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Abstract

This paper describes developments in combinatorial optimization in the
last thirty years and outlines trends of future research. Section 1 introduces a few
representative problems of the subject and mentions some applications. Polyno-
mial time solvability and A4 '%-completeness of combinatorial optimization
problems are discussed in Section 2. Polyhedral combinatorics, and the theory
and practice of cutting planes are surveyed in detail in Section 3. Many of the
landmarks of these topics are mentioned, open problems and future develop-
ments are outlined. Section4 describes some of the relations of combinatorial
optimization to other branches of mathematics. In particular, some of the major
recent breakthroughs that arose from applying the results of other fields to
combinatorial optimization (and vice versa) are mentioned. Moreover, lists of
promising research areas and concrete open problems are given.

1 Introduction and Applications

The roots of combinatorial optimization lie in easy-looking problems

(mostly of economical or technical nature) of the following kind.

(1.1) Given n cities and distances between these, find a roundtrip through all
cities of shortest total length (the TRAVELLING SALESMAN PROB-
LEM).

(1.2) Givenaroad network connecting two cities 4 and B, find a shortest route
(with respect to time or distance) from city 4 to B (the SHORTEST
PATH PROBLEM). \

(1.3) Determine the layout of a printed circuit board so that no two lines (or as
few lines as possible) intersect—except in their endpoints (the PLANAR-
ITY PROBLEM).

(1.4) Find a simultaneous permutation of the rows and columns of an (n, n)-
matrix such that the sum of the entries above the main diagonal is as large
as possible (TRIANGULATION OF INPUT OUTPUT MATRICES).

(1.5) Given m machines and » jobs which consist of a given sequence of
operations on some of the machines, suppose that for each operation a
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g processing time on the associated type of machine is given and that each
job has a due date. Find a feasible assignment of operations to machines
such that as few of the due dates as possible are violated (a SCHEDU-
LING PROBLEM).

(1.6) Determine the routes of the garbage collection trucks of a city so that all
side conditions with respect to working time, capacity of trucks etc. are
satisfied and the total distance covered by all trucks is minimized
(a ROUTING PROBLEM).

(1.7) Given, at a university or school, a number of courses, class-rooms and
teachers, assign teachers to courses and courses to classrooms so that no
two courses are in the same classroom at the same time, no two teachers
give the same course, teachers are able to give the course etc. (an ASSIGN-
MENT PROBLEM). -

(1.8) Given a pipeline system between a “source” and a “sink”, determine the
maximal amount of “flow” from the source to the sink through the
network subject to capacity constraints etc. (a FLOW PROBLEM).

The problems mentioned above are examples of so-called combinatorial
optimization problems. Formally, a combinatorial optimization problem can be
described by a set of instances and a task. Each instance is given by a pair (S, ¢)
where §'is a finite set and ¢: S — IR any function, and for each instance (S, ¢) the
task is to find an element se S whose function value c(s) s maximum (or
minimum). .

~The elements of S are called feasible solutions, an element of S maximi-
zing (or minimizing) ¢ over S is called optimal solution of the instance (S,c). The
function c is called objective function.

Clearly, every combinatorial optimization problem can be solved by
enumeration, 1. €. by scanning through S, evaluating for each s € S the objective
function ¢(s), and choosing the element s* with highest (or lowest) value c(s*).
Thus for a combinatorial optimization problem to be nontrivial we have to assume
that the set S'and the function c of every instance are structured in some way, i.e.
that S and c are describable in much less space than the cardinality of S.

In very many cases S is a set of subsets of a finite set E, and the objective
function is specified by giving a value c(e) to each element e € E and setting

¢(T):= ), c(e) for every set TeS. Problems of this type are called finear

eeT
objective combinatorial optimization problems. These are the best-studied and

most important combinatorial optimization problems, and we will restrict our
attention to this class of problems in the sequel. Thus we will focus on problems
where each instance is given by a finite set E (the ground set), a (usually implicitly
defined) set # < 2* of feasible solutions and a function ¢ : £ — IR where the task
is to find a set Fe # such that c(F):= Y ¢(e) is maximum or minimum.
For most of the problems (1.1),. - -, (1.8) it is trivial to see how they can
be phrased in the way defined above. Consider, for instance, the travelling

——
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salesman problem (1.1). With each instance of this problem we associate a
complete graph K, = (V, E) with n nodes (representing the cities) where each pair
of distinct nodes is linked by an edge (representing a road connection). The
“ground set” is the edge set E. The feasible solutions J < 2F are the “roundtrips”
or “tours”, which are sets of n edges forming a cycle which passes through every
node (hamiltonian cycles). The “value” of each edge ij€ E is the distance ¢;;
between its two endnodes (cities) i and j, and so the “length” of a tour T is
¢(T):= Y c;;. The task is to find a tour 7* such that ¢(T*) is minimum.
ijeT

l\/fost of the problems studied in the early days of this subject came from
operations research, industrial management, computer science and military
applications. But problems of this kind arise almost everywhere, and therefore
combinatorial optimization has found successful applications in fields like arche-
ology, biology, chemistry, geography, linguistics, physics, sociology and others.

This survey is not meant as an overview of the applications of combinato-
rial optimization. The reader interested in this should consult the appropriate
sections of the classified bibliographies Kastning (1976), Hausmann (1978), von
Randow (1982), the book Roberts (1978), or the papers Balas & Padberg (1975),
Grotschel (1982), Iri (1983) which explain various applications (of special types)
of combinatorial optimization problems.

2 Polynomial Time Solvability and 4" ?-Completeness

The theory of combinatorial optimization—at least in the way I view the
subject-—aims at a better mathematical understanding of the type of problems
introduced in paragraph 1 with the ultimate goal to provide tools for the design
of “efficient” algorithms for solving these problems.

The notion of efficiency needs, of course, some clarification. In the early
days of combinatorial optimization the efficiency of an algorithm was usually
tested empirically by programming the algorithm and running the code on
several data sets, measuring time and storage space needed, and fitting these
measures to some curves. Such empirical comparisons are still of great value for
those who are using implemented algorithms in practice, but from a theoretical
viewpoint they are quite unsatisfactory.

