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1. Introduction

Combinatorics and physics interact in various ways. It is impossible to survey here
all the connections. We concentrate in this chapter on statistical physics since
several of the most basic problems in this area have a combinatorial flavour.

Sections 2 and 3 of this chapter are concerned with two of the most
fundamental areas, namely the study of the Ising model and the theory of
percolation processes. Both of these areas of research are huge, but they share
the common property that some of the most primitive and easily stated problems
are, after more than thirty years of research, still largely unanswered.

In section 4 we present, among other models, some of the classical enumeration
problems of statistical physics; again there are many open questions and very few
exact results.

Sections 5 and 6 are concerned with two of the (relatively few) “techniques”
which have been developed to deal with the sort of problems we are discussing.
Transfer matrices and subadditive function theory are basic tools in this area of
mathematical physics. This is illustrated by a simplified version of the dimer
problem, it amounts to counting the number of ways of placing dominoes on a
rectangular chessboard.

Finally we illustrate in Section 7 the application of ideas from combinatorial
optimization to statistical physics by showing how the problem of finding the
ground states of a spin glass model may be reduced to a very basic, though
difficult (NP-hard) problem in discrete optimization.

2. The Ising model

The density of water varies as a function of temperature, and generally as a
continuous function. Of course the variation is not continuous in the neigh-
bourhood of the boiling point, nor at the freezing point. Although we are
accustomed to such behaviour, it is paradoxical. The forces acting between the
individual molecules vary continuously as the temperature varies. Why then
hould there be a change of state at certain temperatures? Statistical physics is
devoted to the attempt to understand this behaviour.

As is customary in science and mathematics, the study begins by setting up a
grossly simplified model. We assume that the system consists of a finite number of
particles, and that the system is at any instant in one of a number of states. The
behaviour of the system is governed by its Hamiltonian H, which is a function of
the state. Its value H(o) is equal to the energy of the system in state . Examples
of Hamiltonians will be given later in this section and also in section 7. The
partition function of the system is defined to be

Z=Z(T)= g exp[—H(a)/(kT)] . (2.1)

Here T is the temperature of the system and k is Boltzmann’s constant. If the
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system consists of N particles, we sometimes write Z,, in place of Z. It is taken as
an axiom that all large-scale properties of the system are determined by Z.
- (Sometimes an attempt is made to disguise the fact that this is an axiom, and not
a theorem. Also a system can have more than one partition functlon the one we
have just defined is the canonical partltlon function.)

In stochastic versions of the problem it is assumed that in the stationary state
the probability that the system is in the state o is given by

Z ' exp[—H(o)/(kT)]
and that the free energy of the system is
F=—-kTlogZ .

The latter is a particularly important parameter of the system, and explams the

fact that one deals with log Z as often as with Z. We are interested in th.

behaviour of Z for systems with a large number of particles, as the temperature T
ranges over the positive real§. The value of Z depends on the number of particles
N in the system as well as on the temperature. In all cases of interest to us, log Z
is a linear function of N when all other parameters are fixed. The number of
particles in any realistic physical system is, for all mathematical purposes, infinite.
Hence we are led to study

1
lim 4-10g Zy(T)
as a function of T. Following Baxter (1982, p. 14), we say that a model has been
solved if its free energy is known. The phase transitions of the model correspond
to the points, called critical points, at which the free energy is not an analytic
function.

We now consider a typical and important system, the Ising model. We are given
a graph G = (V, E) embedded in R® or R®. There is an atom placed at each
vertex, Each atom has a spin associated to it, this spin takes only two values. The
energy of the system is understood to be the sum of the energies due to the
interaction of each pair of atoms. The contribution due to a pair of atoms will b

}

A

assumed to depend only on whether they are adjacent in G or not. Th _/

interaction is completely determined by whether the given pair have the same
spin, or not.

The state of the system can be represented by a function o from V(G) into the
set {—1,1} and the Hamiltonian H(o") will be a sum over the edge set E of G.
Writing o; for the state of atom i, we find that the partition function of this system
at temperature 7T is

Z(G)=§a‘, exp[ E )30'0'] (2.2)

The constant 8 = J/(kT) will vary inversely with the temperature and is propor-
tional to the interaction J.




/

®

Combinatorics in statistical physics 1929

The graphs in which physicists are interested are usually infinite. However, they
are usually the limit, in a natural sense, of a sequence of finite graphs. This will be
made clearer by the examples which follow. The most important cases of the Ising
model are when G is either the 2-dimensional square lattice, or the 3-dimensional
cubic lattice. The solution of the 2-dimensional Ising problem on the square
lattice was a major achievement of Onsager in 1944. (For an account of this, and
any other historical remarks in this section, see Thompson 1972.) The 3-dimen-
sional model is still unsolved.

There are some important extensions of the Ising model. We assumed implicitly
that each of the two states available to an individual atom was equally likely.
However, if there is an external magnetic field acting then one of the two states
becomes more probable. The 2-dimensional Ising model has only been solved
under the assumption that there is no external field. (The presence of an external

eld in any model is a major complication.) Another possibility is that the
nteractions between a pair of adjacent atoms may not be independent of the
edge. (This is certainly a physically reasonable possibility.) Thus on the square
lattice, the interactions arlsing from the horizontal edges may differ from the
interactions on the vertical edges. Allowing for this does not usually cause
problems; on the contrary it can even be useful, as we will see.

A question which may well have arisen by now is, what does all this have to do
with combinatorics? To explain this, we study the basic Ising model on the square
lattice. Let G, denote the Cartesian product P, X P, of two paths with n vertices.
Thus G, has n® vertices and, for large n, may be vxewed as an approxxmatlon to
the mﬁmte square lattice. By expanding the exponential in (2.2) and since o;0;
takes only the values +1 and —1, we have

exp(Bo,0;) = cosh(B) + g;0; sinh(B) = cosh(B)(1 + o,0; tanh(B)),
whence the partition function for G, at temperature T can be expressed as

Z(G,) = 2(cosh(;3))'E<G>' I1 (1+00 tann(B)).

IfEE(G,)

~With some ingenuity (see, e.g., section 6.1 of Thompson 1972 or Biggs 1977, p.
~ 2) this may be rewritten as

Z(G,) = 2V \(cosh(B))*“»! 3 N(!)(tanh(B))’, (2.3)

where N(I) is the number of spanning subgraphs of G, with ! edges and all
vertices having even valency. (These are called the Eulerian subgraphs of G,.)
This shows that determining the partition function for the Ising model is
equivalent to the purely combinatorial problem of enumerating the Eulerian
subgraphs of G,.

