The Monotone 2-Matching Polytope on a Complete Graph

Martin Grotschel, Bonn

Abstract: Based on J. Edmonds's [z] complete linear characterization of the
conver hull of all incidence vectors of 9-matchings in a graph we show
which of the given inequalities are essential t.e. define facets of the
polyhedron under consideration in the case of a complete graph.

1. Introduction and Notation

One of the main streamlines of current research in integer programming deals
with the problem of finding inequalities in order to state integer programs
as linear programs i.e. to replace the discreteness conditions by linear
inequalities (see [1], [2], [3], [4], [5]. [6], [7]). The results of these
efforts have been extremely helpful in order to devise good (i.e. polynomial)
algorithms for some combinatorial optimization problems and to prove their
correctness, furthermore, they gave rise to a number of improved cutting-plane
and branch-and-bound algorithms for hard integer programming problems.

In this note we consider the 2-matching problem the associated polyhedron

of which was completely characterized by J. Edmonds [l]. Assuming that the
underlying graph is complete we show which of the inequalities found are

facets of this polyhedron.

A graph G = [V,E] consists of a finite, nonempty set of nodes V and a
finite set of edges E. Each edge e ¢ E 1is a two-element subset of V.
Throughout this paper n is the number of nodes (n =|Vl) and m is the
number of edges (m =|E|). A graph G =[v,E] is called complete if E 1is the
set of all two-element subsets of V. The complete graph on n nodes is

denoted by Kn =[V,E].

A subset M of edges inma graph G =[V,E] is called a 2-matching if each
node veV 1is contained in at most two edges of M.

If Vs v v_ are nodes such that {vi’vi+l} € E, i=1,...,8-1, then we

g3 eaVg

call the set of edges {{vi,vi+l

[Vl’v2"'°’vs]' If additionally {vl,vs}aE then [Vl,v2,...,vS] u{{vl,vs}} is
called a cycle and is denoted by <vl,v2,...,vs>. The number of edges of a
chain (cycle) is called the length of the chain (cycle). A cycle is called

}|i=1,...,s-1} a chain and denote it by
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pamiltonian if it has length n. w(W):={eeE||enW|= 1}, we write w(v)

instead of w({v}); E(W):={ecE|ecW}; N(v):={weV|{v,w} eE}.

If G = [V,E] is a graph we associate to each edge €€ E a component X,

of a vector xr-;]Rm-, for FcE the vector EFeIR with
1 if eeF
0 if edfF

is called the incidence vector of TF.

An inequality ax<a is called valid with respect to a polytope PcR"

if Pe {xR" lax < ao}. A subset FcP is_éalled a face of the polytope P

if there exist \-ralid :i.nequalities a'x < a; i=1,...,k such that
F=Pn{xeR" lalx = a';" for i=1,...,k}. A face FecP is called a facet of

P if dim F = dim P - 1, in other words F is a facet of P if T contains

dim P affinely independent vectors.

For every polytope P there exists a system of inequalities Ax < b such
that P = {xeR" |Ax < b}. If the polytope P is fully-dimensional, a minimal
system of inequalities to describe P can be found as follows: Characterize
all facets F of P and for each facet F find one valid inequality

an < az such that F = Pn {xian = ai}. The system of these inequalities
satisfies P = {xellﬁ an < az for all facets F} and is non-redundant i.e.
if we drop any of these inequalities then the resulting system of inequalities
does not describe P. If P is fully-dimensional then for each facet F

of P there exists a unique (up to a constant factor) valid inequality

ax < a_ such that F=P n{x[ax=ao}; Using standard terminology we call this

inequality a facet.

2. The monotone 2-matching polytope

The 2-matching problem can be stated as follows:

Given a graph G = [v,E] and weights e, € R for all e € E.

