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The polytope associated with the symmetric travelling salesman problem has been in-
tensively studied recently (cf. {7, 10, 11]). In this note we demonstrate how the knowledge of
the facets of this polytope can be utilized to solve large-scale travelling salesman problems. In
particular, we report how the shortest roundtrip through 120 German cities was found using a
commercial linear programming code and adding facetial cutting planes in an interactive way.
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1. Introduction

The travelling salesman problem (TSP) is one of the oldest and most in-
tensively studied combinatorial optimization problems, but the first approach
towards a solution of the TSP due to Dantzig et al. [3] does not seem to have
attracted much attention in the sequel. Their idea was to generate a “good”
solution heuristically, to formulate the TSP as a linear programming problem in
zero—one variables, and to try to prove optimality of the heuristically obtained
tour using cutting planes. Their procedure contained “artistic” and interactive
parts and did not result in a straightforward algorithm. Although they were able
to solve a 49-city problem, it was not clear how good their cutting planes really
were with respect to proving optimality or obtaining a good lower bound. These
are some of the reasons why the branch-and-bound techniques that came up in
the sixties superceded the cutting planes approach for the TSP. The various
branch-and-bound algorithms (for a survey see [1]) were and still are highly
successful, but it became evident that due to the fact that the computational work
grows exponentially with the number of cities, there are bounds on the size of
the problems solvable with these methods.

S. Hong [12] seems to be one of the first to have rediscovered the appeal of
the cutting planes approach. He automatized some of the interactive parts of the
Dantzig et al. procedure and incorporated further cutting planes. He reported
good results on moderately sized problems. So did Miliotis [14] who combined
the Dantzig et al. linear programming idea with branch-and-bound techniques.

* Supported by Sonderforschungsbereich 21 (DFG), Institut fiir Okonometrie und Operations
Research, Universitat Bonn.
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62 M. Grétschel| Solutions of a 120-city problem

Stimulated by the work of Edmonds (¢.g. [5,6)]) and others polyhedral com-
binatorics, i.e. the study of polyhedra associated with combinatorial optimization
problems, became a field of intensive research during the last decade and soon
grew into a powerful tool for the solution of combinatorial optimization prob-
lems.

With regard to the travelling salesman problem intensive studies of the
facet-structure of polytopes related to the TSP were carried out, cf. [2, 7-13, 15],
and tremendously large classes of inequalities essential for the characterization
of these polytopes were discovered. However, it also turned out that it is very
unlikely that a complete description of these polytopes can ever be obtained (cf.
[7D.

Based on the results in [7, 10-12] concerning the symmetric travelling sales-
man problem Padberg and Hong [15] developed a quite sophisticated cutting
plane algorithm which clearly proved the usefulness of this approach, in parti-
cular, they solved a symmetric 318-city problem within 0.26% of optimality, a
result which seems to be far outside the range of all presently known branch-
and-bound methods.

This paper also aims at validating the usefulness of facetial cutting planes and
presents the solution of a real-world symmetric 120-city travelling salesman
problem gained in the same interactive fashion which was used in 1954 by
Dantzig et al. [3]. The only difference is that our procedure due to the theoretical
work in [7, 10, 11] could be based on a much better knowledge of the underlying
polytope and that better LP-routines and computers were available.

2. Notation

All graphs G =[V, E] considered are undirected, have no loops and no
multiple edges. The node set V is assumed to be {1,2,..., n}; edges e€ E are
denoted by {i, j} where i J. A graph on n nodes is called complete if E ={{i, j}:
i, JEV, i#j} and will be denoted by K,=[V,E). A set C of k=3 edges,
C ={v,, v3}, {vs, v3}, ... »A{ve-1, vk, {vn, v1}} where vi# v; if i#j, is called a cycle of
length k. Cycles of length n are called lours, cycles of length k<n are
sometimes also called subtours. If Cy, G, ..., G, are cycles such that every node
is contained in exactly one cycle C, then the union of these cycles is called
perfect 2-matching or simply 2-matching. Thus every tour is a 2-matching. For
any WC V and FC E we use the following abbreviations:

V(F):={i € V: i is contained in an edge of F} = J,cr e,
EW):={{i,jleE: iew, Jj€E Wk
If G=[V, E]is a graph and {x.: e € E} is a set of variables indexed by E, and if
FCE, WC V, then we write

x(F):= > «x,

eEF

T
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and
x(W):= x(E(W)).

3. Polytopes related to the symmetric travelling salesman problem

The (symmetric) travelling salesman problem can be stated as follows: Given a
complete graph K,=[V, E] and edge lengths c. € R for all e€E, find the
shortest tour in K, i.e. a tour T such that 3 .er €. is minimal. This combinatorial
optimization problem can be formulated in algebraical terms in the following
way: To each edge e € E we associate a variable x,, and to each tour TC E we

associate an incidence vector x7, i.e. a vector such that

e {1 ifeeT,
¢ 0 otherwise.

As |E|=in(n—1)=:m we have x” € R™. The convex hull Q% of all incidence
vectors of tours is called (symmetric) travelling salesman polytope, i.e.

