that the hard constraints are not violated and either the total penalty 
incurred by a solution or the maximum penalty incurred by a solution is 
minimized. Which of these directions is better suited for the situation de­
pends on the intention of the operator. Consider, for example, the coloring 
problem (i.e., only co-channel constraints are considered) in Figure 3 and 
suppose F = {1,2} is the set of available frequencies. Penalty values are 



displayed at the edges. In case the total penalty is minimized, a and d are 
assigned the same frequency, b and c get the other. The total penalty as well 
as the maximum penalty is 1+e. In case the maximum penalty is minimized, 
a and c are assigned the same frequency, b and d obtain the other. Now, the 
maximum penalty is 1 — e but the total penalty is 2 — 2e. Which approach 
results in the better choice? 

a 1 b 

c 1 d 
Figure 3. Example interference penalties 

In Section 3.6, we discuss the minimization of the total penalty, whereas the 
remaining part of this subsection deals with minimization of the maximum 
penalty. To minimize the maximum penalty incurred in a solution, the 
following approach is often applied. 

Instead of computing a solution, where the maximum penalty is min­
imized, we search for a solution, where the incurred interference does not 
exceed a given threshold value P. Thus, if p u w (/,<?) > P then the combined 
assignment of frequencies / and g is forbidden. This essentially reduces 
the problem again to a problem with only hard constraints and with the 
objective of finding a feasible solution, i.e., a solution in which no forbid­
den combinations are selected. In case such an assignment exists, a second 
objective is often introduced to guide the procedure to preferred feasible as­
signments. This second objective minimizes the number of used frequencies, 
the span, or the sum of all penalties below the threshold. 

In case no solution exists for the given threshold value P, the maximum 
penalty in every assignment exceeds P. In order to find a feasible assign­
ment, the threshold value has to be increased. If the problem restricted to 
the hard constraints is feasible, the threshold value P can be reduced. An 
assignment with minimum maximum penalty can be found by binary search 
on the threshold value. 



3.6. Minimizing Interference 

Instead of minimizing the maximum penalty, the total penalty in an assign­
ment is often minimized. The most common way to model this so-called 
minimum interference frequency assignment problem (MI-FAP) is by for­
mulating it as an integer linear program. Various formulations are proposed 
in the literature, see, e.g., [41, 20]. The most natural one generalizes an inte­
ger programming formulation for vertex coloring. Consider MI-FAP without 
hard separation constraints and in the case that pvw(f,g) can only take two 
values, 0 and pvw, depending on whether \f — g\ $. Tvw or \f — g\ e Tvw. 
Moreover, we assume that only one frequency has to be assigned to every 
vertex. The formulation uses binary variables xvf, indicating whether fre­
quency / e Fv is assigned to vertex v, and binary variables zvw, indicating 
whether \f — g\ € Tvw is violated. Then MI-FAP reads as 

(1) min ] P PvwZvw, 
vw£E 

such that 

(2) £ > , / = 1 Vv e V, 
f€Fv 

(3) xvf + xwg < 1 + zvw Mvw EE,f £Fv,g£Fw:\f -g\£ Tvw, 
(4) xvfe{o,i} VveV,feFv, 
(5) zvwe{0,l} MvweE. 

The objective function (1) sums the total penalty involved in an assignment. 
The constraints (2) model that precisely one available channel has to be 
assigned to every transmitter. The inequalities (3) enforce that if / £ Fv is 
assigned to v and g G Fw is assigned to w and | / — g\ £ Tvw, then zvw has to 
be equal to one. Since pvw > 0, zvw only equals one in an optimal solution if 
\f—g\ G Tvw. Finally, the constraints (4) and (5) guarantee that the variables 
take binary values. This formulation involves only soft constraints. Hard 
separation constraints can be reflected by fixing the according variable zvw 
to zero. If all positive pvw-values are equal to 1 the 0/1-program above finds 
a channel assignment with the least number of forbidden distances. 

The formulation (1) - (5) can be extended to general penalty structures 
and arbitrary number of frequencies to be assigned to a vertex by introducing 
Zvwfg variables for all vw £ E, f e Fv, g £ Fw (see [41, Section 2.6]). 



For the GSM frequency planning problem of Section 2, a less drastic exten­
sion of the model is sufficient. For ease of notation, let 

Instead of the variables zvw, we introduce variables z™w and z%%, to denote 
violation of the co-channel and adjacent-channel constraints, respectively. 
Then the integer linear program reads 

such that 

The inequalities listed under (3) in the previous ILP are replaced by three 
sets of constraints here. In case vw G Ed and \f - g\ G Tvw, (8) enforces 
that at most one of the frequencies can be assigned. In case vw G Eco, 
/ G Fv,'n Fw can be assigned to both vertices at a penalty of c™w. The 
constraints (9) assure that this penalty is accounted for in the objective by 
forcing z%°w to be one. Similarly, the inequalities (10) guarantee that the 
adjacent-channel interference is comprised in the objective if vw G Ead and 
the frequencies / and g differ by one. 