Find a 2-matching M in G such that L, ¢, is maximal.
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Via incidence vectors of 2-matchings a O-l-polytope can be associated to

this problem:

-~

QOM (G) : = conv{xMeﬂ¥m]xM is the incidence vector of a

2-matching M in G}.

As every subset of a 2-matching is a 2-matching this polytope has the

monotonicity property, that is if x is a vertex of azM(G) and y is a
0-1 Yector such that y < x then y 1is a vertex of QQM(G)' Every vertex
of QQM(G) is in one-to-one correspondence to a 2-matching in G and vice

versa. Hence the 2-matching problem can be solved via the linear program

max cx
X € Q2M(G)-

The polytope 52M(G) is called the monotone 2-matching polytope on G.

If G 1is the complete graph Kn we denote the monotone 2-matching polytope
by égM'

Although theoretical results imply that for every polytope there exists a
system of inequalities which completely and non-redundantly describes this
polytope , such a system is in general rot known explicitly for polytopes
(e.g. associated to combinatorial optimization problems) which are defined

as the convex hull of a finite set of points. However for the monotone
2-matching polytope on a graph G a complete system of inequalities is

available.
As all vertices of 62M(G) are 0-1 vectors it is obvious that the
inequalities

(1) X, 2 0 Y ecE,

(2) x < 1 YVececE
e =

are valid with respect to Q2M(G). Given a 2-matching M in G then by
definition every node is contained in at most two edges of M, hence the

inequalities

(3) T x, 2 2 VveV
eew(v)

. 1---».-:'-::—‘“:«—*
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are valid with respect to QQM(G). The polytope defined by the inequalities
(1), (2), (3) contains 62M(G) but in general it is not equal to 62M(G).
A new system of inequditiesvalid with respect to 62H(G) was defined by

J. Edmonds [1] .

Proposition 1

If 6=[V,E] is a graph and WecV,Zc w(W), |2| odd then

(4) Z:z:+zxei|Wl+-|—z—l——1—

ecE(W) © ecZ 2

18 a valid inequality with respect to éZM(G)' 1]

The inequalities (4) defined in Proposition 1 are called 2-matching constraints.

A deep result of J. Edmonds is

Theorem 2 [1]

Given a graph G = [V,E). A complete linear characterization of the
monotone 2-matching polytope @2M{G) i8 given by the following
inequalities

(1) z,>0 YeeE

(2) =, <1 Yeek
(3) & x, <2 VYoveV
eew(v)
(4) % z, + 5 z, < |wl]+ _I%L:_l_ v We V,
ecE(W) ee’ Zew(W), |z| odd.l

Which of these inequalities are facets of 62M(G) and which are inessential

will be shown in the following for the case of a complete graph Kn'

3. Trivial facets and redundant 2-matching inequalities

In order to decide whether a valid inequality is a facet or not it is
necessary to know the dimension of the polytope under consideration. The

empty set and all sets containing only one edge are 2-matchings hence
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Q2M(G) contains the null-vector and all unit-vectors, i.e. Q2M(G)

contains m+l affinely independent vectors. This implies

Proposition 3

&m éZM(G) = |E| =m 1]

It is easy to see which of the inequalities (1), (2), (3) are facets of

Q2M(G)'

Proposition 4

Let G =[V,E ] be a graph, then the inequalities

(1) z, >0 Vee E
(2) =, <1 Vec E

are facets of QZM(G).

Proof

Let eg E.

a) The nullvector and the incidence vectors of the 2-matchings {f} for all
f e E- {e} satisfy X, 2 0 with equality. Hence 52M(G) n{xlxe = 0}
contains m affinely independent vectors, which proves that x, >0 is
a facet of QzM(G)'

b) The incidence vectors of {e} and {e,f} for all feE-{e} are
2-matchings, they satisfy Xy <1 ‘with equality, and they are affinely

independent. [}

Proposition 5

Let G =[V,E] be a graph and wveV.