It should be noted that (2.3) is valid with any graph G in place of G,. In
particular if we replace G, by P, then we obtain

Z(P,) =2"(cosh(B))" "
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From this we can deduce that
lim (Z(P,))""" =2 cosh(B) .

Since cosh(B) is an analytic function, it follows that the Ising model on the
infinite path does not have a critical point. As we noted earlier in this section,
Onsager showed that the Ising model on the infinite square lattice does have a
phase transition. (See chapter 5 of Thompson 1972.)

A short introduction to the Ising problem will be found in Cipra (1987).

Partition functions and rank polynomials

We now show how Fortuin and Kasteleyn (1972) demonstrated that the Ising and
other physical problems could be related to the Whitney rank polynomial or Tutte
polynomial (see chapter 9 by Welsh).

Let G be a graph, which now may have loops and multiple edges. Any subset S '

of E(G) forms a spanning subgraph of G, with the same vertex set as G, and edge
set S. The rank of S is defined to be |[V(G)|, less the number of connected
components in the subgraph formed by S. We will denote it by r(S). The rank
polynomial of a graph G is defined to be

R(G;x,y) = S xErS)ylsl=rs)

SCE(G)

The rank polynomial has some interesting properties. If G is the disjoint union of
graphs G, and G, then

R(G;x,y)=R(G; %, )R(G,; %, y) . (2.4)

If e € E(G), let G\e be the graph obtained by deleting e from G, and let G/e be
the graph obtained by contracting e (i.e., by deleting e and then identifying its
end points). Then, if e is not a cut-edge or a loop, one can show that

R(G;x, y)= 2 xr(S)ylSI—r(S) + z x’(S)ylsl—r(S)

SCE(G),c€S SCE(G),e£S
= R(Gle; x, y) + R(G\e; %, y) . (2.5
In the remaining cases we have
‘ _ [(1+x)R(G/e;x,y), if eisa cut-edge,
R(G;x, y)= {(1 +y)R(G\e;x,y), if eis a loop.

Now consider the partition function for the Ising model on a graph G, which can
be written in the form

zG)y=2 1[I a~

a UEE(G)

where A =exp B. The product g;g; is either 1 or —1. Define E? to be the set of
edges ij of G such that g,0;=1 and let E_, be the remaining edges of G. Let

Y

J/
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m = |E(G)|. Then we have
Z(G) = > AESISIEZI 3 \m20Es ]

If e=1ij is a fixed edge in E(G), not a loop or a cut-edge, it follows that

Z(G)= 2 Am‘Z'E;|+ 2 Am-—2|E;|

i=0; a-,-#o-i
= AZ(Gle) + A~ (Z(G\e) — Z(G/e))
=(A=A"DZ(Gle) +17'Z(G\e) . (2.6)
We can now use the following theorem of Oxley and Welsh (1979).

- "heorem 2.7. Let f be a real-valued function defined on graphs which satisfies the
~ cecursion

AG) = af(Gle) + bf(G\e)
when e is an edge of G and not a loop or cut-edge, and

_ [+ x)f(Gle), if e is a cut-edge,
fG)= {(1 +f(G\e), if eis aloop,

where 1 + x and 1 + y are the values taken by f on a cut-edge and loop respectively.
Then if G has n vertices, m edges and ¢ components, we have

1+ 1+
f(G)=b’"_”+Ca”_CR(G; 1, y—1).

a b

It follows that the partition function for the Ising model on a graph G is
determined by its rank polynomial. From (2.6) we see that we can apply the
previous theorem with Z(G) in place of f(G). Then

a=x-A"",  b=)"!
(T
) T+x=A+A"1, 1+y=A"1.
Theorem (2.7) now yields that

Z(G)=A""(A% = 1)""°R(G; ,AT— 1) :

AP-1
A natural extension of the Ising model is to allow the spins to take more than two
values. More precisely, if we allow the spin at each vertex to take values from the
set {1,2,...,q9} and then define the partition function Z by Z=
Yo €Xp[L;cr BO(0;, ;)] where & is the usual delta function, we have what is
known as the g-state Potts model.

Using a similar argument to that just given it is easy to see that again Z satisfies
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a contraction—deletion recurrence formula. Hence for any graph G,Z is an
evaluation of the rank polynomial of G; though along a different curve in the
xy-plane, namely xy = q. For a proof of this and for details of the way in which
the percolation and ice models to be discussed below can be represented in terms
of the rank polynomial see Welsh (1990) or the original paper of Fortuin and
Kasteleyn (1972).

For excellent rigorous mathematical treatments of these topics we refer to the
monographs of Ruelle (1969) or Thompson (1972).

3. Percolation processes

As its name suggests, percolation theory is concerned with flow in random media.
Its origin in the work of Broadbent and Hammersley (1957) was as a model fo~
molecules penetrating a porous solid, electrons migrating over an atomic lattice,. .’
solute diffusing through a solvent, or a disease infecting a community.

As an example of percolation in the wider sense consider the following problem
in communication theory.

Example (Random graphs and reliability). Let N be the network shown in fig.
3.1(a). Suppose each directed edge has probability p of being reliable, that is,
allowing a message to pass. Suppose further that the reliability of each edge is
independent of the reliability of any other edge. What is the probability that there
is a path from A to B consisting only of reliable edges?

Denoting this event by A ~ B, simple calculation shows that it is just the
probability that not all the routes from A to B are unreliable. Since the routes
have no edge in common we are dealing with independent random variables and
we have

Pi{A~B]=1-(1-p)".

However, if we try the same problem for the network N’', of fig. 3.1(b) the

problem becomes much more complicated. This is due solely to the dependence in

N’ of the events “the route ACDB is reliable” and “the route ACB is reliable’
N

This problem illustrates the intrinsic difficulty of percolation problems — sto-
chastic dependence occurs in all but the most trivial cases and makes computation

N
D

(2) (b)
Figure 3.1.



Combinatorics in statistical physics 1933

very difficult. Indeed, even with the speed of modern computing machines it is
still impractical to determine the reliability of moderate-sized networks. In the
language of computational complexity the problem is #P-hard (see chapter 29 by
Shmoys and Tardos).