3.7. Alternatives 

Besides minimizing the total interference or the maximum interference level, 
other models for practical frequency planning have been proposed in the lit­
erature. Most of these models deal with partial assignments. So far, we have 



assumed that a complete assignment with some interference is prioritized 
above assignments that are interference free but do not satisfy all requests 
for channels. This priority for complete assignments is due to the network 
operator's wish to offer wireless communication to as many customers as 
possible, tolerating some degradation in quality. 

An alternative is to retain the quality of the offered connections, but to 
compromise on the availability of the service. This means that we assign 
fewer frequencies than requested to some antennas, but that the interfer­
ence in the resulting network stays below a required signal-to-noise ratio. 
The objective in such an approach is to maximize the service availability or 
equivalently minimizing the network blocking probability. In both, Chang 
and Kim [16] and Mathar and Mattfeldt [43], formulas for the blocking prob­
ability of a vertex are derived, resulting in a nonlinear objective function. 
As in the case of minimizing the interference, formulating the problem as an 
integer program is the common way to handle these problems. Since nonlin­
ear integer programs are out of reach for the current algorithmic machinery, 
the nonlinear objective function is linearized or a simplified objective is se­
lected that minimizes the number of requested but unassigned frequencies 
(for more information, see [41, Section 2.5]). 

The interference in all models considered so far is based on the rela­
tion of two transmitters. However, the signal-to-noise ratio depends on all 
transmitters in the same region simultaneously. Although the binary re­
lations between the transmitters restricts the interference levels, it cannot 
avoid an incidental exception of the overall interference due to this effect. 
Fischetti et al. [23] show that bounding the overall interference level at a 
receiver can be modeled as a linear inequality that can be added to the 
formulation (6) - (13). 

4. THEORETICAL AND PRACTICAL HARDNESS 

In this section, we discuss the hardness of frequency assignment problems 
from a theoretical as well as from a practical point of view. We summarize 
results on the computational complexity and present the main characteristics 
of several sets of benchmark problems. 

4.1. Computational Complexity 

In view of the A/'P-hardness of vertex coloring [39], it is not surprising that 
all presented versions of frequency assignment are NP-haxd as well. There 
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are stronger results. For instance, list coloring is A/'P-complete even for spe­
cial graphs for which the vertex coloring problem can be solved in linear 
time, e.g., for interval graphs [10]. Also the (negative) results on the ap­
proximation of vertex coloring [8] have direct consequences for frequency 
assignment. 

Besides vertex coloring, many other J\fV-comp\ete problems are closely 
related to frequency assignment: maximum clique, minimum edge-deletion 
fc-partition, maximum fc-colorable subgraph, maximum fc-cut, minimum k-
clustering sum, and maximum frequency allocation, to name a few. For 
each of these problems, computational complexity results can be transfered 
to various FAPs. From the results for minimum edge-deletion ft-partition, 
collected in Ausiello et al. [7] (see also [20, Section 3.2]), for instance, we 
can derive that 

• deciding whether an instance of MI-FAP allows a feasible assignment 
is A/'P-complete, 

• MI-FAP is strongly ß/P-haxd, 
• unless V=JstP, MI-FAP is not in AVX, and 
• unless V=NV, an approximation of MI-FAP within 0(\E\) for | F | > 3 

is impossible in polynomial time. 

The last two results directly follow from the J\fV-haxdness of finding a feasible 
solution. However, even in the case that a feasible assignment can be found 
easily, these results are valid. This shows that the complexity of solving 
MI-FAP is not solely governed by the feasibility problem. 

4.2. P rac t i ca l Ins tances 

Even though all variants of FAP are theoretically hard, instances arising in 
practice might be either small or highly structured such that enumerative 
techniques, such as branch-and-bound or special purpose methods, are able 
to handle these instances efficiently. This is typically not the case. Frequency 
assignment problems are also hard in practice in the sense that nobody is 
able to routinely solve large, practically relevant instances to optimality or 
with a good quality guarantee. 

In many areas of optimization most of the companies using optimiza­
tion techniques are very reluctant to publish data of real instances. They 
even refuse to publish slightly modified data, fearing that competitors may, 
nevertheless, gain insight into what they are doing. The situation is much 



more positive in the FAP area. Several sets of benchmarks for frequency as­
signment are available. A compilation of many of these benchmarks can be 
found at h t t p : / / f a p . z i b . d e , the FAP web site. The benchmark instances 
originate from different applications and therefore also involve different mod­
els. For each set, we discuss their origin, the frequency assignment variant 
to be dealt with, and the most important results. 