Q% :=conv{x” ER™: T is a tour in K,}. 3.1

Hence, to each vertex of Q% corresponds a tour in K, and vice versa. If a
complete characterization of Q% by means of linear equations and inequalities
were known, then the TSP could be solved (theoretically) through the linear
program min ¢x, X € Q%.

By definition Q% is contained in the unit hypercube {xER™:0=x,=1 for all
e € E}, and a tour (also a 2-matching) T has the property that every node is
contained in exactly two edges of T, hence the system of equations

Ax =26, 3.2

where A is the node-edge incidence matrix of K, €, is an n-vector of ones, must
be satisfied by all incidence vectors of tours and 2.matchings. This implies that
Q% C Q3m where

51, = {x ER™: Ax =26, 0=x, =1 for all ¢ € E}. (.3)

It is not difficult to characterize the vertices of Q3 they are incidence vectors of
tours, incidence vectors of 2-matchings which are not tours (so called subtour
vertices), or simply-structured fractional vertices, i.e. 0 <x, <1 for some e €E E
(cf. [7])). To get a polytope closer to Q% both the subtour vertices and the
fractional vertices of Q% have to be chopped off.

In order to cut off the subtour vertices Dantzig et al. [3] introduced the
following subtour-elimination constraints

x(W)=|W|-1 forall WC V,2=<|W|=n-1 (3.4)
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Defining
Q3:={x € Q%\: x satisfies (3.4)}, (3.5)

it is obvious that Q% has no other integer vertices apart from incidence vectors
of tours, hence Q% =conv{x € Q% x integer}. The subtour-elimination con-
straints, however, do not suffice to eliminate all fractional vertices from Q3.
Inequalities doing this were found by Edmonds [5]. He introduced the so called
2-matching constraints

> X(W) =<|Wy|+ik—1), (3.6)

i=0

where the node sets Wy, W,, ..., W, C V satisfy

[WonWil=1, i=1,..,k 3.6.1)
[Wil=2, i=1,..,k (3.6.2)
k =1 and odd. 3.6.3)

Letting
Q3y = conv{x™ ER™: M is a 2-matching in K.}
= conv{x € Q4\: x integer}, 3.7
Edmonds [5] proved:
Qiy={xe 55‘M: x satisfies all inequalities (3.6)}.

This result shows that the 2-matching constraints cut off all fractional vertices of
Q3\, without creating new ones. By construction we have Q7 C Q%N Q3 but
unfortunately equality does not hold. This means that although all fractiona] and
subtour vertices of Q2% are chopped off, new fractional vertices which are “more
complicated” than those of Q3,, are created by the intersection of the halfspaces
defined by (3.4) with those given by (3.6).

Several new types of inequalities which are valid with respect to Q%, i.e. Q% is
contained in the half spaces defined by these inequalities or equivalently all
incidence vectors of tours satisfy these inequalities, were proposed in the
literature [2, 7, 10, 11, 13, 15], the largest and best studied class of these are the
comb inequalities (cf. [2, 7, 10, 11]):

Given Wy, W,, ..., W, C V such that

[WonWil=1, i=1,.. k (3.8.1)
[Wi—Wol=1, i=1,..,k (3.8.2)
WiNW, =0, isi<j=<k, (3.8.3)
k =3 and odd (3.8.4)

then one can show (cf. [10]) that

-
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L & k+1
2 X(W) =Wyl + 2 (Wi - 1) —=5—=:s(0) (3.8)
0 i=1 2

is a valid inequality with respect to Q7.

Validity, however, is not a proper criterion for checking the ‘“sharpness” of
inequalities, i.e. their suitability as cutting planes. The concept of facets allows
one to definitely judge the goodness of cutting planes. An inequality ax < a,
valid with respect to Q% is called a facet of Q7 if dim(Q*N{xERM: ax = ap}) =
dim Q% — 1, and two facets ax <ao and bx = b, are called equivalent if QT N
{x ER™: ax = ao} = QFN{x € R™: bx = bo}. As Q% is not a fully-dimensional
polytope (dim Q% = m —n =|E|—|V], cf. [10]) many different inequalities turn
out to be equivalent with respect to Q% (cf. [7]). If K is the number of different
classes of equivalent facets of Q%, and if we choose from each of these classes
exactly one inequality a’x <af, i =1,..., K, then it is well-known that

Q%={xER™: Ax=2e,a'x=ab i=1,..,K} (3.9

holds.

Furthermore this characterization of Q% is non-redundant, i.e. if we drop any
of the equations of Ax = 2e, or any of the inequalities a’x = a§ the polytope on
the right-hand side of (3.9) is no longer equal to Q%. These properties establish in
a precise sense that facets are best cutting planes because only the knowledge of
at least one element of all classes of facets of Q% renders a complete and
non-redundant characterization of Q% possible. This also shows that in cutting
plane algorithms only facetial inequalities (if such are known) should be used, all
other (non-facet) inequalities do not suffice to fully establish the polytope
considered—although in some practical applications they may suffice to prove
optimality.

With respect to the travelling salesman polytope the following results using
quite involved. proof techniques were obtained (cf. [7, 10, 11]).

Theorem 1. Let n =6.