A theoretically more appealing concept of efficiency was brought into the
field from complexity theory. The notions “solvable in polynomial time” and
*N P-complete” introduced in the late sixties have considerably changed the way
combinatorial optimizers look at their subject and put new research topics into
focus.

In short and informally these concepts can be described as follows. First
one has to fix a model of computation. Usually Turing machines or RAM
machines are used (for a nonexpert in this field it is sufficient to consider a real
world computer). Then one has to decide how the problem instances are to be
encoded for the machine and how the “size” of an instance has to be measured.
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“The standard way to encode numbers (say integers) is to use their binary
representation and so the input length or size of an integer is the number of digits
of this representation. Graphs (a large number of combinatorial optimization

-problems can be formulated as problems concerning graphs) are usually enco-
ded by means of adjacency or edge lists. The number of nodes and edges of a
graph is a convenient measure of the input size of a graph. In this way (other
structures can be handled similarly) with every instance of a combinatorial
optimization problem an input size, which is an integral number, can be
associated.

An algorithm for a combinatorial optimization problem is said to run in
polynomial time (or to be a “good algorithm”) if there is a polynomial p : IN — IN
such that for every instance of the problem of input size at most » the running
time of the algorithm is at most p (#). The running time is measured by counting
the “steps” the algorithm has to perform until termination, where steps are
elementary operations (like comparisons, additions and multiplications) on the
machine model considered. By Z we denote the class of problems which can be
solved by a polynomial time algorithm Of course, an algorithm with runnihg
time #*°°° is by no means good in practice, but, for large enough instances, it is
still a lot better than an algorithm which performs 2" steps. On the other hand, it
has turned out that for many of the practically relevant problems—once their
polynomial time solvability was discovered— good algorithms with low degree
polynomial time bounds could be found, say of order at most »> or n*,

The notion of polynomial time solvability was introduced by Edmonds
(1 965a) and Cobham (1965). It is customary to call problems which are solvable
in polynomial time 'easy.

For the definition of “difficult” problems a few more technicalities are
necessary. The success of this so-called “theory of A"Z?-completeness” restsona
fundamental result of Cook (1971) whose far reaching consequences for combi-
natorial optimization were recognized and popularized by Karp (1972).

To explain the ideas behind this theory let us consider a combinatorial
minimization problem IT. We now want to solve the following decision problem.
Given an instance (P, ¢) of IT and an additional number B, decide whether there
is a feasible solution, say S, whose value ¢(S) is at most as large as B. (Clearly, if
we could find an optimum solution to (P, ¢) in polynomial time we could solve
this decision problem in polynomlal t1me by calculating the optimum value and
comparing it with B.) .

We say that problem IT belongs to the class of problems &' Z if IT has the
following property. There is a polynomial time algorithm which does the follow-
ing. If for an instance (P, ¢) and a bound B there is a solution Se P with ¢(S) £ B,
then the algorithm can verify in polynomial time that Se€ P and ¢(S)<B. .

Note that the algorithm is not required to find S. The only thing the
algorithm has to do is, given (P, c), B and S, check whether S € Pand ¢(S)£-Bin
polynomial time. The problems in A2 are called solvable in nondeterministic
polynomial tzme The name stems from an equ:valent definition of the class #'?
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where algorithms are considered which are allowed to make guesses (nondeter-
ministic steps).

For example, consider the travelling salesman problem (1.1). Suppose an
instance of this problem and a bound B are given. Now. we guess a set T of edges
and mark it on the map with a red pencil. We choose a starting point and follow
the red edges. If we return to the starting point, have passed all cities exactly once
and have encountered all red edges then T is a roundtrip. Now we add up the
distances associated with the red edges to obtain ¢(T") and compare this value
with B. This procedure is clearly a polynomial time algorithm of the type we
consider, so the travelling salesman problem belongs to 42,

It is obvious that Z € /'?. And it is intuitively convincing that not
everything that can be guessed can also be constructed. But despite enormous
research efforts in the last decade it could not be decided yet whether 2 = /"2 or
not. In my opinion this question is one of the major open problems in mathema-
tics. @ & NP (together with further known results) would imply that there is a
host of combinatorial optimization problems relevant for real world applica-
tions which are inherently intractable.

~ The class /2 contains a further important class of problems which are
called &"?-complete. This class is denoted by &' P%. Let us call a problem I7
N P-complete (or simply hard) if it has the following property: IT € /'?, and if
I1 can be solved in polynomial time, then every problem in 4”2 can be solved in
polynomial time. The A ?-complete problems are in a sense the hardest prob-
lems in A2, since in order to show that Z = A2 it suffices to prove for just one
N P-complete problem that it is in £. .

The classification of combinatorial optimization problems into hard and
easy ones was one of the main streams of research of this field in the seventies. It
turned out that most of the practically relevant problems are in fact A %-
complete. This, of course, had significant implications on the directions of
further theoretical and algorithmic investigations about Wthh we will report in
the subsequent sections.

The results of the studies done in this area of complex1ty theory are
documented in the excellent book Garey & Johnson (1979) where for several
hundred generic problems (and some thousand variants) their membership in 2
and A"P¥ is recorded. An ongoing guide of David Johnson in the Journal of
Algorithms documents the current progress in this subject.

In the meantime for almost all major problems it has been decided
whether they are in & or in A/ P%. Today’s research in.this area mainly
concentrates on exploring the borderlines between 2 and A4'2%, to umfy results
and get a deeper understanding of “difficulty”.

- Almost no significant progress with respect to the 9’ =f= AP problem has
been made. There are two major (and usually powerful) techmques available to
attack this problem. With “simulation” one could try to prove 2 = &P, while |
“diagonalization” mijght be a good tool to show that 2+ 4 P. Baker, Gill &
Solavay (1975) however showed in a beautiful paper (usmg oracle techmques f
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which we do not want to describe here) that these two methods do not suffice to
solve this important question. It is even conceivable that this problem cannot be
solved within the framework of formal set theory, see Hartinanis & Hopcroft
(1976). Yet, almost all researchers in combinatorial optimization assume
P+ NP as a working hypothesis.

