PART IV
CHAPTER 2

Approaches to Hard Combinatorial
Optimization Problems |

Martin GROTSCHEL %)

Institut fiir Okonometrie und Operations Research
Universitdt Bonn

Nassestrasse 2

D-5300 Bonn 1

West Germany

Contents

1. Introduction and NOtAtION ... u. 't e evraaerrriaaniir et e aans 438
1.1. Combinatorial optimization problemsol 438
1.2. Basic concepts of graph theory e et iaaies 439

2. Complexity theorycc0inn e i eieeeraaas R &5 §
2.1. Problems and inStANCESuvuiievarerin et aiiar s 441
2.2, Efficiency measures e it et 442
2.3, The classes Pand NP e P 444
2.4. Hard and easy problems.......... e et eere s PP ... 446

3. Examples and applicationsc.viiviieiieriiiirniiiiiiieiaiiananas oo M7

4, Heuristic algorithmst iiiiiii i it iia i iaaia s aaianss 462
4.1. Some principles of design for heuristics e ererre e ey 463
4.2, Worst~case analysisovveverinriiirereeins e nieeaiaaas Lo 467
4.3. Approximation schemes e e 472
4.4, Probabilistic analysis of heuristic algorithmscoooiinit 475

*) Supported by Sonderforschungsbereich 21 (DFG), Institut fir Okonometrle und Operations Re-

search, Universitit Bonn, West-Germany.

MODERN APPLIED MATHEMATICS -~ Optimlzation and Operations Research
Edited by B. KORTE
(© North-Holland Publishing Company — 1982

438 M. Grirsehel PART iV

5. Exact optimization proceduresvveviiiiiieiiiiariisaiians Ceeaarraieas 477
6. Branch and bound methodso iiiiiivn e et 479
6.1, The general principleo vii i ey 479
6.2. A branch and bound algorithm for the STSPoiiveiiieni e .o 481
7. Lagrangean TelaXation ., ... ovuuerurereariernrraririsitiin s Ce e 486
7.1. Solving the Lagrangean relaxation by linear programmingo.ovevns 438
7.2, The subgradient methodt e ,. 489
7.3. A branch and bound algorithm for the STSP using 1-trees and
Lagrangean relaxation ... cusvereerrieeriiiiroriararaiaiiniaaas 492
B. Cutting plane methodsuiie it iieniirer s ciarsenieeerataiaiiieaians 495
8.1. Polyhedral combinatorics v iii it 495
8.2, Cutting plane recognitionccvi ittt 503
8.1. A cutting plane algorithm for the STSPccoviviiiiie 505
DLy o =] T < R T) 508

This paper is an extensive survey of those problems considered in combinatorial
optimization which are usually termed ‘hard’ and of the methods with which these prob-
lems are attacked. In Section 1 we give an introduction to the subject and define our
notation. Section 2 surveys complexity theory. In particular, it describes precisely what
the notions ‘hard’ and ‘easy’ mean. A large number of examples of combinatorial opti-
mization prob]ems and some of their applications are given in Section 3. The design of
heuristic algorithms is treated in Section 4. We discuss worst-case bounds, approximation
schemes, and probabilistic analysis. The principle methods available for the exact solution
of 2 combinatorial optimization problem are introduced in Section 5. The basic ingre-
dients of a branch and bound algorithm are described in Section 6, an example of such a
methad for the symmetric travelling salesman problem is also given. In Section 7 Lagran-
gean relaxation is discussed. Polyhedral combinatorics and cutting plane methods for
combinatorial optimization problems are described in Section 8.

[4

1. Introduction and notation

1.1. Combinatorial optimization problems

Combinatorial optimization can be considered as the branch of mathe-
matics that studies the following kind of problems:

1.1, Given a finite number of objects, say £, and an ‘objective’ Sfunction
[F — 8 (where S is an ordered set) which associates with every object a
‘cast’, ‘value’, “weight’, ‘distance’ or the like. Find an element of F whose
cost is minimum or maximum with respect to some criterion..

CHADTER 2 Hartd combinatorial aptimization 439

Since J is finite, an optimal object can of course be found by completely
enumerating # (if the objects in J are computationally accessible in some
way), thus the main task of combinatorial optimization is to design algo-
rithms which do better than that or prove that no algorithm better than
complete enumeration exists.

Most of the problems studied in the early days of combinatorial opti-
mization came from operations research, industrial management, logistics,
engineering, computer science and military applications. But problems of
this kind arise almost everywhere, and therefore combinatorial optimization
has found successful applications in fields like archeology, biology, chem-
istry, economics, geography, linguistics, physics, sociology and others. Due
to its wide range of applicability and due to the fact that most of the real-
world problems appear to be hard to solve, the literature on combinatorial
optimization has grown explosively in the recent years, cf, Kastning (1976),
Hausmann (1978).

It appears that many of the optimization problems occuring in practice
can be put in the following form which is more special than 1.1.

1.2. Let E be a finite set and F a set of subsets of E called the set of feasible
solutions. Let ¢: E— R be an objective function. Find a feasible set I* €S
such that

> e(e) = max {Z‘ cle) | I€ f}

ecil* 134

This kind of problem is called a linear objective combinatorial optimization
problem. Since from now on we will consider only this class of problems,
we skip the phrase ‘linear objective’ to avoid repetition. For notational
convenience we often abbreviate ¥ ,¢, c{e) by ¢(Z) in the sequel. Therefore,
a combinatorial optimization problem is given by a triple (£, #, c), where
E is the ground set, # C #(E) is the set of feasible solutions, ¢ is a linear
objective function, and a feasible solution I* has to be found such that
¢(I*) is maximum (or minimum).

1.2. Basic concepts of graph theory

The most frequently studied problems in combinatorial optimization
can be formulated in the language of graph theory whose basic concepts
will now be introduced.

440 M. Grotschel ' : PART IV

A graph G is a pair [V, E] where V is a finite nonempty set of elements
called nodes and E is a finite set of two-element subsets of ¥ called edges.
For convenience we shall denote an edge {v, w} by vw. The number of
nodes of G is called the order of G, the number of edges the size of G. The
order will usually be denoted by # and the size by m. The graph of order
n in. which any two nodes are adjacent is called complete and is denoted
by X,.

If e == vw is an edge then e is said to join v and w, we also say that v
and w are the endnodes of e, that e is incident with v and w, and that v
and w are adjacent or neighbours. Two edges with a common endnode are
called adjacent. The set of neighbours of a node v is denoted by I'(), and
the set of edges incident with ¢ by «w(v), d(v) := |[I'(v)| is the degree of v.
The set of edges having one endnode in W C ¥ and the other in V'\ Wis
called a cut and is denoted by co(W). |

A stable set in G is a set of nodes no two of which are adjacent, a cligue
is a set of nodes every two of which are adjacent.

If for every node v€ V an integer b, > 0 is given, then an edge set M
such that | M N w(v)| < b, holds for all v€ ¥ is called a b-matching. Thus
a l-matching (i.e. b, =1 Y ve V) is a set of edges no two of which are
adjacent. A b-matching M is called perfect, if every node v has degree b,
in M. , -

A walk of length k is a sequence of k edges e,, e,, ..., e, where every edge
is of the form e,= v,_, v, i = 1,..., k. If, in addition, all edges e, i = 1,...,k,
are distinct, then a walk is called a trail. If all nodes v, i=0,...,k are
distinct a walk is called a path. A walk is denoted by v, vy, ..., v,. The
set of edges we obtain from a path v, v,, ..., 1, of length k¥ — 1 by adding
the edge v v, is called a cycle of length k and is denoted by [vy, ..., 1]

If G is a graph of order n, then a cycle of length n (path of length n — 1)
is called hamiltonian. A trail vy, vy, ..., v, Which contains every edge of G
exactly once and for which vq = v, holds is called an eulerian tour. A
graph G which contains a hamiltonian cycle (eulerian tour) is called Aamil-
tonian (eulerian).

A set of edges in a graph G of order n which does not contain a cycle
is called a forest, a forest with n — 1 edges is called a spanning tree or just
a tree of G.

Two nodes u, v€ V are said to be connected if & contains a path from
u to v. A graph is connected if every two nodes are connected.

CHAPTER 2 Hard combinatorial optimization 441

A graph G == [V, E] is called bipartite if its node set can be partitioned
into two disjoint, nonempty stable node sets, One can show that a graph @
is bipartite if and only if G contains no cycle of odd length.

A directed graph or digraph D is a pait (V, 4) where ¥ is a finite non-
empty set of elements called nodes, and 4 is a finite set of ordered pairs
of distinct nodes of V called arcs. Arcs are denoted by (v, w) for v, we V.
The arc a = (v, w) is said to be incident firom v and incident to w, v is the
tail of @ and w the head of a, v and w are also called endnodes of a, v is the
predecessor of w and w the successor of v, The set of predecessors of v V
is denoted by J™(u), the set of successors by I'+(v). The set of arcs incident
to » is denoted by w=(v), the set of arcs incident from v by w*(v). Diwalks
(directed walks), ditrails (directed trails), dipaths (directed paths) and di-
cycles (directed cycles) are defined analoguously to graphs taking into
account that consecutive arcs &, 4,, have to be of the form a, = (v,_;, v,),
a1 = (v; v,y). The digraph of order » in which every node is the pre-
decessor and successor of every other is called complete.

Good books on graph theory which treat the above mentioned and
further concepts in depth are Behzad, Chartrand and Lesniak-Foster (1979),
Berge (1973), Bollobas (1978) and Bondy and Murty (1976).

Since the subject of combinatorial optimization is progressing so fast
and the most interesting concepts and topics are changing so rapidly, it
is more difficult to find good up-to-date books on combinatorial optimiza-
tion. The most recent ones are of Lawler (1976) and Gondran and Minoux
(1979) which treat the class of problems which we shall call ‘easy’ later
on. Christofides (1975) mainly discusses so-called ‘hard’ problems. Older
books are Hu (1969), Garfinkel and Nemhauser (1972) and Burkard (1972).
There exist good surveys on various topics. A general survey is Klee (1980),
some others will be mentioned below. Fridman (1978) gives an account of
the recent developments of this subject in the Soviet Union.

2. Complexity theory

2.1, Problems and instances

In mathematics (and elsewhere) the word ‘problem’ is used in different
meanings. For our purposes, a problem will be a general question to be
answered which has several parameters (or variables) whose values are
left open. A problem is defined by giving a description of all its parameters

442 . M. Gritschel PART IV

and specifying what properties an (optimal) solution is required to satisfy.
If all the parameters are set to certain values we speak of an instance of
the problem,

For example, the stable set problem is the following: Given a graph
G = [V, E] and a function ¢: V=R, find a stable set in G such that the
sum of its node weights is as large as possible. Thus, the open parameters
of the stable set problem are the graph G and the cbjective function c.
If a particular graph and a particular function are given, we have an instance
of the stable set problem.

An algorithm is said to solve a problem P if for any instance / of 2,
the algorithm produces an (optimal) solution. The objective of algorithm
design is of course to find the ‘most efficient’ algorithm for solving a prob-
lem.

2.2, Efficiency measures

The notion of efficiency needs some clarification. In the early days of
mathematical programming efficiency was usually tested empirically by
running the programmed algorithm on several data sets, measuring the
time and storage space needed and fitting these measures to some curves.
Although such data are often very helpful in practice, there is no guarantee
that the same program would behave similarly on other data sets.

In order to capture certain aspects of ‘efficiency’ computer scientists
have defined various complexity measures. We shall only elaborate on one,
namely time complexity, since time requirements are usually the most
important ones in judging the efficiency of an algorithm.

It is obvious that for almost any imaginable problem the running time
of an algorithm to solve a problem instance depends on the ‘size’ of the
instance, e.g. to calculate the maximum weight stable set of a graph with
large order should take longer than for one with small order. It is customary
to measure the size of a problem instance informally by some parameters.
In the stable set case, the size could be specified by the number of nodes
and edges of the graph and the numbers c,, for all v € ¥, of the objective
function.

This kind of informal measurement can be rigorously formalized by
considering an encoding scheme which maps problem instances into strings
of symbols describing them. In real-world computers these strings usually
consist of zeros and ones, since the binary encoding appears to be the

CHAPTER 2 Hard comnbinatorial optimization 443

most convenient one for our present computer technology., The size (or
input length) of the problem instance is then defined to be the length of
this string of symbols. Such a string can be used to input the instance
into a real (or hypothetical) machine. In order to prove interesting mathe-
matical theorems involving the ‘size’ of problem instances one has to make
sure that the results do not considerably change by taking (slightly) different
encoding schemes and (slightly) different machines. The machines most
frequently used in theoretical analysis are the Turing machine and the
RAM machine which are in some sense (in particular, for our purposes)
equivalent. For both machines different choices of (reasonable) encoding
schemes have almost no effect on the results we are interested in. For the
reader not familiar with these concepts, it is completely sufficient to consider
a real-world computer instead of a Turing machine,

Given an encoding scheme and a machine model, the time complexity
SJunction {1+ N— N of an algorithm expresses its time requirements by
giving, for each possible size or input length n¢ N, the largest amount of
time needed by the algorithm to solve a problem of that size.

The time requirements are measured by counting the number of ‘element-
ary steps’ the algorithm performs to solve the problem instance. Informally,
such operations as addition, multiplication, comparison are considered
elementary steps, keeping in mind, however, that, if large numbers are
involved, operations with these numbers require more than one elementary
step.

When a proper measure of time complexity is found, ‘efficiency’ has to
be defined. We say that a function f(n) is O(g(n)), in words f is of order g,
if there is a constant ¢ such that |f(n)| < ¢ |g(n)| for all integers # > 0.
A polynomial time algorithm is an algorithm whose time complexity func-
tion f{(n) is O(p(n)) for some polynomial p: N — N. Any algorithm whose
time complexity function cannot be bounded by a polynomial is said to
be a superpolynomial or exponential time algorithm. 1t is well known that
exponential functions grow much faster than polynomials, therefore poly-
nomial time algorithms are much more desirable than exponential ones.
Hence, we shall say that an algorithm is efficient or good if it runs in poly-
nomial time, keeping, however, in mind, that a good algorithm is not
necessarily efficient in practice, since an O(n°9%)-algorithm is of almost
no practical value. Such cases of useless good algorithms occur quite
rarely. Many of the good algorithms for problems of practical interest are
also efficient in real life.

444 M. Gritschel PART 1V

2.3. The classes P and NP

We now want to distinguish between hard and easy problen{s. In order
to be able to use a formally convenient apparatus we shall analyse decision
problems only which are problems having only two possible solutions,
either ‘yes’ or ‘no’. A ‘natural’ problem of this kind is “Does a graph G
contain a hamiltonian cycle?”’ Optimization problems can be transformed
into decision problems as follows: Let (E, J, ¢) be a combinatorial maxi-
mization problem and B be a number (lower bound), the corresponding
decision problem is “‘Is there a feasible solution whose value is at least B?”,
e.g. “Is there a stable set in the graph whose sum of node weights is at
least B?”. : : _

The class of all those decision problems for which a polynomial time
algorithm exists is called the class P. More correctly, given an encoding
scheme E, say binary encoding, and a computer, say a Turing machine;
let 7z be a decision problem and every instance of z be encoded in E. Then
ot belongs to class P if there is a polynomial p,(n) and a Turing machine
program which for every instance of z halts with a correct answer (‘yes’
or ‘no’) after at most O(p,(n)) elementary steps where n is the size of the
instance encoded in E. As we shall see in Section 3 there are many decision
problems which are not known to be in P, e.g., “Is a graph hamiltonian ?”.

Although there is no known polynomial algorithm for checking whether
a graph has a hamiltonian cycle or not, it is simple to verify hamiltonicity.
Suppose someone claims that & certain graph is hamiltonian; if he displays
a hamiltonian cycle (by whatever means he has found it), then everybody
can easily convince himself that this claim is correct or not. (‘Easily’ means
that there is a polynomial time algorithm deciding whether a given set of
edges is a hamiltonian cycle or not.) If he claims that the graph is non-
hamiltonian, however, no simple proof of this fact is known.

This informal discussion leads us to the concept of nondeterministic
algorithms. A nondeterministic algorithm is composed of two stages.' Given
an encoded problem instance I, the first stage guesses some object and
encodes it. Then the encoded problem instance and the encoded object
will be given as input to the checking stage in which the algorithm tries
to find out whether the object yields a positive answer to the given instance
of the decision problem. ' '

E.g. in the case of the stable set problem ‘‘Is there a stable set in the
graph G = [V, E] whose sum of node weights is at least B?’, the first stage

CHAPTER 2 Hard combinatorial optimization 443

guesses and encodes a set $ of k < | V| nodes of G and the second stage
checks whether S is a stable set of G with weight sum at least B.

We say that a nondeterministic algorithm solves a decision problem =
in polynomial time if there exist two polynomials p.(») and ¢.(n) such that
the following two properties hold for all instances 7 of 7:

(1) If the answer to I is ‘yes’ then there exists an object .S (i.e. an object
that can be guessed) which satisfies

(a) if » is the input length of I then § can be encoded in O(p.(m))
time (nothing is said about how S is computed or guessed),

(b) if I and § are used as inputs for the checking stage and n’ is the
input length of S then the ansyer will be ‘yes® in O{g,(n + #')) time.

(2) If the answer to I is ‘no’, then there exists no object S which will
lead the checking stage to respond ‘yes’ when I and S are used as inputs.

Notice that this definition is nonsymmetric in ‘yes’ and ‘no’. A poly-
nomial nondeterministic algorithm will only run in polynomial time if the
input gives rise to a ‘yes’ answer, if the answer is ‘no’ then nothing is said
about the performance of the algorithm, it may, for example, run forever.

Informally, the class NP is defined to be the class of all decision problems
that, under reasonable encoding schemes, can be solved by polynomial
time nondeterministic algorithms. The class NP can be rigorously defined
by introducing nondeterministic machines, e.g. nondeterministic Turing
machines, and precisely specifying the more intuitive notions presented
above.

Our discussion above shows that the hamiltonian cycle problem is in
NP, since, if a hamiltonian cycle exists it can be ‘guessed’, then it can be
encoded in polynomial time, and to check that this cycle is a hamiltonian
cycle of the given graph can also be done in polynomial time.

It is obvious that P C NP holds, and it appears to be as obvious that
P == NP, since nondeterministic algorithms seem to be more powerful than
deterministic ones. However, despite enormous research efforts the problem
of whether or not P equals NP is still one of the major open problems
in mathematics.

" Cook (1971) introduced a class of declsmn problems Wthh are in a
well-defined sense the hardest problems in NP. Suppose we have two
decision problems 7z and =’ and a fixed encoding scheme. A polynomial
transformation is an algorithm which, given an encoded instance of =,
produces in polynomial time an encoded instance of z' such that the follow-
ing holds: For every instance I of =, the answer to I is ‘yes” if and only if

446G M. Grétschel PART IV

the answer to the transformation of 7 (as an instance of =) is ‘yes’. Clearly,
if there is a polynomial algorithm to solve =’ then by polynomially trans-
forming any instance of z to an instance of »’ there is also a polynomial
algorithm to solve 7. We call a decision problem & NP-complete if n € NP
and every other problem in NP can be polynomially transformed to .
Thus, every NP-complete problem z has the following property: if » can
be solved in (deterministic) polynomial time then all NP-problems can be
solved in (deterministic) polynomial time, i.e. if m is NP-complete and if
n € P then P = NP. This justifies saying that NP-complete problems are
the hardest NP-problems. Both the stable set decision problem and the
hamiltonian cycle problem discussed above are NP-complete problems.

2.4. Hard and easy problems

Unfortunately, optimization problems cannot be completely expressed
as decision problems. There is, however, a satisfactory way to treat almost
all combinatorial optimization problems. This goes as follows.

As shown above we can formulate a2 maximization problem as a decision
problem by additionally introducing a bound B and asking ‘Is there a feas-
ible solution whose value is at least B’. Supposing there is a polynomial
algorithm to solve the optimization problem, we first compute the optimal
solution and its value, then we compare the optimal value with the bound B
and hence are able to solve the decision problem in polynomial time.
Informally we call an optimization problem Q NP-Aard if there is an NP-
complete decision problem which can be polynomially reduced to Q. For
example, the decision problem ‘Is there a stable set in G whose value is
at least B?' can be shown to be NP-complete, thus the stable set optimiza-
tion problem is NP-hard.