In classical percolation theory we are concerned with the probability of infinite
clusters in a “regular crystal lattice”. The definition of what exactly is meant by a
“regular crystal lattice” is rather difficult to formulate precisely — it varies from
author to author. For the purposes of this chapter it can be regarded as typified by
the regular lattices shown in fig. 3.2, though of course the physically most
interesting cases are when the lattice is 3-dimensional.

Bond percolation

Suppose now that we fix attention on the 2-dimensional square lattice, and
_jppose that there is a supply of fluid at the origin and that each edge of &, allows
fluid to pass along it with probability p, independently for each edge. Let P,(p)
be the probability that fluid spreads to at least n vertices. Thus

P(p)=1,
Pp)=1-(1-p)*,
and in theory Py(p) can be calculated for any integer N. However, the reader will

rapidly find it prohibitively time consuming. The case N =7 is a fair piece of
work! Obviously,

Py(p)= Py, (p)

and hence the limit
P(p) =lim Py(p)

exists and represents the probability that fluid spreads an infinite distance from
the origin.
Very little has been rigorously proved about P(p). For example, even though
(p) is a polynomial in p and hence we would expect P(p) to be a continuous
wanction of p, this has not yet been proved. It is clear that there exists a critical

Square Lattice Hexagonal Triangular

Figure 3.2.
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probability p. such that
p<p.>P(p)=0 and p>p.=>P(p)>0.

However, determining the value of this critical probability is, as we will see, a
very difficult problem. Monte Carlo simulations suggest that for all well-known
lattices the behaviour of P(p) has roughly the same S-shaped form as shown in
fig. 3.3.

Atom or site percolation

In atom percolation, instead of each edge being randomly blocked with probabili-
ty 1 —p or open with probability p, each vertex is blocked independently with
probability 1—p or open with probability p. Again we are interested in the
probability of fluid spreading locally or an infinite distance. )

Exactly analogous results hold for atom percolation as for bond percolatio:
though of course the numerical values of the critical probabilities p. and
percolation probabilities P(p) differ. In one sense atom percolation is the more
important since any bond percolation problem on a lattice £ can be turned into
an atom percolation problem on a related lattice &, namely the line graph of £.

One of the few relatively easy results which has been proved is the following
due to Fisher (1961) and Hammersley (1961a). For any regular lattice, if
P*(p), P®(p) represent respectively the atom and bond percolation probabilities
on the lattice then

PA(p)<P®(p), Osp=1.
Clearly this implies that for any lattice the critical probability for atom
percolation is at least as big as the critical probability for bond percolation.
The cluster problem

An alternative approach to percolation theory is the study of the distribution of
white and black clusters when the edges (or vertices) of a graph are independently
painted white with probability p and black with probability ¢ =1 —p.

i

Y

Figure 3.3.

\*/ /
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Again we shall concentrate on the edge problem for the square lattice. A white
cluster is a maximal connected subset of white edges of the lattice. The two main
quantities of physical interest are:

(a) the average number of white clusters;

(b) the average number of vertices in a white cluster.

To be more precise let ¥, denote a square section of the square lattice
containing m’® vertices and hence 2(m —1)" edges. If w denotes a particular
black/white painting of %, then let ¢, (w) denote the number of white clusters
and let its average value over all paintings w be denoted by K, (p).

Similarly if we let the distinct clusters under  be labelled A, ..., A ,,, we
define

<[ |V(A1)| +oet |V(Ac(w))|]> ,

| )

where |V(A;)| denotes the number of vertices ion A, and (-) denotes the
expectation over all black and white paintings. Thus S,,(p) is the average number
of vertices in a white cluster.

Note that if isolated points are not counted as clusters then the expected
number of clusters in this sense is given by K, (p) — m’q* where ¢ = 1 — p. This is
because the probability that a particular vertex forms an isolated cluster is just the
probability that the four edges incident with it are painted black, that is ¢*. Thus
the average number of isolated points amongst the white clusters is m’q®.

The average number of black clusters is obviously K, (1 — p) and the average
number of vertices in a black cluster is obviously S, (1 — p). Little more is known
theoretically about either of these functions, other than that

Sn(P) =

K, (p)~m’A(p) asm—oo,

where A is an undetermined function of p.
Roughly speaking the quantities K,,(p) and S, (p) are reciprocal, though
theoretically all that has been proved is that

S, (p)=m*/K, (p).

For p greater than the critical probability p. we have a positive probability of an
infinite white cluster in %,. Hence, a fortiori, as p— p_ the average size of a
cluster tends to . Numerical evidence suggests that, as p approaches p, from
below, there exist constants C and y such that as m— «, S, (p)— S(p) where

S(p)~C(p.—p)7,

where, moreover, vy is an invariant depending only on the dimensionality of the
lattice.

One of the most interesting theoretical results on the cluster problem is the
following theorem of Harris (1960).
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Theorem 3.1. For the cluster problem on the infinite square lattice, if p is strictly
greater than the critical probability then, with probability one, the set of white edges
contains only one infinite component. :

~

Extensions of this!to higher dimensions can be found in Grimmett (1989).

Determining the critical probability

The problem of finding critical probabilities for particular lattices, first posed in
1957, has received great attention, but is still proving to be a remarkably difficult
problem. A vast amount of numerical estimation (based on Monte Carlo
methods, Padé approximations and the like) has been carried out, so good
numerical estimates exist for most of the 2- and 3-dimensional lattices.

Theoretically much less is known. A landmark in the study of critical
probabilities was the paper by Sykes and Essam (1964) which, though unrigorous,-. -
gave convincing arguments for believing that for bond percolation on a planar
lattice the critical probabilities were related by

p(L) +p(£) =1, (3.2)

where ¥* is the planar dual of Z.
An obvious consequence of this is the following.

Theorem 3.3. For bond percolation on the square lattice, the critical probability is
1

7

This result was finally proved by Kesten (1980) by a series of ingenious
arguments which have led to a rigorous proof by Wierman (1981) of the following
result, again first shown unrigorously by Sykes and Essam (1964).

Theorem 3.4. For bond percolation on the 2-dimensional triangular lattice (T) and
the hexagonal lattice (H),

p.(T)=2sin(w/18), ./
p.(H)=1-2sin(w/18).