(@) The trivial inequalities x, =0, x. <1 are facets of Q% for all e € E.

(b) The subtour elimination constraints x(W)=|W|—1 are facets of Qt for
al wWCV,3=|W|=n-3.

(c) Two different subtour elimination constraints x(W)=|W|-1, x(W)=
|W'|— 1 are equivalent with respect to Q% if and only if wW=vV-W.

(d) All comb inequalities (3.8) are facets of Q%.

(e) Two different comb inequalities

k h

S x(W)=s(C), 2 x(W)=s(C)

i=0 i=0

are equivalent with respect to Q% if and only if k=h, Wo=V — Wo, W, =W,
i=1,..,k
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(f) Trivial inequalities, comb inequalities and subtour-elimination constraints
are pairwise non-equivalent.

One can also show (cf. [7]) that the comb inequalities (3.8) contain as a special
case all 2-matching inequalities (3.6) and all Chvital-comb inequalities (cf. [2])

which define facets of Q%, hence, comb inequalities are a fairly general class of
facets of Q%.

Letting
Q%:={x € Ql\: x satisfies all inequalities (3.4) and (3.8)} (3.10)

then obviously Q%C QrcC Q5iN Q35 and for larger n these inclusions are
proper. By Theorem 1 we know all the facets of Qf, and furthermore, Theorem
1 says that all facets of Q¢ are also facets of Q%. Although Theorem 1 does not
characterize the travelling salesman polytope completely, the polytope Q%
seems to be quite a good approximation of Q%, and it seems reasonable to use
this polytope as a relaxation of the travelling salesman problem, in particular
because the combinatorial structure of the facets of Q% is quite simple. Theorem
I makes it possible to design a cutting plane algorithm for the TSP using facets

only and avoiding the use of inequalities which are equivalent to others or do not
define facets.

4. Solution of a 120-city problem by linear programming

Having claimed that a good knowledge of the polytope Q% is of high value for
the solution of travelling salesman problems, we are going to demonstrate this by
solving a real-world symmetric 120-city problem using the facets found as
cutting planes. Our method is the same interactive procedure carried out by
Dantzig et al. [3]. We did not try to mechanize the generation of cutting planes
but rather found cutting planes by inspecting the solutions of relaxed linear
programs and added them in an interactive way. For a discussion of the
possibilities of mechanically identifying violated facets and activating them in
order to cut off non-tour solutions, the reader should consult [15] where several
methods of automatizing these procedures are described.

The data of our problem were taken from [4], the edge lengths are the road
distances between every two of 120 cities of the Federal Republic of Germany
(including some cities bordering Germany). For a complete listing of the cities
see the Appendix.

Before using cutting planes we tried to solve the problem with all branch-and-
bound algorithms available to us, but none of them terminated with an optimal
tour. To get a “‘good” estimate of the order of magnitude of the length of the
optimal tour and to obtain a starting basis for our simplex procedure, we

i
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generated tours using several heuristical methods. The shortest of the heuristic-
ally found tours had length 7091 km; by visual analysis of this tour on a map of
Germany we were able to construct a tour of length 7011 km, but no other hand-
or machine improvements could be obtained. As every tour is a 2-matching the
shortest 2-matching (which can be obtained by a good algorithm) gives a lower
bound for the length of the optimal tour. The shortest 2-matching of our 120-city
problem has length 6694 knr, hence we know that the shortest tour will be in the
interval 6694 km to 7011 km.

We now used the linear programming cutting plane technique suggested in [3]
which works as follows: Relax the TSP as far as possible, i.e. choose a polytope
Q: that has few facets only and contains Q' and solve the linear program
min cx, x € Q.. If the optimal solution x, of Q, is a tour one is done, if not
choose from the facets given in Theorem 1 a set of inequalities Bx =< b which are
violated by x, and add these to Qi, thus cutting off x,. Then solve the linear
program min cx, x E Q,=Q; N {x: Bx < b} and proceed in the same manner.

In our case we started the procedure with the polytope Q%% (3.3) which we
consider to be the coarsest meaningful relaxation of the symmetric travelling
salesman problem.

After every LP-run we represented the optimal solution graphically by hand
on a map. In the beginning a plotter was used, but as the number of different
fractional components of the solutions increased there were not enough symbols
to distinguish them and the plottings became too cluttered. Using the graphical
representation of the optimal solution we looked for subtour elimination con-
straints and comb inequalities to cut off the present solution and added them to
the present constraint system. Drawing and searching took from 30 man-minutes
in the beginning up to 3 man-hours after the last runs.

Altogether 13 LP-runs were needed and a total number of 96 additional
inequalities had to be added to Q33;. Among these 96 cutting planes we used 36
subtour-elimination constraints (3.4) and 60 comb inequalities (3.8). The 60
(general) comb inequalities were composed of 25 2-matching inequalities, 14
Chvital-comb inequalities and 21 other comb inequalities. Thus the polytope
defined by the intersection of Q3 with these 96 half spaces contains Q¥° and
has the same optimal solution for the given 120-city problem as the LP over
QY.