Very often one can use polynomial algorithms for decision problems
to solve the corresponding optimization problem in pdlynomial time. For
example, suppose we have a polynomial algorithm for the stable set decision
problem. Assume for convenience that all node weights ¢,, v € ¥, are non-
negative integers, then the value of the maximum weight stable set cannot
be larger than no, where o« = max{c, | v€ ¥}, and it is not smaller than
zero. Now ask whether there is a stable set of value at least na/2, if yes
ask whether there is a stable set of value at least 3nx/4, otherwise ask
whether there is a stable set of value at least nx/4, and continue by succes-
sively halving the remaining interval of uncertainty. Since the optimum

CHAPTER 2 Hard combinatorial optimization 447

value is integer, this decision problem has to be solved at most [log,(nx)]+1
times. If the decision problem could be solved in polynomial time, then
the optimum value could be calculated in polynomial time with this so-
called binary search method piven above, and similarly, the optimum
solution could also be computed in polynomial time. Informally, let us
call an optimization problem NP-easy if there exists a decision problem
s € NP such that the optimization problem can be polynomially reduced
(e.g. by a binary search method) to @ For example, finding a maximum
weight stable set in a graph is NP-easy since it can be solved by calling
the stable set decision problem at most a polynomial number of times.

An optimization problem which is both NP-hard and NP-easy is called
NP-equivalent. By definition, if P = NP then no NP-hard problem can be
solved in polynomial time, and if P = NP then every NP-easy problem
can be solved in polynomial time. Therefore, all NP-equivalent problems
can be solved in polynomial time if and only if P = NP.

For our convenience we shall henceforth call all problems hard which
are NP-hard or NP-complete, and all those problems which are solvable
by a polynomial time (deterministic) algorithm are called easy.

Our introduction to some aspects of complexity theory is more or less
informal; all these concepts and other related ones can be defined rigorously
in order to make a clear distinction between ‘hard’ and ‘easy’ possible
(although at present it is not known whether these measures of ‘hard’ and
‘easy’ are really different). For further reading about these topics we re-
commend Aho, Hopcroft and Ullman (1975), Bachem (1982), and Garey
and Johnson (1979).

3. Examples and applications

In this section we give an overview on various combinatorial optimiza-
tion problems and their applications to real-life situations. This list is
certainly not complete but contains many of those problems which have
a wide range of applications or which are of particular theoretical interest.

3.1, Independence systems. Let E be a finite set and J be a subset of the
power set of E. If J satisfies the following two axioms:

Be s, - (LD
ICJeS=Ic S, (1.2)

448 M. Grdtschel PART LV

then (E, £) or just is called an independence system. If ¢: E-—>R is an
objective function, then max{c(l) | I€ #} is the associated optimization
problem. ,

Most of the subsequent problems of this section can be formulated as
independence systems either directly or by making a slight transformation
as follows: if 4 C 2(E) then

F:={CE|3JeF with ICJ}

is called the independence system associated with 5 or the monotonization
-of #. It is often simple to transform the objective function ¢: E— R into
an objective function ¢:E—R such that the set of optimal solutions of
(E, £, ¢) and (E, j, ¢) coincide and that e(I) = ¢(I) + k V Ic # where k
is a constant.

Optimization problems over independence systems are in general hard.
We shall see, however, that if additional requirements are introduced they
‘may be solvable in polynomial time.

A special case of independence system are matroids (an excellent refer-
ence for matroid theory is Welsh (1976)).

3.2. The matroid problem. If (E, .#) is an independence system and F C E,
then a subset B C F with B¢ f is called a basis of F if there is no B'¢ ¥
‘with B’ C F and B’ strictly contains B.

An independence system (E, #) is called a matroid if the following
.additional axiom is satisfied.

For every subset F C E, every two bases of F have
the same cardinality.

(L.3)

If ¢ : E— R is an objective function and (£, #) a matroid, then the matroid
problem (E, 4, ¢) is the problem of solving max{c(I) | I€ S},

Matroid problems (E, #, ¢) can be solved with the following algorithm:

3.3. Greedy algorithm. 1. Order the positive elements of E such that

<(ey) 2 cle;) > -+~ ¢(e,) > 0 holds. (This can be done in time O(n log n).)
-2, Set F=4. |

3.00i=1T0 n: IF F\U {g} €. F THEN set F:= F \/ {¢}. END

It can be shown that the set F after termination of the algorithm is the
optimum solution of the matroid problem and that F satisfies a certain

CHAPTER 2 Hard combinatorial optiniization 449

performance guarantee in case (E, #) is a general independence system
(cf. Edmonds (1971), Jenkyns (1976), Korte and Hausmann (1978), and
Theorem 4.7).

If it is possible to check in polynomial time whether a set 7 belongs to J,
then the greedy algorithm obviously runs in polynomial time.

An example of a matroid is the following from linear algebra. Consider
2 finite set of vectors x, x5, ..., ,, and set E = {1,...,n}. Let F be the
set of all sets I of indices such that the vectors x,, i € /, are linearly inde-
pendent (or affinely independent); then (£, .£) is a matroid. For our pur-
poses the following example is more interesting.

3.4. The spanning tree problem. Let G = [V, E] be a graph and .# the set
of all forests in G, then (E,) is a matroid. One can show that if G is
connected then the bases of E are exactly the spanning trees of G. Thus,
if we have an objective function ¢: E—>R,, then every optimal solution
will be a spanning tree. Since the forests constitute a matroid, the maximum
weighted spanning tree can be found by the greedy algorithm. However,
there are algorithms which are more efficient than the greedy algorithm,
cf. Prim (1957), Dijkstra (1959), Cheriton and Tarjan (1976).

If certain additional properties are required of the spanning tree then
the new problem often becomes hard. For example, if we require that no
node in the optimum spanning tree 7 has degree larger then an integer k,
or that there are at least k& nodes with degree 1, or that T contains no path
of length larger than k, then the restricted spanning tree problem is hard.
For further examples of this kind see Garey and Johnson (1979) p. 206ft.

There are certain applications of the spanning tree problem, e.g. the so
called connector problem which is the following. Consider a set of towns
(branches of a company) where a railway system (communication system)
should be set up such that every town (branch) can be reached from every
other. The objective is to design a network such that the total construction '
costs are minimal. Such applications are rather artificial and almost never
occur in such a pure form. The importance of the spanning tree problem
is that it is a close relative of other hard problems (we shall see later what
that means) and that spanning tree calculations are often used as sub-
routines, cf. Algorithm 6.5.

3.5. 2-matroid intersection. Suppose there are two matroids (E, #,) and
(E, #,) ofi the same ground set E and let S = F, NI, f c: E—~R is

450 M. Gréitschel ‘ PART IV

an objective function, then
max{e(l) | 7€ £}

is called a 2-mmatroid intersection problem.

In general, the intersection of two matroids is not a matroid, but a sur-
prising result is that 2-matroid intersection problems are easy. For poly-
nomial algorithms to solve such problems see Lawler (1975), Edmonds
(1979), Grotschel, Lovdsz and Schrijver (1981a) and Frank (1981).

One can show that every independence system is representable as the
intersection of (possibly a very large number of) matroids. The above
result, unfortunately, cannot be generalized to more than two matroids,
since there are hard problems which are representable as the intersection
of three matroids (e.g. the asymmetric travelling salesman problem).

A special case of the 2-matroid problem is:

3.6. The branching problem. Given a digraph D = (V, 4) and a function
c: A—R, A branching B is a set of arcs such that B contains no cycle (in
the undirected sense) and that every node of D is the head of at most one
arc in B. The optimum branching problem is to find either a maximum
weighted branching or a minimum weighted spanning branching.

It is easy to see that the independence system of branchings is the inter-
section of the forest-matroid on D and the matroid J := {F C 4 | every
node of D is the head of at most one arc of F}. There exist very efficient
methods to solve branching problems, cf. Edmonds (1967), Tarjan (1977).

As in the case of the spanning tree problem the main importance of
the branching problem lies in its close relation to hard problems and there-
fore the possibility of using branching algorithms as subroutines of a branch
and bound algorithm, cf, Section 7.

A further special case of the 2-matroid-intersection problem (and hence
easy) is the following.

3.7. The bipartite matching or assignment problem. There are various
ways to formulate this problem and thus different names are used in the
literature. The bjpartite matching problem is the following. Given a bi-
partite graph G = [V, E] where the nodes are partitioned into two stable
sets V', Vysuchthat V, £ @55V, ¥V, UV, =V, V, N\ V, =@ and given
a function ¢: E— R. Find 2 maximum matching in G, i.e. a set of edges

P R R Y

CHADPTER 2 Hard combinatorial optinization 451

such that no two edges have a common endnode and whose sum of edge
weights is as large as possible.

The special case where |V, | = | V] is often called the assignment prob-
lem and has the following interpretation. Given n persons (or men) and »
jobs (or women) let ¢, | </, j < n, be a qualification measure for person
i to successfully do job j (a measure of empathy between man i and woman j).
Find an assignment of persons to jobs (assignment (marriage) of men to

‘women) such that the total qualification measure (sum of empathy coeffi-

cients) is as hiph as possible.

The assighment problem can also be formulated on a digraph. Here
one usually assumes that a complete diagraph D = (V, A) with weights
ey ERV (i, j)€ A is given. One wants to find a set of arcs B such that every
node of D is the head and the tail of exactly one arc in B and that the
sum of the weights of the arcs of B is as small as possible. (Instead of
maximizing empathy one can also minimize antipathyl) It is easy to see
that every solution B of the assignment problem is the union of dicycles
such that every node is contained in exactly one dicycle.

The so-called ‘Hungarian Method’ to solve the bipartite matching prob-
lem was one of the first good algorithms in combinatorial optimization
and had a strong influence on further algorithm design, (cf. Kuhn (1955)).
A survey of existing assignment and matching algorithms can be found
in Lawler (1976), and in Burkard and Derigs (1980). Applications of the
assignment problem are obvious. It is also of particular interest as a relaxa-
tion of the asymmetric travelling salesman problem, cf. 3.12 and Section 6.

3.8. The b-matching problem. If the bipartite graph in the previous problem
(3.7) is replaced by an arbitrary graph we obtain the 1-matching problem.
A further generalization goes as follows. Given a graph G = [V, E], non-
negative integers b, for all v€ ¥ and costs ¢, € R for all e€ E. There are
three closely related problems:

(2) Find a b-matching in G of maximum total weight. This' problem
is called the binary b-matching problem. _

(b) Find nonnegative integers x, for all e€ E such that 3¢, x, < b,
for all v€ Vand 3,z c.x, is as large as possible. We call this problem the
uncapacitated b-matching problem.

452 M. Gritschel PART IV

(¢) Given in addition nonnegative integers a,, e € E, find integers x, for
all ¢ € E such that the following holds:

0<x,<a, foral e€ckE,
> x, < b, for all ve V,
v€e

D c.x, is maximum.
L1

This problem is called the (edge-) capacitated b-matching problem.

Although none of these problems is a matroid or 2-matroid intersection
problem, each is easy, i.e. can be solved in polynomial time (cf. Edmonds
(1965), Edmonds and Johnson (1980), Pulleyblank (1973), Cunningham
and Marsh (1978), Burkard and Derigs (1970)).. Matching problems have
many applications, e.g. in oil drilling, the design of telephone networks
and physics (the planar spin glass problem within a magnetic field), cf.
Barahona (1980), Devine (1973). B

The b-matching problem seems to be close to the border between ‘hard”
and ‘easy’ since many slight variations of this problem turn out to be hard.
For example, consider the uncapacitated 2-matching problem. Cornuejols
and Pulleyblank (1980) have developed a polynomial algorithm which
constructs an optimum uncapacitated 2-matching without triangles (cycles of
length three), and Papadimitriou has shown that the problem of finding
an optimum urcapacitated 2-matching without a k-cycle (k > 5 and odd)
is hard. A further hard problem in matching theory is the problem of finding
a minimum maximum matching, i.e. a matching which is not contained in
any larger matching of a graph and which has as few edges as possible,
(cf. Yannakakis and Gavril (1980)).

3.9, Shortest paths. Given a digraph D = (¥, A) and a ‘distance’ function
¢: A—R which associates a length ¢, with every arc (i, /). If u and » are
two nodes of D, then the problem of finding a directed path P from u to v
such that 3/, yep ¢;,is as small as possible is called the shortest path problem.

This problem as well as several variations of it (shortest dipaths from
one node to all others, shortest dipath between every pair of nodes, the
corresponding problems for undirected graphs, etc.) are solvable in poly-
nomial time. A good survey of the best known methods to date can be
found in Lawler (1976). On the other hand, some variations of the shortest
path problem which are hard are listed in Garey and Johnson (1979).

CHAPTER 2 Hard combinatorial optimization 453

3.10. The network flow problem. One of the most important combinatorial
optimization problems is the following, Given a digraph D = (¥, 4) and
a nonnegative ‘capacity’ ¢, for every arc (5, /)€ A. Let s5,/€ ¥ be any
nodes, call s the source and ¢ the sink of D. A vector x having a component
x, for every are (i, J)€ A is called a feasible s—r-flow in .D if the following
holds:

0 <.. XU < CU for all. (i, j) E A, (1)'
—v if =,

E xu - Z xﬂ= 0 ifje V\ {S, t},- (2)‘
1er-(n 1ET4(}) " ifj= ‘.

(Condition (1) says that a feasible s—¢-flow has to satisfy the capacity con-
ditions, while condition (2) states that except for the source and the sink
the flow going into node j also leaves j (conservation of ﬂows)).

The number » associated with every flow vector x is called the value of x,.
and the network flow problem is to find a feasible s—¢-flow whose value is
as large as possible. ‘

If, in addition, a cost is associated with every flow through an arc we
can ask for a feasible s—-flow with a certain (e.g. maximum) value whose
cost is as small as possible. This and other variations of the network flow
problem are solvable in polynomial time, The network flow problem has
numerous real-world applications, (cf. Glover and Klingman (1977)), and
some of the famous theorems of network flow theory like the max-flow
min-cut theorem have far-reaching consequences in the theory of combi-
natorial optimization. The classical monograph on flow theory is Ford and
Fulkerson (1962), more recent surveys on implementations of network flow
algorithms can be found in Hu (1969), Lawler (1976), Ali, Helgason, Ken-
nington and Lall (1978), Cheung (1980), Glover, Klingman, Mote and
Whitman (1979), Kennington and Helgason (1980).

If the flows have to satisfy additional requirements then these modified
network flow problems usually turn out to be hard. For a list of such
variations of the network flow problem see Garey and Johnson (1979)
p. 2141

3,11, The Chinese postman problem. A postman has to deliver mail in
certain streets of a city the lengths of which are known. He looks for a
minimum length walk starting at the post office and ending there. In terms

454 M. Grérschel PART IV

of graphs we can state this problem as follows: Given a graph G = [V, E]
and distances ¢, for all e€ E. Find a shortest walk through the graph that
passes through every edge at least once.

As shown by Edmonds and Johnson (1973) this problem can be solved
in polynomial time using the shortest path and the I-matching algorithms.

Clearly, the Chinese postman problem can alsc be formulated in a
directed version for digraphs. This problem is also easy. But if we consider
the Chinese postman problem on a mixed graph, i.e. a graph with directed
and undirected edges, then it becomes hard, cf. Papadimitriou (1976).

The preceding list of easy problems (3.2, 3.4-3.11) is a collection of
some of the most interesting easy problems, interesting from both the theo-
retical and practical point of view. As mentioned above, slight variations
of these problems often turn out to be hard. This indicates that most of
the real-world problems are hard, since these almost never occur in the
pure form of the models described above. The above problems are also
important because they are often used as relaxations of hard problems,
i.e, good algorithms for the easy problems are used as subroutines for
branch and bound procedures for hard problems, (cf. Section 6).

One of the most prominent and most intensively studied hard problems
is the following. '

3.12. The asymmetric travelling salesman -problem (ATSP). A salesman
lives in a city, say 1, wants to travel through cities 2,3, ..., n and then
return to his hometown. The distances between the cities are known and
he wants to find a tour which is as short as possible. The graph theoretic
formulation is as follows: Given a complete digraph D = (V, A) of order n
(i.e. between every pair of nodes 7, j there is an arc from 7/ to j and from
J to i), and a ‘distance’ function ¢: 4 — R, find a hamiltonian dicycle (or
tour) of minimum total distance.

3.13. The symmetric travelling salesman problem (STSP). In case the
distance from city 7 to city j is the same as the one from j to i, we cali the
travelling salesman problem symmetric. Of course, the symmetric prob-
lem is a special case of the asymmetric one but practical experience has
shown that algorithms for the asymmetric problem perform in general
badly on symmetric ones, so the latter need special treatment. The usual

CHAPTER 2 Hard comblnatorial aptimization 455

graph theoretical representation of the symmetric TSP is: Given a complete
(undirected) graph K, = [V, E], find a shortest hamiltonian cycle (tour)
through K.

The symmetric and the asymmetric travelling salesman problem have
numerous real-world applications. There is, of course, the obvious one of
finding a shortest roundtrip through several cities, but such optimization
problems also occur in routing numerically controlled machines, e.g. back-
board wiring, automatic soldering, automatic drilling (e.g. of computer
chips) and the like. Similarly, all problems where regular maintenance or
control of certain facilities is required (e.g. telephone booths, measuring
stations for meteorological or pollution data) can be formulated as TSPs.
Other applications include the sequencing of fluids in a multi-product pipe-
line, certain vehicle routing problems, the clustering of data arrays, job-
shop scheduling with nc wait in procgés, the sequencing of colors In var-
nishing machines, or the sequencing of different profiles in a rolling mill.
Some of these examples and their formulation as TSP's can be found in
Lenstra and Rinnooy Kan (1975), Lin and Kernighan (1973), and Steckhan
and Thome (1972), and a book edited' by Lawler, Lenstra, and Rinnooy
Kan which will appear in 1982.

In many practical applications the pure TSP as described above cannot
be used since additional constraints exist which require a similar but dif-
ferent model formulation. Some general types of combinatorial optimiza-
tion problems which include the TSP are the following:

3.14. General routing problems. Consider a mixed graph G with node set V,
(undirected) edges E, (directed) arcs A4, and a cost function ¢: E\J 4 — R,
Furthermore, subsets V' C V, E'C E and A° C 4 are given. We seek a
walk 7 in G of minimum total cost which contains the nodes V”, the edges
E’ and the arcs A’ such that all arcs of A’ have the same orientation in 7.
This problem is called the single vehicle routing problem.

Obviously, if E=E, A=A"=E =@ and V' =V, we obtain the
symmetric TSP, and if £’ = E, A'= A,and V' =0 we have the mixed
Chinese postman problem. The problem where E is arbitrary, 4 = A’
= V' =0 and E’ is some subset of E is called the rural postinan problem.
If E and A are arbitrary ¥’ = E’ =@ and A" = 4 we have the so-calied

stacker crane problem.

456 M. Grétschel ' " PART IV

A natural extension is the m-vehicle routing problem where the purpose
is to find m walks, each containing a common distinguished node (the
depot) and collectively containing the sets V', E’ and 4’, such that the
sum of the total costs of the walks is minimized.

These peneral routing problems are, of course, hard and only a very
few special cases like the directed and undirected (but not the mixed)
Chinese postman problem can be solved in polynomial time,

Surveys on various aspects of vehicle routing can be found in the special
issue of the journal Networks (Vol. 11, No. 2, 1981), e.g. the complexity of
vehicle routing problems is treated in Lenstra and Rinnooy Kan (1981).
Several methods for these problems are also described in Christofides,
Mingozzi and Toth (1979). A further éxample of a practical application
which is a variant of the TSP is given in Gensch (1978).

3.15. Scheduling problems. A general class of machine scheduling prob-
lems can be formulated as follows. A job J; (i = 1,..., n) consists of a
sequence of operations each of which corresponds to the uninterrupted
processing of J; on some machine M, (j =1, ..., m) during a given period
of time. Each machine can handle at most one job at a time. What is
according to some overall optimality criterion the optimal processing order
on each machine?

There is a large variety of different optimality criteria (e.g. minimizing
total tardiness, minimizing maximum lateness, minimizing total cost) and
further assumptions on the operations, jobs and machines (e.g. precedence
constraints, group of parallel nonidentical machines), that have been dis-
cussed in the literature. For extensive surveys of the above stated scheduling
problems, as well as others, we refer to Conway et al. (1967), Coffman
"(1976), Rinnooy Kan (1976) and the special issue.of the journal Operations
Research on Scheduling (Vol. 1, No. [, 1978). There are many easy sched-
uling problems, but most of the practically relevant problems are hard.
A classification of the complexity of scheduling problems can be found
in Rinnooy Kan (1976), Graham et al. (1979).