However, all of these arguments are very much restricted to 2 dimensions. A
fundamental and very difficult problem is the following.

Problem 3.5. Determine the critical probability of bond or site percolation on the
3-dimensional cubic lattice. :

Even for 2-dimensional planar lattices there are many open problems. For
example: the following is known from Toth (1985) and Zuev (1987).
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Theorem 3.6. The critical probability of site percolation on the square lattice is
between 0.5095 and 0.68189.

However, this is a very wide range and we pose the following.

Problem 3.7. What is the critical probability for site percolation on the square
lattice?

First passage percolation '

This originated in the paper of Hammersley and Welsh (1965) as a model for a
“time dependent” percolation process. It contains ordinary percolation as a
special case and in its most general sense can be regarded as a randomized version
of the shortest route problem in graphs.

Consider the square lattice in which each edge, is, independently, assigned a
non-negative random length drawn from a known probability distribution F.

Let ¢, be the random first passage (shortest) path length from the origin to
(n, 0) in this lattice and let 7(n) be its expected value over all possible states (that
is distribution of lengths). The fundamental observations are that for m,n €Z

7(m + n) < 7(m) + (n) (3.8)

so that by the theory of subadditive functions

BECTN o9

lim

7(n)
n— n
exists.

The time constant p. depends only on the distribution F and is, like the critical
probability of ordinary percolation, a not very well-understood lattice invariant.
For example when the lengths are uniformly distributed in [0, 1] it is known from
Monte Carlo studies that u ==0.323, but its exact evaluation seems a hopelessly
intractable problem.

Apart from its intrinsic interest, first passage percolation led Hammersley and
Welsh (1965) to set up a theory of subadditive stochastic processes which are now
a fundamental tool in probability and probabilistic combinatorics, see for example
Kingman (1973).

Correlated percolation

In an ideal world one would like to be able to remove the restriction that the
random component associated with an edge in each of the above models was
independent of all other edges. This is the subject of correlated percolation which
is now a topic of considerable interest in the physical literature but for which
(understandably) there are very few theoretical results.

For comprehensive rigorous accounts of what is now a huge area of research in
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statistical physics we refer to the monographs of Smythe and Wierman (1978),
Kesten (1982) and Grimmett (1989).

4. Enumeration and related problems

Several fundamental problems in statistical physics and related areas of the
natural sciences reduce to enumerating structures of different types. In this
section we discuss a few of the most studied and basic problems of this nature.

Animals or polyominoes

Consider the 2-dimensional square lattice %, with origin 0. An animal or
polyomino of n cells is a connected subgraph of £, containing 0 and having »
vertices. Let a(n) denote the number of distinct animals having n cells. Then
clearly a(1) =1, a(2) = 4 and counting the 3-celled animal types illustrated in fig.
4.1, we see a(3)=18.

The fundamental problem which is now at least 30 years old is to determine the
form of a(n) for the different lattices. However, as with percolation theory,
rigorous exact results about animals are pretty scarce.

First we will point out the connection between animals and percolation theory.
Suppose that we could determine a(z, b), the number of animals with n cells and
b boundary cells. (As the name suggests a cell is a boundary cell of a specific
animal A if it is a vertex of £ which is not in A but is adjacent to a vertex of A.)
Then from a(n, b) it is not difficult to compute the average cluster size in a
percolation model. From this we get good bounds for the critical probability.

Other applications of animals are to growth problems and as models of
branched polymers with excluded volume.

Now let us turn to some basic results about a(n) for the square lattice. A
straightforward counting argument gives

2" <a(n)<(6.25)". (4.1)
It is also easy to prove that, for any positive integers m, 1, L
a(m + n) = a(m)a(n) . (4.2)

Proof: Each animal has a top right corner and a bottom left corner. By “sticking”

—
o] | E LT ] [
(4) (4) (4)

(2) [ ]
o | (a)
Figure 4.1.

|
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the bottom left corner of an n-celled animal to the top right corner of an m-celled
animal we obtain an (m + n)-celled animal.

By the basic property of subadditive functions, (4.1) and (4.2) give the
fundamental result which holds (by analogous argument) for any regular lattice.

Theorem 4.3. For any lattice £ there exists a constant a(£) such that if a(n)
denotes the number of n-celled animals of £ then

lim a(n)'"" =sup [a(n)]'" = a(£) .

Determining the limiting constant a(£) exactly seems to be very difficult and
even the best known bounds are not very tight. For example, in the most studied
case of the square lattice, concatenation methods coupled with computer counts
give the best known lower bound of 3.79 for a(%,) while the best upper bound
gives a(Z,) < 4.65. There are reasons for believing that a(%) is just above 4 in the
case of this lattice.

For more details on these methods, the corresponding results for other lattices
and a discussion of related problems we refer to a recent excellent review of
Whittington and Soteros (1990).

Self-avoiding walks and polygons

Another counting problem closely connected with percolation theory and similar
in spirit to the animal problem of the previous section is the following. A
self-avoiding walk of length n on a lattice £ is a path of n edges which has one
endpoint at the origin. If f(r) denotes the number of such self-avoiding walks, on
the square lattice then clearly f(1) =4, f(2) =12 and in general it is easy to show
that

"< fny<43""". (4.4)
Using the submultiplicative property

fm + n) < flm)f(n)

and a similar bound to (4.4) for a general lattice, leads to the fundamental result.

- Theorem 4.5. For any lattice &, there exists a constant p = u(Z£) (known as the
connective constant) such that if f,(n) denotes the number of self-avoiding walks of
length n on < then

lim fy(n)"" =inf[ f,(m)]"" = p(£L) .

n—ow

Determining p exactly for any lattice except the regular tree has been a much
studied problem since it was first posed in 1957. Even good bounds seem to be
difficult to obtain. For example, for the 2-dimensional square lattice, the best
bounds so far known are 2.57 s u <2.73.
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A closely related quantity is g.(n) which counts the number of self-avoiding
polygons of n steps. Clearly g.(n) <fg(n) but Hammersley (1961b) proved that
for any lattice with connective constant u(%),

lim g,(n)'"" = u(£)

There are physical reasons (based on renormalisation arguments) and some
numerical evidence which support the intriguing conjecture that there exist
constants o and B such that

fe)~np",  gu(n)~nfu”

and that «, B are dimensional invariants, in other words they only depend on the
dimension of the lattice. Since Kesten (1963), there has been a great deal of
rigorous mathematical progress notably by Hara and Slade (1992). For more
details see Madras and Slade (1993).