Philadelphia benchmarks: The Philadelphia instances were among the 
first discussed in the literature [5]. The original instance and certain vari­
ants have been widely used to test algorithms and lower bounds for the Min­
imum Span FAP (MS-FAP). The Philadelphia instances are characterized 
by 21 hexagons, representing the cells of a cellular phone network around 
Philadelphia (see Figure 4). Until recently, it was common practice to model 
wireless phone networks as hexagonal cell systems. For each cell, a demand 
for frequencies is given. Figure 4(b) shows the demand (in channels) for the 
original instance PI . The demand vectors of the other instances, in con­
formity with [57] denoted by P2-P9, can be found at FAP web [21]. The 
objective is to find a set-T-coloring with minimum span. In the basic model, 
interference of cells is characterized by a co-channel reuse distance d. No in­
terference occurs if and only if the centers of two cells have mutual distance 
> d. In case the mutual distance is less than d (normalized by the radius of 
the cells), it is not allowed to assign the same frequency to both cells. This 
pure co-channel case is generalized by replacing the reuse distance d by a 
series of non-increasing values d ° , . . . , dk and corresponding forbidden sets 
T° C . . . C Tk. The following relation holds: 

where dvw is the distance between the cell centers. For the Philadelphia 
instances, the sets T J are taken as T-? = {0, . . . , j } . For instance PI , the 
values d ° , . . . , d5 are 2-\/3, -\/3,1,1,1,0. So, frequencies assigned to the same 
site should be separated by at least 4 other frequencies, whereas frequencies 
assigned to neighboring sites should be at a distance of at least 2, and 
frequencies assigned to a second and third "ring" of cells should still differ. 
For the other instances, the reuse distances can be found in [21], where the 
results presented in the literature are also summarized. By now, all instances 
are solved to optimality. 

C A L M A benchmarks: The military usage of field phones also leads to 
FAPs. These FAPs have the property that each connection consists of two 

http://fap.zib.de


(a) network structure (b) frequency demand of instance PI 

Figure 4. Philadelphia benchmark instances 

movable phones. To each connection we have to assign two frequencies at a 
fixed distance of each other. Thus, all frequencies can be given as combina­
tions of two with this fixed distance. Instances are available in the EUCLID 
CALMA (Combinatorial ALgorithms for Military Applications) project. In 
the CALMA project (1993-1995) researchers from England, Prance, and the 
Netherlands tested different combinatorial algorithms on the same set of fre­
quency assignment problems. The set contains minimum order problems, 
as well as minimum span and minimum interference problems with a prede­
fined set of frequencies for every transmitter. Neglecting the fixed distance 
constraints for the moment, the minimum order and minimum span prob­
lems are, in fact, list-T-coloring problems. Eleven real-life instances were 
provided by CELAR (Centre d'ELectronique de PARmement, France). A 
second set of 14 instances was made available by the research group of Delft 
University of Technology. These GRAPH (Generating Radio Link Frequency 
Assignment Problems Heuristically) instances were randomly generated by 
Van Benthem [9] and have the same characteristics as the CELAR instances. 

In addition to minimum separation constraints, the instances also con­
tain equality constraints. They are used to model that two frequencies 
at a fixed distance have to be assigned to the corresponding transmit­
ters/vertices. The distance is the same for all constraints, and every vertex 
is contained in exactly one equality constraint. Moreover, to every available 
frequency there exists only one matching frequency at the fixed distance. 
So, the problem may be rephrased to assigning pairs of frequencies to pairs 
of vertices. This reduces the problem size by a factor of 2. Up to four of the 
original distance constraints have now to be considered between two pairs 
of vertices. Hence, the T-coloring aspect is lost in this way. 

The number of available frequencies for a vertex is 40 on average. The 
number of vertices ranges from 200 to 916, whereas the number of edges 



in the conflict graph is in between 1200 and 5500. We have to assign one 
frequency to every vertex. The instances as well as the results can be found 
in [21] (see also [3]). All minimum span instances can be solved quite ef­
ficiently. Also, all but one of the minimum order instances are solved to 
optimality. For the MI-FAP instances, the results are more diverse. At 
the end of the project, only upper bounds were available. By now, 7 out 
of the 11 instances are solved. For the remaining ones, lower bounds have 
been found differing between 57.3% and 98.2% from the best known solution 
value. 

C O S T 259 benchmarks: COST (COperation europeenne dans le domaine 
de la recherche Scientifique et Technique) is a European Union Forum for 
cooperative scientific research. The COST 259 project on Wireless Flexible 
Personalized Communications ran from the end of 1996 to the beginning 
of 2000. Working groups on Radio System Aspects, Antennas and Propa­
gation, and Network Aspects were formed and dealt with different aspects 
of mobile radio communications. The subgroup SWG 3.1 of the Network 
Aspects working group compiled a library of GSM frequency planning sce­
narios. The intention was to allow comparisons of available frequency plan­
ning methods as well as to stimulate and to support the development of 
new methods. In total, 32 realistic GSM network planning scenarios were 
collected and served as benchmark for comparing algorithms within COST 
259. The scenarios together with several contributed frequency plans are 
publicly available at [21]. The primary objective is to minimize the total 
interference. The solutions and the lower bounds contributed so far leave 
space for improvements. 

Tables 1 and 2 show various characteristics of selected benchmark in­
stances. Besides B2, several other B[d] instances exist, differing in the 
average and maximum number of TRXs or in the propagation model, for 
example. Instance B2 is, in fact, the instance BRADFORD JSTT-2-EPLUS of the 
COST 259 project. Table 1 contains figures concerning the underlying GSM 
network, namely: the number of sites in the planning area; the number of 
cells (no site hosts more than three cells); the average number of TRXs per 
cell; the maximum number of TRXs per cell; the spectrum size or, in the 
presence of globally blocked channels, the sizes of the contiguous portions in 
the spectrum; the minimum number of channels available in a cell; and the 
average number of non-blocked channels in a cell. Notice that in each of the 
scenarios with globally blocked channels, the resulting gap in the spectrum 
exceeds the maximal required separation. Thus, there is no direct coupling 



between distinct contiguous portions of the spectrum. 