Location problems come up in great variety. Some typical problems
of this kind are the following: "

3.16. Location problems. Given a graph (or digraph) where nodes represent
communities, areas or the like and edges represent a road system. Where

CHAPTER 2 Hard combinatorial optimization 457

should a hospital, police station, fire station or the like be ‘optimally’
located. ‘Optimally’ could mean here that the sum of the distances from
the emergency station to the communities is as small as possible.

Another location problem can be stated as follows. Let M = {1, ..., m}
be a set of customer locations (markets) and N = {l,..., n} be a set of
possible plant (warehouse, factory, facility serwce statmn) locations, say
cities. Let ¢, > 0 be the value of serving customer i€ M from city f€ N.
Where should % plants be located to maximize total value? More precisely, -
suppose each customer should be served from the highest value available
plant and that every plant can serve every customer. The value of placing
a plant at every location § C N is given by

m

o(S) = 3] r?ax cye
: =

Therefore, this so-called uncapa‘cimted (or simple) location problem can be
stated as

max{c(S) | S C N, |S|=k}.

All the above mentioned (and most other) location problems are hard.
A nice analysis and applications of the simple plant location, problem to
the location of bank accounts aré given in Cornuejols, Fisher and Nemhauser
(1977), for a survey of the literature on this problem cf. Krarup and Pruzan
(1979). Further location problems are treated in Christofides (1975).

3.17. Set covering, set partitioning, set packing. Given a finite set £ and
subsets Sy, Ss,..., S, of E. Associate with each set S, a cost ¢,. Find a
set J C{l,...,n} such that

(@) 3¢ ¢ is minimum, and for every i€ E there is at least one j€ J
with i€ 5, :

(b) 3jes ¢ is minimum (or maximum), and for every i € E there is
exactly one j€ J with i€ §),

(© 3¢ ¢ is maximum, and for every i€ E there is at most one jE€.J
with i€ §,.
Problem (a) is called set covering problem, problem (b) set partitioning
problem, problem (c) set packing problem.

458 ' M. Grétschel PART 1V

It is very convenient to formulate these problems in terms of 0/1-matrices.
Define a matrix A with m = |E| rows and n columns where

. I if i€ E is contained in set S,
U710 otherwise.

Then the set coveri‘ng (partitioning, packing) problem is given by

min =
min {"x | Ax =1, x5€{0,1}, i=1,...,n}
max <

where 1, = (1,...,)T is an m-vector.

The literature on applications of these problems israther extensive. Some
practical problems which can be modeled as set covering, partitioning or
packing problems are: information retrieval, truck deliveries, political
districting, railroad and airline crew scheduling, tanker routing, switching
circuit design, stock cutting, assembly line balancing, and some facility
location problems. For a bibliography of such applications we refer to
Balas and Padberg (1975).

3.18. Node covering, node partitioning, node packing. Special (but parti-

_cularly interesting) cases of the preceding problems (3.17) are the node

covering, node partitioning and node packing problems. Here a graph
G = [V, E] is given and our ground set is the edge set E. The subsets S;
of E are the sets) := w(j),j= 1, ..., n, i.e. S; is the set of edges incident
with node j. The cost function associates with every S; (or equivalently
with every node j) a cost ¢, We therefore seek an optimal set J of nodes
such that every edge is incident with at least one node of J (covering)},
incident with exactly one node of J (partitioning), incident with at most
one node of J (packing).

The matrix A corresponding to these problems is therefore the edge-
node incidence matrix of G. Note that the node packing problem is the
same as the stable set problem introduced in Section 2. Both names are
common in the literature.

In general, the node covering (partitioning, packing) problems are hard
and thus the set covering (partitioning, packing) problems are as well. Due
to its interesting properties the stable set problem has been the subject of
intensive theoretical studies. As a consequence of these studies it has been

CHAPTER 2 Hard combinatorial aptimization ' 4359

shown that the stable set problem can be solved in polynomial time for
some classes of graphs, e.g. line graphs, bipartite graphs, K s-free graphs
(Minty (1980)) and perfect graphs (Grétschel, Lovdsz and Schrijver (1981 b)).

One of the outstanding problems in mathematics was the so-called
4-color conjecture which states that a geographical map can be colored
with four colors such that no two neigbouring countries have the same
color. This problem was solved by Appel and Haken (1976). Formulated
in terms of graph theory the 4-color problem says that the nodes of a
planar graph can be colored with four colors such that no two nodes with
the same color are adjacent.

3.19. Coloring problems. More generally we can ask, given a graph G,
what is the minimum number of colors needed to color all nodes such
that no two adjacent nodes have the same color? .

Note that in every node coloring of a graph the nodes with the same
color form a stable set. Suppose that for every node v € ¥ a positive integer
¢, is given. Then the weighted node coloring problem can be stated as follows:
Find stable sets S|, S, ..., S, in G and positive integers A, A2, ..., 4 such
that

>4 = ¢, for every node vg V
vESs

and such that

is as small as possible.

The general (weighted and nonweighted) node coloring problem is hard,
but for some classes of graphs the coloring problem can be solved in poly-
nomial time, e.g. perfect graphs (cf. Grotschel, Lovdsz and Schrijver
(1981b)). Applications of the coloring problem include loading problems,
the scheduling of examination timetables and some resource allocation pro-
blems, cf. Christofides (1975), Chapter 5. :

3.20. The acyclic subdigraph problem. The acyclic subdigraph problem can
be stated as follows; Given a digraph D = (V, A) with a nonnegative
weight function ¢: 4 —R,, find an acyclic subdigraph (i.e. a set of arcs
which contains no directed cycle) of maximum total weight. Expressed

460 : M. Grétschel PART IV

equivalently, we want to find a linear order of the nodes of D such that
the sum of the arc weights which are consistent with this order is as large
as possible.

The acyclic subdigraph problem is also known by several other names,
e.g. the triangulation problem or the feedback arc set problem. The tri-
angulation problem occurs in input-output analysis and is usually stated
“in the following form: Given an (r, n)-matrix 4, find a simultaneous per-
mutation of the rows and colums of A4 such that the sum of the elements
above the main diagonal of the permuted matrix is as large as possible.
This problem is clearly an acyclic subdigraph problem for a complete di-
graph where the arcs (f, j) carry the weights a;,: There exists a large body
of literature on the acyclic subdigraph problem in various nonmathematical
fields. Some applications are ranking by paired comparison, Slater (1961),
aggregation of individual preferences, determination of ancestry relation-
ship, Glover et al. (1974), and triangulation of input-output matrices,
Korte and Oberhofer (1968). For surveys of various aspects of this problem
we refer to Lenstra Ir. (1973) and Kaas (1980).

3.21. Knapsack problems. Suppose » different items (types of scientific
equipment) are considered for filling a knapsack (for inclusion on a space
vehicle). For every item j =1, ..., 1, a value ¢, > 0 and a weight 4, > 0
per unit are given. The knapsack (space vehicle) has a total weight limit &.
The problem of maximizing the total value of the equipment taken is
called the (unbounded or integer) knapsack problem. More formally the
knapsack problem is

n n
max 2 ¢x, 2ax<b,
J=1 J=1

X, 2 0 and integer j==1,2,...,n,

where x, represents the number of times item j is included.

If we additionally require x, € {0, 1}, i.e. that at most one piece of item
j is taken, the problem is called the O/1 or binary knapsack problem.

The special case of the binary knapsack problem in which ¢, = g, for
j=1,...,n holds is called the subset sum problem.

If ccR", b€R™ and 4 is an- (m, n)-matrix such that all entries of ¢, &
and A4 are nonnegative, then the problem

max c'x, Ax<b, x>0, xcZ*

CHAPTER 2 | Hard combinatorial optimization 461

is often referred to as the multi-dimensional knapsack problem, since the
objective function plus each one of the constraints A.x< b, x>0,
x € Z" define an (one-dimensional) knapsack problem.

Although these problems look rather simple (in particular the subset
sum problem), they are hard and as difficult to solve optimally as general
routing problems or the like.

3.22. Planar embedding of a graph. Any graph can clearly be drawn in
the plane by representing every node as a point gnd every edge by a line
connecting the two points which represent its endnodes. A graph which
can be drawn in the plane in such a way that no two edges (i.e. the corre-
sponding lines) cross is called planar. A problem often occuring in design-
ing an integrated circuit or a printed-circuit board is the following: Is a
given graph planar, or, what is the minimum number of edges whose
removal results in“a planar graph?

Hoperoft and Tarjan (1973) developed an algorithm with which planar-
ity of a graph G = [V, E] can be checked in O(| V|) steps. However, Yana-
kakis (1979) showed that the problem of finding the minimum number of
edges F such that G\ F is planar is hard.

The problem 3.22 described above gives rise'to more general questions
about node and edge removal to find subgraphs with certain properties.
Examples of such problems are the following:

3.23. Node and edge deletion problems. Suppose = is a property of a
graph (or of a digraph), (e.g. = could be one of the following properties:
planar, bipartite, acyclic, hamiltonian etc.). Given a graph @, find the
minimum number of nodes (or edges) whose deletion results in a subgraph
having property .

.Lewis and Yannakakis (1980) have shown that the node deletion prob-
lem is hard for the class of properties = which are hereditary and non-
trivial. Here a property 7 is called nontrivial, if # is true for infinitely many
graphs and false for infinitely many graphs, and = is called hereditary if
in any graph having property = all node induced subgraphs also have
property . It follows from this result that finding the minimum number
of nodes to be deleted such that the resulting graph is e.g. planar, outer-
planar, bipartite, acyclic, degree-constrained, chordal, complete, or with-
out edges is hard. '

462 M. Grétschel PART IV

With respect to edge deletion, Yannakakis (1979) proved that for a
graph G finding the minimum number of edges F such that G\ F has
property x is hard for the following properties z: without cycles of specified
length /, without any cycle of length </, connected and degree-constrained,
planar, outerplanar, bipartite, transitive (and some others).

These results of course imply that the weighted versions of the problems
listed are hard. These include e.g., the so-called max cut problem, where
a graph G = [V, E] and an objective function ¢: E— R, are given, and
we seek a cut (W) such that 3¢, . is as large as possible. This follows
from the above results since finding a maximum weighted cut is obviously
equivalent to finding a set of edges whose deletion results in a bipartite
subgraph such that the sum of the weights of these edges is as small as
possible. (Note that finding a minimal weighted (nonempty) cut is easy,
since it can be solved by polynomial network flow algorithms).

The list of hard problems (3.1, 3.12-3.23) and the other hard ones
mentioned is just a small collection of such problems. We have introduced
some of the most attractive problems but there are hundreds of other
combinatorial optimization problems which are also hard and for which
we shall likely never find efficient algorithms. An extensive list of hard
problems is compiled in Garey and Johnson (1979), but after publication
of this boock many more problems have been shown to be hard.

4. Heuristic algorithms

Due to the results of complexity theory it seems very unlikely that exact
algorithms can be designed which are able to solve all large-scale hard
prohlems with moderate computational effort. Unfortunalely, most com-
binatorial optimization problems arising from real-world applications are
both large and hard, therefore methods have to be found that quickly
produce feasible solutions which are (in a sense to be made precise) reason-
able. '

Heuristic methods are widely used by practitioners with (more or less)
satisfactory success. For many years the judgement of the quality and
effectiveness of heuristic methods was largely based on empirical computa-
tional experience. That is, some test runs on ‘representative’ real world
and some ‘representative’ randomly generated problem instances were per-
formed and the method which yielded the ‘best resulis on the average’ was
chosen to be used. '

CHADTER 2 Hard combinatorial optimization 463

In recent years researchers have started to investigate heuristic methods
more seriously. Increased research efforts have led to a more general treat-
ment of the design of heuristics, to better algorithms for various hard
problems, and to more sophisticated methods to judge the performance
or the quality of heuristic algorithms. Two new tools for evaluating heur-
istics —“worst case analysis’ and ‘probabilistic analysis’—are now available
and will be discussed in the sequel. Similarly, it has turned out that there
are only a few principles which are the basic essentials of most heuristic
algorithms. The best known of these are the greedy and interchange tech-
niques which will be studied in the next section.

4.1. Some principles of design for heuristics

Without doubt the most frequently used principles in designing heuri-
stics are the greedy method (cf. 3.3) and its variants. We have mentioned
that all matroid problems (3.2) can be solved with the greedy algorithm,
but of course, the greedy algorithm can be applied to any maximization
problem over an independence system (3.1). For general independence
systems, however, there is no guarantee that the greedy algorithm produces
an optimal solution. Consider the following example:

4.1. The greedy algorithm for the stable set problem. Suppose a graph
G = [V, E] of order n and a weight function ¢: ¥V —R are given, and we
want to find a stable node set such that the sum of the node weights is as
large as possible, (cf. 3.18). The greedy algorithm for this problem works
as follows:

1. Order the positive node weights such that

e(v,) = c(vy) = -+ 2 ¢(v) > 0.

2. Set W=4.
3. p0i=1 TO Kk

1F Wy {v} is a stable node set, THEN add v, to W. END

In this case the greedy algorithm may behave very poorly, as the follow-
ing graph shows. Let G = [V, E] be a star, i.e. a graph such that node I
is linked to all other nodes by an edge and such that there are no other
edges. Clearly, the nodes 2, 3, ..., n form a stable set. If the node weights
are all equal to one, then the greedy algorithm might have chosen node 1
first, not being able, then,’to add any further node. Thus the greedy algo-

464 M. Gritselel PART LV

rithm produces a solution of total weight I, while the optimum solution
has weight n — 1.

Clearly, the greedy a]gonthm can also be formulated for minimization
problems, For the travelling salesman problem this can be done as follows.

4.2, The greedy algorithm for the symmetric travelling salesman problem.
Let K, be the complete graph of order » and denote by ¢, the distance
between city { and city j.

1. Order the intercity distances in a list which monotonically increases,

2. Let [V, T] be the graph with » nodes and no edge, i.e. 7 = @.

3. Pick the smallest current distance, say ¢,. If the graph [V, T\ (i
has no node of degree three and contains no cycle of length less than n,
then add ij to T.

4. Remove distance ¢, from the list. If the list is empty, sTop, otherwise
GOTO 3.

The above given two. examples are straightforward applications of the
greedy technique. There are various other modifications of this method.
We shall outline some of these variations with respect to the travelling
salesman problem. In principle all these algorithms work as follows:

1. Start with a basic structure (this is often not a feasible solution and
could be a node, the empty set, a short cycle or the like).

2. Enlarge the present structure using a ‘myopic’ optimization rule, i.e.
a rule which takes a locally best solution (but which does not gnarantee
global optimality) and which is easy to implement.

For the symmetric (and similarly for the asymmetric) TSP the following
well-known heuristic procedures can be considered as applications of this
method. ,

4.3. More TSP-heuristics.

(a) Nearest neighbour.

1. Start with any node.

2. Choose a node not yet chosen but closest to the last chosen node,
link it to the last chosen node by an edge and continue.

This method clearly produces a hamiltenian path which we can trans-
form into a tour by joining the nodes chosen first and last,

CHADTER 2 Hard combinatarial optimization 465

(b) Nearest insertion.

1. Start with a cycle [iy, i, /3] of lenght three.

2. Find a node % not in the present cycle which is closest to any node
in the cycle,

3. Find an edge, say if., of the cycle such that

Crok 1 Chtgyy ™ Cllory
is minimal.
4. Insert node k between i, and i, ;. If the present cycle is hamiltonian,
STOP, otherwise GOTO 2,
(c) Farthest insertion,
The same as nearest insertion, except for Step 2 where ‘closest to’ is
replaced by ‘farthest from’, '
(d) Cheapest insertion.
The same as nearest insertion, except that Step 2 and Step 3 are replaced
by
2’. Find a node k& not in the present cycle and an edge id,,, of the
present cycle such that

e T Crtgrp — Cldgt

is minimal.

The greedy technique as described above usually halts when a feasible
solution or feasible solution that cannot be enlarged is found (e.g. a tour
in the case of the TSP, a basis of the ground set in an independence system).
Therefore, such methods are also often called feasible solution construction
(tour construction) methods. A straightforward idea is to continue this
process by manipulating the present solution in order to find a better one.
The most commonly used improvement technique is the so called inter-
change method which in principle works as follows:

Given a feasible solution, say T.

1. Remove some elements from the present feasible solution T to obtain
a (not necessarily feasible) solution 77,

2. Construct all feasible solutions containing I

3. Choose the best one of these and go to 1.

An application of this technique for the travelling salesman problem
is the following method, cf. Lin and Kernighan (1973).

4606 M. Grdtschel PART IV

4.4. lk-interchange heuristic for the STSP. Given a symmetric travelling
salesman problem.

1. Construct a tour, say 7, e.g. by one of the methods of 4.3.

2. Let L be the list of all k-element subsets of the edge set of T,

3. If L is empty, STOP.

4, Choose a k-element subset from L, say K = {e,, ..., e,}. Remove all
edges e, i= 1, ..., k, from T to obtain an edge set 7", Construct all possible
tours that contain 7’. Let S be the shortest tour obtained this way.

5. If T is not longer than S, then remove K from L and GoTto 3.

6. If S is shorter than 7, set T := .5 and GoTo 2.

It should be noted that the amount of computation needed for 4.4 for
large k is very great. It is not known whether the worst-case running time
of 4.4, even for k = 2, is polynomial in ». Even checking that a given
tour cannot be improved by a 3-interchange (such a tour is called 3-optimal)
" is computationally quite expensive, namely O(n*). Nevertheless, practical
experience has shown that, among the computational feasible heuristics,
combinations of the 2- and 3-interchange method are the best available
heuristics for the STSP to date.

An interchange heuristic for the uncapacitated location problem. cf.
3.16, is the following:

4.5. Interchange heuristic for the uncapacitated location problem. Given an
uncapacitated location problem, cf. 3.16.

1. Given a feasible solution, say S C N, of the uncapacitated location
problem consisting of k locations (e.g. obtained by the greedy method).
Let all locations of S be unlabeled.

2. If all locations of § are labeled, sToOP.

3. Pick any unlabeled location j€ S and iteratively replace it by each
of the unused locations ¥\ S.

4, If none of these new solutions is better than S, label the present
location j and GoTto 2.

5. Otherwise take the best new solution (or the first one better than S,
say &, set S := S, remove all labels and GoTto 3.

Most of the known heuristics for combinatorial optimization problems
have one of the two (or both) principles described above as basic ingredients.
Usually a greedy technique is used to obtain a starting solution for an

)

CHAPTER 2 Hard combinatorial optimization 467

interchange heuristic which then often improves the greedy solution con-

~ siderably.

It is hard to judge which of the variants of the greedy or interchange
heuristics is the best in practice. Our own computational experience for
the TSP, for instance, shows that among the four TSP-heuristics described
in 4.3 the farthest intertion method 4.3 (c) is by far the best (see also Golden
et al. (1980)). All these, however, are outperformed by the 2- or 3-inter-
change heuristic defined in 4.4. Although the second statement might
have been expected, it is hard to find a convincing reason for the (empirical)
fact that the farthest insertion method is better than, say, the cheapest
insertion algorithm.

4.2, Worst-case analysis

It is somewhat unsatisfactory to have to rely completely on data of
computational experiments to judge the quality of a heuristic. To measure
the performance of a heuristic algorithm several indicators have been
introduced. One such index is the so-called worst-case bound. The worst-
case bound (if it exists) gives the maximum relative error that a heuristic
algorithm can make given any instance of a particular class of problems.
More precisely, we define an e-approximate algorithm as follows:

4.6. Definition. Let 2 be a combinatorial optimization problem, let £ > 0
be a fixed constant, and let H be an algorithm that generates a feasible
solution for every instance of #. For every instance (E, 4, c) of # we
denote by ¢(,,) the value of the optimal solution and by c(f},) the value
of the solution /,, generated by H. We furthermore assume that ¢(f,;,) > 0.
We say that H is an g-approximate algorithm if

|ellu) — elopt) |
e(opt)

< &

To make the definition meaningful we require for maximization prob-
lems that & be less than one. If A is an g-approximate algorithm for a

" maximization problem we have

()
C(I opt)

>1—e,

468 M. Gritschel : PART IV

and if H is an e-approximate algorithm for a minimization problem, Defini-
tion 4.6 implies

c(Iy)
C(Iopt)

Usually the numbers 1 — & (resp. 1 -+ &) are called the worst-case bounds
of an algorithm for a maximization (resp. minimization) problem.