(3) I z, <2
esw(v)

is @ facet of Q,,(G) if and only if |uw(v)|> 3.
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Proof

a) If |u(v)| < 1 then (3) is obviously not even a supporting hyperplane,
if w(v) = {e,f} then every 2-matching the incidence vector of which

satisfies (3) with equality must contain e and £f. Hence

62M(G)n {x! £ x =2} is contained in the two hyperplanes X, = 1,
eep(Vv)
Xe = 1 therefore it cannot be a facet.

b) If |m(v)L1 3 take three edges e, ,e,,e; € w(v). The incidence vectors
of the following m 2-matchings satisfy inequality (3) with equality and
are linearly (hence affinely) independent:

{el,e2}, {e2,e3}, {el,es} 5 {el,e} for all eew(v) - Eel,ez,es}; and
{el,e2,f} for all feE-w(v), thus (3) is a facet of Q2M(G)‘ 0

It may occur that for two different nodes v,weV the inequalities (3)
define the same facet of 62M(G) namely if v is the only neighbour of

w and vice versa. As (|w(v)|=)|w(w)|> 3 has to be satisfied this only

happens if we allow parallel edges in a graph.

If P is a fully-dimensional polytope and ax 2, is valid with respect to
P and if there exist other valid inequalities bx < bo and cx < ¢/ such
that either a < b, a, Z_bo (in this case we call ax <a dominated)

cr a<b+ec, a, 3-bo + c, then obviously ax < a, is redundant and is not
a facet of P. We are going to check which of the 2-matching constraints

are redundant with respect to QQM(G)'

The inequalities (2) and (3) (in some cases) are formally contained in the
2-matching constraints. In order to have a precise terminology we exclude

them from the 2-matching constraints.

Lemma 6

A 2-matching conmstraint is redundant with respect to
Qul6) if W< 2.

Proof

a) Let |W|= 1. If |Z|= 1 then the 2-matching inequality is an inequality
of type (2). If |Z]|> 3 it is dominated by (or equal to) an inequality

of type (3).
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b) Let |W|={v,w}. Let |2|= 1, e.g. Z = {{u,v}}. If {v,w} € E then

the 2-matching constraint is Xt Xv s < 2, hence it is redundant as

o < <1l and Xow < 1 are facets by Proposition 4.

If {v,w} ¢ E the assertion is obvious.

If [Z{= 3 then there is a vertex in W which is contained in at least

two of the edges in Z. Let 2 = {f,g,h} and vef, veg then
z X + I xei X x“'xh<2-|»-:l_:iWi*—--lELQ;i = 3.
ecE(wW) ¢ ecZ eew(v) € -
This implies the redundancy of the 2-matching constraint.

If |2{ > 5 then we have

I X *t I x.< I x + I x <24 2 < |W|+ lz]-1

e —
€cE(W) eeZ € ecw(v) © eew(w) 2

hence the 2-matching constraint is redundant. []

Lemma 7

A 2-matehing constraint is redundant with respect to Q ( G)
if [W|=3 and |z|= 1.

Proof

Let W = {u,v,w} , 2 ={{u,z}}. If {v,w} € E then

I X o+ x < I x +x_ <2+1= [W+ 15%:_£ .

eeE(W) © uz esw(u) € W

If {v,w} ¢ E the redundancy of the 2-matching constraint is obvious. []

Lemma 8

A 2-matehing constraint is redundant with respect to Q (G
if there are two edges e,feZ such that enf ¥ 4.