In the following we list all the 96 facetial inequalities we used and the value of
the objective function after each run. We subdivide the inequalities into subtour-
elimination constraints x(W)=|W|—1 which we give by W = {v1, 2y oee s U}y
RS =|W|—1=k—1, and comb inequalities

k
X(W)wao"*'gl(l“/il— 1) —itk+1)=: s(C)

=0

which we represent by Wy, W, ..., W, and s(C).
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Run 1:

=§g={xegﬂw;2xﬁ+2 xj=2fori=1,..,120,
1<

1<i
0=x;=<1 for lsi<j5120}.

Minimum: 6662.5.

Run 2: Subtour-elimination constraints:
(1) W={100, 52, 33}, RS =2;
(2) W={100, 91, 79, 68, 58, 52, 33}, RS = 6;
(3) W={117, 66, 31}, RS = 2;
(4 W={118, 49, 13}, RS =2;
(5) W={118, 49, 17, 13}, RS = 3;
(6) W={116, 70, 8}, RS =2;
(7) W={34,26,4}, RS=2;
(8) W={119, 115, 103, 82, 51, 23, 11, 9, 3, 2}, RS=09;
9) W={97,95, 12}, RS =2;
(10) W ={67, 62, 37}, RS =2;
(11) W={104, 99, 84, 36, 35, 10}, RS = 5;
(12) W ={104, 99, 84, 36, 35, 10, 6}, RS = 6;
(13) W={119, 116, 115, 114, 112, 110, 109, 106, 104, 103, 102, 101, 99, 97, 95,
93, 89, 88, 84, 83, 82, 80, 77, 73, 71, 70, 67, 64, 63, 62, 57, 55, 54, 53,
51, 48, 47, 39, 37, 36, 35, 34, 27, 26, 23, 21, 12,11, 10, 9, 8, 6, S, 4, 3,
2}, RS =585.
Minimum 6883.5.

Run 3: Subtour-elimination constraints:
(14) W ={114, 112, 110, 106, 104, 102, 101, 99, 89, 84, 83, 73, 67, 62, 57, 55, 48,
47, 37, 36, 35, 10, 6}, RS = 22;
(15) W ={109, 97, 95, 93, 88, 77, 64, 63, 53, 39,27,21, 12,5}, RS = 13;
(16) W ={109, 97, 95, 93, 88, 77, 64, 63, 53, 39, 21, 12, 5}, RS = 12;
(17) W ={120, 92, 32, 30, 29, 28}, RS =5;
(18) W ={120, 92, 32, 30, 29}, RS = 4:
(19) W ={105, 74, 72, 40}, RS =3;
(20) W ={105, 72, 40}, RS = 2;
(1) W ={117, 85, 66, 31, 22}, RS =4;
(22) W ={117, 85, 66, 31, 22, 18}, RS = 5;
(23) W ={100, 91, 79, 68, 58, 52, 43, 33}, RS =7.
Comb inequalities:
(24) Wo=1{85, 22, 18}, W, = {117, 85}, W, = {66, 22}, W5 =1{19, 18}, s(C)=4;
(25) W, ={120, 92, 28}, W, ={120, 29}, W, =1{92, 32}, Ws={45, 28}, s(C)=4;
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(26) Wo={104,99,10}, W, = {104, 36}, W, = {99, 62}, W; = {35, 10}, s(C)=4;
(27) W, =1{53,27, 5}, W, ={80, 27}, W, = {64, 53}, W5 ={63, 5}, s(C) =4,
(28) W,=1{89, 55, 48, 47}, W,= {89, 55, 6}, W,={102, 48}, W;= {11, 47},
s(C)=6.
Minimum: 6912.5.

; Run 4: Subtour-elimination constraints:
(29) W ={109, 97, 95, 93, 88, 77, 64, 53, 21, 12}, RS =9;
(30) W ={119, 115, 114, 112, 110, 109, 106, 104, 103, 102, 101, 99, 97, 95, 93, 89,
88, 84, 83, 82, 80, 77, 73, 71, 67, 64, 63, 62, 57, 55, 53, 51, 48, 47, 39,
37, 36, 35, 27, 26, 23, 21, 12,11, 10,9, 6, S, 4, 3, 2}, RS = 50;
(31) W={113, 107, 69}, RS =2.
Comb inequalities:
(32) W,o=1{73, 62, 5T}, W, ={114, 73}, W, = {83, 57}, Wy ={62, 37}, s(C)=4;
(33) W, ={118, 113, 107, 98, 69, 65, 50, 49, 46, 44, 20, 17, 13}, W, ={98, 42},
W, = {68, 65}, W5 ={75, 44}, s(C) = 14;
(34) W, ={118, 113, 107, 69, 65, 49, 20, 17, 13}, W, ={98, 17}, W, = {68, 65},
W = {46, 20}, s(C) = 10;
(35) Wo=1{119, 72, 40, 38, 34, 4}, W, = {105, 72, 40}, W, = {119, 103}, W3 = {116,
34}, W, =1{38, 7}, Ws=1{26, 4}, s(C)=9.
Minimum: 6918.75.