Table 1. Scenario characteristics COST 259 benchmarks 

Three further figures are given for each scenario in Table 1. These are 
easiest explained in terms of the carrier network that is obtained if each cell 
operates only one TRX. Then, every carrier in the network corresponds to 
a cell, and the graph underlying this network reflects the relations among 
the cells. For this graph, the average degree (average number of adjacent 
cells), the maximum degree (maximum number of adjacent cells), and the 
diameter (of the largest connected component) are listed. 

We point out a few peculiarities of those graphs. Looking at the column 
showing the average number of adjacent cells, we see that in general a cell 
is adjacent to surprisingly many other cells. The maximum degree column 
reveals that some cells may be adjacent to more than half of the other 
cells. The last column shows that the cells are rather "nearby" in almost 
all scenarios (recall that the diameter in a connected graph is the longest 
shortest path between two vertices). 

More graph-related figures for the carrier networks (where every TRX 
is represented by a vertex) are displayed in Table 2. In the first column, the 
label of the associated scenario is given. The next block contains informa­
tion on the graph, namely, its number of vertices, its edge density (that is, 
number of edges relative to the maximal possible number of ' " ' 2 ' '), the 
average degree of its vertices as well as the maximal degree, and the size 
of a maximum clique. The third block addresses the minimum separation 
requirements as specified by the labeling d, the co-channel interference la­
beling cco, and the adjacent-channel interference labeling cad, respectively. 
For all three labelings, we list the total number of edges involved. 



Table 2. Characteristics of carrier networks COST 259 benchmarks 

Table 2 shows that, in all the carrier networks, the average degree of a carrier 
is significantly higher than the number of available channels. This is an 
indication that a great deal of coordination among the channel assignments 
for different cells is necessary in order to produce good frequency plans. 
Moreover, the size of the maximum cliques in most carrier networks is larger 
than the number of available channels. Hence, every feasible assignment for 
those carrier networks must .incur interference. 

ROADEF'2001 challenge: This challenge is a follow-up of the CALMA 
project. It considers frequency assignment problems with polarization con­
straints, i.e., in addition to the assignment of frequencies, also a polariza­
tion direction, horizontal or vertical, have to be assigned. The required 
frequency separation distances depend on the polarization. The data set 
has again been made available by CELAR. More information can be found 
at the ROADEF'2001 web-site [47]. 

Miscellaneous: Several other instances are used in the literature to test al­
gorithms for solving frequency assignment problems. We refer to [41, Section 
2.2.4] for an overview of the instances and their application. An instance 
that is not mentioned there, is the CNET France Telecom benchmark pro­
vided by Caminada [15]. It contains raw data of a GSM network such as 
details of base station locations and propagation information. 

5. HEURISTIC APPROACHES 

The AfV-haxdxxess of both, solving an FAP and finding solutions that are 



guaranteed to be close to optimal, justifies the development of (fast) meth­
ods which neither certainly produce close to optimal assignments nor even 
feasible assignments. These heuristic approaches are the topic of this section. 

Analogous to Section 3, this section is broken into subsections for the 
various models. We start with a discussion of some coloring heuristics, 
followed by heuristics for T-coloring and list-coloring. Finally, state-of-the-
art methods for interference minimization are considered. For a detailed 
survey of heuristics for frequency assignment we refer to [2]. 

5.1. Color ing Heur is t ics 

Heuristics for the vertex coloring problem have been studied extensively 
for years. Such heuristics can be applied to FAPs restricted to vertex col­
oring, but they can also be adjusted for more advanced problems such as 
T-coloring or list-coloring. Many heuristics have a greedy nature. The two 
basic types are sequential coloring and maximal stable set coloring. In both 
cases, the vertices are ordered in advance. In the sequential coloring ap­
proach, each vertex is colored with the least color not conflicting with the 
previously colored vertices according to the given vertex order. In maximal 
stable set coloring, one color at a time is assigned to as many vertices as 
possible according to the vertex order, i.e., for every color maximal stable 
sets are greedily constructed. Popular orderings are lowest degree last or 
highest degree first. In [35], 13 variants of these polynomial graph coloring 
algorithms are compared. Without exception, there exist infinite classes 
of graphs for which each of the algorithms performs poorly. On the other 
hand, some versions of these heuristics have been proven to produce opti­
mal assignments for special cases in polynomial running time. These cases, 
however, do not seem to appear in the practice of frequency assignment. We 
refer to Toft [56] and the references therein for more information. 