The theory of A4 Z?-completeness has provided a rough but very useful
classification scheme for combinatorial optimization problems. When studying
a problem, nowadays a standard first step is to check whether it belongs to & or
is A P-complete.

Graph theory and combinatorial optimization were two of the main
areas of application of the theory of A/ ?-completeness. In the meantime com-
plexity theory has “invaded™ other mathematical fields as well, in particular
disciplines like number theory or algebra where “sizes of numbers” or “lengths
of proofs” are considered.

I think that today complexity theory plays two important roles. It provi-
des a language to distinguish between hard and easy problems and its concepts
are convenient tools for the analysis of algorithms.

o

3 Cutting Planes and Polyhedral Combinatorics

A simple idea but one of the most fruitful approaches in combinatorial
optimization is to formulate combinatorial optimization problems as integer
linear programs or even as linear programs. Theoretically this is rather easy, but
to make this idea an algorithmic success quite a number of new mathematical
concepts and algorithmic design techniques had to be developed. For more
detailed surveys of this subject the reader should consult the excellent papers
Pulleyblank (1983) und Schrijver (1983). Moreover, the book Schrijver (1984 a)
will appear soon which treats the whole area in depth and contains almost all of
the results known to date.

3.1  Polyhedra Associated with Combinatorial Optimization Problems

We shall now describe a method with which a polyhedron can be associa-
ted with (almost) every combinatorial optimization problem. Suppose we have a
minimization problem where each instance is given by a ground set E, a set
# < 2F of feasible solutions, and an objective function ¢ : E— R. Let IRE denote
the real | E|-dimensional vector space where for every vector x e IR® its compo-
nents are indexed by the elements of E, i.e. x=(x,),. 5. For every subset FS E
we define its incidence (or characteristic) vector x* = (xF),.z by

xi=1ifeeF and ) =0ife¢F.
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With the set .# of feasible solutions we associate the convex hull of the incidence
vectors of the elements of .#, i.e. a polytope P, = R” defined by

(3.1) P,:=conv{yf e RF|Fes}.

The combinatorial optimization problem

(3.2) min{c(F)|Fe.#}

can now be written (considering ¢ as a vector in IRF) as
(3.3) min{c"x|xeP,}.

Every feasible solution F € .# corresponds to a vertex of the polytope P, and vice
versa. As P, is a polytope, problem (3.3) is a linear program, and it is well-known
that, for every obijective function, the program (3.3) has an optimum solution
which is a vertex of P,. Thus, by solving (3.3) one can obtain an optimum
incidence vector of a set Fe.# which in turn is an optimum solution of (3.2).

Problem (3.3) can of course be solved in finite time by generating all the
vertices of P, (these are implicitly given through .#) and selecting the one with
the best value. But this way nothing has been gained by the new representation of
the combinatorial optimization problem.

Linear programs arc usually given by a linear objective function and a
system of linear equations and inequalities, and all (nontrivial) algorithms
solving linear programming problems require such systems as input. Thus, in
order to use the powerful tools and methods of linear programming it is
necessary to find a linear system describing P,. Theoretically, the theorem of
Weyl guarantees that for every polyhedron P there are a matrix 4 and a vector b
such that P= {x}|4 x <b}. There are even constructive proofs of this theorem,
but they are not effective in the sense that one can “easily read” from 4 an
inequality system describing P,.

So in order to transform a combinatorial optimization problem II into a
linear programming problem one has to solve the following problem:

(3.4) For every instance (J,c) of II find a sy&tem of linear equations and
inequalities describing the associated polytope P.

One of the (at present) most flourishing branches of combinatorial
optimization, called polyhedral combinatorics, considers this task as one of its
central research topics. We shall now survey some of the ideas developed in this
area and some of the successes of this approach. And we shall mention interest-
ing open research problems.
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3.2  Some Examplés

A graph G =(V, E) consists of a finite nonempty set ¥ of nodes and a set E
of edges which are two-element subsets of V. (For ease of exposition we do not
consider loops and multiple edges here.) The two elements of V, say i and j,
forming an edge e € E are called the endnodes of e, and we write e = j instead of
e={i,j}. A digraph D = (V, A) consists of a finite nonempty set ¥ of nodes and a
set AS V' x V called arcs. Ifa= (i, j) € 4 then i is called the fail of arc a and j is
called the head of a, i and j are also called the endnodes of a.

If G=(V,E) (D=(V, 4))is a graph (digraph) and W< V a set of nodes
then E(W) (4(W)) denotes the set of edges (arcs) with both endnodes in w;
0(W) < E denotes the set of edges with one endnode in W and the other in
VNW; 6" (W)= A (resp. 8~ (W) < A) denotes the set of arcs with tail (resp.
head) in W and head (resp. tail) in ¥\ W. We write 0 (v) instead of ({v}) for
ve V.

Matchings

One of the first positive results in this area concerns matchings in biparti-
te graphs. It is generilly attributed to Birkhoff (1946) and von Neumann (1953).
A graph G = (V, E) is called bipartite if ¥ can be partitioned into two nonempty,
disjoint subsets ¥, ¥, such that each edge has one of its endnodes in V, and the
otherin V,,i.e.if E=§(V,) = 6(V,). Amatchingin Gisaset M < Eofedgessuch
that no two edges of M have a common endnode, The Birkhoff-von Neumann
theorem characterizes the polytope associated with the matchings in a bipartite
graph.,

(3.5) Theorem. Let G=(V,E)bea bipartite graph. Then the convex hull of the
incidence vectors of the matchings of G (the matching polytope of G ) is the
polytope defined by the following system of inequalities :

(1) X, 20 forallecE,
(2) Y x,=1 forallveV. [J

eed(v)

This theorem has some interesting consequences in graph theory. It implies, for
instance, via L P-duality Konig’s matching theorem

»The maximum cardinality of a matching in a bipartite graph is equal to the
minimum cardinality of a set of nodes that meets all edges.”

or Hall’s famous marriage theorem.