Proof

Let Z = {el,e2,...,e }, and 1N e 3 ¢. Let ve ey ne ., and without
loss of generality v 4 e. 5o 171,00 k-2,

- ...___...,.....~..—,,1
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a) v € W. Defining

W= W= {v}, 2" : =2 -{e ;. e } we obtain
T x + £ x_ < (£ Xx + I x)+ L X
eeE(W) € ez © 7 eeE(W") € eezt © ecw(Vv)
< |w] + 2'2- L 42
wle E22

hence the 2-matching constraint is redundant.

b) v4W. We define W' := Wu{vl}, 2' := 2 - {ek_l, ek}. This gives
L X, + z X, < z X, + I X
ecE(W) eeZ ecE(W') eel!
Z'|- 1
1 4
< Wl
= W o+ _lil.%_l

therefore the 2-matching constraint under consideration is dominated. (]

4. The non—-trivial facets of QZM

We now restrict ourselves to the monotone 2-matching polytope QgM on the
complete graph Kn = [V,E]. In order to find all those 2-matching constraints
that define facets of dgM we know from section 3 that we need to consider

< |Wl+ -Lz—él-i such that

”- . ; )
only those 2-matching constraints eeé(w)xe toeez¥e =

enf =g Ye,feZ and |2| > 3, or [z]= 1 and [W| > 4.

It turns out that in the case of the complete graph this is exactly the class

| v

of facet-defining 2-matching constraints.

Theorem 9

Let n >4, WeV, Zew (W), |Z| odd.

The 2-mateching constraint I x, + 1z, < \w| + -L%:—l
ecE(W) ec?
defines a facet of égM if and only if one of the following

conditions holds:
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(Z) |2] >3 ad enf = g Ve,f e 2;
(22) 2] =1 and |W| > 4.

Proof

"only if": Follows immediately from Lemmas 6, 7 and 8.
llifll:
1) Let ax < a_ be a 2-matching constraint satisfying (i) or (ii), and let
.= B m - An .
H = Q) n{xeR lax = a } be the face of Q,y defined by ax < a.
We show that any hyperplane bx = bo for which Hat:{xenfn]bx = bo} holds,
necessarily satisfies b = aa. This implies b° = aa_ , and hence that the
affine space spanned by H, is {xeﬂﬁn]ax = ao}. Therefeore
dim Ha =m~- 1= dim QEM - 1 which proves that ax < a is a facet of
=7
Q2M'
Without loss of generality let W = {1,2,...,s},
z ={{1,s+1}, {2,s+2},..., {k, s+k}}, where k > 1 is odd.

Let bx = bo be a hyperplane such that Hac:{xeﬂ¥n]bx = bo}=: H , and let

(1) o = b1,s+l

2) Suppose ax:i= ¥ x + Ix < ]W' + JELL;#E =ta_  satisfies
eeE(W) & ez © °

condition (i).

Let M be the 2-matching consisting of the chain [k, k+1,...,s,l] » the
edges {i,i+1} for 1 21 <k-2, i odd, and the edges 2z -{{1,s+1}};
let M' : = (M-{{1,2}}) ¢ {{1,s+1}}. The 2-matching M and M' contain

a

- .. M!
s + E5i edges of E(W)uZ, hence their incidence vectors xM, b4

t
satisfy ax < a with equality. From xM, xM € Ha‘:Hb follows

- _ = ne LMY _ - - -
0 = bo bo = bx bx = b12 bl,s+l = b12 ¢ , hence b12 = a .

This construction can be carried out in a similar way replacing the node

2 by any of the nodes 3,...,k; we cbtain analogously

(2) bi; = a Vie {2,...,k}.

. e A__Q1
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Knowing bli we conclude (using the same construction the other way around)

that

(3) bi’s*i =« Vie{1,...,k} holds.

This information and 2-matchings defined as above lead to
() bijza 1<ic<jc<k.
If s>k we define a 2-matching M" as follows:

Mt o= (M' ~{{1,s}})u{{1,2}} , obviously xM"e H, hence

_ M' Mll _ _ _ B
0 = bx bx = bls b12 = blS o.
We repeat this construction in a similar way firstly for all je{k+l,...,s}

and secondly for all ie{2,...,k} and for all Jje{k+l,...,s} and obtain

(5) bij = o Vie {1,...,k}, Vjelk+ti,...,s}.
If s>kt1 we define M"':= (M' -{{s-1,s}})u{{2,s-1}}, again we have
M"'
X € Hac Hb, and therefore
_ M! MM _ _ _
0 = bx bx = bs-l,s b2,s-l = bs-l,s a .