Another heuristic that has been applied in the context of frequency 
planning problems is the DSATUR algorithm developed by Brelaz [13]. It 
uses the saturation degree of a vertex: the number of different colors assigned 
to its neighbors. Repeatedly, the vertex with highest saturation degree is 
selected, ties are broken by highest degree, and the least possible color is 
assigned to this vertex. The major difference between this algorithm and 
the greedy algorithms described before is that the order is not static but 
depends on the previously assigned vertices. 
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5.2. Heur is t ics for Minimizing t h e Span 
The first heuristics for minimizing the span have been proposed as early as 
the 1970s for the Philadelphia instances, see [12, 60]. Similar to the sequen­
tial coloring approach to vertex coloring, the frequencies are assigned to the 
vertices according to some order of the vertices. In Sivarajan, McEliece, 
and Ketchum [50] several variants of this greedy algorithm are tested on 13 
Philadelphia instances. 

More generally, Cozzens and Roberts [18] extended the greedy sequential 
coloring algorithm to T-coloring. Tesman [53] generalized this algorithm to 
A;-tuple-T-coloring. For special classes of graphs, these algorithms provide 
the optimal span (cf. [45] for a survey). Wang and Rutherforth [59] use a 
greedy algorithm as starting heuristic only, then a local search procedure is 
applied, where the assignment of two vertices is interchanged as long as the 
objective function value improves. 

The DSATUR algorithm has been extended to T-coloring by Costa [17]. 
More elaborate, but also more time-consuming heuristics for minimizing the 
span such as simulated annealing, tabu search, and genetic algorithms are 
described in [31]. 

5.3. Heur is t ics for Interference Minimiza t ion 

For interference minimization, a wide variety of heuristics has been applied. 
Like for minimizing the span, we distinguish fast heuristics from more elab­
orate, but rather time-consuming ones. 

In [11], a variant of the DSATUR heuristic is used for minimum interfer­
ence GSM frequency planning. Roughly speaking, the saturation degree now 
keeps track of how many channels from the spectrum are no longer avail­
able for each of the remaining unassigned carriers. The spacing degree sums 
the separation distances to unassigned neighbors. So, this degree represents 
how much impact assigning all of a vertex' still unassigned neighbors would 
have on its own assignability. We repeatedly select the vertex for which the 
saturation degree is maximal among those for which the spacing degree is 
maximal. In this way a vertex for which the assignment has a large impact 
on its neighbors is handled before its neighbors are. Moreover, vertices with 
high saturation degree are assigned as soon as possible. Another extension 
of DSATUR, called DSATUR with costs in [11], deals with the marginal cost 
of assigning a frequency to a vertex in a partial assignment. The vertices 
are sorted according to these costs and the frequency of minimum cost is 



assigned repeatedly. 
Besides these constructive heuristics, improvement heuristics have been 

applied. For the GSM frequency planning benchmarks of the COST 259 
project, the best known algorithm is due to Hellebrandt and Heller [28]. 
They propose to use the Threshold Accepting paradigm proposed in [19]. 
Threshold Accepting is a variant of Simulated Annealing with a determin­
istic acceptance criterion: a proposed change of the solution, also called a 
move, is accepted if an improvement is achieved or the deterioration is below 
a threshold. The value of this threshold declines with the progress of the 
algorithm. Hellebrandt and Heller augment the basic scheme by alternating 
between random changes and local optimization. The cost of a move is the 
difference between the cost of the assignments after and before the move. 

Figure 5 shows an example of a carrier network, where DSATUR fol­
lowed by a very simple local search heuristic (1-opt), improved the solution 
provided by a network operator by 96%. In this plot, sites are represented 
by dots in the Euclidean plane according to their geographical coordinates. 
Two sites are connected by a colored line if the frequency assignments re­
sults in interference among the TRXs from the two sites. If the line is drawn 
in a pale color, then the interference is small. With increasing interference, 
the color of the line turns into black. 

(a) operated frequency plan (b) optimized frequency plan 

Figure 5. Interference reduction of 96% by heuristics 



Many other techniques, from genetic algorithms to neural networks, have 
been applied to MI-FAP. For the CALMA minimum interference bench­
marks, for example, a genetic algorithm with optimized crossover turned 
out to produce the best results [40]. 

The running times of the heuristics differ substantially. The fastest 
among the methods computes an assignment within a few seconds to min­
utes, whereas the more complex methods have running times up to a few 
days on realistic planning scenarios. The tendency in practice is to use 
the fast methods within the interactive planning cycle; the more complex 
methods are sometimes used to generate the final frequency plan. 

6. LOWER BOUNDS 

As outlined in Section 5, various heuristics seem to be capable of solving 
frequency assignment problems in a satisfactory way—at least compared to 
some of the traditional planning methods employed in practice. From a 
mathematical point of view, a comparison with results of someone else or 
some other heuristic is insufficient. One would like to know better! Is it 
possible to give a provable quality guarantee for a heuristic solution? In 
principle, this is of course doable. However, coming up with acceptable 
quality guarantees for frequency plans appears to be quite difficult (both in 
theory and practice); further ideas are needed badly in this area! 