It is easy to see that the system (1), (2) of (3.5) is not sufficient for the
description of the matching polytope of nonbipartite graphs. For instance, if G is
a cycle of length three then the vector4 (1,1, 1) isa vertex of the polytope defined
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by (1), (2). A major breakthrough was obtained by Edmonds, cf. Edmonds
(1965a), (1965b), who found a complete system for the matching polytope in
general. f ‘ -

(3.6) Theorem. LetG = (V, E) be agraph. Then the convex hull of the incidence
vectors of the matchings of G is the polytope defined by

(1) x, 20 for all eeE

2) Yy x,sl  for all eeE
e5d(p)

(3) 3. X, S(IW|—=1)/2  forall WS V,|W|odd. []
ceE(W)

Theorem (3.6) is a deep result with many consequences in graph theory and
combinatorial optimization. It has meanwhile found generalizations in many
directions. The reader interested in this should consult section. 6 of Schrijver
(1983).

Theorem (3.6) looks—at first sight—quite useless from a linear pro-
gramming point of view since the number of constraints (3) is exponential in the
input size of G. So it already takes exponential time to input the inequalities (1),
(2), (3), which means that no algorithm requiring the full system (1), (2), (3) of
(3.6) can run in time polynomial in the input size of G. However, and this was the
second major achievement, Edmonds was able to devise an algorithm for the
solution of linear programs with constraint system (1), (2), (3) which runs in time
polynomial in |E|. Edmonds exploited L P-duality theory, the complementary
slackness theorem, and the fact that the system (1), (2), (3) has a “nice” implicit -
description which made it possible to avoid the use of all inequalities at once and

to generate inequalities whenever necessary. We shall come back to this point in
Section 3.4.

Matroids and Generalizations

Another class of polyhedra which is “well understood” is a class of

polytopes associated with matroids. A matroid M on E is a pair (E, .#) where .#
is a subset of the set of all subsets of E satisfying

(3.7 fes,
(3.8) JcleSf = Je. s,
(3.9) LJed, ||<|J|=3eeJ\I with Iu{e}e.s.

The elements of # are called the independent sets of M.
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For instance, if G=(V,E) is a graph, then the set (E,#) where
S .= [F< E| Fisaforest (i.e. F contains no cycle)} is a matroid on the edge set £
of G (the so-called forest matroid of a graph). If 4 is a matrix with entries from
some field K and with column index set E, then call a set I < E independent if the
column vectors of 4 corresponding to the indices of I are linearly independent.
The pair (£, #) defined this way is a matroid, the so-called matric matroid.

We recommend Welsh (1976) for more information about matroids. The
survey paper Iri (1983) and the forthcoming book Recski (1984) particularly
focus on applications of matroid theory.

Given a matroid M = (E, #) and a function ¢: E— R, then the matroid
optimization problem is to find an independent set I such that c(/) is as large as
possible. (A special case of this, e.g., is the problem to find a maximum (or
minimum) forest in a graph.) The matroid polytope Py, is defined as follows

P, :=conv {y'e RE|le #}. |

It is very easy to solve matroid optimization problems with the famous greedy
algorithm. (Set I:= 0. Choose an element e € £ such that c, is as large as possible.
Ifc,z0and Iu{e} € # set I:=Iu{e}. Remove e from E and continue until £ is
empty.) Edmonds (1971) interpreted the greedy algorithm as a linear program-
ming algorithm and derived from this the following characterization of the
matroid polytope.

(3.10) Theorem. Let M = (E, .# ) be amatroid and P, be the associated polytope,
then

P,={xeRf (1) x,20  forallecE
(2) Y x,&r(F) forall FEE}. O

eeF

Above, for every set F< E, r(F) denotes the largest cardinality of an indepen-
dent set contained in F. The number r (F) is called the rank of F. Edmonds (1970)
was able to extend Theorem (3.10) to the intersection of two matroids as follows.

Let M, =(E, #,) and M, =(E, #,) be two matroids on the same ground set E.
The pair (£, #) with

j = 'ﬁl ﬁfz
is called the intersection of the matroids M, and M,, and
P,:=conv{y'e RE|{Ie S}

is called the 2-matroid intersection polytope.
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(3.11) Theorem.

P, =Py, NP, in particular
P,={xeRE (1) x,=20 for allec E
(2) Y x,Emin{r (F),r,(F)} forall FEE}. []

ee F

In (2) above r; denotes the rank function of M,, i =1,2. This theorem has many
interesting special cases. For instance, it gives a complete linear description of
the branching polytope of a digraph (see Edmonds (1967)), but the Birkhoff-von
Neumann Theorem (3.5), K6nig’s matching theorem, Hall’s marriage theorem,
and Fulkerson’s branching theorem can also be derived from (3.11). Optimizing
over the intersection of three or more matroids is A#"Z-complete. This suggests
that a similar result extending (3.11) to the intersection of three or more matroid
polytopes is unlikely.

The results of Edmonds were the starting point of a new branch of
combinatorial optimization, the theory of submodular functions. For a finite set
E a function f: 2 — R is called submodular if

(3.12) fF(SUT)+f(SATYZf(S)+f(T) forall S, T<E.

The connection with matroids is the fact that matroid rank functions (see (3.10))
are special submodular functions satisfying in addition r(@)=0,
SSTSE=r(S)<r(T),and r(S) £|S|for all S< E. It was observed that most
of the properties of matroids resp. matroid polyhedra are in fact consequences of
the submodularity of the rank function.

With every submodular function f: 2 — IR (without loss of generality we
may assume f (§) =0) one can associate the polyhedron

P:={xeRf|Y x,<f(F) forall FSE}.

eeF

It is possible to solve max {¢"x|x € P} by means of an appropriately modified
greedy algorithm, and one can show that the vertices of P, are integral valued if f
is integral valued. Moreover, the matroid intersection theorem (3.11) also
extends to the intersection of two such polyhedra, see Edmonds & Giles (1977).