The ice problem

As its name suggests the “ice problem” originates in the statistical physics
associated with models used to calculate the residual entropy of “square ice”. In
its most general form an ice model specifies a set of allowable configurations at
each vertex. All allowable configurations are of equal thermodynamic weight and
the problem reduces to calculating the partition function, that is, enumerating the
number of allowable configurations.

Probably the most studied ice problem is the following. Given any 4-regular
graph G count the number of orientations  of G which have the property that at
each vertex there are exactly two inward and two outward pointing edges.

Another way of looking at this enumeration problem is as follows. Fix an
orientation w, of G. To each directed edge of G assign either a +1 or a —~1 in
such a way that the net flow into each vertex of G is zero. In other words, the ice
problem on G is exactly the problem of counting nowhere-zero flows mod 3 in G,
discussed in chapters 4 (Appendix) and 9. But this is exactly the evaluation of the
Tutte polynomial of G at the point (0, —2), or the rank polynomial of G at
(-1, =3).

Equivalently, by using the fact that when G is a planar graph, and G* is its -~

planar dual, 7(G; x, y) equals T(G*; y, x) and from the relation between Tutte
polynomials and chromatic polynomials we see the following.

Proposition 4.6. The ice problem on a 4-regular planar graph G is equivalent to
counting 3-colourings of the dual graph.

A remarkable result of Lieb (1967) is that if Z(m, n) denotes the ice partition
function (that is the number of ice orientations) on the m X n portion of the
square lattice, then

Jim_ [Z0n, )]V = (4)"7. (4.7)
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Percus (1971) gives a very complete and clear account of the different approaches
to the ice problem culminating in a proof of (4.7) by the transfer matrix method
to be described in section 3. -

As far as statistical physics is concerned, the problems of most interest are
when G is a 3-dimensional lattice. As far as mathematical solution is concerned,
only a few 2-dimensional ice models have been solved, a comprehensive account
of these is given in Baxter (1982).

The monomer—dimer problem

Let p(G, k) denote the number of k-matchings in. the graph G, with the
understanding that p(G, 0) = 1. Define the polynomial Q(G, z) by

Q(G,2)= 2 p(G, k)z"~*.
k=0
This is a modified form of the matchings polynomial, which is discussed in section
5 of chapter 31 (Godsil). It can also be viewed as the partition function of a
physical system.

Consider a collection of sites on the surfaces of a metallic crystal. The surface is
exposed to a gas consisting of monomers and dimers, e.g., hydrogen at a high
temperature. Each site on the surface is occupied, either by a monomer or by one
of the two ends of a dimer. Of course a pair of sites can be occupied by a dimer
only if they are neighbours. The state of the system can be represented by a
matching in a graph G. This has the crystal sites as its vertices, with two sites
adjacent if and only if they can be occupied by the same dimer. Those pairs of
sites occupied by dimers determine a matching. Hence the system is completely
described by the graph G, the matching and the temperature. (The latter
determines the energy gained by filling the crystal sites with monomers and
dimers.)

The physical question is whether this system will undergo a phase transition as
the temperature varies. In fact it does not, except possibly when there are no
monomers. This was proved by Heilmann and Lieb (1972). They showed that all
zeros of Q(G, z) have zero real part, and their absolute value is bounded above

)y 2VA — 1, where A is the maximum valency of a vertex in G. From these facts
they eventually deduce the absence of a phase transition. The matchings
polynomial has a number of interesting combinatorial properties; see chapter 3
(Pulleyblank).

Hard hexagons

We work on the triangular lattice. Consider a system where some of the vertices
of this lattice are covered by hexagons, with each hexagon covering a central
vertex and its six neighbours. Two adjacent vertices cannot be both at the centre
of a hexagon. We can describe the state o of the system by assigning a weight 1 to
each vertex at the centre of a hexagon, and 0 to the remaining vertices. Thus we
may view o as a Ol-vector indexed by the vertices of the lattice. The partition
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function is

z=3 o I (1= a0,
o ijEE

where the product is over all edges of the lattice, and the exponent of z is just the
number of hexagons. Baxter establishes an invariance property of this partition
function using the star—triangle relation. From this he then deduces the free
energy. One surprise is an intimate connection with the Rogers—Ramanujan
identities. We direct the reader to Andrews (1982) and Andrews et al. (1984) for
more information about this relationship.

5. Transfer matrices

Many of the combinatorial problems arlsing in statistical physics can be reduced
to enumeration problems, and these in turn can sometimes be solved by the
method of transfer matrices, which we now discuss.

We begin with the problem of determining the number of ways an m Xn
chessboard can be covered with dominoes. Suppose that our board has been
covered with dominoes. The given covering can be encoded by assigning one of
four states {U,D, L, R} to each square of the board. The state of a square
determines where the other half of the domino covering the square lies. Thus, if
the other half of the domino covering a square is above it, then the square has
state U. If it is below we use D, and if it is to the left or the right we use L or R
respectively. It should be clear that many assignments of states to squares do not
correspond to coverings, but every covering gives rise to a unique assignment of
states to squares.

Now we take our coding a step further. View our chessboard as a sequence of »
columns. Once a covering is given, the state of the vertices in a given column can
be represented by a vector, with states as entries. (Of course, the set of possible
vectors for the first and last columns will be a subset of the possible vectors for an
interior column.) Thus our covering can now be encoded as a sequence

Oy, 0y |

where o, is the state vector for the ith column.

Let 3 be the set of all possible state vectors for a column. Construct a graph
G = G(3) with vertex set 3, and with two vertices o and ¢’ adjacent if there is a
covering such that there are consecutive columns with states o and o’. The states
that can be taken by the first column form a subset, S say, of V(G) and the states
available to the last column form a subset F, say. The number of possible
coverings of our m X n chessboard can now be shown to equal the number of
walks of length  in G which start at a vertex in S and finish at a vertex in F. (Our
terminology here follows that used in section 5 of chapter 31 by Godsil).

If A is the adjacency matrix of G and we denote the characteristic vectors of
the sets S and F by x(S) and x(F) respectively then the required number of walks
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is
x(S) A"x(F) .