All the optimization problems associated with frequency planning dis­
cussed in this paper are minimization problems. Heuristics find feasible 
solutions for such problems and the best of these solutions is hoped to yield 
a good upper bound for the objective function value of a minimum solution. 
To substantiate such a hope, a good lower bound for the optimum value 
must be found. We show in this section how lower bounds for some of the 
versions of the frequency assignment problems can be obtained. We also 
indicate how big the gap between upper and lower bound can be, despite 
serious efforts. 

6 .1 . L P Lower B o u n d s for Coloring 

We begin with describing the LP approach to combinatorial optimization, 
one of the most successful methods for the solution of integer programs. 
The idea is simple. We formulate the combinatorial problem as an inte­
ger program, drop the integrality constraint, and solve the resulting linear 



program. One hopes that the optimum LP value is a good lower bound for 
the optimum value of the combinatorial problem. 

Let us describe this approach for the weighted clique problem (finding a 
set of pairwise adjacent vertices in a vertex-weighted graph with maximum 
total weight). Let a graph G — (V,E) with nonnegative weights Cv,v € V, 
be given. Observing that a clique and a stable set intersect in at most one 
vertex, it is trivial to see that the integral feasible solutions of the following 
LP 

S stable, 

are exactly the incidence vectors of the cliques of G. Denoting by w(G,c) 
the maximum weight of a clique in G and by S the set of all stable sets in 
G we have 

ves 

The LP value u>'(G,c) is sometimes called the fractional (weighted) clique 
number. Employing the duality theorem of linear programming we obtain 

Observing that for each S G «S, each subset of S also belongs to <S, it is clear 
that we can replace the inequality sign in Ylssv Vs — °" by an equality sign. 
Adding integrality, we can continue the chain of equations and inequalities 

(C) 



The last minimization problem is nothing but an integer programming for­
mulation of the weighted coloring problem: we seek a collection of stable 
sets (the integral value ys is the multiplicity of the stable set S) such that 
each vertex t ) 6 F i s contained in exactly cv sets. The ordinary coloring 
problem is the special case where cv = 1 for all v € V, i.e., x{G) = x(G, 1). 

The process described above is a natural way to view the coloring prob­
lem as an ILP. Solving its LP relaxation amounts to solving a linear pro­
gram with | V| equations and an exponential number of nonnegative variables 
ys,S € S. Instead ofthat, one can, equivalently, solve its dual problem (in 
\V\ nonnegative variables and one constraint for each stable set). The large 
number of constraints (or variables) is not a principal difficulty (see [26] for 
a detailed account of this topic). However, it was shown in [25] that solv­
ing this LP is jVP-hard, i.e., computing u'(G, 1) in order to obtain a lower 
bound on x{G, 1) cannot be achieved in polynomial time, unless V=AfP. 
This is a real pity since oo'(G, 1) appears to be a quite good lower bound for 
X{G, 1) while, surprisingly, u)'(G, 1) is a poor upper bound for u(G, J), in 
general. We demonstrate this fact by means of a probabilistic argument. 

Let us consider a random graph Gi, i.e., Gi has n = \V\ vertices and, 
for each pair u, v of vertices, we throw a coin to decide whether the edge 
uv belongs to G or not. A lot is known about Gi, see [38] for a survey. 
For example, a(Gi) = w(Gi) = 21og2n and x(Gi) = 21o" n holds almost 
surely. We can use this fact to compute the expected value of u)'(Gi). 

2 

Namely, if we set xv := 2 1 * n for all v € V then, since each stable set 
S satisfies \S\ < 21og2n almost surely the vector x = (xv)vev € W1 is 
almost surely feasible for (C), and thus, tTx = 2 1 " n is almost surely a 
lower bound on the optimum u)'{Gi, t) of (C). Since x{Gi) is almost surely 
2i0g n and x ( ^ i ) is an upper bound on OJ'(GI, 1) we know that u)'(Gi, 1) 
is almost surely equal to X ^ i ) - It is interesting to observe that, for the 
random graph G\, OJ'{G\ , 1), the value of the LP relaxation of OJ(G\ ), is far 
away from u)(Gi) but that it provides an excellent lower bound for x ( ^ i ) -
The trouble, though, is that except for special cases such as perfect graphs 
(see [26]), we do not know how to compute OJ'(GI , 1) efficiently. 

6.2. A TSP Lower Bound for T-Coloring 

For T-coloring and its variants, many (graph-)theoretical results have been 
derived over the years. The survey of Murphey, Pardalos, and Resende [45] 



discusses these results in depth. In this subsection, we focus on one of the 
most interesting ideas to derive lower bounds for minimum span T-coloring. 

Consider a T-coloring problem with separation distances d(vw) for all 
vw G E, i.e., Tvw = { 0 , . . . , d(vw) — 1}. A feasible solution of this T-coloring 
problem is an assignment / : V ■-> Z + such that \f(v) — f{w)\ > d(vw) for 
all vw € E. Let us assume that / is a feasible T-coloring, and let ix be 
a permutation of the vertices in V such that n(v) < n(w) if f(v) < f{w). 
Hence, vertices with a larger color succeed those with a smaller color in the 
ordering, whereas the ordering of vertices with identical colors is arbitrary. 