Thus if 2 is a maximization problem and H a 1/5-approximate algo-
rithm we know that every solution generated by H is at least 4/5 as good
as the optimal solution, i.e. in the worst case the solution I of algorithm H
is 209, off optimality, or expressed more positively and less quantitatively,
we have a guarantee that the solution given by H is not too bad.

In the recent years intensive studies have been carried out to show that
certain well-known heuristics have a certain worst-case bound, to design
algorithms with increasingly better bounds, or to show that for a certain
problem there is no polynomial algorithm at all with any worst-case bound,
unless P = NP.

‘One of the nicest results in this area is the worst-case bound of the
greedy algorithm for general independence systems, (cf. Jenkyns (1976),
Korte and Hausmann (1978)).

< 1+ e.

4.7. Theorem. Let (E,) be any independence system and ¢: E—R, be
an objective function. For any F C E denote by r,(F) the minimum cardinality
of a basis of F and by r*(F) the maximum cardinality of a basis of F. Let
I be a greedy solution and I, an optimal solution of the problem
max{c(I) | I€ S}, then the following holds

i i T (F) ()
o0 = BT ey <

In other words, the greedy algorithm is a (1 — g,)-approximate algo-
rithm for any maximization problem over an independence system (E,).
Since by axiom (1.3) of 3.2 for matroids r,(F) = r*(¥F) holds for all F C E,
Theorem 4.7 also proves the optimality of the greedy algorithm for matroids.
" For particular combinatorial optimization problems it is easy to obtain
bounds for this so-called rank-quotient q,. For example, for the stable set
problem on a graph G with n nodes we have g, = 1/(n — 1). So the star
mentioned after 4.1 gives a worst-case example for the stable set greedy

CHADTER 2 Hard combinatorial aptimization 469

algorithm, that is, any other possible greedy solution for any other graph
of order n is at least as good as 1/(n — 1) times the optimal value. For
further examples, cf. Korte and Hausmann (1978).

Cornuejols, Fisher and Nemhauser (1977) have shown that the greedy
algorithm for the uncapacitated location problem 3.16 is an 1/e-approx-
imate algorithm, i.e. the error of the greedy solution is not more than 37%.
They have also analysed the interchange heuristic 4.5 which turns out to
be a (k — 1)/(2k — 1)-approximate algorithm, These results were generaliZEd
to the problem of maximizing a submodular set function in Nemhauser,
Wolsey and Fisher (1978) and Fisher, Nemhauser and Wolsey (1978). Si-
milar worst-case bounds for the greedy and interchange heuristic were
obtained.

The present situation of the triangulation problem (acyclic subdigraph
problem) (3.20) is quite strange. Korte and Hausmann (1978) have shown
that the greedy algorithm can be arbitrarily bad, i.e. for the greedy
algorithm there is no constant ¢ (independent of n) which applies to all
triangulation problems. This means that for problem instances of increasing
size the possible relative error becomes larger and larger. There is, however,
an absolutely trivial heuristic which guarantees at least one half of the
optimum. Pick any feasible solution, i.e. linear order of the nodes of the
digraph, and consider the converse linear order. Since the sum of the
values of these two solutions is the sum of all arc weights and since this
is an upper bound for the optimum, the better of the two solutions is at
least half as good as the optimal one. It is interesting to note that no poly-
nomial heuristic algorithm is known to date which has a better performance
guarantee than this.

The situation of worst-case analysis of minimization problems is some-
what different from that of maximization problems. For a given maximiza-
tion problem and a given heuristic one can usually obtain a worst-case
bound independent of the objective function but often dependent upon the
size of the instance (e.g. the order of a graph, the number of rows of a
matrix, or cf. Theorem 4.7). For minimization problems such objective
function independent bounds frequently do not exist at all. A typical
negative result of this kind is the following:

4.8, Theorem. For any &> 0, there exists a polynomial e-approximate
algorithm for the symmetric travelling salesman problem if and only if P = NP.

470 M. Grdtsehel _ PART LV

Theorem 4.8 states that finding a polynomial e-approximate algorithm
(even for ¢ = 1099 or larger) is as hard as finding a polynomial exact
optimization method for the STSP. This result implies that none of the
algorithms for the STSP described in 4.2, 4.3 and 4.4 has a performance
guarantee.

Such negative results raise the question whether there are special cases
of the problem considered for which a worst-case bound can be derived.
This 1s indeed sometimes the case. For example, for the STSP a special
case (which is the usual one occurring in practice) is the so-called euclidean
Symmelric travelling salesman problem. Here we require that the rriangle
inequality holds for all distances, i.e., for all three different cities i, j, k €
{1, 2, ..., n} the inequality

Cie < €+ Ce
has to be satisfied. This assumption simply says that the direct trip from
city i to city k is not longer than the trip from i to j and then from j to k.
For the heuristic algorithms defined in 4.3 Rosenkrantz, Stearns and Lewis

(1977) have found worst-case bounds; the performance guarantee of the
greedy algorithm (4.2) is due to Frieze (1979).

4.9. Theorem. Applied to euclidean symmetric travelling salesman prbb[ems
the algorithms described in 4.2 and 4.3 achieve the following worst-case
bounds:

length of greedy tour 137 log,((n — 8)/2)

@ length of optimal tour < 60 t 5 log,(5/4)

length of nearest neighbour tour
length of optimal tour

(b)

< '%' [Iogz(”)]+ %)

length of nearest insertion tour

| (©) length of optimal tour ’
length of farthest insertion tour
d 21 .
) length of optimal tour <_ oga(m + 0.16,
length of cheapest insertion tour
(€) £ P < 2.

length of optimal tour

Judged from the worst-case bound the farthest insertion method is the
worst of the five methods, although in practical applications this method

CHAPTER 2 Hard conthinatovial optimization 471

turns out to be the best of these five. For the k-interchange methods no
worst-case bounds are known. However, Rosenkrantz, Stearns and Lewis
(1977) have shown that there are instances of n-city euclidean STSP's for
which

length of k-interchange tour 5 (l 1)

length of optimal tour n

For surveys of further results, complexity calculations of heuristic algo-
rithms for the STSP, and the judgement of their practical performance we
refer to Golden et al. (1980) and Lenstra and Rinnooy Kan (1979).

The worst-case bounds in Theorem 4.9 immiediately lead one to ask
whether the number two is the best possible bound, or can algorithms be
invented with a better performance guarantee. This bound can in fact be
improved with a nice algorithm designed by Christofides (1976).

4.10. Christofides heuwristic for the STSP. Given an n-city euclidean STSP
with distances ¢, 1 < 7/ <<j< n. | s '

Step 1. Calculate a shortest spanning tree § of the complete graph X,

Step 2. Construct the complete subgraph G of K|, induced by the nodes
having an odd degree with respect to S. (Note that G has an even number
of nodes.)

Step 3. Calculate a minimum perfect 1-matching M in.-G. .

Step 4. Construct the graph G’ on n nodes which consists of all edges
.of § and all edges of M. (If an edge is in S and M, it ép'pc'ﬁrs twice in G’
By construction, H is connected and every node in' G’ has even degree,
thus by Euler’s theorem, G’ is eulerian.) o

Step 5. Construct an eulerian tour T in G,

Step 6. Suppose T = vy, v, U3, ..., U, &, is the eulerian tour in G'. We
construct a hamiltonian tour H from T as follows: Start in vy, éo to u,,
to v, ete. If a node, say v,, is encountered which has already bé_'en visited,
then eliminate v; from 7 and continue until the last node o, is reached.

Since a hamiltonian path is a spanning tree of X, the shortest spanning
tree is not longer than the minimum length tour. Furthermore, given the
optimal tour in K|, we convert it into a tour of G by skipping over all nodes
not in G. Because of the triangle inequality this tour in G is not longer
than the one in K. Now the tour in G provides us with two perfect 1-match-

ings in G by taking every other edge. The smaller of these two 1-matchings

472 M. Grétschel PART IV

is not longer than half of the length of the optimal tour. Thus, the same
holds for the minimal perfect {-matching in G. This implies that the eulerian
tour is at most 509 longer than the optimal hamiltonian tour. Since the
hamiltonian tour of Christofides" algorithm is constructed by taking short-
cuts (these are really shortcuts since the triangle inequality holds) we
obtain:

4.11. Theorem. For cvery euclidean synumetric travelling salesman problem
the following holds:

length of Christofides toi.u"< L5
length of optimal tour a

To date no polynomial time heuristic for the euclidean STSP with better
worst-case bound is known.

Similar studies have been made with respect to many other hard com-
binatorial optimization problems, general surveys of some of the results
obtained so far are given e.g. in Kannan and Korte (1978), Korte (1979),
and in Fisher (1980). The case of scheduling problems is treated in Graham,
Lawler, Lenstra and Rinnooy Kan (1979). |

4.3. Approximation schemes

Search for algorithms with increasingly better worst-case bounds imme-
diately leads to the problem of whether it is possible to design polynomial -
e-approximate algorithms, (cf. Definition 4.6), for every & > 0. Therefore
the following concepts have been introduced.

4.12. Definition. Given a combinatorial optimization problem 2. An
approximation scheme {AS) for @ is an algorithm which, given any instance
(E, #, c) of Z and a desired degree of accuracy £ > 0, computes a solution

with value ¢(7,5) such that if e(Z,o) > O is the value of the optimal solution
of (E, £, c),

|elhs) — e(Tupd)|

<e.
C(Iopt)

Observe the difference. between an z-approximate algorithm and an
approximation scheme. An e-approximate algorithm works for only one ¢

CHAPTER 2 Hard combiuatorial optimization 473

(and of course all numbers larger than &), while an approximation scheme
is required to work for all values £ > 0.

4.13. Definition. An approximation scheme is a polynomial time approx-
imation scheme (PAS), if for every fixed £ > 0 its running time is bounded
by a polynomial in the length of the input (the input does not include &).

4.14. Definition. A fully polynromial approximation scheme (FPAS) is a PAS
whose time complexity function is bounded by a polynomial function of
both the length of the input and 1/e.

An e-approximate algorithm H whose complexity is O(n'/*), where n
is the length of the input, is a PAS but not a FPAS, however, if its time
complexity is O(n*z~"), where k and ! are fixed constants, then it is an
FPAS. If the degree of accuracy is a rational number p/q then the encoding
length of e is [log(p)] + [log(4)]. So we might define an even better approx-
imation scheme by requiring that its running time is polynomial in » and
[log(p)] + [log(q)]. But it is easy to show that the existence of such an
approximation scheme implies the existence of a polynomial time exact
algorithm. Thus, an FPAS is in some sense the best approximate method
we can expect for a hard problem.

Unfortunately, there are not too many hard problems for whlch fully
polynomial approximation schemes exist. Most of them are knapsack or
knapsack-related problems and some are special scheduling problems. To
show the general principles of an FPAS we now describe the algorithm
of Ibarra and Kim (1975) for the 0/1-knapsack problem

4.15. Algorithm. FPAS of Ibarra and Kim.

Given: positive integers b, ¢, and ¢, =1, ..., n, and £ > 0 (we assume
a<b Jl1a>b cla> c_,tl/afH w.l.o.g).

Output: a feasible solution x of the problem

max 3’ ¢, D ax<b x¢€{01} j'= I...,n, (KP)
J=1 J=1

whose valye is at most (1 — &) off optimality. :
1. Letkbethe largestindex such that 3'¥ ; 4, < b, thenset ¢y, 1= j‘: n -
Note, if ¢, opt is the optimum value of (KP) then’

Copt = Cost << 2 Copy s

474 M. Grdtschel , DART 1V

2. Set s :=(¢/3)* ¢, and f:=¢f3 ¢, and partition the index set
N:={l,...,n} into ‘small’ and ‘large’ indices S:={jeN|¢g <1},
L:={jeN|¢ =t}

3. Solve the special type equality 0/1-knapsack problems

min 3/ g, Dlelslx=d, x€{0,1}, jeL (EKP)
JEL JEL
for all d=0, 1, ..., [c/s] optimally (using e.g. dynamic programming).
4, Ford=0,1,...,[cy/s] do: If x, j€ L, is the optimal solution of
(EKP,) and Y ,¢; axi < b, then apply the greedy algorithm to
max 3 ¢x), Sax<b—3axl, x¢e{01},jeS
JES JES JEL
where the greedy rule is: choose an index j such that the so-called weight
density c,/a, is as large as possible. Let x! je S, be this greedy solution.

5. Among all feasible solutions x,, d = 0, ..., [c,/s], of (KP) generated

in 3. and 4. choose the one with the best value.

This algorithm is a prototype method for all FPAS’s. First the variables
are partitioned into important and unimportant ones (L and S). Then the
knapsack problem is considered for the important variables only. For these
variables new knapsack problems are created by a scaling method which
has the special feature that the best solution of the scaled problems does
not differ too much from the optimal one and that this solution can be
computed in time polynomial im # and 1/e. Finally the unimportant variables
are filled in by some simple greedy technique. L

The [c,,/s] problems (EKP,) can be easily solved by recursion (dynamic
programming) setting f(»,0)=0, v=1,...,|L|; f(1,d)=0 if d=0,
A, dy=a, if d=1[c,/s], and f(l,d)=oc otherwise; and by f(» d)
=min{f(v — 1,d), fo0—1,d—[¢/s)+a} for 2<v<<|L|, 1<d
< [c,/s], where f(v — 1,d — [¢,/s]) = o0 if d — [c,/5] < 0. The optimum
values of (FKP,) are given by the numbers f(|L|,). The running time
of this recursive procedure is O(re—2) which is also the overall running
time of algorithm 4.15. |

Korte and Schrader (1980) have shown that a combination of scaling
and dynamic programming (called e-dominance test) like the one presented
in 4.15 is the essential ingredient of any FPAS.

However, there are many problems for which FPAS’s cannot exist (if
P 5= NP). Namely, suppose there were a FPAS for the STSP. Then we

CHAPTER 2 Havd combinatorial optimization 475

formulate the hamiltonian graph problem (which is NP-complete) as a
STSP with {[, 2}-coefficients by setting ¢, = 1 if jj€ E(G) and ¢, =2 if '
ij¢ E(G). The graph G is hamiltonian if and only if the minimum of this
STSP is equal to n. If & is not hamiltonian, then the minimum is at least
i+ 1.

Now, if we run our assumed FPAS with accuracy £ = 1/(n + 1) we
can decide in time polynomial in n and /e (i.e. in time polynomial in »
which is not larger than the input length of this STSP) whether the optimum
is less than # + 1, i.e. whether G is hamiltonian. Thus, the existence of an
FPAS for the STSP implies P = NP. The definition of the ¢ in particular
implies that the STSP is hard even if we restrict the coefficients of the
objective function to be one or two.

This analysis clearly applies to all hard problems. More exactly, let 2
be a hard combinatorial optimization problem and £, be the subset of
problem instances (E, £, ¢) of £ such that the numbers |c,|€ Z, are
bounded by a fixed positive constant k. If 2, is also hard, then £ cannot
have an FPAS, unless P = NP. This observation was made by Garey and
Johnson (1978). This result rules out the existence of an FPAS for the
travelling salesman problem, the stable set problem, the acyclic subgraph pro-
lem and the like. On the other hand FPAS’s are known e.g. for the subset
sum problem (Ibarra and Kim (1975)), the 0/1-knapsack problem (Lawler
(1979)), the multiple choice knapsack problem (Chandra, Hirschberg and
Wong (1976)), job sequencing with deadlines (Sahn'i (1976)) and minimizing
finish time on two parallel nonidentical machines (Sahni (1976)).

The situation for polynomial approximation schemes is not very differ-
ent. It can be shown that only for a very limited class of hard problems
PAS's are likely to-exist, (cf. Garey and Johnson (1979) and Korte and
Schrader (1980)). Examples of such hard problems are the multidimensional
knapsack problem (Chandra, Hirschberg and Wong (1976)), machine
scheduling with certain precedence constraints (Ibarra and Kim (1978)).
For the multidimensional knapsack problem one can also show that no
FPAS can exist, so the result of Chandra, Hirschberg and Wong is the
best possible with respect to our approximation classes.

4.4. Probabilistic analysis of heuristic algorithms

Although the worst-case analysis was (and still is) very successful in
many cases by providing approximate algorithms with very good perform-

476 M. Grétschel : PART IV

ance guarantee, it does not seem to be the proper model for evaluating
‘the performance of all algorithms. In particular for problems like the TSP
where no polynomial time approximation algorithms with finite worst-case
bound exist one has to find other means to judge the quality of a heuristic
algorithm,

A promising idea is to consider a probabilistic approach and design
algorithms which guarantee optimal or near-optimal solutions on almost
all problem instances. One allows the algorithm to fail to produce good solu-
tions in some cases, but such events should be very rare. To formulate mathe-
matically what ‘almost all' means one has to introduce a probability distri-
bution over the set of problem instances of each size and then find out
how the algorithm performs on the average when problem instances are
drawn from this distribution.

An assumption like this immediately leads to the question as to which
probability distribution is realistic or whether a chosen distribution actually
occurs in practical examples. Nevertheless, this approach leads to inter-
esting insights into the behaviour of algorithms which cannot be obtained
by worst-case analysis. '

The general approach to probabilistic analysis is the following. Given
a problem; e.g. the symmetric travelling salesman problem. Then with each
instance I of the problem a size || is associated; e.g. the number of cities.
Then for each size # one assumes that a certain probability distribution S,
over the problem instances of size n is given; e.g. one considers travel-
ling salesman problems where cities are points in a given square of the
plane and where an instance of an n-city problem is chosen by drawing »
points independently from a uniform distribution over the square (the
‘distance’ here is the euclidean distance in the plane). Let X(I) be some
predicate which is true or false for each problem instance I; e.g. X(I) is
true if a certain algorithm 4 when applied to the TSP-instance I produces
a solution whose value ¢,(7) satisfies ¢,(I) < (1 - €) ¢, (I) for some e > 0,
where ¢, () is the optimum value of instance I. Let g, be the probability
that X(7) does not hold when I is drawn from S,; e.g. that the value c,(I)
is not e-close to ¢,,(f). Then one says that X(I) holds almost everywhere
if 3752 g, < oo, This condition implies that if an infinite sequence of prob-
lems, one of each size, is chosen then with probability one, the predicate X{()
would be observed to fail only finitely often; e.p. that in the case of the
TSP with probability one algorithm 4 would produce a bad solution only

CHAPTER 2 Hard combinatorial optimization 477

finitely often.” Note that this condition is an asymptotic one, so it does
not say anything about a finite sample of 100-city problems.

Although some very interesting results about the probabilistic behaviour
of certain algorithms have been obtained, this subject is still not deeply
explored. Most of the algorithms analyzed so far are extremely simple
and the probability distributions that have been studied may not satisfy |
practitioners. The mathematical analysis of these models is, however, quite
difficult and even proofs of scemingly trivial cases are rather involved.

Probabilistic analysis of heuristic algorithms for the symmetric and
asymmetric TSP, the stable set problem, the set covering problem, the
coloring problem and some other hard problems has been carried out. A
nice survey of such results can be found in Karp (1976). Two particularly
interesting applications for the STSP and the ATSP are in Karp (1977)
and Karp (1979), where for instance Karp shows that for the STSP defined
on the unit square by chosing n points independently from a uniform dis-
tribution a very simple partitioning algorithm almost always produces a
near-optimum solution.

A further approach is to study the probabilistic behaviour of the opti-
mum solution if the cost function is chosen from some distribution and
then design algorithms which make use of this behaviour and almost surely
produce a near-optimum solution. Investigations of this kind can be found
in Lueker (1978) and Weide (1980).

5. Exact optimization procedures

There is a trivial way to solve a combinatorial optimization problem
exactly, namely by enumerating all feasible solutions computing their
values and then choosing the best one. This method may be feasible for
small instances but it can obviously not be carried out for most of the
relevant practical problems. A striking consequence of complexity theory
is that, unless P = NP, there will be no algorithm for the exact solution of
a hard problem which has a significantly better running time for all problem
instances. This negative result, however, should not discourage algorithm
designers because it does not exclude the possibility of finding algorithms
which perform well on the average or which can solve certain problems
of practical interest (even very large ones) with a moderate computational
effort.