Run 5: Subtour-elimination constraints:

(36) W ={93, 64, 53}, RS=2;

(37) W =1{118, 98, 49, 42, 17, 13}, RS =5;

(38) W ={104, 99, 89, 84, 55, 36, 35, 10, 6}, RS =8;

(39) W ={114, 112, 110, 106, 104, 99, 89, 84, 83, 73, 67, 62, 57, 55, 37, 36, 35,
10, 6}, RS = 18.

Comb inequalities:

(40) W, ={118, 98, 50, 49, 46, 42, 41, 20, 17, 13}, W, = {50, 46, 44}, W, = {56,
41}, W5 ={107, 20}, s(C) = 12;

(41) W,=1{118, 113, 107, 98, 69, 65, 50, 49, 46, 44, 42, 41, 20, 17, 13}, W, ={75,
44}, W, = {68, 65}, W; = {56, 41}, s(C) = 16;

(42) W,={119, 116, 103, 72, 71, 70, 54, 40, 38, 34, 26, 8, 4}, W, ={119, 115, 103,
82, 51, 23, 11, 9, 3, 2}, W,={105, 72, 40}, W, ={71, 47}, W,={90, 54},
Ws={38, 7}, s{(C) =24;

43) W,={119, 116, 105, 103, 72, 71, 70, 54, 40, 38, 34, 26, 8, 4}, W, ={119, 115,

- 109, 103, 97, 95, 93, 88, 82, 80, 77, 64, 63, 53, 51, 39, 27, 23, 21, 12, 11, 9, s,
3, 2}, Wh={105, 74}, W, ={71, 47}, W, = {90, 54}, Ws= {38, 7}, s(C)=39;
(44) W,={71, 54, 8}, W, ={116, 70, 8}, W, ={71, 47}, W3 = {90, 54}, s(C)=35.
Minimum: 6928.
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Run 6: Subtour-elimination constraints:
(45) W=1{118, 113, 107, 105, 98, 87,75, 74, 72, 69, 65, 56, 50, 49, 46, 44,42,41,
40, 38, 20, 17, 14, 13, 7}, RS = 24: f”’%
(46) W ={120, 118, 117, 113, 108, 107, 105, 100, 98, 94, 92, 91, 87, 86, 85, 81, 79,
78,76, 75,74, 72, 69, 68, 66, 65, 61, 59, 38, 56, 52, 50, 49, 46, 45, 44,
43, 42, 41, 40, 38, 33, 32, 31, 30, 29, 28, 25,22, 20, 19, 18, 17, 16, 15,
14, 13,7, 1}, RS = 58.
Comb inequalities:
47) Wo=1{68, 65, 13}, W, = {91, 68}, W, = {69, 65}, W; = {49, 13}, s(C)=4;
(48) W,={90, 71, 54, 8}, W, ={96, 90, 54}, W,={116,70,8}, W;={71, 47},
s(O)=17;
(49) W, =189, 55, 48, 47}, W, = {104, 99, 89, 84, 55, 36, 35, 10, 6}, W, = {102,
48}, W, = {71, 47}, s(C) = 12;
(50) Wo={118, 113, 108, 107, 100, 91, 79, 69, 68, 65, 58, 52, 49, 43, 33, 20, 17, ;
13}, W, = {108, 25}, W, = {98, 17}, W3 ={46, 20}, s(C) = 19. {
Minimum: 6935.3. &

Run 7: Subtour-elimination constraints:

(51) W={71, 47, 26}, RS = 2;

(52) W =1{94, 86, 81, 78}, RS =3;

(53) W={119, 103, 82, 23, 9, 3}, RS = 5.

Comb inequalities:

(54) W, =1{69, 68, 65}, W, ={113, 69}, W, = {91, 68}, W3 = {65, 13}, s(C) = 4;

(55) W, =1{69, 68, 65}, W, = {113, 107, 68}, W,={91, 68}, W, ={118, 65, 49, 13},
s(C)=17,;

(56) W, =1{114, 112, 106, 104, 99, 84, 83, 73, 67,62, 57, 37, 36, 35, 10}, W, = {114,
83, 73, 63, 57, 39, 5}, W, ={112, 110}, W5 ={84, 6}, s(C) =21;

(57) W,={118, 113, 107,98, 69, 68, 65, 50, 49, 46,44,42,20,17, 13}, W, = {91, 68},
W, ={75, 44}, W;={42, 41}, s(C) = 16;

(58) W,={119,116, 115,114, 112, 111, 110, 109, 106, 104, 103, 102, 101, 99, 97, 96,
95, 93, 90, 89, 88, 84, 83, 82, 80, 77, 73, 72, 71,70, 67, 64, 63, 62, 60, 57, 55, 54,
53,51,48,47,40, 39, 38, 37, 36, 35, 34, 27, 26,24,23,21,12,11,10,9,8,7,6, 5,
4, 3, 2}, W, ={105, 74, 72, 40}, W, = {60, 16}, W5 = {56, 7}, s(C) = 68;

(39 W,={115, 93, 21, 2}, Wy ={119, 115, 103, 82, 51, 23, 11,9, 3, 2}, W, = {93,
64, 53}, W;={109, 21}, s(C) = 14.