Let us define a complete graph G" on the vertices V of G with edge 
weights d'(vw) = d(vw) if vw G E and d'(vw) = 0 otherwise. The order n 
defines a Hamiltonian path in G", and if we assume that / has span k, then 
the Hamiltonian path has weight at most k. In this fashion, every feasible 
T-coloring of G gives rise to one (or more) Hamiltonian path(s) in G", and 
in each case the span of the T-coloring is bounded from below by the length 
of the associated Hamiltonian path. Hence, a Hamiltonian path in G' of 
minimum weight provides a lower bound on the span of any T-coloring. 

Finding a Hamiltonian path of minimum weight is traditionally done by 
solving a Traveling Salesman Problem (TSP). Therefore, the lower bound de­
rived this way is known as the TSP bound. This relation between T-coloring 
and the Hamiltonian path problem has first been observed by Raychaud-
huri [46] and is later used by Roberts [49] and Janssen and Kilakos [32, 33]. 
The TSP as well as many of its variations have received considerable atten­
tion in the literature (see, e.g., [36] for a survey and [6] for recent progress). 
TSPs are typically solved using integer programming techniques. Note that 
also a lower bound on the minimum weight of a Hamiltonian path provides 
a lower bound on the minimum span of a T-coloring. 

The TSP lower bound for the minimum span of a T-coloring has a 
remarkable (nasty) property. Induced subgraphs of G may provide better 
TSP bounds than the TSP bound of G. Consider the example in Figure 
6(a). The values at the edges denote the separation distances d(vw). The 
corresponding graph G" with weights d'(vw) is displayed in Figure 6(b). A 
Hamiltonian path of minimum weight in G' is given by a, b, d, c with weight 
1. Hence, the TSP bound is 1. If we, however, restrict us to the subgraph 
induced by a, 6, c, a TSP bound of 2 is obtained. So, the TSP bound might 
be improved by restricting the bound computation to a "dense part" of the 
conflict graph. In [33], this technique is used to prove the optimal value of 
Philadelphia instance PI , for example. 



Figure 6. Example TSP lower bound 

Recently, Allen, Smith, and Hurley [4] proposed another way to improve the 
TSP bound. Consider again the example in Figure 6. On the Hamiltonian 
path a,b,d,c, the length of the subpath b,d,c is 0, although a separation 
distance of d'(bc) = 1 exists. So, the bound can be improved by forcing 
that every path between b and c has weight at least d'{bc). In [4], the 
TSP integer programming formulation is augmented by introducing so-called 
excess-variables in order to guarantee this property of the minimum weighted 
path. 

6.3. LP Lower Bounds for Minimizing Interference 

For the MI-FAP, lower bounds can be derived by the linear programming 
relaxation of (1) - (5). In the linear programming relaxation, the integrality 
constraints (4) and (5) are replaced by xvf > 0 and zvw > 0, respectively. 
This relaxation provides a lower bound on the optimal value. Computational 
experiments with this lower bound, however, did not yield satisfying results 
(cf. [1]). Also, the linear relaxation of other formulations (cf. [34, 41, 20]) 
did not provide strong lower bounds. The poor quality of the LP bound 
is mainly due to the freedom to select frequencies fractionally. In this way, 
interference can often be avoided almost completely in a fractional solution. 

The branch-and-cut approach for integer programming could not be 
successfully applied to MI-FAPs either. The major obstacle seems to be that 
for both, the linear relaxation and the integer program many solutions with 
(almost) identical objective function value exist. In fact, there often exist 
permutations of a solution with the same objective function value. These 
symmetries lead to many equivalent branches in a branch- and-cut approach. 



Moreover, the addition of cutting planes merely drives the solution to an­
other solution with same objective value. 

An exception from these negative results is obtained for the CALMA 
MI-FAP instances. In [42] (see also [41]), integer programming is success­
fully applied after aggregation of frequencies to obtain lower bounds. As 
an alternative to integer programming, a dynamic programming algorithm 
based on a tree decomposition of the conflict graph is applied. Not only 
lower bounds could be derived using this approach, but also some of the 
CALMA problems could be solved to optimality (see [41] for more informa­
tion). This method heavily depends on the specific structure of CALMA 
frequency assignment, and this clearly limits the applicability to other fre­
quency planning problems. 

6.4. A Semidefinite Lower Bound 

Semidefinite programming is the task of minimizing a linear objective func­
tion over the convex cone of positive semidefinite matrices subject to ad­
ditional linear inequalities. Significant research efforts in the recent years 
have revealed that many of the algorithmic approaches to linear program­
ming can be tailored to work for semidefinite programs efficiently as well, 
see Helmberg [30]. In this subsection, we present a lower bound for the GSM 
frequency planning problem based on semidefinite programming. 

Let us modify (in fact, simplify) the frequency planning problem by 
• dropping the adjacent-channel interference (i.e., by setting Ead := 0), 
• dropping the local blockings (setting Bv := 0 for all v £ V), and 
• cutting down the required separation to 1 (setting d(vw) := 1 for all 

vw e Ed). 
Clearly, this problem is a relaxation of the original frequency planning prob­
lem and an optimal solution of this problem yields a lower bound. All three 
simplifications together lead to a problem which is essentially the same as 
finding a minimum A;-partition of the vertex set of the graph G, where edge-
weights are derived from d(vw) and c ^ . 