In the recent few years there has been an inflation of frameworks based
on submodular functions combined with various graph theory concepts (in
particular network flow theory). They aim at a unification of those parts of
combinatorial optimization for which polyhedral results (like the one described
above) or min-max theorems (like K6nig’s matching theorem) exist. Concepts
like polymatroids (Edmonds (1970)), submodular flows (Edmonds & Giles
(1977)), lattice polyhedra (Hoffman & Schwartz (1978)), generalized polymatro-
ids (Frank (1984)), kernel systems (Frank (1979)), base polyhedra of submodu-
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lar ‘systems (Fujishige (1983)), polymatroid network flows (Hassin (1978)),
(Lawler & Martel (1982)) and others are competing for the attraction of further
investigators. Schrijver (1984b), (1984¢) has surveyed, compared and extended
these efforts. ' : _

It turns out that most of these frameworks are in a certain sense equiva-
lent and that they indeed unify large parts of the existing theory. But it seems to
me that the final word is not said yet and that it may take some more time to find a
“best possible” setting of the theory of submodular functions (combined with
graphs and digraphs) within combinatorial optimization.

All the structure results quoted so far are— of course—closely related to
the algorithmic aspects of the optimization problems mentioned. A truly posi-
tive result of this theory is that mest of the optimization problems associated
with matroids, intersections of two matroids (polymatroids etc.) can be solved in
polynomial time provided that one can check in polynomial time whether a set is
independent in a matroid (an element of a polymatroid etc.) or not.

The most general result in this respect is due to Grotschel, Lovasz &
Schrijver (1981). It is based on the ellipsoid method (see Section 3.4) and shows
that submodular functions can be minimized in polynomial time. More preci-
sely,

(3.12) Theorem. Letf: 2% — Z be a submodular function. Suppose that a positive
integer B is known with | f(S)| £ B for all S < E. Then there exists an algorithm
which finds a set S* < E such that f (S*) £ f(S) for all S < E and which runs in time
polynomial in |E|, [log B and the time necessary to evaluate the functionf. []

So in particular, if there is an algorithm to evaluate the function fin time
polynomial in |E] and [logB7 (this is the case for all practically relevant
_ problems), then the algorithm (3.12) is polynomial in the sense described in
"Section 2. '

A further interesting aspect of submodular functions is that it is A"P-
complete to maximize them. The same phenomenon is also known for convex
functions f: R" — R which are easy to minimize but difficult to maximize. It
turns out that there is a close connection linking submodular and convex
functions. In a sense submodular functions can be viewed as the discrete analo-
gues of convex functions. An interesting survey itlluminating this aspect and
describing more results about and applications of submodular functions is the
paper by Lovasz (1983). g .

Matching theory and matroid theory are in several respects well-under-
stood, thus there have been continuing attempts to unify these theories. It seems
that the best setting of such a generalization is the following. Suppose G = (V, E)
is a graph and M = (¥, #) is a matroid on the node set V. If ¢: E~+ R is an
objective function then the matroid matching problem is to find an independent
matching F < E of maximum total weight ¢ (F). Here an independent matching is .
a set F < E which is a matching of G, for which ¥ (F):= {i€ Vi is contajned in
some edge of F} is independent in M. (It is easy to see that the graph matching .
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problem and the matroid intersection problem are special cases of the matroid
matching problem.) However, it turned out, that the matroid matching problem
is & P-complete, see Lovasz (1981). But Lovész, on the positive side, found a
polynomial time algorithm to obtain a maximum cardinality matroid matching
in case the given matroid is matric. This algorithm is one of the most involved
algorithms known in this field. It is based on a geometric representation of the
matroid matching problem and uses a number of ingenious new aigorithms for
problems in affine and projective geometry.

The weighted version of the matric matroid case is not solved yet. It seems
plausible that this problem can also be solved in polynomial time, but what—
probably—is lacking here, is a better understanding of the convex hull of the
incidence vectors of the independent matchings, i.e. a description of this poly-
tope by means of equations and inequalities.

Another outgrowth of matroid theory is the theory of greedoids. Greedo-
ids have been defined in an attempt to obtain a better insight into the combinato-
rial structures for which the greedy method works.

A greedoid is a pair (E, #) where E is a finite set and .# is a subset of 2°
which satisfies (3.7) and (3.9). So a matroid is a greedoid satisfying (3.8) in
addition. The main advocates of greedoids are B. Korte and L. Lovasz who are
currently working on a research program which aims at characterizing those
combinatorial optimization problems which are greedoids, and obtaining richer
substructures within the class of greedoids which give rise to certain min-max
relations or polynomial time algorithms. For more information see Korte &
Lovasz (1983).

Shortest Paths, Cuts, and Flows

Up to now we have only considered combinatorial optimization prob-
lems which are solvable in polynomial time (with a few exceptions mentioned in
side remarks). We shall now turn to a problem which is solvable in polynomial
time only if the objective function is restricted in some way, and we shall indicate
here some of the subtleties coming up in polyhedral combinatorics.

An instance of the shortest path problem can be described as follows.

Given a directed graph D = (V, A), a function ¢: 4 — R, and two different nodes
s, 1€ V. An(s, t)-path Pin Disaset of arcs {a,,a,,. . ., 4} such that the tail of g,
is 5, the head of g, is ¢, and the head of arc g; is the tail of arc a; , ,, i=1,. . .,k — 1.
- Moreover, we require that no node appears in P more than twice as an endnode
ofanarca;, i=1,...,k. (If Pis an (s, £)-path and (¢, 5) € 4 then PU{(¢,5)} is a
directed cycle.) The task is to find an (s, #)-path P such that c(P) is as small as
possible.

To treat the shortest path problem from a polyhedral point of view the
first idea-—of course—is to consider the polyhedron
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P, (D):=conv {y’e R‘|P= 4 is an (s, t)-path}

and solve min ¢’ x, x € Py (D). However, there is no explicit linear description of
P, (D) known to date. And it is very likely that we will never be able to obtain
such a characterization since the shortest path problem (in this general formula-
tion) is A 'P-complete.