Minimum: 6937.222. ,

Run 8: Comb inequalities:

(60) Wo={34, 26, 4}, W, = {119, 4}, W, = {116, 34}, W; = {71, 26}, s(C) = 4;

(61) Wo=1{53,27, 5}, W,= {93, 64, 53}, W, = {80, 27}, W5 ={63, 5}, s(C)=35;

(62) Wy =1{115, 103, 93, 82, 51, 23, 21, 11,9, 2}, W, = {119, 103}, W; = {109, 21},
Wi ={93, 64, 53}, W, = {82, 3}, W, = {51, 13}, s(C)=13;
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(63) W= {115, 93, 82, 51, 23, 21, 11, 9, 2}, W, ={103, 23, 9}, W,={109, 21},
W, = {93, 64, 53}, W, ={82, 3}, Ws={51, 13}, s(C)=13;
?i (64) W,=1{103, 51, 23, 11, 9}, W, = {119, 103}, W,={115, 11}, W, ={51, 13},
s(C)=6;
(65) Wo=1{89, 55, 48, 47}, W, = {114, 112, 110, 106, 104, 99, 89, 84, 83, 73, 67,
62, 57, 55, 37, 36, 35, 10, 6}, Wy={102, 48}, W, ={71, 47, 26}, s(C) =23;
(66) W= {112, 106, 104, 99, 84, 67, 62, 37, 36, 35, 10}, W, ={114, 106, 83, 73,
67, 62, 57, 37}, Wo={112, 110}, W; = {84, 6}, s(C) = 18;
(67) W,=1{106, 104, 99, 67, 62, 37}, W, ={114, 106, 83, 73, 67, 62, 57, 37},
W, = {104, 36}, W5 ={99, 10}, s(C)=13.
Minimum: 6939.5.

Run 9: Comb inequalities:

(68) W,={72, 56, 40, 38, 7}, W= {105, 74, 72, 40}, W,={119, 103, 38},
W; = {56, 41}, s(C)=9;

(69) W, ={119, 116, 105, 103, 74, 72, 70, 56, 40, 38, 34, 26, 8, 7, 4}, W ={119,
115, 103, 82, 51,23, 11,9, 3,2}, W, = {87, 74}, Wy ={71, 26}, W, = {56, 41},
Ws = {54, 8}, s(C)=25;

(70) W, = {112, 110, 89, 84, 55, 48, 47, 36, 6}, W, = {112, 106}, W,={104, 36},
W, = {102, 48}, W, ={84, 35}, Ws={71, 47}, s(C)=11;

(71) W, ={112, 110, 106, 104, 99, 89, 84, 67, 62, 55, 48, 47, 37, 36, 35, 10, 6},
w, = {102, 48}, W, ={83, 67}, W5 ={T1, 47}, s(C)=18;

(72) W,={118, 117, 113, 108, 107, 100, 98, 91, 85, 79, 75, 69, 68, 66, 65, 58, 52,
50, 49. 46, 44, 43, 42, 41, 33, 31, 25, 22, 20, 19, 18, 17, 13}, W, = {81, 22},
W, = {75, 14}, W, ={56, 41}, s(C) =34.

Minimum: 6940.38281.

Run 10. Subtour-elimination constraints:
(73) W ={117, 113, 108, 107, 100, 91, 85, 79, 69, 68, 66, 65, 58, 52, 43, 33, 31,
25, 22, 19, 18}, RS = 20.
Comb inequalities:
(74) W, =1{116, 70, 34, 26, 8, 4}, W, ={116, 70, 54, 8}, W, ={119, 4}, Wy={71,
26}, s(C)=19;
(75) W,o={114, 106, 83, 73, 67, 62, 57, 37}, W, ={112, 106}, W>={%9, 62},
W; = {83, 39}, s(C)=09;
(76) W,= {118, 117, 113, 108, 107, 100, 98, 94, 91, 87, 86, 85, 81,79, 75, 69, 68,
66, 65, 58, 56, 52, 50, 49, 46, 44, 43, 42, 41, 33, 31, 25, 22, 20, 19, 18, 17, 14,
13}, W, = {120, 94, 92, 86, 81, 78, 45, 32, 30, 29, 28, 15}, W,=1{87, 74},
W, ={56, 41, T}, s(C) =51.
Minimum: 6940.81641.

Run 11: Comb inequalities:
(77) W,={108, 100, 91, 79, 69, 68, 65, 58, 52, 43, 33}, W, ={113, 107, 69},
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W.={108, 25}, W, = {65, 13}, s(C) = 13;

(78) W, = {120, 92, 76, 59, 32, 30, 29, 15}, W, = {92, 28}, w, = {81, 15}, w, =
{76, 1}, s(C) = 9;

(79) W,={94, 87, 86, 78, 75, 44, 14}, W, = {94, 81}, W, = {87, 74}, Wy = {78, 45},
s(C)=8;

(80) W,={116, 70, 34,26, 8, 4, w, ={119, 4}, W, ={71, 47, 26}, W; = {54, 8},
s(C)=8§;

81 W,={114, 112, 106, 104, 99, 84, 83, 73, 67, 62, 57, 37, 36, 35, 10},
W, = {112, 110}, W.={84, 6}, W, = {83, 39}, s(C) = 16;