478 M. Gritsehel PART IV

In principle there are two methods available for solving hard optimiza-
tion problems. One is the so-called branch and bound technique and the
other the cutting plane method. Both approaches can be combined of
course and can be enriched by various heuristic principles (so much so,
indeed, that sometimes it is not apparent what the main ingredient is).

The guiding idea of the branch and bound technique is to enumerate
all possible solutions in an ‘intelligent’ way. The enumeration is organized
in such a way that at every step the universe of feasible solutions is parti-
tioned into disjoint subsets-and that at every step lower and/or upper
bounds for the best solution within these subsets are computed. If (in case
of maximization) this upper bound of a certain subset is smaller than the
present best known feasible solution or the best known lower bound we
can omit all selutions of this subset from further considerations. Other-
wise we split this subset into smaller pieces obtaining a finer partition and
continue. This technique may save a tremendous number of computatidns,
but it is not guaranteed to terminate without having looked at all possible
solutions. '

It is apparant that the relative success of a branch and bound method
heavily depends on the partitioning strategy and the quality of the bounds
that are computed. The determination of bounds is the most important
feature of such algorithms and a large part of the research effort in past
years has gone into finding methods for computing good bounds with
reasonable computational effort.

The principle behind ‘cutting plane methods’ is to use linear program-
ming to solve combinatorial optimization problems. This is done by asso-
ciating a linear programming problem with the combinatorial optimization
problem under consideration which has the property that the integral feasible
solutions of the linear program are exactly the feasible solutions of the
combinatorial problem. In other words, we want tofind an integer program-
ming formulation for a combinatorial optimization problem. Given such
a linear program then the LP is solved, e.g. by the simplex method (if this
is possible). If the LP-solution is integral the optimum solution of the
combinatorial problem is found. If the LP-solution is not integral one has
to find an inequality (cutting plane) which is violated by the current LP-
solution but satisfied by all integral solutions. This inequality is added to
the current system of equations and inequalities and the procedure is
continued.

CHAPTER 2 Havd cambinatorial aptimization 479

Clearly, the problem here is to find ‘suitable’ integer programming
formulations for the hard combinatorial optimization problems and to
find efficient ways to generate ‘good’ cutting planes. The search for good
cutting planes has created a very lively area of research going under the
name polyhedral combinatorics, and which will be introduced in Section 8,2.

6. Branch and bound methods

Methods which skillfully enumerate the feasible solutions of a combina-
torial optimization problem have been invented and reinvented many times.
It is therefore not surprising that various names are used for these techniques
and that no common terminology exists, Some of the names used are
implicit or partial enumeration, divide and conquer methods, backtracking
techniques, partitioning strategies and so on. By introducing sophisticated
distinguishing features one may build up a hierarchy of these methods,
but we shall abstain from such subtleties in terminology and call all these
techniques branch and bounds methods.

6.1. The general principle

We shall now give a formal definition of this method with respect to
a combinatorial optimization problem #. Each instance of £ is given by
the triple (E, #, ¢), where E is a finite set, & C 2(E) is the set of feasible
solutions, ¢, € R for all e€ E and c(I) := 3,¢; ¢, is the value of each set
ICE.

We assume that 2 is a maximization problem, so we seek

max{c(l) | 1€ £}.

6.1. Relaxation assumption. We assume that there is a relaxation R(Z) of
P which can be solved efficiently. More precisely, we assume that for every
instance (E, F, c) there exists an instance R(E, #, c) such that every ele-
ment I of & corresponds to a feasible solution, say I', of R(E, £, c) and such
that the values of I and I' coincide. Moreover, there should be an algorithm
which solves every instance of R(ZP) efficiently (relative to solving instances

of P).

480 M. Grétschel PART 1V

Since by definition

max{c(l) | 1€ S} < max{c(x) | x feasible forR(E, S,)},

the optimum value of the relaxed problem gives an upper bound for the
original problem.

For every combinatorial optimization problem £ it is easy to find some
relaxation R(#). The problem is to find a good one, namely one such
that for every instance (E, £, c) the optimum values of the maximization
problem over (E, £, ¢) and R(E, #, ¢) do not differ ‘too much’ and that
the computational effort for finding the optimum solution of R(E, £, c)
is not ‘too large’.

To give an example of possible relaxations consider the asymmetric
travelling salesman problem (3.12). A complete digraph D = (V, 4) of
order » is given with a distance function ¢; between every two nodes
i,jef{l, ..., n}, i j, and we want to find the shortest hamiltonian dicycle
(tour) in D, In the assignment problem on D, cf. 3.7, we have to find a
set of arcs such that every node is the head and the tail of exactly one
arc. This condition is met by every tour, i.e. every tour is a solution of the
assignment problem. This implies that the minimum soluation of the assign-
ment problem with distances ¢, provides a lower bound for the ATSP.
Since assignment problems can be solved efficiently, the assignment problem
is a good (and often used) candidate for a relaxation of the ATSP.

A general description of a branch and bound procedure can be formulated
as follows.

6.2. Branch and bound method (for a combinatorial maximization problem
2). Given an instance (E, £, c) of &, we want to find /* € # such that
«(I*) = max{c(/) | 1€ #}. We assume that a relaxation R(%) of £ is
chosen.

1. Let L be a lower bound for our problem instance. (This may be
obtained by a heuristic procedure or just by setting I, = —o0.)

2. Set K = {#}. (K is the set of candidate sets.)

3. If K=0, stop. The present best solution is the optimal one (all
candidate sets have been explored).

4. Branching Step. If K= 0, choose a ‘suitable’ element of K, say
ScKX.

5. Bounding Step. (a) Relax the problem instance (S) max{c(J) | I€ S}
of 2 to a ‘suitable’ problem instance (RS) of R{(P).

T ———

e v— e — - e —————

o i o e o

e ———

e ——— -

CHAPTER 2 Hard combinatorial optimization 481

(b) Find the optimum solution, say x*, of (RS). Let c(x*) be the value
of x*. '

6. If e(x*) < L then discard S from K and Goto 3. (The best solution
in-§ has a value which is not larger than ¢(x*). Since a solution of (E, £, ¢)
with value L is known, no solution in S can be better than the present
best. Therefore we can eliminate all these sclutions.) |

7. If ¢(x*) > L and x* corresponds to an element, say I*, of S then
set L := ¢(x*), replace the present best solution by I* and discard S from
K. Goto 3. (The optimum solution of (RS) is a feasible solution of (E, &, c),
so the optimum solution of (S) is found, and we do not have to consider

" the elements of § any more, Here in addition we can remove all elements

from the candidate list for which an upper bound is known which is not
Jarger than L.) :

8. Separation. (We have ¢(x*) > L and x* does not correspond to an
element of S. In this case we have to split S into smaller pieces.) Partition S
into nonempty subsets Sy, ..., S;, discard S from X, add the sets Sy, ..., S,
to K, and Goto 3. (The partitioning should be done in such a way that
book-keeping is not too difficult.)

The implementation of such a procedure is clearly nontrivial since
—apart from designing an efficient code for the relaxed problem—it
requires a Jot of complicated book-keeping, e.g. the implicit representation of
the current candidate sets, and the testing of many heuristic rules to find
workably efficient strategies for selecting ‘promising’ candidate sets and
suitable partitionings of candidate sets. Although the principle of a branch
and bound procedure is a triviality the actual design and encoding of a
sufficiently successful method is quite difficult.

6.2. A branch and bound algorithm for the STSP

We shall now give an example of a branch and bound method with
respect to the symmetric travelling salesman problem. The most important
step in the design of such a procedure is the choice of the relaxation. For
our example we shall try the so-called I-tree relaxation.

6.3. Definition. Given the complete graph K, = [V, E] with node set
{1,...,n}, and let K,_; be the complete graph with node set {2,...,n}

482 M. Gritschel PART IV

Then a 1-free in K, is an edge set which consists of a spanning tree of
the graph K, _; together with two distinct edges incident with node 1.

By definition, a spanning tree 7" of K, _, consists of n — 2 edges, contains
no cycle, and between every two nodes u, v€ {2, ..., n} there is a unique
path joining ¥ and v. Thus, if we add two edges to T which are incident
with node | we obtain'a set of n edges which contains exactly one cycle.
A tour has also 1 edges and is a cycle, i.e., every tour is a [-tree. The problem
of finding 2 minimum length 1-tree is therefore a relaxation of the STSP.

Moreover, it is easy to find a minimum I-tree. Namely, we first find
a minimum spanning tree of X,_, and then add the two shortest edges
incident with node 1. There are various fast methods known with which
minimum spanning trees can be obtained, e.g. the greedy algorithm or the
Prim-Dijkstra method, cf. Kruskal (1956), Dijkstra (1959), Prim (1957).
Thus the relaxed problem instances can be solved easily.

We now have to devise a separation and branching scheme and to
define our candidate sets. Every candidate set S; is described by a set R,
of edges which are contained in all tours of S, and by a set F; of edges
such that no tour in S, contains an edge of F,. If S is split into several
pieces S, we have to make sure that the new edge sets R, and F) are defined
in such a way that we obtain a partition of §. Initially, S, is the set of
all tours in K, and Ry, = Fy, = 0.

Suppose in the branching step 4 of 6.2 we have chosen a candidate set
S described by the edge sets R and F. Then we solve the following restricted
1-tree problem '

min{c¢(T) | T is 1-tree in K, and RC T, TN F = g},

If the optimum solution is a tour or the minimum is larger than the shortest
known tour then S is discarded forever. If, however, the minimum is a
nontour T* whose value is smaller than the current upper bound, then
we have to split S into several pieces. For this procedure we use the follow-
ing rule, (cf. Volgenant and Jonker (1980)). Choose a node, say v, whose
degree in T* is larger than two and which is contained in the unique cycle
in T*, Clearly, such anode always exists. Note also that » is incident with
at least two edges, say e, and e,, which are not contained in R. Namely,
if v were incident with two required edges then clearly all other edges
incident with » were forbidden; and so » could not have a degree larger
than two.

CHADPTER 2 Hard combinatoiial optimization 483

We define a partition of .S by setting
R, i= RVU{e, e3}, F,:=F,
R, = RV {e}, Fa 1= F U {ey}, (6.4)
Ry :=R, | F: §=FU{C’1},

which clearly results in candidate sets §,, S5, S5 which are disjoint and
whose union is S. S is discarded from the candidate list, but before S,
S,, S; are added we extend the sets of required and forbidden edges. Note
that in the case where v was on & required edge of R, R, then states that v
must be contained in three edges which is impossible. So in this case S,
is the empty set and is not .added. Moreover, if in the sets of required
edges R, or R, one node is now incident with two required edges then
all other edges incident with this node can be forbidden. If the edge sets
F, or F; contain n — 2 edges incident with one node then the two remaining
edges incident with this node are required. So in our separation procedure
we discard S from the candidate list and add two (S, S;) or three (S,
S,, S3) new candidate sets to our list. We still have to state which node v
we use to perform our separation and how we branch. This will be done
in the following complete description of the algorithm.

6.5. Algorithm. Branch and bound algorithm for the STSP with l-tree
relaxation. Suppose we have a complete graph K, with distances ¢, > 0,
1 < i< j< n We describe a candidate set S by S(R, F, L) where R are
the required, and F the forbidden edges, and L is a known lower bound
for the best tour in S.

1. Run the farthest insertion and the Christofides heuristic described
in 4.3 (c) (resp. 4.10) to obtain tours T, arid T,. Then apply the 2-inter-
change, and then the 3-interchange method described in 4.4 to T, and T.
Let T be the best tour obtained in this ‘way and let U be its value. (This
choice of heuristics is based on our computational experience with many
travelling salesman problems.) -

2. Let the list of candidate sets consist of the set S(@, , 0) cons:stmg
of all tours. (The shortest tour clearly has length at least zero.)

3. If the list of candidate sets is empty, sTaop. (The present best tour T
is the optimal one.)

- 4, Branching step. We suggest two versions (a) and (a’), a depth ﬁrst
search and a branching on the smallest lower bound.

484 M. Grdtschel PART IV

(a) Depth-first-search: Choose the candidate set S(R, F, L) which among
the ones on the list is the last one that has been added to the list. (This
method has the advantage that we quickly get tours and that our candidate
list does not grow too fast (hopefully).)

(a') Among the candidate sets which have the smallest present lower
bound choose the set S(R, F, L) which was added as the last one to the
list. (Here one hopes that the optimum tour is found quickly, so that the
gap between the current upper and lower bounds is not too large.)

(b) Remove S(R, F, L) from the candidate list.

5. Bounding step. Find the minimum 1-tree T* of the problem

min{c(Ty) | Ty is & I-tree in K, with R C Ty, T, N F = @}

(This can be easily solved with the greedy algorithm or the Prlm—Dl_]kstra
method.)

6. If «(T*) = U, Goto 3. (S(R, F,L) does' not contain a better tour than
the present cne.)

7. If ¢(T*) < U and T* is a tour, then set T := T* and U := o(T*).
Remove all sets S’(R’, F', L') from the candidate list with L’ > U. Goro 3.
(S(R, F, L) has been completely explored and a new current best tour was
found.) '

8. Separation. (In this case T* is not a tour and ¢(T*) < U.) (a) Find
the unique cycle in T¥, say C, and let W be the set of nodes on C with
degree larger than two..

(b) Among the nodes of W choose.one Whlch is contained in a requlrcd
edge of R. If there is none, choose any node of W. (Thc reason for the
rule in (b)) is to split S into two rather than three subsets. This rule can
of course be defined in a more sophisticated way.) Call the chosen node v.

(¢) Choose two edges of T™ incident with v and not in R, If there is a
choice, take edge e, to be an edge not in C and e, to be an edge in C.

(d) Define the partions S,(R,, F,, L), S3(R;3, Fa, L), Si(Ri, Fi, L)
respectively S;(R,, Fa, L), S3(Rs, F3, L) as .described in (6.4) where
L := ¢(T*) and add these to the candidate list. (Note that no tour in the
sets S, can be shorter than L.)

(e) GoTo 3. '

A major problem is to find good data structures to handle the candidate
list. This is usually done by keeping so-called enumeration or branch and
bound trees. These are trees in which every node corresponds to a candidate

CHAPTER 2 Hard combinatorial aptimization 485

set and which are organized in such a way that all informations about 2
candidate set can be retrieved easily. :

Consider e.g. our algorithm 6.5, where each candidate set .S is character-
ized by two sets R, F and a number L. Suppose we solve a travelling sales-
man problem, run the heuristic algorithms in step 1, obtain an upper
bound U = 100 and start the branch and bound procedure with S(@, 9, 0).
We get a I-tree with length 80 which is not a tour. We choose the edges
e, =123 and e, =28 in step5S and split S(@, @, 0) into three pieces
$.({23, 28}, @, 80), S,({23}, {28}, 80) and S,(#, {23}, 80). Now we branch to
S,({23}, {28}, 80) and obtain a l-tree of length 85. We choose the edges
e, = 37, e, = 79 and split S, into

S4({23, 37,79}, {28} V (w(3) \ {23, 37} V (e() \ {37, 79}), 85) ,
Ss({23, 37), {28} U (w(3) \ {23, 37}), 85},
and continue. We keep track of this process by storing at each node of
the enumeration tree the edges that are added to R (resp. to F) and the
lower bound calculated at the node. This is represented in Fig. 1.

This tree has a root, namely S,. Every node corresponds to a candidate
set. 1f a candidate set is chosen in step 4 of 6.5 (say this is S in the above

0]
L
80

23, 28

32,79

(w(3) \{23,37h U
(w(7) \ {37, 79}

37
w(3)\{23, 37}

- Fig. 1.

486 M. Grétsehel PART iV

case) then the lower bound is calculated in step 5 of 6.5 and the result
is recorded at the node (in our example: S,). This indicates that the set
(namely S,) is now eliminated from our list. If we get to step 8 of 6.5 we
split the current set into parts. This is done by creating sons of the present
node (in our case the sons are S,, S, Ss) and by also recording at every
new node those edges which are now fixed. If we want to continue (with,
say, Ss) then we have to go to the father (for S, this is S,), from this
to its father and so on until we reach the root S, to find out which edges
are required and forbidden at the present node. The current lower bound
is recorded at the father. If we do not get to step 8 of 6.5, then the tree
will not be enlarged any further starting from the present node, and we
can remove this node from the tree.

All branch and bound procedures have to keep track of the candidate
sets, e.g., in the way described above. Of course, there are many variations,
but it should be clear that for each candidate set some information has
to be stored. So if the number of candidate sets grows we may run into
storage problems, For real-world problems this is quite often the case.

Having coded our algorithm 6.5 we shall find out that all our steps (in
particular the important step 5) can be executed very quickly but the branch
and bound tree becomes tremendously large. This is due to the fact that
the |-tree relaxation does not give a very good bound for the travelling
salesman problem. So we either need to consider a different relaxation or
we have to invent a method which improves our I-tree bound. Such a
general method will be described in the next section.

7. Lagrangean relaxation

The method of increasing lower bounds (in the minimization case) or
decreasing upper bounds (in the maximization case) we shall now discuss
is applicable to any relaxation of a given hard problem. Whether or not
it is computationally successful heavily depends on the algorithms avail-
able to solve the relaxed problem and its Lagrangean variant. There are
various formulations of the Lagrangean approach. We shall describe it in
such a way that it is directly applicable to the 1-tree relaxation algorithm
for the STSP described in 6.5.

Given a combinatorial optimization problem £, assume that for every
instance (£, 5, c) of # we have an integer prograrﬁming formulation

CHAPTER 2 Hard combinatorial optimization 487

which has the following form
Zjp == min cx,
Ax = b, Dx<e, (IP)
x> 0 and x integral,

where A4 is an (m, n)-matrix, D is an (k, #)-matrix and the vectors ¢, b,e
are compatible. This means that every element of # corresponds to an
integral solution of (IP) and vice versa.

Usually there are many ways to formulate an integer program corre-
sponding to a combinatorial optimization problem. But it is not often the
case that the obvious IP-formulations are the most suitable ones for the
appreach we are going to describe. To apply the method successfully skill-
ful formulations have to be chosen.

We assume (and this is the most important assumption) that the con-
straints of (IP) have been partitioned in such a way into Ax =5, Dx < ¢
such that the following so-called Lagrangean problem can be solved easily
(easily of course means easy relative to IP and (E, J, e)):

f(u) := min cx + u7(dx — b),
Dx<e, (LR,
x> 0 and x integral.

The vector ¥ = (uy, ..., u,,)" is called the vector of Lagrangean multi-
pliers. Thus, for every u€ R™ we have a Lagrangean problem -(LR,). The
“structure of the Lagrangean problem is such that we optimize over a subset
of the constraints of (IP), i.e. enlarge the solution set, and absorb the
constraints Ax = b of (IP) which are not considered in (LR,) into the
objective function of (LR,). The vector u serves to penalize feasible solu-
tions x of (LR,) which do not satisfy Ax = b with equality. By choosing
appropriate Lagrangean multipliers # one hopes to get an optimal solution
of (LR,) which is either a feasible solution of (IP) and therefore an optimal
solution for (IP), or which gives a tight lower bound for the optimum value
of (IP).

The problem of Lagrangean relaxation is to quickly find a ‘good’ u,
i.e. a vector u such that zp — f() is as small as possible. A best choice
is of course a vector u* such that

zx = f(1)* = max f(u) (7.1)

u€RM

488 M. Gratsehel PART IV

which minimizes the gap z,p, — f(v). Such a vector u* provides the best
lower bound obtainable with the chosen Lagrangean relaxation (LR,).

To determine the best multipliers, u*, several approaches are possible.
We shall describe some of these. In general it is not easy to find a best u*.
However, usually near optimal Lagrangean multipliers u can be obtained
quickly. So in actual applications of Lagrangean relaxation one tries to
get ©* but usually stops (using some reasonable termination criteria) with
a ‘sufficiently good' approximation for a u*.

7.1. Solving the Lagrangean relaxation by linear programming

We shall now show that the maximization problem (7.1) can be formu-
lated as a linear program with many variables or constraints.

Note first that for every program (LR,), u€R™, the set of feasible
solutions R = {xER" | Dx < e, x > 0, x integral} is the same. Moreover,
since we consider combinatorial optimization problems, we can safely
assume that R is finite. So we can represent R in the following form

R={'ez|t=1,..T}

where T usually (e.g. in the case of combinatorial optimization problems)
is a very large number.
Therefore, (7.1) can be written in the form

z;g = maxmin{e’x + v (Ax' —B) | r=1,..., T}
“ERIH .

or equivalently
zig = max{w | w< " + wT(Ax' —B), t=1,...,T}. (1.2

That is, zyy can be determined by a linear program in the variables u,,
i=1,...,n and w which has many constraints. The LP-dual of (7.2) is
one with many variables (namely one for each x').