This construction yields in the same manner
(6) bij = a kt1 <i<j<s.
Summarizing the partial results (1) - (6), we conclude
(7) b, =a a, Vee EW)yZ.

If e ¢ E(W)y2z it is a trivial exercise to find a 2-matching N, such that
1

N' := Nu{e} is a 2-matching and X e H_. e § E(WUZ implies X e H_

4
and thus 0 = be - be = be' Therefore
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(8) b, = 0 = @&a, Ved E(WUZ.

Hence we have shown b = a a which proves the case (i).

3) Suppose condition (ii) is satisfied: k := |z|= 1, and s := |W|> 4.

Every hamiltonian cycle M:=<l,i,,...,1i> in the induced subgraph [W,E(W)]

is a 2-matching and satisfies x € H_. The same is true for every chain

N::[l,s+1,i2,...,is]. Hence

0=b -b =bx"- b = by T Pen T PLi - e
This yields )

(9) blj = o Vie{2,...,8}.

Let M = <i2,is,...,is> be a hamiltonian cycle in [W-{1}, E(W-{11)]

(which does exist because of lw[: 4), M' := Mou{{l,s+1}} is a 2-matching
1 1"
containing |W| edges, therefore XM € Hy- Likewise x~ € H, for
Moo= (M -{{i2,i3}})u{{l,i2}}. Thus we have
\] 14)
0 = bx' - bx" =b, s =Dy i = Dy 5 o
2273 72 2°73

and similarly

(10) bij=°‘ 1<i<jc<k.
(9) and (10) yield

(11) b, =a =aa, Yee E(WuZ.
As in the case 2) it is trivial to show that
b, = 0 =aa Ved E(WUZ.

This completes the proof of (ii) and therefore the whole proof. Q

-
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Edmonds's complete characterization of the monotone 2-matching polytope

(see Theorem 2), Proposition 4 and 5, and Theorem 9 yield

Theorem 10

Let Kn = [v,E] be the complete graph on n nodes, n > 4, and let égM be
the convex hull of all incidence vectors of 2-matchings in K . Then the
following system of inequalities 18 a complete and non-redundant linear
characterization of 5;v

(1) z, 2 0 VeckE,

(2) z, < 1 YVeckE,

(3) z x, <2 YvelV,
eecwlv)

(4) E =z, + L z, < [W +J-Z-2ll—1 YWcV, Zecw(W), |Z| odd
ecE(W) ©  eez

such that () |2|> 3 and enf=§ Ve,fe Z
or (iZ) |Z2|= 1 and |W|> 4 holds. [

Theorem 10 gives a complete characterization of the monotone 2-matching
polytope on an arbitrary graph, however in general it does not provide a non-
redundant characterization (although it is less redundant than the
characterization given in Theorem 2). The question which of the 2-matching

censtrants are redundant with respect to the polytope 52M(G) is still open.
W. Pulleyblank [7] considered the polytope

QL. (@) := convixeR" |x e{0,1,2}, = x <2 VYvevl
2M e e —
ecw(v)
instead of 52M(G) and elegantly solved this problem in the more general
setting of b-matchings. His results however do not carry over to the case
allowing only O-1 variables; as for the resulting problem some more graph

theoretical considerations have to be pursued.

As the 2-matching problem is very closely related to the symmetric

travelling salesman problem it is an interesting question which of the facets

of the monotone 2-matching polytope Q carry over to the monotone

n
2M
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travelling salesman polytope 6;, hence what kind of structure does Q;

"inherit" from Q

gH‘ This problem was completely solved:hl[uj. It turns out

that almost all facets of QgM are also facets of 6?.
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