Using the theory of the spectral decomposition of a symmetric matrix we may
write

A= 0"Z,,
/]

where 6 ranges over the distinct eigenvalues of A and Z, is the matrix
representing orthogonal projection onto the eigenspace associated to 6. Denote
the largest eigenvalue of A by 8,. Then by the Perron—Frobenius theory we know
that if G is connected then 6, is simple, and for any other eigenvalue 0, we have
|6| <6,. It follows that

|

HOLEHE )20 )

and hence that
(x(S)"A"x(F))"""— 6, (5.1)

as n tends to infinity.

The number of domino coverings of our chessboard can be expressed as the
number of perfect matchings in a graph, H say. The vertices of H are the squares
of the chessboard, and two squares are adjacent in H if and only if they are
adjacent on the board. Any domino covering gives a perfect matching in the
graph. A generalisation of the original problem can now be obtained as follows.
Assign a weight to each edge of H and define the weight of a matching to be the
product of the weights of the edges it uses. Instead of simply computing the
number of perfect matchings in H, we may determine the sum of the weights of
all perfect matchings. The weights we use may be variables, in which case the sum
will be a polynomial. (For example we might assign a weight a to each edge of H
joining two squares in the same column of the board, and a weight 8 to the
remaining edges. The sum will then be a homogeneous polynomial in « and B.)

In particular, the partition function for the Ising problem itself can be expressed
in terms of the number of perfect matchings in an edge-weighted planar graph.
(See Appendix E in Thompson 1972.) If we then seek to determine this partition
function by a transfer matrix argument, we will find it expressed in the form

Z=u"A"v

for a suitable matrix A and vectors # and v. A statistical physicist would then be
concerned with properties of the limit

(uTAnv)lln

as n tends to infinity. From the discussion above of the domino problem, we may
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see that this quantity may be expressed as the largest eigenvalue of a symmetric
matrix. Alternatively, we could use the generating function

> A"WTA™ ;

n=0
the largest eigenvalue of A is, in general, the reciprocal of the radius of
convergence of this power series.

To close this section, we remark that a solution to the chessboard problem will
be found in section 4 of Lovasz (1979). (However, it uses Pfaffians rather than
transfer matrices. Pfaffians are discussed briefly in section 5 of chapter 31 by
Godsil.) A more leisurely introduction to the method of transfer matrices may be
found in Percus (1971) and Stanley (1986). A number of applications of this
method can be found in Baxter (1982).

6. Duality, stars and triangles

In this section we shall illustrate by example a technique which has been
frequently used to resolve (combinatorial) problems of physics. The partition
function for the Ising model has two interesting invariance properties. First, if G
is a plane graph with dual G* then their rank polynomials are related by

R(G;x, y)=R(G*; y,x).
A proof of this will be found in chapter 9 by Welsh. If

2+1 1/2
=51
u =1
then
2 2
R(G; ,A2—1)=R(G; -1, )=R(G*; , 2—1).
-1 M ,u,z—l Mz—l 1

Recalling the relation of the rank polynomial to the partition function describe@
in section 2, this leads to a relation between the partition function for the Ising
model on the graph G, expressed in terms of A, and the partition function of G*,
expressed in terms of [(u” + 1)/(x® — 1)]'2. If G is the infinite square lattice then
G* is isomorphic to G and the duality relation becomes an invariance condition.
Physically this can be viewed as a relation between the values of the partition
function at high temperatures and low temperatures. For more details, see
Thompson (1972) or Baxter (1982).

For our next invariance property, we need to consider a generalisation of the
Ising model, with partition function

Z(G) = EU: exp[— > .ij"'fo}] :

JEE(G)
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Recall from section 2 that in the case of uniform interactions'8 = J/kT, here we
allow all the interactions J to vary to that 8 also varies.

By way of example, if G is the square lattice we might have 8, = K for all
horizontal edges and B; = L for all vertical edges. If e =ij and A, = exp B; then
we find in place of (2.6) that

Z(G)= (A, — A;DZ(Gle) + A]'Z(G\e) .

Consider the star S and triangle 7, with weights as indicated in fig. 6.1.

Suppose that in both cases the vertices 1, 2 and 3 are assigned states o, o, and
o;. Suppose that the vertices 1, 2 and 3 in S are part of some larger graph G.
Then Z(G) is a sum over all possible state assignments of its vertices. For a given
state, the corresponding term in the sum is the product of a contribution from the
2dges of §, and one from the edges not in S. The contribution from § is

explo,(L,0y + Lo, + L;0,)] .

We divide the possible states into pairs, where members of the same pair differ
only in the value of ;. Thus we may write Z(G) in the form

20‘, 2 cosh(L,o, + L,o, + L,a,)f(0) (6.1)

where f(o) is the contribution of the edges not in S, given the values of ¢ on the
vertices of G\0.

Now suppose that we alter G by deleting the vertex 0 and the three edges of S,
replacing them with the three edges of T. The new graph, which we denote by G’,
thus has one less vertex than G. Its partition function can be written in the form

20‘, exp(K, 0,0, + K,0,0, + K,0,0,)f(0) . (6.2)

Then the surprise is, that given L,, L, and L,, it is possible to choose K, K, and
K, so that

2cosh(L,o, + L0, + Lyoy) = Rexp(K, 0,0, + K,0,0, + K;0,0;)

Ko K

Figure 6.1.
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and then Z(G) = RZ(G"). To achieve this we need
2cosh(L, + L, + L;)=Rexp(K, + K, + K;) ,
2cosh(—L, + L, + Ly)=Rexp(K, — K, — K3),
2cosh(L, — L, + L,) = Rexp(—K, + K, — K3) ,
2cosh(L, + L, — L,)=Rexp(—K, - K, + K;) .

Denote the four terms on the left by ¢, ¢,, ¢, and c¢; respectively. Then
multiplying these four equations together yields that

R*=cc,c,c4
is a necessary condition. Further manipulations yield

sinh(2K,) sigh(ZLl) = sinh(2K,) sinh(2L,) = sinh(2K;) sinh(2L,) = d -t
where |

g1 sinh(2L,) sinh(2L,) sinh(2L,)
2ce,c,¢5) "

b

as a second necessary condition. If the values of R and K; are as given by the last
three equations then Z(G)= RZ(G'). (For help with the missing details, see
chapter 6 of Baxter 1982.)