T
z1g = min Y icTy,
f=1

T
3 AAx'=b, (7.3)

t=1

T
Sh=1 A>0t=1,..,T.

t=1

CHAPTER 2 Hard combinatorial optiintzatios . 489

Although the linear programs (7.2) (resp. (7.3)) have many constraints
(resp. variables), the simplex method can sometimes be used efficiently to
solve these problems. For example one can solve (7.3) by generating at
every pivot step the variable entering the basis by solving (LR,) where u
is the current value of the simplex multipliers. This method is known as
the column generation technique and has been used in various areas of
mathematical programming. Several special implementations of the simplex
method (primal, dual, or primal-dual versions) have been considered for
the special type program (7.3) in the literature, (cf. Held and Karp (1970),
Fisher (1973), and Fisher, Northup and Shapiro (1975)), but in general
this LP-approach seems to converge rather slowly to the desired optimum

z;r and is usually outperformed by the subgradient method described in
the next section.

7.2. The subgradient method

Recall that program (7.1).is an unconstrained maximization problem
where the function f:R"™ — R is defined as the minimum of the integer
program (LR,). Since the set R of feasible solutions of (LR) can be written
in the form ' '

R={x'eZ'|t=1,...,T},
the function f can be defined equivalently as
f) = min{c"x" 4 4T (4x' —B) [t =1,...,T}. (7.4)

This implies immediately that f is a concave, piecewise linear function.
So f is not differentiable everywhere and we cannot use the usual uncon-
strained optimization techniques of nonlinear programming.

However, for solving (7.1) a ‘gradient-like’ method can be used if we
consider a slight generalization of the usual concept of a gradient.

7.5. Definition. Let f:R™ — R be a concave function and ¥y € R™. Then
a vector w € R is called a subgradient of f at u if the following subgradient
inequality holds '

fO) —fW) < x'(v —u) VYveR™ (7.6)

The set of all subgradients of f at u is called the subdifferential of f at u
and is denoted by 9f(w).

490 M. Grdtsehel PART 1V

Note that if f is differentiable, then 8f(u) = {V/ (1)}, so subgradients
are a proper generalization of gradients. If fis a piecewise linear, concave
function of the form (7.4), then the subgradients can ke characterized as
follows:

7.7. Remark. For any u &€ R" set

eq(u) = {tefl, ..., T} | fW) = c"x' + 4" (4Ax* — b)}.
Then
of @) ={meR" |w= 3 p(dx'—b), 3 p=1 pu=>0}

tEeq(in) tEeq()

In other words, for functions f of the form (7.4), 8f(u) is a polytope
since it is the convex hull of finitely many vectors. In particular, it follows
that for every € eq(u) the vector Ax' — b is a subgradient of f at u.

The well-known optimality criterion for differentiable concave functions
also carries over to this more general case.

7.8. Theorem. Let {:R" — R be a concave function. Then a vector u* solves .
the problem max{f(u) | u€ R™} if and only if 0 € &f(u*).

This characterization of the optimum solution suggests the following
iterative scheme.

7.9. Algorithm. Subgradient method. Given a concave function f: R" — R
and a subroutine which at every point ¥ € R" determines a subgradient
(resp. checks whether 0 & 8/(u)).

1. Choose an arbitrary vector ¥° ¢ R™, e.g. u® = 0, and set i := 0.
If 0¢ 8f(x'), then «' is an optimal solution. STOP.
Determine a subgradient =’ € 8f(i").
Choose a step length ¢! and set u't! := u' + t'n'.
Seti:= i+ 1 and GoTo 2.

AL

It is presently unknown how to choose an optimum step length #, but
Polyak (1967) showed that for a large variety of step lengths the subgradient
method (7.9) converges.

CHAPTER 2 Hard combinatorial optimization 491

7.10. Theorem. If a concave function [:R" — R attains its maximum and
if the sequence (t')ey of the step lengths satisfies the following conditions:

(1) t>0 foral ie N,

(2) }im t! == 0.

(3) Z ’l =00,
fEN

then

lim f(u') = max j(u)
|00 HERM

Loosely speaking, conditions (2) and (3) above state that the step length
should go to zero, but not too fast, in order to converge to the maxi-
mum of f. There are various possibilities to accelerate convergence theoreti- .
cally by choosing particular step lengths. However, in practical computa-
tions the following facts have been observed empirically by many researchers.
The subgradient method produces substantial increases in the function
value in the first steps but after a certain number of additional iterations
the function value begins to oscillate without showing a tendency to converge.

Since in the case of combinatorial optimization problems subgradient
methods are embedded in a branch and bound procedure this practical
lack of convergence does not matter too much. One is usually satisfied
with obtaining a good bound quickly and is not willing to pay the high
computational cost for the calculation of a slightly better bound. For this
reason, one does not often use the Polyak conditions of Theorem 7.10,
but rather tries to find a reasonable step length formula which shows satis-
factory convergence empirically. Such step length formulas are often highly
dependent on the characteristics of the problem at hand.

Historically, nondifferential optimization has, to a large extent, been
developed in the Soviet Union. Polyak (1978) surveys these developments
and the most interesting results obtained so far. The subgradient method
(7.9) is apparently due to Shor (1962). Good sources on nondifferential
optimization are Rockafellar (1979) and Volume 3 of the Mathematical
Programming Studies. The most influential papers (in the western literature)
on the application of nondifferential optimization to combinatorial pro-
gramming are probably those of Held and Karp (1970, 1971} (our present
terminology was not used at that time). In a later paper, Held, Wolfe and
Crowder (1974) pointed out the generality of this approach and showed

492 M. Grétschel PART [V

links to nondifferential optimization and to the large body of literature
on this subject existing in the Soviet Union.

The literature on subgradient methods and their applications to combi-
natorial optimization has grown extensively in recent years. Surveys of
applications of Lagrangean relaxation to integer programming can be found
in Burkard (1980), Fisher (1981), Gavish (1978), Geofifrion (1974).

Fisher (1981) gives a long list of known applications of this approach
to combinatorial optimization. Problems successfully treated include the
STSP, ATSP, vehicle routing, knapsack problems, general integer pro-
gramming, some generalized assignment problems, various scheduling prob-
lems, the multicommodity flow problem, several location problems, the set
covering and partitioning problem, cluster analysis and several others. Sum-
ming up computational experiences with Lagrangean relaxation using subgra-
dient techniques embedded in branch and bound schemes, one can say that this
approachhas certainly lead to substantial improvements of former algorithms.

7.3. A branch and bound algorithm for the STSP using I-trees
and Lagrangean relaxation

The algorithm for the STSP we are going to present is basically the
method of Held and Karp, (cf. Held and Karp (1970, 1971)), including
some later improvements by Helbig, Hansen and Krarup (1974), Smith
and Thompson (1977) and Volgenant and Jonker (1980).

We have mentioned that our algorithm 6.5 using 1-tree relaxation is
computationally not very successful due to the weak bounds obtained from
1-trees. We shall now take the same algorithm 6.5 and replace the bournding
step 5 by a bounding step using a Lagrangean relaxation yielding a 1-tree
problem. :

The usual way to write the STSP as an integer program is the following:

min D CyXys

: l<l‘<1<n_ '
(1) qu+2xlj=2= i=1,...,n,
L R | J<i : : .
) 3 xy<|W|=1 forall WC{2,3,...,n}, (7.11)
. IEE(W) : S
{3) <1,
) x>0, tl<i<j<n

(5 X, integer

——

———— s

CHAPTER 2 Hard comhinatorial optimization 493

To get the desired -tree relaxation we have to reformulate (7.11) slightly
but equivalently as. follows:

min 3 cyxy,

II<I<n
1" N Xy ¥ x=2, i=2...,n,
:%; it (7.12)
n
(1) 2 Xyy=2,
j=2
1" > xy=n,
II<In ‘

ey

and x satisfies (2), (3), (4), (5).

The two equations (1”) and (1) can be written as four inequalities.
So (7.12) is of the form min ¢'x, Ax = b, Dx < e, x = 0, x integer; where
Ax = b represents the equations (17), 4 is the node-edge incidence matrix
of the nodes 2, ..., n and where Dx < e represents the four inequalities
arising from (1”) and (1"’)and the inequalities (2), (3). With this definition,
the program min ¢'x, Dx < e, x > 0, x integer is nothing but the problem
of finding a minimum I-tree in K,,.IThus our Lagrangean problem derived

from (7.12) reads
@) 1= min ¢"x + uX(Ax — b),v
Dx<e, | o 01y
x > 0 and integral. |

Suppose for a given u € R*~! problem (7.13) is solved, then the optimum
solution, say x*, represents a 1-tree, say T*. Since A is a node-edge incidence
matrix, the vector d¢ R*! with d := Ax* represents the degrees 4, of all
nodes k=2,...,n in T*, Hence Remark 7.7 implies that the vector -
7= (g ..., w,) €R*! with m, :=d, — 2, k =2,...,n, is a subgradient
of our function f at u. This shows that for every u the optimum l-tree
calculation automatically provides us with a subgradient of f at w. Thus
we can apply the subgradient algorithm., '

We still have to choose the step lengths. We do not try to find the opti-
mum solution, rather we want a method which rapidly improves the value
of our l-trees. Smith and Thompson (1977) empirically found the following
step length formula which in our own computational experience has also
exhibited good practical performance.

494 M. Grétschel PART 1V

Let U be the current smallest upper bound for the optimal tour and L
be the current largest lower bound for the optimal tour (both numbers
are available in algorithm 6.5), let A be a number satisfying 0 << A < 2 and
let d, be the degrees of the nodes k = 2, ..., n of the current optimal I-tree,
then set

.. MU — L)
T Dl (d — 27

By adding a suitable termination criterion we now can formulate the
new bounding step for algorithm 6.5:

(7.14)

T7.15. New bounding step 5’ for algorithm 6.5.
(a) Set 1) := 0, k=2,...,m,A:=2and i ;= 1. _
(b) Calculate the minimal 1-tree T] of the Lagrangean problem

min{e(T;) + 3 uj{d(T\) — 2) | T, 1-tree in K, with R C T,
k=2 ‘

where d (7)) is the degree of node k in 1-tree T,. Note that this problem
can also be stated as min{c(Ty)|T; l-tree...} where ¢, = ¢, + u’ + u!,
1 <s<t< n(setting 4, = 0), since by definition J'7_, v} = 0.

(c) If T{ is a tour, set T* := T! and GoTO 6.

(d) If the value of the current best 1-tree has not increased by at least
0.1 during the last [#/8] 4 6 iterations, GoTo (j).

(e) Define the new subgradient vector o' == (n}, ...,) e R"~! by setting

= d(TH —2, k=2...,n.

(f) If i= 0 (mod [n/10] + 4) set A:= A/2 (the stepsize parameter A is
halved after every |n/8| + 4 steps).

(g) Set
o= M

P CAL
If ' < 0.01, GoTo (j) (the stepsize is too small for practical computa-
tions).
(h) Define the new Lagrangean multipliers
Wt =y 4 tn, i=2,...,n.

(Do a step in the direction of the subgradient.)

{

{

CHAPTER 2 Hard combhiatorial optimization 495

(i) Set i := ¢+ 1 and GoTo (b).
(j) Let T* be the current best 1-tree of value L and GoTo 6.

It was empirically observed by Helbig Hansen and Krarﬁp (1974) that
in step 5'(b) of 7.15 different spanning tree algorithms should be used
depending on the current status of the branch and bound scheme. Alto-
gether, algorithm 6.5, where step 5 is replaced by step 5 described above
(plus some additional tricks reported e.g. in Held and Karp (1970, 1971),
Helbig Hansen and Krarup (1974), Smith and Thompson (1977) and Vol-
genant and Jonker (1980)) constitutes quite an efficient method for solving
STSP's with up to about 100 cities.

8. Cutting plane methods

. As mentioned in Section 5, the basic idea of cutting plane methods is
to convert a combinatorial optimization problem into a linear program and
to solve this linear program. Since the associated program typically has
many constraints one starts with a subset of the complete equation and
inequality system, solves the current LP, and if the optimum solution is
not feasible for the combinatorial optimization problem, adds inequalities
to cut off the optimum solution and continues. In the first part of this
section we show how such linear programs can be obtained, in the second
part, we discuss the computational problems of this approach, and in the
third we outline an algorithm for the STSP based on this cutting plane
approach. The standard cutting plane techniques based on Gomory’s algo-
rithm which are not discussed here can be found in every book on integer
programming, e.g. Burkard (1972), Garfinkel and Nemhauser (1972). A
good survey of existing cutting plane methods from a more general view-
point is given by Wolsey (1979).

8.1. Polyhedral combinatorics

The area in which combinatorial optimization problems are studied by
investigating certain polyhedra associated with these problems is frequently
called polyhedral combinatorics. There are various ways to associate a poly-
hedron with a combinatorial optimization problem but we shall only cut-
line the most common approach.

496 M. Gratschel PART IV

Given an instance (£, £, ¢) of a combinatorial optimization problem 2,
then we associate with E the vector space R and with each element e¢ E
‘we associate a variable x, (resp. a component of a vector x ¢ RE indexed
by e). For every subset F C E we define an incidence vector x* ¢ RE by
setting '

F 1 if e€F,
x, 1= :
¢ 0 if edF.

With the set of feasible solutions # we associate the following polytope
(bounded polyhedron): '

P, :=conv{x'e R¥ | I¢ S}. (8.1)

That is, P, is the convex hull of the incidence vectors of the feasible
solutions J#. This definition implies that P, is a subset of the unit hyper-
cube in R” and that every vertex of P, corresponds to a feasiblé solution
of # and vice versa. Thus, every instance (E, £, ¢) of 2 (w.l.o.g. we assume
2 is a maximization problem) can be solved by solving the maximization
problem,

max ¢'x, x€P,. (8.2)

Problem (8.2) is a linear programming problem since P, is a poly-
hedron. The LP (8.2) is however hot given in the usual way by means of
an inequality system which is the one needed e.g. to apply the simplex
algorithm or the ellipsoid method. The representation of a polytope as the
-convex hull of (many) points is not suitable for LP-algorithms. Fortunately,
there exists a theorem of Weyl which states that for every polyhedron P,
of the form (8.1) there exists an’ (m, | E[)-matrix A and a vector b ¢R”
such that

Py ={xcRy|dx<B}.) (8.3)

The number m of rows of A is usually very large, even for combinatorial
-optimization problems which are solvable in polynomial time, cf. (8.4)-
{8.10). This number m must even be exponential in |E| if 2 is a hard
problem (if P = NP). For otherwise we could construct from every instance
(E, #, ¢) of 2 (in time polynomial in |E| and the encoding of ¢) a linear
program and then solve this LP in polynomial time with the ellipsoid
method, (cf. Khachian (1979), Gdcs and Lovdsz (1981), Schrader (1982)).—

On the other hand it was shown in Grétschel, Lovdsz and Schrijver
(1981a) that in order to solve an LP of the form (8.2) the number of ine-

.

CHAPTER 2 Hard combinaterial optimization 497

qualities to characterize P, is not so important. What matters is the struc-
ture of the inequality system (8.3) (more detailed explanations of this will
be given in Section 8.2). In order to obtain a polynomial algorithm for
problem (8.2) it is therefore necessary to characterize the inequality system
{8.3) for P, exactly. Although there are constructive proofs of the theorem
of Weyl, these general proof techniques usually do not suffice to obtain
“handy’ descriptions of the polytopes P,. This makes it necessary to study
every particular problem by means of special investigations.

The determination of complete and nonredundant systems of equations
and inequalities defining the polyhedra associated with combinatorial
optinization problems has been (and still is) one of the main topics of
combinatorial combinatorics. This approach was very successful for the
class of polynomially solvable problems. To date for most of these easy
problems complete descriptions of the associated polyhedra are known
explicitly, In the following we list some examples of this type. For con-
venience we shall abbreviate the sum ', x, by x(F) in the sequel.

8.4. The matroid polytope (Edmonds (1971)}. Let (E, #) be a matroid and
P, be the convex hull of the incidence vectors of the elements of #, then

P,={xeBR¥|x,>0VecE x(F< r(F) YFC E}
where for every F C E, r(F)"(called the rank of F) denotes the cardinality
of a basis of F, cf. 3.2.

Some of the inequalities above are superfluous. In fact, one can show

" that only those subsets F C E are needed which are closed and inseparable.

But this still leaves exponentially many inequalities in many cases. For
example, consider the spanning tree problem, (cf. 3.4) which is a special
case of the matroid problem.

8.5. The forest polytope. Let K, = [V,'E] be the complete graph of order
n = 3 and # the set of forests in K. Then

P,={x€RF|x,>0 Ve€kE,
XEW) < |W|—1 Y WSV, [W]>2}.

This characterization of the so-called forest polytope is complete and non-
redundant.

498 M. Grétschel PART IV

The following is a deep result of Edmonds on the intersection of two
matroids.

8.6. The 2-matroid intersection polytope (Edmonds (1970)). Let (E, #,) and
(E, #,) be two matroids on the same ground set E., Let »; and r, be the
rank functions with respect to (E, #,) and (E, J,). Let & := F, N #,,
then

Py=Py NP, ={xcR*|x,>0V e€E,

x(F) < min{r(F), ro(F)} ¥ F C E}.
The corresponding statement for three or more matroids is in general

not true. A special case of 8.6 is the branching problem, cf. 3.6.

8.7. The branching polytope (Edmonds (1967)). Let D = (¥, A) be a digraph
and # the set of all branchings in D. Let ¥~ be the set of nodes v € ¥ such
that either w~(w) = @ or |I'(v)| = 1, say I'~(v) = {w}, and (v, w) € 4. Then

P,={xcBR*|x,>0Vecd,
x(w @) <1 YoeV\ ¥V,
x(AW)) < |W| —1forall WCV
such that the induced -subdigraph
(W, A(W)) is strongly and 2—éonnectcd}. (8.8)
This characterization of the branching polytope is complete and non-
redundant, cf. Giles (1978), Grétschel (1979).
8.9. The l-matching polytope (Edm'onds (1965)). Given a graph G = [V, E]
and let # be the collection of 1-matchings in G. Then
Pr={xcRF|x,20 VecE, xw@)) <1 VoecV,
XEW) < ((W|—D2VYWCV,
|W| =3 and |W| odd}.
8.10. The perfect 2-matching polytope (Edmonds (1965)). Given a graph

G = [V, E]. Recall that a perfect (binary) 2-matching is a set M of edges
such that every node is contained in exactly two edges of M. Let . be the

CHAPTER 2 Hard combinatorial aptimization 499
set of petfect 2-matchings in G. Then
Pr={xeRF|0< x,< | Ve€E, x{w(v)) =2 YveV,
Stex {EWD) < | Wo| + 3k~ 1)
where W,, ..., W, < V¥ such that
[WeNW,| =1, |[W\Wol=1,i=1,..,k
WNW =0,
I<i<j<k, k=1 and & odd}.

In case G is complete, it is known which of these inequalities define facets
of P, (cf. Grotschel (1977b)).

There are many more such results about complete and nonredundant
descriptions of polyhedra associated with polynomially solvable combi-
natorial optimization problems, (cf. Barahona (1980), Boulala and Uhry
(1979), Chvdtal (1975), Edmonds and Johnson (1970), Giles (1973), Grot-
schel (1977) and Pulleyblank (1973)).

No complete descriptions of polytopes P, defined in (8.1) associated
with hard problems have been given explicitly so far. There are various
theoretical results which imply that it is very unlikely that such descriptions
can be obtained at all (cf. Karp and Papdimitriou (1980), Grotschel, Lo-
vdsz and Schrijver (1981)). Nevertheless, it is of theoretical and practical
value to know at least partial descriptions of polyhedra associated with
hard problems. Investigations of the structure of such polytopes have been
made with respect to almost all hard problems and the number of papers
on this subject is ever increasing. A list of references can be found in Kast-
ning (1976) and Hausmann (1978). We only want to discuss the stable set
and symmetric travelling salesman problem in more detail.