(82) W, ={108, 100, 91, 79, 69, 68, 65, 58, 52, 43, 33, 13}, W, ={118, 49, 13},
W, ={113, 107, 69}, W;={108, 25}, s(C) = 15;

(83) Wy = {120, 92, 76, 59, 45, 32, 30, 29, 28, 15}, W, ={81, 15}, W, = {78, 45},
W ={76, 1}, s(C)=11;

(84 W, ={94, 87, 86, 81, 78, 75,44,41,22}, w, = {117, 85, 66, 31,22}, w,={78,
45}, W =187, 74}, s(C) = 13;

(85) W, ={120, 92, 45, 32, 28}, Wi ={120, 29}, W, ={78, 45}, W; = {32, 30},
s(C)=6;

(86) W, ={116, 105, 72, 71, 70, 60, 54, 47, 40, 38, 34,26,24,8,7, 4}, W, = {105,
87,74, 72, 56, 41,40, 38,7}, W, = {114, 112, 110, 106, 104, 102, 101, 99, 89,
84, 83, 73, 71, 67, 62, 57, 55, 48, 47, 37, 36, 35, 10, 6}, W;= {96, 90, 54},
W,={60, 16}, w, = {111, 24}, s(C) =48;

(87) W, =1{73, 67, 57}, Wi ={67, 62, 37}, Wy = {114, 73}, Wy ={83, 57}, s(C) =
5.

(88) W, = {83, 73, 67,57}, W, = {83, 39}, W,={114, 73}, W, = {67, 37}, s(C)=35.
Minimum: 6941.18359.

Run 12: Comb inequalities:

(89) W,={105, 74, 72, 56, 40, 38, 7}, Wi ={119, 103, 38, 23, 9}, W, ={87, 74},
Wi ={56, 41}, s(C) = 11;

(90) Wo ={118, 117, 113, 108, 107, 100, 98, 94, 91, 87, 86, 85, 81, 79, 78, 75, 69,
68, 66, 65, 58, 52, 50, 49, 46, 44, 43, 42, 41, 33, 31, 25, 22,20, 19, 18, 17, 14,
13}, W, = {87, 74}, W, = {92, 78, 45, 28}, W; = {56, 41}, s(C) = 42;

1 W, = {116, 71, 70, 54, 34, 26, 8, 4}, W, ={119, 4}, W, ={90, 54}, W, = {71,
47}, s(C) = 9;

(92) W, =1{105, 74, 72, 56, 40, 38, 7}, Wy=1{87, 74}, W, = {56, 41}, Wy ={119,
103, 38, 23, 9}, s(C)=11;

93) W, = {108, 69, 68, 65,43, 13}, w, = {118, 49, 13}, W, ={1i3, 69}, W; = {108,
25}, W, ={91, 68}, W = {79, 43}, s(C) =9,

Minimum: 69415,

Run 13: Comb inequalities:
(94) W,={109, 93, 21}, Wi ={109, 88}, W,={93, 64, 53}, W; = {115, 21},
s(C)=35;
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Fig. 1. The shortest roundtrip through 120 German cities. The length of this tour is 6942 km.
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(95) W,=1{115, 109, 93, 21, 2}, W, ={119, 115, 103, 82, 51, 23, 11, 9, 3, 2},
Wa = {109, 88}, Ws= {93, 64, 53}, s(C)=15;
(96) W, ={119, 115, 114, 109, 103, 101, 93, 83, 82, 80, 77, 73, 64, 63, 57, 53, 51,
39,27,23,21,11,9,5,3,2}, W, ={114, 112, 110, 106, 104, 99, 89, 84, 83,73, 67,
62, 57, 55, 37, 36, 35, 10, 6}, W>= {109, 88}, W5 ={102, 101}, W, = {95, 77},
Ws={51, 13}, s(C)=45.
Minimum: 6942.

The optimal solution of the 13th LP-run was the incidence vector of a tour of
length 6942 km, hence this vector represents the shortest roundtrip through the
120 cities of Germany. A graphical representation of this optimal tour is given in
Fig. 1.

We have calculated the number of non-equivalent facets of Q¥° which are
given by Theorem 1. This number is exactly

26792549076063489375554618994821987399578869037768
70780484651943295772470308627340156321170880759399
86913459296483643418942533445648036828825541887362
42799920969079258554704177287.

Considering the fact that the trivial inequalities, the subtour-elimination con-
straints, and the comb inequalities are by far not all facets of QY°, it is quite
surprising that only the trivial inequalitiec and an additional 96 inequalities out of
these 10 inequalities and no other were needed to find an optimal tour and
prove optimality.

It can be seen from the sequence of minimum values of the 13 linear programs
that the increase of these values is considerably large during the first runs
(221 km after the second run, a total of 273 km after the first six runs) but it took
a further seven runs to beat the last 6 km. This fact was observed in several
other experiments of this kind. Due to limited time for the solution procedure or
due to possible incorrectness of the data a near optimal solution is often good
enough for practical purposes. If for instance a tour at most 2% off optimality
would be considered as satisfactory we could have stopped after the second
LP-run having a lower bound of 6883.5 km and a “good” (heuristically found)
tour of length 7011 km.