On the other hand this problem can be solved in polynomial time if the
objective function is nonnegative. (In fact, one can do a little better, namely the
problem is solvable in polynomial time if D contains no directed cycle such that
the sum of the arc weights of the directed cycle is negative, see for instance
Lawler (1976). We do not want to go into these details here.) And in this case a
polyhedral result is available. The polytope one should consider is

Py(D):=conv {xy* € R{|P< A contains an (s, t)-path}.
s !

It is clear that for every objective function ¢: 4 — R with c(@) 20, forallae 4
there is always an optimum solution of min {c¢” x|x € P¢(D)} which is the inciden-
ce vector of an (s, t)-path. So, in this case the shortest path problem can also be
solved via the linear program min {¢” x|x € Py(D)}. The polytope Pg(D) can be
described as follows.

(3.13) Theorem. Let D= (V,A) be adigraph, and let s, t be two different nodes of
V. Then

P,(Dy={xe R (1) 0=x,S1forallacAi,
(2) Y x,21forall W Vwithse W,t¢ wi O

aedt (W)
A set 67 (W) of arcs with se W and ¢t ¢ W is called an (s, #)-cut. Another
interesting combinatorial optimization problem is, given a digraph D =(V, 4)
and arc capacities ¢(a) =0 for all a € 4, to find a minimum capacity (s, f)-cut. A
polyhedral characterization of (s, f)-cuts is the following.

(3.14) Theorem. Let D= (V, A) be adigraph, and s, t be different nodes of V. Let
Por(D):= conv{y® € R*|B< A contains an (s,t)-cut}, then

Per(D)={xeR*| (1) 0<x,<1forallae 4,
(2) > x,21 for all (s,t)-paths P A}. [

aepP
Analogously to shortest paths there is no characterization of the convex hull of
the incidence vectors of (s, ¢)-cuts of a diagraph known (the general cut problem,
i.e. ¢ not restricted to nonnegative vectors, is also .4/ Z-complete).
The striking similarity of Theorems (3.14) and (3.13) is not just a coinci-
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dence. The (s, £)-paths and the (s, £)-cuts form what is called a blocking pair. This
is a polarity relation, introduced by Fulkerson, which has found many nice
applications in combinatorial optimization. The blocking theory has revealed
many interesting connections between problems which were formerly conside-
red quite unrelated. We recommend Fulkerson (1971) for a survey of this
theory and the related theory of antiblocking polyhedra.

The (s, t)-cuts are important because of their relation to flows. An (s, £)-
flow in a digraph D=(V, 4) is a vector x € R” satisfying

x,20 forallae 4
Y x,= Y x, forallveV\{st}.
aed” () aed* ()

The value of an (s, #)-flow x is the net amount of flow leaving s, 1. e. this value is
equal to

Z Xq = Z Xa
acd*(s) aed () ’
which is clearly equalto Y x,— Y x,. Wesay that an (s, £)-flow is subject
aed™ (1) aed*(n
to capacity c;4 — R, if x,<c, for all ae A. One of the most celebrated
theorems in combinatorial optimization is the following one due to Ford &
Fulkerson (1956) and Elias, Feinstein & Shannon (1956).

§

(3.15) Max-Flow Min-Cut Theorem. Let D= (V, 4) be a directed graph, let
s,teV, s+t ,andlet c: A—IR , be a capacity function. Then the maximum
value of an (s,t)-flow subject to the capacity c is equal to the minimum

capacity of an (s,t)-cut. If all capacities c,, a € A, are integer then there
exists an integer optimum flow. [

Theorem (3.15) in particular implies that for a digraph D= (V,4), two nodes

s,t €V, s+t, and capacities c,, a € 4 the linear program (called network flow
problem),

max ., X,— 3, X,

aedt(y) aed ()

Y, x,— Y x,=0forallve V\{s,t}

aedt(v) aed (v)

0=sx,=c,forallae 4

has an integral optimum solution whenever all the capacities ¢, are integral.
Ford & Fulkerson (1956) gave an algorithm to compute a maximum
(s, t)-flow and a minimum (s, #)-cut which is based on the min-max relation of

+
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“(3.15). Edmonds & Karp (1972) showed that this algorithm, with some modifica-
tions, is polynomial. This algorithm is one of the combinatorial algorithms
which is most frequently used in practice. The reason is that quite a large number

“of real world problems can be formulated as network-flow problems.

Hard Combinatorial Optimi' tion Problems

We now turn our attention to combinatorial optimization poblems which
are A P-complete. With each of these problems we can associate a class of
polyhedra as described in section 3.1. For instance, consider the travelling
salesman problem (TSP) (1.1). With each instance of (1.1) we associate the
complete graph K, =(V,E) with ¥={1,2,...,n}. Each tour is a hamiltonian
cycle of K,. Thus the vertices of the (symmetric) travelling salesman polytope

Qh:=conv{yT € RE|T<E is the edge set of a hamiltonian cycle}

correspond to the feasible solutions of the n-city problem, and each instance of
the TSP can be solved — in principle — via the LP

min ¢ x, x € Q%

where ¢ € RE is a vector describing the distances between the cities.

Enormous research efforts have gone into describing the polytopes asso-
ciated with hard problems. Up to date no single example of a hard combinatorial
optimization problem could be found for which an explicit linear characteriza-
tion of the associated class of polytopes could be determined. In retrospect, this
is no surprise since complexity theory provides good reasons to believe that for
A P-complete problems no descriptions of the type discussed in the foregoing
subsections for easy problems can ever be obtained, see Karp & Papadimitriou
(1982) und Papadimitriou (1984) for precise versions of this statement.

The research effort spent on this type of investigations, however, was not
in vain. For many of the practically relevant problems it was possible to
determine large classes of facets. These classes of facets could be incorporated
into cutting plane algorithms (to be described in Section 3.5) which for quite a
number of problems seem to be the practically most efficient methods available
at present.

Moreover, it was also possible to use this polyhedral information to
determine further special cases of hard problems for which polynomial time
algorithms exist. The number of results in this area is so vast that it is impossible
to survey the main results and give proper credit. To give at least some examples
I would like to mention two of m_ ‘avourite problems.