Suppose a graph G = [V, E] is given, then the polytope

P(G) := conv{x” ¢ RV | W a stable set in G} (8.11)

is called the stable set polytope of G. By definition, no two adjacent nodes
can be in a stable set. So, for every edge vw € E, every incidence vector
of a stable set satisfies the inequality x, -+ x,, < 1. This implies that the

500 M. Grétschel PART 1V

stable sel polytope P(G) is contained in the polytope
P(G):={xcR"|x,>0 VveV, x,+ x,< 1 Yowe E}.

Moreover, it is easy to see that P(G) = conv{x € P/(G) | x integral}, i.c.
every integral solution of

max ¢'x, x€P(G) (8.12)

is a solution of the stable set problem. Nemhauser and Trotter (1974) and
(1975) have shown some interesting results about the relations between
optimum solutions with respect to P(G) and P(G). First of all they show
the LP (8.12) is solvable with a fast polynomial time method. Secondly,
if x’ is an optimal solution to (8.12) and W is the set of indices w e ¥ such
that x,, is zero or one, then there exists an optimal solution X of the stable
set problem such that ¥, = x,, for all w& W. This implies that having
solved (8.12) one can fix the integral coefficients and need only consider
the remaining fractional ones in the sequel.

There are, however, some disadvantages with the LP (8. 12) The optimum
value of (8.12) usually gives a very poor upper bound for the stable set
problem. ‘Moreover, Pulleyblank (1979) has shown that, under suitable
assumptions, (8.12) will almost never have an optimum solution with
integral coefficients. So the nice result of Nemhauser and Trotter above
cannot be applied very often,

Because of these drawbacks concerning P'(G) it is necessary to find
tighter relaxations of the stable set problem. An obvious next step is to
replace the edge inequalities in the definition of P'(G) by clique inequalities.
Namely, if W is a stable set in G and C is a clique, then | W N C| is clearly
at most one. This implies that every incidence vector x* of a stable set
W C V(@) satisfies ‘

x(CY<1 for all cliques C C F(G).

These inequalities are called cligue ineqimlities. The polytope
P*G) :={xcR"|x,> 0 Vve ¥,
x(C) < 1 for all cliques C C ¥}

obviously satisfies P(G) C P*(G) € P'(G). It was shown by Fulkerson (see
also Chvdtal (1975)) that P(G) = P*(G).if and only if G is-a perfect graph.
This fact (among other things) was used in Grétschel, Lovdsz and Schrijver

CHADTER 2 Hare conbinatarial aptimization 501

(1981b) to derive a polynomial time algorithm for the stable set problem
in perfect graphs. Thus, at least for perfect graphs, the LP

max ¢k, x€P¥G) | (8.13)

can be solved in polynomial time. However, it was also shown by Grétschel,
Lovdsz and Schrijver (19811b) that the problem (8.13) is in general as hargd

- as the stable set problem itself. Furthermore, there are classes of graphs
where (8.13) is hard but the stable set problem easy, and vice versa. Al-
though the bound from (8.13) is much tighter than that of (8.12) it may
still be arbitrarily bad (cf. Grétschel, Lovdsz and Schrijver (1981b)).

The polytope P*(G) also has some nice relations to P(G). The facets
of P*(G) are exactly the trivial inequalities x, > 0 for all v€ V and the
clique inequalities x(C) < 1 for all maximal cliques C C V(G) (i.e. maximal
with respect to set inclusion). It is easy to see that all facets of P*(G) are
also facets of P(G), so P*(G) is a polytope which is derived from P(GY
by removing some facet inequalities of P(G).

Besides the maximal clique inequalities there are many more classes of
facets of P(G) known, cf. Chvdtal (1975), Fulkerson (1971), Nemhauser
and Trotter (1974), Padberg (1973), Trotter (1974), Balas and Zemel (1977).
Some of these classes of inequalities were also exploited algorithmically,
cf. Balas and Padberg (1975) for a survey of such results.

" With respect to the STSP the following (symmetric) travelling salesman

polytape

.= conv{xT€R" | T is a tour in K}, (8.14)
where m = n(n — 1)/2, is of primary interest. The integer programming
formulation of the (STSP) presented in (7.11) is dué to Dantzig, Fulkerson

and Johnson (1954). It was shown in Grotschel and Padberg (19794, 1979b)
that the system of n equations given in (7.11) :

xw@) =2 for all ve ¥ | (8.15)
is one with maximum rank containing @7, and therefore that
dim(Q}) =n(n —3)2=m —n * : (8.16)

is the dimension of Q%. It also turns out that the subfour elimination con-
straints of (7.11),

x(E(W)) < |W| ~‘1, o (8.17)

502 M. Grétsehel PART 1V

and the trivial inequalities 0 < x, < 1 are facets of Q% (cf. Grotschel and
Padberg (1979b)). The travelling salesman polytope is not only a subset
of the 1-tree polytope (cf‘. (7.12)), but also of the 2-matching polytope,
cf. (8.10). So it is cbvious to ask which of the facets of this polytope are also
facets of Q4. This problem is settled in Grétschel (1977a). The 2-matching
inequalities of (8.10) are generalized by Chvdtal (1973) and further by
Grotschel and Padberg (1979a) to a class of inequalities called comb inequal-
ities which are defined as follows:

Let K, = [V, E,] be the complete graph on n = 6 nodes. Let W,, ...,
W, C V satisfy the following conditions:

(i) |[WoNW,|=1 fori=1,..,k,
(i1) |[W\ Wo| =1 fori=1,...,k,
(iii)]W‘.-/\Wj|=0 for 1I<i<j<k,
(iv) k>3 and odd.
Then set
k k k—{—l
: E;x(E(W:))Sé IWo1+§1(\W—1)— 7 (8.18)

These comb inequalities (8.13) are also facets of QF. Note that in case
| Wo N W,| > 2 for some i, the inequality (8.18) has coefficients which
are not only equal to 0, 1 but also equal to 2.

The results on the facial structure of QF presented in Grétschel and
Padberg (1979b) are summarized in the following

8.19. Theorem. Let Q7 be the travelling salesman polytope for n = 6. Then
the following holds:

(a) dim Q7 = n(n — 3)/2.

(b) For every e € E, the trivial inequalities x, = 0 and x, < 1 define facets
of Or.

(c) For every W C V with 3 < |W| << n — 3, the corresponding subtour
elimination constraint (8.17) defines a facet of Q7.

(d) All comb inequalities (8.18) define facets of Qr.

Let us call two different inequalities equivalent if they define the same
facet of Q%. Then one can also show that the trivial inequalities, the sub-

CHAPTER 2 Hard combinatortal opthnization 503

tour elimination constraints and the comb inequalitites are mutually non-
equivalent, and that for every subtour elimination constraint (comb in-
equality) there exists exactly one other subtour elimination constraint
(comb inequality) which is equivalent to it. In particular, if we require
additionally in Theorem 8.19 (c) that 1 € W, and in (d) that | € W,, then
the system of inequalities in (b), (c) and (d) of (8.19) is a nonredundant
partial characterization of Q7. This system is not at all complete. For
example, other facets are known which are related to complicated graphs
like hypohamiltonian, hypotraceable, or non-hamiltonian and hypomatch-
able graphs, (cf'. Cornuejols and Pulleyblank (1980b), Grétschel (1977),
Grétschel (1980b), Grotschel and Padberg (1979a, 1979b), Maurras (1975,
1976)). Recently Theorem 8.19 was considerably generalized by Grétschel
and Pulleyblank (1981).

8.2. Cutting plane recognition

If G is a graph of order n then each of the polytopes (associated with
easy problems) described in (8.4)—(8.10) has an exponential number of
facets, and the partial descriptions of the stable set polytope P(G) and the
symmetric travelling salesman polytope Q' presented above also contain
an exponential number of facet inequalities. Thus it is impossible to re-
present these systems of linear inequalities in a computer and solve the
corresponding LP’s by the simplex method. For example, for the STSP
there are about [0'7% facets of QF® known (cf. Grétschel (1980a)). Any
sensible approach to solving such large linear programs must therefore try
to avoid the use of such large numbers of inequalities and try to succeed
in proving optimality with a few ‘suitably chosen’ inequalities. ‘

The ellipsoid method shows that such large linear programs can indeed
be solved in polynomial time provided cutting planes can be recognized
in polynomial time. Let us make this more precise.

Suppose P, CR" is a polytope of the form (8.1). For some technical
reasons which do not restrict generality we assume that P is fully-dimen-
sional, ,

8.20. The optimization problem for P,. Suppose a vector c € R" is given.
Then the optimization problem for P, is to find a vector x* such that

¢Tx* = max{c™x | x € P}.

504 M. Grétschel PART IV

8.21. The separation problem for P,. Suppose a vector y€R" is given, then
the separation problem for P, is to prove that y€ P, or to find a vector
deR" such that dix < (ITy Y x€ P,

The ellipsoid method (cf. Khachian (1979), Gdcs and Lovdsz (1981),
Grétschel, Lovdsz and Schrijver (1981a)) can be stated in such a way that
in every iteration a separation problem has to be solved. If this separation
problem can be solved in polynomizal time, then the ellipsoid method runs
in polynomial time. The converse also holds, as has been shown by Grot-
schel, Lovdsz and Schrijver (1981a).

8.22. Theorem. Let P, be a full-dimensional polytope. Then the optimization
problem for P, is solvable in polynomial time if and only if the separation
problem for P, is solvable in polynomial time.

Moreover, given an easy problem (this is, by definition, a problem for
which the optimization problem for the associated polytope P, is solvable
in polynomial time), the proof of Theorem 8.22 yields a constructive poly-
nomial time method to solve the separation problem for P. This result
in particular yields polynomial time methods which decide whether a given
vector y is contained in any of the polytopes (8.4)—(8.10) and if not which
produce facets of these polytopes separating vector y from the polytopes.
For example, suppose a vector y is not contained in the 2-matching poly-
tope for the complete graph K, (8.10), then although this polytope has an
exponential number of facets it takes only a polynomial number of steps
to firid a facet which is violated by y. The general algorithm of Grétschel,
Lovdsz and Schrijver (1981 a) can be applied to all easy problems. So, for
every easy problem there exists a polynomial time cutting plane algorithm.

Clearly, if for a hard problem there were a polynomial separation algo-
rithm, then Theorem 8.22 would imply P = NP, a very unlikely result. So
we cannot expect such an algorithm for hard problems. It is even very
unlikely that for a poytope P, associated with a hard problem we can
prove validity of a given inequality in polynomial time (cf. Karp and Papa-
dimitriou (1980)). Here validity of an inequality d*x < d, means that
P, Cix|d™x < dg}. _

Although these results indicate that we shall (probably) never be able
to obtain theoretically good algorithms via cutting plane methods, it is
still possible to design practically useful methods. The negative results state

CHAPTER 2 Hard combinatorial optimization 505

that we will not be able to recognize all cutting planes, but they do not
exclude the existence of large classes of facets for which the separation
problem can indeed be solved. The search for classes of facets of polytopes
associated with hard problems therefore should have the further objective
of finding computationally efficient facet recognition algorithms. In cutting
plane LP-approaches to hard problems we can then restrict attention to
these tractable classes of facets.

Theorem 8.22 implies a nice result about relaxations of a hard problem.
Namely, suppose P, is a polytope associated with a hard problem and
Py is a polytope associated with an easy problem such that P, C P,.
‘Then we can recognize at least all those facet inequalities of P, which are
also facets of P, in polynomial time, Therefors, if we can find several
different easy relaxations Py,..., P, of P, we can optimize over

Ni=1,..k Py, in polynomial time using the ellipsoid method.

This general approach via Theorem 8.22 and the ellipsoid method has
the theoretical advantage of being polynomial. It is, however, not very
efficient in practice, since both the general optimization routine over
\i=1,..x Py and the separation routine forevery P, use the ellipsoid method.

Therefore, in practical computation instead of the ellipsoid method the
simplex method is used. One starts with a small subset of inequalities,
solves the corresponding LP with the simplex method, and checks whether
the optimal solution x is feasible for the underlying combinatorial optimiza-
tion problem. If the answer is yes, one stops, if the answer is no one generates
one (or more) separating hyperplanes which cut off x and continues. Since
one also does not want to use the ellipsoid method for this separation
routine, other means have to be found to recognize cutting planes. In some
cases good heuristics can be used or exact polynomial time methods can
be constructed which check a whole class of facets to see whether these
are satisfied or not. To date these problem-specific cutting plane recognition
algorithms are not well developed in general and much is left to do. One
of the exceptions is the symmetric travelling salesman problem for which
we shall discuss cutting plane recognition algorithms in the next section.

8.3. A cutting plane algorithm for the STSP

In Theorem 8.19 we have mentioned that the following systems of
equations and inequalities is a partial description of the travelling salesman
polytope. It consists of » linearly independent equations and mutually non-

506 M. Grétschel PART IV

equivalent facet-defining inequalities:
x(w(w)) =2 VeV,
x, <1 YecE, (S.iS)
x, =0 YecE,
x(EW)) < [W]—1 VY WLV with
lew, 3<|W|< |Vl =3, (SEQ)

k k
E)X(E(W:)) < | Wol +£) (W] —1—k+ 12

for all Wy, ..., W, C V satisfying (©)

the conditions given in (8.18).

Denote by é’z'M the polytope defined by the equations and inequalities
(8.23). The LP i

min ¢¥x, x¢€ é" (8.24)

is small enough to be solvable by good simplex based LP-codes even for
large n. (We have made experiments up to n = 1000 which were solved

quite easily.) So QzM is a suitable initial LP for a cutting plane approach
to the STSP.

If we have an optimal solution to (8.24), say x, which does not corre-
spond to a tour, then we have to check whether x satisfies the subtour
elimination constraints (SEC). This can be done by the following heuristic.
Represent x by the graph G, = [V, E,] where [j€ E, if and only if x, > 0.
Now pick an edge ij€ E, such that the corresponding x; is one. Then
find the longest path in G, containing ij and those edges pg such that

== |, 1f the endpoints of this path are joined by an edge of G,, then x
clear]y violates the subtour elimination constraint generated by the set of
nodes of this path. This heuristic is very fast, but does not always find a
(SEC) if it exists. Crowder and Padberg (1980) note that this separation
problem for subtour elimination constraints can be solved exactly by the
Gomory-Hu procedure (cf Gomory and Hu (1961)) The (SEC) inequalities
can be equivalently written as cut constraints of the form x(cu(W)) =2,
so if the Gomory-Hu algorithm finds a cut in G, whose value is less than
2 then one of the cut constraints (resp. subtour elimination constraints)
is violated. The Gomory—Hu procedure, however, has a worst-case running

CHAPTER 2 Hard combinatorial aptimization 507

time of O(n*), so it should not be used too often. If we denote by Q% the
polytope defined by (8.23) and (SEC), then we can optimize over Q% effi-
ciently (in practice) with the simplex method.

For the comb inequalities (C) no polynomial exact separation algorithm
is known to date, One can design various heuristics but they do not guaran-
tee that all comb inequalities are satisfied, Recently, Padberg and Rao
(1980) devised a polynomial time method (which is also based on the
Gomory-Hu procedure) to check whether all 2-matching inequalities are
satisfied. The 2-matching inequalities constitute the subset of (C) where
|W;|=2foralli=1,..., k. So, it is possible to optimize efficiently over
Q% N 04, where 03, denotes the 2-matching polytope for K, (cf. (8.10)).

The flow chart shown in Fig. 2 gives an overview of the cutting plane .
algorithm described above.

Set up the initial LP
. T =
minc'x, xeQ5,,.

i

Solve thecurrent LP
by the simplex method,

|s the optimum solu- Yes 'cToP

tion x a tour ?
Jnu

Run fast heuristics to find
{SEC) or (C) inequalities _
which are violated by x. Add the inequalities

J &% to the current LP.
[Cutting planes found ?

Call a global branch
Use the Gomory-Hu pro- no and bound or cutting
cedure to find viclated | plane method.
subtour elimination or

2 - matching inequalities.

|—————»[Cutting planes found ? J' L

Fig. 2.

o
&

Of course, this cutting plane procedure (without calling a globally con-
vergent method) does not always find a minimum tour, but the bounds
for the minimum tour usually are so good that few iterations of a final
branch and bound procedure suffice to obtain the optimum solution. Here
one could also use general Gomory cutting planes instead. Variations of

508 M. Gritschel PART 1V

this method have been implemented (cf. Grétschel (1980a), Miliotis (1978),
Padberg and Hong (1980), Crowder and Padberg (1980)) and have shown
very good computational results. The largest STSP solved to date is a
318-city problem, see Crowder and Padberg (1980). This is about three
times the size that can successfully be attacked by the Lagrangean relaxation
method described in 6.5 and 7.15. An interesting combination of cutting
plane and Lagrangean techniques for the ATSP can be found in Balas and
Christofides (1981) and for the set covering problem in Balas and Ho (1980).

The cutting plane approach described for the STSP here is ctrtainly
not restricted to the STSP. The same principles can be applied to any other
hard problem provided sufficiently many facets of the corresponding poly-
tope and reasonable cutting plane generation procedures are available.

The list of techniques describet in this paper for obtaining bounds for
the optimum solution of hard problems (LP-relaxation, Langrangean re-
laxation, etc.) is not at all exhaustive. Many other methods have been de-
veloped which use mathematical tools which are quite different from the
ones discussed before. For instance, procedures have been discussed in the
literature which are based on nontrivial results from algebraic geometry
or topology. A nice discussion of such methods with respect to the stable
set problem can be found in Lovdsz (1981).

The future code development for hard problems will probably consist
of the design of hybrid algorithms consisting of various heuristics, cutting
plane and branch and bound techniques combined with Lagrangean
relaxation and other bounding methods. These algorithms will certainly be
rather complex but there is strong hope that intensive research will lead
to methods which can solve many of the hard problems arising from prac-
tical applications with reasonable computational effort.

References

A}

A. V. Aho, I. E. Hopcroft and J. D. Ulman, The Design and Analysis of Computer Algo-
rithms (Addison Wesley, Reading, MA, 1974).

A.T. Ali, R. V. Helgason, J. L. Kennington and H. S. Lall, Primal simplex network codes:
state-of-the-art implementation technology, Networks 8 (1978) 315-339.

K.I. Appel and W. Haken, Every planar map is four colorable, Bull. Amer. Math. Soc.
82 (1976) 7T11-712.

A. Bachem, Concepts of algorithmic computation, This baak Part I, Chapter 1.

E. Balas and N. Christofides, A restricted Lagrangean approach to the travelling sales-
man problem, Math. Programming 21 (1981) 19—46.

U,

arngest e g

CHAPTER 2 Hard combinatovial aptindzation 509

E. Balas and A. Ho, Set covering algorithms using cutting planes, heuristics, and sub-
gradient optimization: A computational study, Math. Pragr. Studies Vol. 12 (1980)
37-60.

E. Balas and M. W. Padberg, Set partitioning, in: B.-Roy, ed., Combinatorial Prograni-
ming: Methods and Applications (Reidel, Dordrecht, 1975) 205-258.

E. Balas and E. Zemel, Critical cutsets of graphs and ¢anonical facets of set-packing poly-
topes, Mathematics of Operations Research 2 (1977) 15-19.

F. Barahona, On the complexity of max cut, Raport de Recherche No, 186, IMAG, Uni-
versité de Grenoble (1980).

M. Behzad, G. Chartrand and L. Lesniak-Foster, Graphs and Digraphs, (Prindle, Weber &
Schmidt, Boston, 1979).

C. Berge, Graphs and Hypergraphs (North-Holland, Amsterdam, 1973).

B. Bollobs, Exiremal Graph Theory (Academic Press, London, 1978).

J. A. Bondy and U. S. R. Murty, Graph Theory with Applications (Macmillan, London,
1976).

M. Boulala and J. P. Uhry, Polytope des independants d"un graphe serieparaliele, Discrete
Mathematics 27 (1979) 225-243.

R. E. Burkard, Methoden der ganzzahiigen Optimierung (Sprmgel ‘Wien, 1972).

R. E. Burkard, Subgradient methods in combinatorial optimization, in: U. Pape, ed.,
Graphs, Data Structures, Algarithms (Hauser, Mimchen, 1980) 141-151.