If G is the hexagonal lattice then it can be transformed into a triangular lattice
by repeatedly replacing stars by triangles. (The hexagonal lattice is bipartite;
replace all the stars centered on vertices in one of the two colour classes.) This
gives us a relation between an Ising model on the hexagonal lattice and one on
the triangular lattice. We obtain a second, independent, relation by recognlsing
that the hexagonal lattice is the planar dual of the triangular lattice. Composing
these relations yields an expression for the partition function of an Ising model at
low temperature in terms of a partition function at high temperature, for both the
triangular and hexagonal lattices. This is an analogue of the relation obtained for
the square lattice above. (Again, see Baxter 1982 for more detail.)

Other applications of this star—triangle transformation, which is really a special,_ )
instance of planar duality theory have been in percolation theory, to the Potts
model and to the six and eight vertex ice model. More details may be found in
Temperley (1981).

7. Ground states of spin glasses

We will now turn to a different application of combinatorics in statistical physics
and outline how some questions about spin glasses can be answered by employing
the mathematical machinery of combinatorial optimization. We concentratc on
showing that the problem of determining ground states of spin glasses can be
viewed as a so-called maximum cut problem in graphs.
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The study of order—disorder phenomena is a flourishing branch in today’s
physics. One of the most successful attempts to understand disorderly systems has
been the study of spin glasses. They occupy a central position in this area. The
composition of a spin glass is unremarkable — perhaps a few iron atoms scattered
in a lattice of copper atoms-— but its magnetic properties are confoundedly
complicated and sometimes tantalizingly unpredictable. “Spin’ is the quantum-
mechanical spin from which magnetic effects arise; “glass” refers to the disorder
in the orientations and interactions of the spins. For an introduction to the
general theory of spin glass models see Mezard et al. (1987).

Physicists have developed a number of theories to model spin glasses and
explain their behaviour. Some of these theories predict contradicting phenomena.
These phenomena occur in situations which are hard to realize experimentally. In
order to test the theories and guide the design of experiments, researchers have
designed computer models to simulate the behaviour of spin glasses and then
observe which phenomena occur. Some aspects studied in these models lead to
optimization problems. The papers by Toulouse (1977), Bieche et al. (1980), and
Barahona et al. (1982) have pioneered the study of spin glasses from an
optimization point of view and pointed out the close links of the ground state
problem to interesting models in combinatorial optimization.

A spin glass is an alloy of magnetic impurities diluted in a non-magnetic
material. Alloys that show spin glass behaviour are, for instance, CuMn; the
metallic crystal AuFe; the insulator EuSrS; the amorphous metal GdAl. One
characteristic of spin glasses is a peak in magnetic susceptibility at a certain
temperature. This peak indicates a phase transition. Another phase transition
may take place at very low temperature. However, it is an open question at
present whether, or under what conditions on the spin glass, such a phase
transition occurs, and what order phenomena show up at low temperature.

We will now present a mathematical model of spin glasses. We assume a given
spin glass that contains » magnetic impurities (atoms). Each magnetic atom i has
a magnetic orientation (spin) which is represented by a 3-dimensional unit-length
vector §;. Between each pair i, j of magnetic atoms there is an interaction J;; that
depends on the non-magnetic material and on the distance r,; between the atoms.
Several proposals in the literature model this interaction. One common feature of
many of these models is that the absolute value of the interaction decreases
rapidly with distance and that small changes of distance may result in a change of
the sign of the interaction. One example of such an interaction function which is
used frequently is

cos(Dr;;)
B 3r3 ?

i

Jijz‘I(rij)zA

where A, B, and D are material-dependent constants. In another model some
number J is chosen and the interactions have to satisfy

J,E{0,+J,-J} .
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If atoms i and j have spins §; and §;, the energy interaction between i and j is
given by

Hy;=71;5:-5;

where S, - S, denotes the Euclidean inner product. Given a spin configuration or
state, o, the energy of the whole system is given by the Hamiltonian

n

n—1 n
H(o)=—2, J,S S, —h2 8 F,
i=1

=1 j=i+1
where a unit length vector F €R’ represents the orientation of an exterior
magnetic field and 4 represents the strength of this field.

The study of this Hamiltonian is a major issue in statistical physics. Its difficulty
has led to considering various simplifications. One such simplification is to replace
the 3-dimensional vectors S; and the magnetic field F by 1-dimensional vectors g,
respectively f, with values +1 or —1 (called “Ising spin”), meaning magnetic
north pole “up” and magnetic north pole “down”. Such a representation is called
the Ising model of spin glasses, see section 2 of this chapter for a general
introduction to this model and some of its properties. There are, in fact,
substances which show an up/down behaviour and for which the Ising model
seems to be the “correct” model and not just a simplification.

Models that consider interactions between all pairs of impurities were intro-
duced by Sherrington and Kirkpatrick and are called long range models. A
number of models consider only interactions between “close” impurities (so-
called nearest neighbour interactions), and set to zero the interactions between
impurities that are far apart. These models, introduced by Edwards and Ander-
son, are called short range models. Many physicists consider short range models
more realistic (see Young 1984). Moreover, a number of substances show short
range interactions only: next-neighbour and second-next-neighbour, say.

It is customary to make further simplifications and to consider the spins
regularly distributed, say on a 2- or 3-dimensional grid (that is square or cubic
lattice). In a typical short range model of such a given structure, interactions are
non-zero only along edges of the grid, so, for instance, in two-space, an impurity

interacts only with (at most) four other impurities, its neighbours in the grid -

graph. Two grid models of this type have been studied intensively: the Gaussian
model, where the interactions are chosen from a Gaussian distribution, and the
+ J-model, where the interactions between impurities take only the values +J or
~J,J a fixed positive number, according to some probability distribution. In a
real spin glass (an alloy), the magnetic impurities are randomly distributed. Note
that in the models just introduced, the spins are regularly distributed in a grid, but
the interaction values are considered random.

The partition function of the Ising model has been introduced in section 2. For
our purposes, it is useful to write it in the following way. Let 2 be the set of all
possible configurations of Ising spins on a grid, say. So |2} =2", if there are n
spins. Then the behaviour of the system at temperature T is believed to be
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described by the magnetic partition function

z2(1)= 3 exp( ),

cEN

where k is the Boltzmann constant. As mentioned in section 2, analytic
expressions of the partition function, in general, are not known.