The travelling salesman poly.ope Q% is one of the best studied polytopes.
Grotschel & Padberg (1984) have collected all the known results on Q% and
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described in Padberg & Grotschel (1984) their algorithmic uses. Parts of these
results can be summarized in the following.

(3.16) Theorem. Letn = 6. Then the travelling salesman polytope Q' is contained

(1)
(2)
(3)

(4)

(3)

in the polytope defined by the following system of equations and inequali-

ties:

0=x,21 foralleeE
Y x,=2  forallveV
ecofv)
subtour elimination constraints
Y x,SAWI|-1 forall W V,35|W|Ssn-3and1eW.
ec E(W)
comb constramts
k+1
Z x,+ Z Z x, S|H|+ Z(|T|*1)~—-2m
e E(H) i=1 ee E(T)
clique tree mequalzttes
t+1

DI Z ) Z|H|+Z(IT| ) ———

f=1 E(H) i=1 ee E(T)  j=1

(In (4) a comb consists of a node set H (called handle) and node sets T4,...,T,
(called teeth) such that ,

1)
ii)
iii)
iv)
v)

|HNT;j=1 fori=1,....k,
| TNH|=1 fori=1,...,k,

TiﬁTj=$ 12i<jsk,
k=3 and &k odd,
1eH.

In (5) a clique tree consists of a set of node sets H,,. . .,H, < V (called handles)
and a set of node sets T,,...,T, (called teeth) satisfying

TinT;=0 1gi<j=y,

HnH;=0 1<i<j§s,ands22,

foreachze {1 2,..,t},2=5|T}| £n—2and some v € T, belongs to no H;
forj=1,.

for each j € {1,2,. ..,8} the number of T, having nonempty intersection
with H; is odd and at least three,

for ie {1,2,...,1} andj'e{12 8}, i Hin T £0, thenHmY]1san
articulation set of the subgraph Cof K, with node set U H; JU U T, and

edge set U E(H)U) U E(T)), moreover Cis connected

And Where ¢; is the number of handles tooth 7; intersects.
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Moreover, each of the inequalities of the system (1), (3), (4) and (5) defines a
facet of O, and no two of these inequalities are equivalent with respect to Q. The
dimension of Q% is |E| — n, and (2) is a minimal equation system for the affine hull

of Q7. O

It is obvious that the number of facets of Q% described in Theorem (3.16) is
incredibly large. Nevertheless these are by far not all of the facets of Q%.

The second example I would like to mention is the (A'2-complete)
acyclic subdigraph problem. An instance of this problem can be described as
follows. Given a digraph D = (V, 4) with arc weightsc, € R for alla € 4. Find an
arc set B < A4 which contains no directed cycle (i. e. B is an acyclic arc set) such
that ¢(B) is as large as possible. The associated polyhedron is

P,-(D):= conv {x® € R*|B< A is acyclic}.
The following has been proved in Grétschel, Jinger & Reinelt (1982).

(3.17) Theorem. Let D= (V,A) be a digraph. Then each of the following inequa-

lities defines a facet of P,.(D). No two of these inequalities are equivalent with
respect to P, (D).

(1) x,;20 for all (ij) e A,

(2) xys1 Jor all (i,j) e A with (j,i) ¢ A,

(3) Y. x;E1C|—1 for all directed cycles C< A4,
(ij)eC

(4)  k-fence inequalities
Y x, Z|\F|—k+1 for all k-fences F= A,

ee F
(5)  MGdbius ladder inequalities

Z x, < | M| ——’i—_ztl Sfor all Mobius ladders M < A,

eeM
In (4) a subdigraph (V (F),F) of D is a simple k-fence if V ( F) consists of two
disjoint node sets U= {uy,...,u}, W=|w,....w,} of cardinality k and F
consists of all arcs (u;,w,),i=1,. ..,k andall arcs (wiw) i, j=1,...,k,i%j, and

where a k-fence is a digraph which can be obtained from a simple k-fence by
repeated subdivision of arcs.

In (5) a Mébius ladder is defined as follows. Let C,C,,. . .,C, be a sequence of
different dicycles in a digraph D= (V,A) such that the following holds :

(i) k=3andkis odd.
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(ii) CiandC;,,(i=1,...,k—1) haveadirectedpath P,in common, C, and C,
have a dipath P, in common.

(iii) Given any dicycle Cj, je {1,...,k}, set
J=11,.. k} n (’-‘{j—~—2,j——4,jﬂ-—6,._. SJOUHLi+3,+5. .0,

Then every set{ |) C; |\{e|i € J} contains exactly one dicycle (namely
' i1

C;), where ¢, i € J, is any are contained in the dipath P,.

xS

i=1

k
(iv)  The largest acyclic arc set in \) C,; has cardinality
i<1

_k+1
-

k
Then we call the arc set M= |) C; a Mobius-ladder.

i=1
Let us set
P.(D):={x e R*|x satisfies (1), (2), (3)}-

The class of digraphs D with P.(D) = P,.(D) is called weakly acyclic. In Section
3.4 we will show that programs over P.(D) can be solved in polynomial
time. Thus, since for this class of digraphs max {c"x|xe P.(D)} equals
max {¢"x|x e P,.(D)} (c20), for weakly acyclic digraphs the acyclic subdi-
graph problem can be solved in polynomial time. This class, for instance,
contains the planar digraphs as an (important) subclass. This indicates— and we
shall formulate this in more detail later — that polyhedral results can be used to
obtain good algorithms, in particular, for special cases of hard problems.

3.3 Integer Linear Programming and Cutting Planes

One of the main approaches in the fifties and sixties was to consider
combinatorial optimization problems as integer linear programs and use the
simplex method together with so-called cutting planes to solve these problems.
The idea of this technique is the following.

Given an instance of a combinatorial optimization problem, find a
matrix 4 and a vector & such that

(3.18) {x e R"|Ax <b, x integer}

corresponds to the feasible solutions of the instance; i.e., in the cases we
consider, the set defined above should consist of all incidence vectors of feasible
solutions.