R. E. Burkard and U. Derigs, Assignment and Matching Problems: Solution Methads
with FORTRAN Programs, Lecture Notes in Economics and Mathematical Systems
Vol, 184 (Springer, Berlin-New York, 1980). :

A. K. Chandra, D, S. Hirschberg and C. K. Wong, Approximate algorith\ns for some
generalized knapsack problems, Thearetical Conputer Science 3 (1976) 293-304.
D. Cheriton and R. E. Tarjan, Finding minimum spanning trees, SIAM J. Comput, 5

(1978) 724-742.
T.-Y. Cheung, Computational comparison of 8 methods for the maximum network
flow problem, ACM Transactions on Mathematical Software 6 (1980) 1-16,

N. Christofides, Graph Theary, an Algorithmic Approach (Academic Press, New York,
1975).

N. Christofides, Worst-case analysis of a new heuristic for the travelling salesman problem,
Working Paper, Carnegie-Mellon University, Pittsburgh {Febroary 1976).

N. Christofides, A. Mingozzi and P. Toth, The vehicle routing problem, in: N. Christo-
fides et al., eds., Combinatorial Optimization (Wiley, New York, 1979) 315-338,

V. Chvital, Edmonds polytopes and weakly hamiltonian graphs, Mathematical Program-
ming 5 (1973) 29-40.

V. Chvital, On certain polyopes associated with graphs, J. Comb. Theory B 18 (1975)
138-154.

E. G. Coffman jr., editor, Camputen and Job-shop Scheduling Theory (Wiley, New York,
1976).

R. W. Conway, W. L. Maxwell and L. W. Miller, Theory of Scheduling (Addison Wesley,
Reading, MA, 1967).

S. A. Cook, The complexity of theorem proving procedures, Proc. Third Annwal ACM
Sympostum on Theory of Computing (1971) 151-158.

510 M. Grétschel PART 1V

G. Cornuejols, M. L. Fisher and G. L. Nemhauser, Location of bank accounts to opti-
mize float: an analytic study of exact and approximate algorithms, Management
Science 23 (1977) 789-810Q,

G. Cornuejols and W. R. Pulleyblank, A matching problem with side conditions, Dis-
crete Mathematics 29 (1980a) 135-159.

G. Cornuejols and W.R. Pulleyblank, The travelling salesman problem and {0, 2}-
matchings, Report 80172-OR, Institut fiir Operations Research, Universitdt Bonn
(1980b) to appear in Annals of Discrete Mathematics Vol. 16 (1982).

H. P. Crowder and M. W. Padberg, Solving large-scale symmetric travelling salesman
problems to optimality, Management Seience 26 (1980) 495-509.

W. H. Cunningham and A.B.Marsh III, A primal algorithm for optimum matchmg,
Math. Programming Studies Vol. 8 (1978) 50-72.

G. B. Dantzig, D. R. Fulkerson and S. M. Johnson, Solution of a large-scale travelling
salesman problem, Operations Research 2 (1954) 393-410.

M. D. Devine, A model for minimizing the cost of drilling dual completion oil wells,
Management Science 20 (1973) 532-535.

E. W. Dijkstra, A note on two problems in connection wnh graphs, Numer. Mathematik
1 (1959) 269-271.

1. Edmonds, Maximum matching and a polyhedron with (0, 1) vertices, J. Res. Nat. Bur,
Stand. 69 B (1965) 125-130.

1. Edmonds, Optimum branchings, Journ. of Research of the National Bureau of Standards
71 B (1967) 1356-1400.

J. Edmonds, Submodular functions, matroids and certain polyhedra, in: R. Guy et al,,
eds., Combinatorial Structures and their Applications (Gordon and Breach, New York,
1970) 69-87.

J. Edmonds, Matroids and the greedy algorithm, Mathematical Programming 1 (1971)
127-136.

J. Edmonds, Matroid intersection, Annals of Discrete Mathematics 4 (1979) 39-49.

1. Edmonds and E. L. Johnson, Matching: a well-solved class of integer linear programs,
in: R. K. Guy et al., eds., Combinatorial Structures and Their Applications (Gordon
and Breach, New York, 1970) 89-92.

M. L. Fisher, Optimal solution of scheduling problems using Lagrangean multipliers:
Part I, Operations Research 21 (1973) 1114-1127.

M. L. Fisher, Lagrangean relaxation methods for combinatorial optimization, Manage-
ment Science 27 (1981) 1-18.

M, L. Fisher, Worst-case analysis of heuristic algorithm, Management Science 26 (1980)
1-17.

M. L. Fisher, G. L. Nemhauser and L. A. Wolsey, An analysis of approximations for
maximizing submodular set functions II, Math. Programming Study 8 (1978) 73—87.

M. L. Fisher, W. D. Northup and J. F. Shapiro, Using duality to solve discrete optimiza-
tion problems, Mathematical Programming Studies Vol. 3 (1975) 56-94.

L. R. Fordand D. R. Fulkerson, Flows in Networks (Princeton University Press, Princeton,
NJ, 1962).

A. Frank, A weighted matroid intersection algorithm, J. of Algorithms (1981) to appear.
A. A. Fridman, Modern trends in discrete optimization, Matekon XV (1978) 30-57.

CHAPTER 2 Hard combinatorial optimization 511

A. Fricze, Worst-case analysis of algarithms for the travelling salesman prablem, Opera-
tions Research Verfahren 32 (1979) 93-112,

D. R. Fulkerson, Blocking and anti-blocking pairs of polyhedrs, Mathematical Program-
ming 1 (1971) 168-194,

P. Gécs and L. Lovédsz, Xhachian’s algorithm for linear programming, Mathematical
Programming Studies 14 (1981) 61-68.

M. R, Garey and D. S. Johnson, Strong NP-completeness results: motivation, examples,
and implications, J. Assoc. Comput. Mach. 25 (1978) 499-508.

M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide ta the Theory of
NP-Completeness (Freeman, San Farncisco, 1979).

R. S. Garfinkel and G. L. Nemhauser, Integer Programming (Wiley, London, 1972).

B. Gavish, On obtaining the ‘best’ multipliers for a Lagrangean relaxation for integer
programming, Comput. & Ops. Res. 5 (1978) 55-71.

D. H. Gensch, An industrial application of the travelling salesman’s subtour problem,
AIIE Transactions 10 (1978) 362-370.

A. M. Geoffrion, Lagrangean relaxation for integer programming, Math. Programming
Studies Vol. 2 (1974) 82-114.

R. Giles, Submodular functions, graphs and integer polyhedra, Doctoral Thesis, Univer-
sity of Waterloo, Canada (1975).

R. Giles, Facets and other faces of branching polyhedra, Proceedings of the Fifth Hungarian
Combinaterial Coliogtinm, Bolyai Janos Mathematical Society (1978) 401-413.

B. Glover, T.Klastorin and D. Klingman, Optimal weighted ancestry relationships,
Management Science 20 (1974) 1190-1193.

F. Glover and D. Klingman, Network applications in industry and government, AIIE
Transactions 9 (1977) 363-376.

F. Glover, D. Klingman, J. Mote and DD. Whitman, Comprehensive computer evaluation
and enhancement of maximum flow algorithms, Research Report 356, Center of
Cybernetic Studies, The University of Texas, Austin (October 1979).

B. Golden, L. Bodin, T.Doyle and W. Stewart jr., Approximate travelling salesman
algorithms, Operations Research 28 (1980) 694-711.

R. Gomory and T. C. Hu, Multi-terminal networks flow, J. SIAM 9 (1961) 551-570.

M. Gondran and M. Minoux, Graphes et Algorithmes (Editions Eyrolles, Paris, 1979).

R. L. Graham, E.L.Lawler, J. K. Lenstra and A. H. G. Rinnooy Kan, Optimization
and approximation in deterministic sequencing and scheduling: a survey, Annals of
Discrete Mathematics 5 (1979) 287-326.

M. Grétschel, Polyedrische Charakiferisiernngen kombinatorischer Optimlerungsprobleme
(Hain, Meisenheim, 1977a). ‘

M. Grotschel, The monotone 2-matching polytope on a complete graph, Operations Rese-
arch Verfahren 26 (1977b) 72-84.

M. Grétschel, Strong blocks and the optimum branching problem, in: L. Collatz and
W. Wettetling, eds., Numerische Methoden bei graphentheoretischen und kombinatori-
schen Problemen, Band 2, ISNM Vol. 46 (Birkhiuser, Basel, 1979} 112-121.

M. Grétschel, On the symmetric travelling salesman problem: solution of a 120 city prob-
lem, Mathematical Programming Studies Vol. 12 (1980a) 61-77.

M. Grétschel, On the monotone symmetric travelling salesman problem: hypohamiltonian/

512 M. Grétschel PART IV

hypotracéablc graphs and facets, Mathematics of Operatlons Researclh 5 (1980b)
285-292, '

M. Grétschel, L. Lovdsz and A. Schrijver, The ellipsoid method and its consequences in
combinatorial optimlzation, Combinatorica 1 (1981a) 169-197.

M. Gritschel, L. Lovdsz and A. Schrijver, Polynomial algorithms for perfect graphs,
Report No. 81176, Institut fiir Operations Research, Universitit Bonn (1981b) to
appear in Annals of Discrete Mathematics.

M. Grotschel and M. W. Padberg, On the symmetric travelling salesman problem I:
inequalitics, Mathematical Programnming 16 (1979a) 265-280.

M. Gritschel and M. W. Padberg, On the symmetric travelling salesman problem II:
lifting theorems and facets, Mathematical Programming 16 (1979b) 281-302.

M. Grotschel and W. R. Pulleyblank, Clique free inequalities and the symmeiric tra-
velling salesman problem, Report No. 81196, Institut fiir Operations Rescarch, Uni-
versitdt Bonn (1981).

G. H. Handler and P. B. Mirchandani, Location on Networks: Theory and Algerithms
(MIT Press, Cambridge, MA, 1979).

D. Heusmann, editor, Integer Programming and Related Areas: A-Classified Bibliography
1976-1978, Lecture Notes in Economics and Mathematical Systems Vol. 160 (Sprin-
ger, Berlin, 1978).

' K. Helbig Hansen and I. Krarup, Improvements of the Held—Karp algorithm for the
symmetric travelling salesman problem, Mathematical Programming T (1974) 87-96,

M. Held and R. M. Karp, The traveling-salesman problem and minimum spanning trees,

Operations Research 18 (1970) 1138-1182.

M. Held and R. M. Karp, The traveling-salesman problem and minimum spanning trees:
Part 11, Mathematical Programming 1 (1971) 6-26.

M. Held, P. Wolfe and H. P. Crowder, Validation of subgradient optimization, Math.
Programming 6 (1974) 62-88. '

I. E. Hoperoft and R. E. Tatjan, Efficient planarity testing, SIAM J. Comput. 2 (1973)
225-231.

T. C. Hu, Integer Programming and Network Flow (Addison-Wesley, Reading, MA, 1969).

0. H. Ibarra and C. E. Kim, Fast approximation algorithms for the knapsack and subset
sum problems, J. Assoc. Comput. Mach. 22 (1975) 463—468.

0. H. Ibarra and C. E, Kim, Approximation algorithms for certain scheduling problems,
Math. of Operations Research 3 (1978) 197-204.

T. A. Jenkyns, The efficacy of the ‘greedy” algorithm, Proc. 7th S-E Conf. Combinatorics,
Graph Theory and Computing, Utilitas Math., Winnipeg (1976) 341-350.

R. Xaas, A branch and bound algorithm for the acyclic subgraph problem, Report AE
20/80, University of Amsterdam (1980).

R. Kannan and B. Korte, Approximative combinatorial algorithms, Report No. 78107-
OR, Institut fiir Operations Research, Universitdt Bonn (1978).

R. M. Xarp, The probabilistic analysis of some combinatorial search algorithms, Memo-
randum No. ERL-M 581, University of California, Berkeley (April 1976).

R. M. Karp, Probabilistic analysis of partitioning algorithms for the traveling-salesman
problem in the plane, Mathematics of Operations Research 2 (1977) 209-224.

e

[

CHAPTER 2 Hard combinatortal aptimization 513

R. M. Karp, A patching algorithm for the nonsymmetric traveling-salesman problem,
SIAM J. Comput. 8 (1979) 561-573.

R. M. Karp and C. Papadimitriou, On linear characterizations of combinatorial optimiza-
tion problems, Working Paper, University of California, Berkeley (1980) to appear in
SIAM J. Comput.

C. Kastning, editor, Integer Programming and Related Areas: A Classified Bibliography,
Lecture Notes in Economics and Mathematical Systems Vol. 128 (Springer, Berlin,
1976).

1. L. Kennington and R. V. Helgason, Algorithms for Network Programming (Wiley, -
New York, 1980).

L. G. Khachian, A polynomial algorithm in linear programming, Doklady Academii
Natik SSSR 244 (1979) 1093-1096 (English translation: Sovler Math. Dokl 20 (1979)
191-194).

V. Klee, Combinatorial optimization: what is the state of the art?, Mathematics of Opera-
tions Research 5 (1980) 1-26.

B. Korte, Approximation algorithms for discrete optimization problems, Annals of Dis-
crete Mathematies 4 (1979) 85-120. '

B. Korte and D. Hausmann, An analysis of the greedy heuristic for independence systems,
Annals of Discrete Mathematics 2 (1978) 65-74. ‘

B. Korte and W. Oberhofer, Zwei Algorithmen zur Lsung eines komplexen Reijhenfoige-
problems, Unternehmensforschung 12 (1968) 217-231.

B. Korte and R. Schrader, On the existence of fast approximation schemes, in: O. Man-
gasarian, R. R. Meyer, S. M. Robinson, eds., Nonlinear Programming Vol. 4 (Aca-
demic Press, New York, 1981) 415437, '

J. Krarup and P. Pruzan, Selected families of location problems, Annals of Discrete
Mathematics 5 (1979) 327-388.

J. B. Kruskal, On the shortest spanning subtree of a graph and the travelling salesman
problem, Proc. of the American Math. Society 7 (1956) 48-50.

H. W. Kuhn, The hungarian method for the assignment problem, Naval Res. Logist.
Quart. 3 (1955) 253-258.

E. L. Lawler, Combinatorial Optimization: Networks and Matroids (Holt, Rinehart &
Winston, 1976).

B. L. Lawler, Matroid intersection algorithms, Math. Programming 9 (1975) 31-56.

E. L. Lawler, Fast approximation algorithms for knapsack problems, Math, of Oper. Res.
4 (1979) 339-356.

H. W. Lenstra, jr., The acyclic subgraph problem, BW 26/73, Mathematisch Centrum,
Amsterdam (July, 1973).

J. K. Lenstra, Sequencing by enumerative methods, Mathematisch Centrum, Amsterdam
(1976).

J. K. Lenstra and A. H. G. Rinnooy Kan, Some simple applications of the travelling sales-
man problem, Operational Research Quaterly 26 (1975) 717-733.

J. K Lenstra and A. H. G. Rinnooy Kan, Complexity of vehicle routing and scheduling
problems, Networks 11 (1981) 221-227.

J. M. Lewis and M. Yannakakis, The node-deletion problem for hereditary properties
is NP-complete, Journal of Computer and System Sciences 20 (1980) 219-230,

514 M. Grétschel PART IV

S. Lin and B. W. Kernigham, An effective algorithm for the traveling-salesman problem,
Operations Research 21 (1971) 498-516.

L. Lovasz, Bounding the independence number of a graph, Report No. 81175, Institut
fir Operations Research, Universitit Bonn (1981) to appear in Annals of Discrete
Mathematics Vol. 16 (1982).

G. 8. Lueker, Maximization problems on graphs with edge weights chosen from a normal
distribution, Proc. Xth Annual ACM Symp. on Theory of Computing (1978).

J. F. Maurras, Some results on the convex hull of the hamiltonian cycles of symmetric
complete graphs, in: B. Roy, ed., Combinatorlal Programming, Methods and Applica-
tions (Reidel, Dordrecht, 1975).

J. F. Maurras, Polytopes a sommets dans {0, 1}, Thése Université Paris VII (1976).

P. Miliotis, Using cutting planes to solve the symmetric travelling salesman problem,
Maithematical Programming 15 (1978) 177-188.

G.]. Minty, On maximal independent sets of vertices in claw-free graphs, Journal of
Combinatorial Theory B 28 (1980) 284-304.

G. L. Nemhauser and L. E. Trotter jr., Properties of verlex packing and independence
system polyhedra, Mdthematical Programming 6 (1974) 48-61.

G. L. Nemhauser and L. E. Trotter jr., Vertex packings: structural properties and algo-
rithms, Mathematical Programming 8 (1975) 232-248.

G. L. Nembauser, L. A. Wolsey and M. L. Fisher, An analysis of algorithms for maximi-
zing submodular set functions I, Marh. Programming 14 (1978) 265-294.

M. W. Padberg, On the facial structure of set packing polyhedra, Math. Programming
5 (1977) 199-215.

M. W, Padberg and S. Hong, On the symmetric travelling salesman problem: a compu-
tational study, Mathematical Programming Studies Vol. 12 (1980) 78-107.

M. W. Padberg and M. R. Rao, Odd minimum cut-sets and b-matchings, Working Paper,
Graduate School of Business Administration, New York University (revised version)
(August 1980) to appear in Math. Oper. Res. '

B. T. Polyak, A general method for solving extremum problems, Soviet Math. Doklady
8 (1967) 593-597.

B. T. Polyak, Subgradient methods: a survey of Sovjet research, in: C, Lemarechal and
R. Mifflin, eds., Nonsmooth Optimization (Pergamon, Oxford, 1978) 5-30.

C. Papadimitriou, On the complexity of edge traversing, J. Assoe. Comput. Mach. 23
(1976) 544554,

R. C, Prim, Shortest connection networks and some generalizations, Bell System Techn. J.
36 (1957) 1389-1401.

W. R. Pulleyblank, Minimum node covers and 2-bicritical graphs, Math. Programming
17 (1979) 91-103.

W. R. Pulleyblank, Faces of matching polyhedra, Doctoral Thesis, University of Water-
loo, Canada {1973).

A. H. G. Rinnooy Kan, Machine Scheduling Problems: Classification, Complexity and
Compuntations (Nijhoff, The Hague, 1976).

R. T. Rockafellar, La Théorie des Sous-gradients et ses Applications a I'Optimisation (Les

Presses de I'Université Montréal, 1979); English translation: R & E 1, (Heldermann,
Berlin, 1981).

—e— .

e ek

e ———— e,

e e -

CHAPTER 2 Hard combinatoriul optimization 515

D. I. Rosenkrantz, R. E. Stearns and P. M. Lewis, An analysis of several heuristics for
the traveling salesman problem, SIAM J. Comput. 6 (1977) 563-581.

S. Sahni, Algorithms for scheduting independent tasks, J. Assoc. Coinput. Mach. 1 (1976)
116-127,

R. Schrader, Ellipsoidal algorithms, This book, Part 1I, Chapler 4.

N. Z. Shor, Application of the gradient method for the selution of network transportation
problems, Notes Scientlfic Seminar on Theory and Application of Cybernetics and Opera-
tions Research, Academy of Sciences, Kiev (1962) (in Russian).

P, Slater, Inconsistencies in a schedule of paired comparisons, Biometrika 48 (1961)

/303-312.

T. H. C. Smith and G. L. Thompsen, A Lifo implicit enumeration search algorithm for
the symmetric traveling salesman problem using Held and Karp’s I-tree relaxation,
Annals of Discrete Math. 1 (1977) 479-493.

H. Steckhan and R. Thome, Vereinfachungen der Eastmanschen Branch-and-Bound-
Ldsung fiir symmetrische Traveling Salesman Probleme, Operations Research Ver-
Sahren 14 (1972) 360-389.

R. E. Tarjan, Finding optimum branchings, Networks 7 (1977) 25-35.

L. E. Trotter jr., A class of facet producing graphs for vertex packing polyhedra, Technical
Report No. 78, Dep. of Adm. Sciences, Yale University (Feb. 1974).

A. Volgenant and R. Jonker, A branch & bound algorithm for the symmetric traveling
salesman problem based on -tree relaxation, Report AE 5/80, University of Amster-
dam (1980).

B. W. Weide, Random graphs and graph optimization problems, SIAM J. Comput.
9 (1980) 552-557.

D. J. A, Welsh, Matroid Theory (Academic Press, New York, 1976).

L. A. Wolsey, Cutting plane methods, in: A.G. Holzman, ed., Operations research
Methodology (Dekker, New York, 1979) 441-466.

M. Yannakakis, Edge deletion problems, Technical Report 249, Princeton University,
Department of EECS (1979).

M. Yannakakis and F. Gavril, Edge dominating sets in graphs, SIAM J. Appl. Math.
38 (1980) 364-372, -