At 0°K, the spin glass system attains a minimum energy configuration. Such a
configuration is called a ground state. A ground state can be found by minimizing
the Hamiltonian associated with the system. We will now present the reduction of
the problem of finding a minimum energy spin configuration in the Ising model to
a max-cut problem in graphs.

Suppose we have magnetic impurities 1,2,...,n and an exterior magnetic
field, 0. We set V={0,1,...,n} and consider V as the vertex set of a graph
G = (V, E). For a pair i, j of impurities, G contains an edge ij if the interaction J,
between i and j is non-zero. An edge 0i links every impurity i, 1 <i=<wn, to the
magnetic field 0. Let us call G the interaction graph of the spin system. An Ising
spin g; € {—1, +1} is associated with each impurity. The Ising spin g, of the
exterior magnetic field can be set to +1 without loss of generality. Let & be the
strength of the magnetic field and set J,,=h fori=1,...,n, then we can write
the Hamiltonian of this model as a quadratic function in *1-variables in the
following way:

n
H(o)=- 2 Jo0—h 2 0,= =2 J,00,.
HEE i=1 ijEE
i,j>0
Each spin configuration o corresponds to a partition of V into V¥ and V', where
Vi={ieV|o,=+1}and V" ={i €V |0,=—1}. So we can write the energy of
the state ¢ in the form

H(o)= - 2 0,0, — 2 J;0,0; — 2 J,j0,0;
HEEW ™) {fEEWV ™) jES(V+)
=~ 2 By — 2 Ty + 2 T -
JEEWV ™) JEE(V ™) ijes(vty

Recall that, for each subset W of V, E(W)={ijEE|i, JEW)} and 8(W) = {jj €
E|i€EW, jEV\W} and that the edge sets of type 8(W) are called cuts. Setting

C=Y,ecr J;» we see that

H@)+C=2 2 I,

HjE8(V)

and defining c¢; = —J,; for all §j € E, we find that the problem of minimizing H is
equivalent to maximizing

c@V ™)) = ) Cij

HE8(V )
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over all V" CV. The problem of finding, given a graph with edge weights, a cut
8(W) such that the sum of weights of the edges of (W) is as large as possible is
known as the max-cut problem. Thus finding a ground state in the Ising model of
a spin glass is equivalent to finding an optimum solution of the corresponding
max-cut problem.

To determine ground states of spin glasses or, equivalently, cuts of maximum
weight, physicists have introduced the so-called simulated annealing method. This
is an algorithmic analogue of standard techniques in the material sciences where,
for instance, large (and perfect) crystals are grown by using a careful scheme of
cooling and heating the material to temperatures very close below and above the
critical temperature where the liquid freezes into an ordered array of atoms, the
crystal. This method was formulated as a general heuristic for the solution of
arbitrary combinatorial optimization problems, see, for example, Kirkpatrick et
al. (1983), and usually turned out to be a reasonable, though slow, approximation
algorithm, see Johnson et al. (1989, 1991).

It soon became clear that, by simulated annealing, states of low energy can be
reached but that there is no guarantee or proof that a true ground state can be
found. Thus more sophisticated combinatorial methods came into play that we
briefly want to mention. More detailed and thorough surveys of these aspects with
large lists of references are Barahona et al. (1988), Grotschel et al. (1987).

From the complexity point of view (cf. chapter 29 by Shmoys and Tardos) it
turned out that the max-cut problem is NP-hard for general graphs, and so the
spin glass problem is. But much more restricted spin systems turned out to lead to
hard optimization models. For instance, finding a ground state is NP-hard even if
the interaction graph of the spin system is a 3-dimensional grid, or a 3-dimension-
al grid with just two layers, or even a planar grid with an external magnetic field,
provided the interactions are taken from {—J,0, J}.

On the other hand, if the interaction graph of the spin system is a planar graph
and there is no external field then using the duality theory of planar graphs one
can transform the associated max-cut problem to a so-called Chinese posiman
problem. This problem can be solved by the algorithm of Edmonds and Johnson
(1973) which combines a series of shortest path calculations and an application of

the matching algorithm in an ingenious way. Barahona (1983) extended this to -
graphs not contractible to the complete graph K. Using the Edmonds—Johnson |

algorithm, ground states of large planar spin systems can (and have been
frequently) calculated easily.

The most interesting open questions about spin glasses occur, however, in three
dimensions or when an external magnetic field is involved. To solve such
(NP-hard) instances various enumeration techniques (e.g., the transfer matrix
method) have been designed. The most successful approach seems to be the use
of cutting plane algorithms (cf. chapter 37) that are based on an intensive study of
the so-called cut polytope. This approach is called polyhedral combinatorics and is
explained in chapter 30. With these linear programming based cutting plane
algorithms, spin systems in three dimensions or two dimensions with magnetic
field can be treated that have well over thousand spins. Algorithms of this type
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terminate with an optimality guarantee, that is, true ground states can be found;
and they have further desirable features. But, of course, no polynomial running
time guarantee can be given. For more information, see Barahona et al. (1988)
and Groétschel et al. (1987), in particular, for a list of open problems in physics
that may reach a better level of understanding by a systematic and intensive use of
the combinatorial methods outlined above. A collection of papers and surveys on
various aspects of spin glasses (including the ones discussed here) is Van Hemmen
and Morgenstern (1987).

8. Conclusion

This has been just a glimpse of a fascinating but very difficult area of research.
For example there is no mention of the important topic of cluster expansions.
Details of this and many other links between combinatorics and physics may be
found in the articles of Kasteleyn (1967) and Temperley (1979a). Almost all the
problems discussed are probably hard in the sense of computational complexity,
except for the very restricted cases. The role of planarity appears to be significant
in making a problem easier, see for example Kasteleyn (1961). For more on the
complexity of these physical problems see the monograph of Welsh (1993).

As far as solution is concerned, apart from the approach suggested in section 7,
the most significant theoretical advance would appear to be the results of Jerrum
and Sinclair (1993) that the monomer—dimer problem and the ferromagnetic
version of the Ising model have a fully polynomial randomised approximation
scheme. Put more loosely, this says that there are fast (in the sense of polynomial
time) good Monte Carlo methods for these problems. Whether such schemes exist
for the other problems discussed in the chapter is an important but as yet
unanswered question.
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