For LP-problems of our size (7140 variables, 120 equations, 7140 upper and
lower bounds, 96 inequalities) advanced LP-codes and large computers are
indispensable. We have used the LP-program of the MPSX-package of IBM, and
all runs were executed on the IBM-computer 370/168 of the Rechenzentrum der
Universitit Bonn. To simplify the data input several auxiliary routines were
written: one program that generated the equation system Ax =2e;y and the
upper and lower bounds in the input format required by MPSX, another that
after each run saved the whole constraint system on tape, a third program that
generated comb inequalities and subtour-elimination constraints in MPSX input
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format if these were given as in our cutting plane list above and which added
these inequalities to the present constraint system.

In each run the heuristically obtained tour of length 7011 km was given as
partial LP-basis which was then completed by MPSX to a full basis and used as
starting basis for the linear program. We found that such a device can reduce the
computation times considerably.

The CPU-times needed for the solution of the thirteen programs ranged
between 30 seconds and 2 minutes, the number of pivot-operations was between
100 and 1000, both CPU-times and pivot-operations increased slightly but not
monotonically with the number of additional inequalities. The last run for
instance was executed in 1.76 CPU-minutes, and 714 pivot operations were
necessary to obtain the optimal solution.

Considering these moderately sized CPU-times it seems possible that even
larger travelling salesman problems can be solved using ordinary linear pro-
gramming codes provided that the user is capable of identifying violated in-
equalities and has the patience to solve the problem interactively. Clearly, the
author does not suggest the method presented here as a standard method for
solving travelling salesman problems. The main purpose of this note is to show
the practical usefulness of the theoretical research done in polyhedral com-
binatorics and to give an example showing that we already have tools to solve
very large real world problems optimally. As is to be expected an optimal
solution requires a lot of effort but the chances of finding the shortest tour are
quite good.

Further research in applying the resuits on the facetial structure of polytopes
associated with hard (NP-complete) combinatorial optimization problems should
go in the direction of automatizing the interactive procedure used above. A first
step with respect to the TSP was done with considerable success by Padberg
and Hong [15]. If good methods for solving some of the problems encountered
by them can be found, it seems likely that we will be able to attack truly large
problems by sophisticated combinations of heuristics, cutting plane methods and
branch and bound techniques.

Appendix

List of the 120 German cities contained in the distance table in [4]:

1 Aachen 2 Amberg 3 Ansbach 4 Aschaffenburg
5 Augsburg 6 Baden-Baden 7 Bad Hersfeld 8 Bad Kreuznach
9 Bamberg 10 Basel 11 Bayreuth 12 Berchtesgaden

13 Berlin 14 Bielefeld 15 Bocholt 16 Bomn

17 Braunschweig 18 Bremen 19 Bremerhaven 20 Celle

21 Cham 22 Cloppenburg 23 Coburg 24 Cochem

25 Cuxhaven 26 Darmstadt 27 Donauwérth 28 Dortmund

29 Diisseldorf 30 Duisburg 31 Emden 32 Essen

33 Flensburg 34 Frankfurt 35 Freiburg 36 Freudenstadt

37 Friedrichshafen 38 Fulda 39 Garm.-Partenk. 40 GieBen
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Appendix. (Continued)

41 Gottingen 42 Goslar 43 Hamburg 44 Hameln

45 Hamm 46 Hannover 47 Heidelberg 48 Heilbronn

49 Helmstedt 50 Hildesheim 51 Hof 52 Husum

53 Ingolstadt 54 Kaiserslautern 55 Karlsruhe 56 Kassel

57 Kempten 58 Kiel 59 Kleve 60 Koblenz

61 Koéln 62 Konstanz 63 Landsberg 64 Landshut

65 Lauenburg 66 ILeer 67 Lindau 68 Liibeck

69 Lineburg 70 Mainz 71 Mannheim 72 Marburg

73 Memmingen 74 Meschede 75 Minden 76 Monchengladb.
77 Miinchen 78 Miinster 79 Neumiinster 80 Nordlingen

81 Nordhorn 82 Niirnberg 83 Oberstdorf 84 Offenburg

85 Oldenburg 86 Osnabriick 87 Paderborn 88 Passau

89 Pforzheim 90 Pirmasens 91 Puttgarden 92 Recklinghausen
93 Regensburg 94 Rheine 95 Rosenheim 96 Saarbriicken
97 Salzburg 98 Salzgitter, Bad 99 Schaffhausen 100 Schleswig
101 Schwib. Gmiind 102 Schwib. Hall 103 Schweinfurt 104 Schwenningen
105 Siegen 106 Sigmaringen 107 Soltau 108 Stade

109 Straubing 110 Stuttgart 111 Trier 112 Tibingen

113 Uelzen 114 Ulm 115 Weiden 116 Wiesbaden

117 Wilhelmshaven 118 Wolfsburg 119 Wiirzburg 120 Wuppertal

The numbers in Fig. 1 correspond to the numbering of the cities in the list above.
Readers interested in trying their TSP-code or -heuristic on the 120-city problem
solved in this paper can obtain a card deck with the road distances between the

above listed cities from the author.
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