A partition V\,..., Vk of V into at most k = |F | many disjoint sets has 
to be determined such that the sum over the edge-weights in the induced 
subgraphs G[Vi\, 1 < i < k, is minimized. The edge-weights are defined as 
follows. Set M = Y,vweEco C + 1. The edge-weight function /i : E M- 1+ 
is defined by ßvw — c%°w in case vw G Eco and by fxvw = M in case vw eEd. 
(Note that E = EcoU Ed and Eco DEd = 0.) 



There exists a feasible solution to the relaxed frequency planning problem if 
and only if a minimum ^-partition has objective value less than M. More­
over, if the objective is less than M, its value is a lower bound for the original 
problem. 

The min ^-partition problem can be formulated as an integer linear 
program with an exponential number of constraints (cf. [20, Section 6.2]). 
An alternative formulation exploits the following properties of vectors of 
Euclidean length one (unit vectors) in Mn, n > 1. First, for any k, 2 < k < 
n+1, unit vectors ult..., uk € W1 satisfying (UJ, ty) < 6 for all i •£ j , it holds 
that 8 > j ^ j - . Second, there exist k unit vectors satisfying (ui,Uj) = F̂rr 
[24, 37]. Consider, for example, a fc-simplex in Rn, centered at the origin and 
scaled such that all vertices have a Euclidean distance of 1 to the origin. The 
vectors pointing at the vertices of that simplex have the desired property. 

Hence, we may fix a set U = {ui,... ,uk} C Mlvl of unit vectors with 
(«j, UJ) = ^ j for i ^ j (and (u,, ui) = 1 for i = 1 , . . . , k). These k vectors 
are used as labels (or representations) for the k partite sets in G. The min 
^-partition problem can then be phrased as follows. We search for a function 
4>: V >-> U that minimizes 

(uj y „„ (*-i)W»).«»)) + i . 
v,w£V 

Notice that the quotient in the summands evaluates either to 1 or to 0, 
depending on whether the same vector or distinct vectors are assigned to 
the respective two vertices. 

If we assemble the scalar products (</>(t>),(ß{w)} into a square matrix 
X, being indexed row- and column-wise by V, then the matrix X has the 
following properties: all entries on the principal diagonal are ones, all off-
diagonal elements are either ■— or 1, and X is positive semidefinite. 

Notably, every matrix X satisfying the above properties defines a &-
partition of V in the same way as 0 does. This can be seen as follows. 
Since X is a positive semidefinite matrix, there exists a matrix C such that 
X = CTC. We claim that C contains at most k distinct column vectors. 
For the sake of a contradiction, let us assume that c i , . . . ,Ck+i are k + 1 
distinct column vectors from C. Then (ci,Cj) = j ^ for all i ^ j and 
(ci,Ci) = 1 for all i has to hold. According to the above statement, however, 
the k + 1 unit vectors may only have a mutual scalar product as low as 
(k+i)-i ~ ~T > F=T- A contradiction. Therefore, the columns of C may 
indeed serve as the vectors assigned by </>, representing the partite sets. 



The combinatorial problem to minimize (14) may be relaxed to a semidefinite 
program. First, the explicit reference to the set U is dropped, and the 
problem is rewritten as 

Then, we replace the constraints (17) by Xvw > -j— (note that Xvw < 1 
is enforced implicitly by X positive semidefinite and Xvv = 1). The SDP 
relaxation of the problem now reads 

In [20], this bound is tested successfully for the COST 259 benchmark in­
stances using recently developed software for semidefinite programming by 
Sturm [52], Burer, Monteiro and Zhang [14], and Helmberg [29]. 

7. CONCLUSIONS 

Frequency assignment is an important problem in wireless communication 
with direct consequences for the quality of service and indirect economic 
impact, e.g., via the choice and utilization of equipment. There is not just 
one frequency assignment problem. The questions to be addressed depend 
strongly on the technology employed, government regulations, etc. Thus, 
modeling issues arise, and the mathematical problems to be solved vary 
from technology to technology, frequency band to frequency band, or even 
operator to operator. Focusing on the GSM technique, we have surveyed in 
this paper the mathematical questions arising in this context, many related 
to coloring problems in graphs. Practical frequency assignment problems 
are large and hard—not only in theory. Data from practice are available, 

(15) 

(16) 
(17) 
(18) 

(19) 

(20) 
(21) 
(22) 



so that the structure of practical instances can be studied. Although the 
utilization of optimization methodology has resulted in considerable progress 
compared with traditional planning techniques, the solution machinery is 
not in a satisfactory state yet. There are often large gaps between upper 
and lower bounds on the interference, for instance. Much better quality 
guarantees for the solution methods applied to instances from practice need 
to be achieved. The only path to progress is further research addressing the 
issues involved. That is, investigating the mathematical models described in 
this paper instead of continuing to study the traditional problems in coloring 
theory, a nontrivial challenge. 
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