For instance, if G = (V, E)} is a graph with edge weightsc, € R foralle € £
then the feasible solutions of the following integer linear program (cf. (3.5),

(3.6)).
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max c¢Tx
Y x,=1 forallve V
eed(v)
(3.19) x,20 forallec E

x, integer foralleeE

are exactly the incidence vectors of the matchings of G. Similarly, if K, = (V, E)
is a complete graph and ¢, € IR forall e € E, then (cf. (3.16)) the feasible solutions
of

min ¢ x
Y ox,=2 forallve V

e€d(v)

(3.200 Y x,g|Wi—1 for all WeV,32|W|sn-3
ee E(W)
0sx,=1 foralleekE

x, integer forallee E

are the incidence vectors of the hamiltonian cycles in X, .
In general, it is not too difficult to find such an integer linear program-
ming formulation for any combinatorial optimization problem.

Gomory’s Algorithm

The algorithmic aspect behind such formulations is the following. Let us
remove the integrality stipulations from (3.18) and solve the linear program
max {¢"x|Ax b} (with the simplex method). (We call this LP the linear
programming relaxation of the combinatorial optimization problem.) In case the
optimum solution x* of the LP is integral, then x* is an optimum solution of the
integer linear program and thus an optimum solution of the combinatorial
problem is found. If x* is not integral one would like to cut off'x* from
{x e R"|Ax £ b} by adding a further inequality (called cutting plane), say a7 x
= dy, in such a way that ,

(3.21) x* ¢ {x e R"|Ax<b, a"x<a,} and
{xeZ"Axsb}={xeZ'|Ax<b,a"xZa,}.

Gomory (1958), (1960) has devised a very simple method with which such
an inequality can be read from the simplex tableau corresponding to the opti-
mum solution x*. And moreover, Gomory proved that by adding a finite
number of his type of cutting planes an optimum solution of the corresponding
integer program can be found.
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However, practical computational experience revealed that Gomory’s
algorithm is very inefficient, and to my knowledge, there is no commercial code
for integer programming problems which uses these cutting planes. There have
been a number of attempts in the late sixties to devise new types of cutting planes
different from the ones Gomory proposed, but there have been no computatio-
nally significant improvements.

This failure was one of the reasons that led to the developments discussed
in Section 3.2. Consider for instance Edmond’s characterization of the matching
polytope (3.6) and the integer LP (3.19). Edmonds proved that the only inequali-
ties that have to be added to (3.19) to obtain the matching polytope are the
inequalities (3) of (3.6). Gomory’s result shows that after a finite number of
applications of his procedure all these inequalities can be obtained, but — and
that turned out to be the case in practice — zillions of redundant inequalities
may have to be added as well.

This observation suggests that Gomory’s approach is too general. It is
probably more effective to concentrate on particular problems and to characte-
rize the cutting planes necessary for those problems (i.e. to describe the facets of
the convex hull of the incidence vectors of the feasible solutions) in order to use
this special type of problem specific cutting planes in LP-based algorithms. This
idea will be further explored in Sections 3.4 and 3.5.

The Closure of {x|Ax <b}

Gomory’s idea has been systematized and been brought into the form ofa
nice theorem by Chvatal (1973) and — in more generality - by Schrijver (1980).
To describe this, let us define for a given rational (m,#)-matrix 4 and a rational
vector b

(3.22) P:={xeR"|Ax<b} and P,:= conv {x e Z"|Ax < b}.

Let @;, i=1,...,n denote the column vectors of 4. If 1€ IR™, 1 =0 then the
inequality

Y (ATa) x,<ATh

i=1

is satisfied by all points in P, and clearly, every integral vector contained in P
satisfies

n

(3.23) > [ATa] x, S[ATH]

i=1
where [o] denotes the largest integer not larger than «. Thus, (3.23) is a valid
inequality for P,. Let us denote by c/(P) (closure of P) the set of vectors x in IR"
satisfying 4 x < b and all inequalities of type (3.23) derived from 4 x < in the
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way described above. To shorten notation we write c/'(P) for
cl(cl(...cl(P)...)) where the closure operation c/is applied r times iteratively.

(3.24) Theorem. Let P and P, be as defined above. Then cI(P) is a polyhedron
containing P,. Moreover, there exists a number r € N such that

P,=cl'(P). O
The smallest integer r with P,=¢/"(P) is called the Chvatal rank of P.

Total Unimodularity

It has been observed in the fifties that some matrices A associated with
combinatorial optimization problems have the property that {x e R"[Ax < b} is
a polyhedron with only integral vertices if and only if 4 is integral. This property
is of particular importance, since it implies that if b € Z™ the polyhedra P and P,
defined in (3.22) coincide, i.e. no cutting planes have to be added to obtain P,
from P. :

Hoffman & Kruskal (1956) introduced the following class of matrices. A
matrix A is called totally unimodular if the determinants of all its square subma-
trices are 0, 1 or —1, and they showed:

(3.25) Theorem. Let A be an integral matrix. Then A is totally unimodular if and
only if for every integral vector b the polyhedron {x ¢ R" Ax<b, x 2 0}
has integral vertices only. [J

This in particular implies that for a totally unimodular matrix 4 and
integral vectors ¢ and b the linear 7program {max ¢Tx|Ax 2 b,x 20} as well as its
dual linear program min {7 y| 4" y 2 ¢, y 2 0} have integral optimum solutions,
provided feasible solutions exist.

Prime examples of totally unimodular matrices are the node-edge inci-
dence matrices of bipartite graphs (these are the matrices defined by the left hand
sides of the inequalities (2) of (3.5) and the node-arc incidence matrices of
digraphs. (The matrices of network flow problems, cf. (3.15), are submatrices of
such matrices.) Total unimodularity of these matrices is easy to prove by
induction. Thus, in particular, the important Theorems (3.5) and (3.15) can be
considered as consequences of Theorem (3.25).

There are quite a number of other characterizations of totally
unimodular matrices, see Schrijver (1984 b) for a survey. But none of these is a
good characterization in the sense that it allows to check in polynomial time
whether a matrix is totally unimodular or not. This problem has recently been
solved by Seymour (1980) in the following way.

Tutte (1965) proved that a matrix A is totally unimodular if and only if
the matric matroid defined by 4 over the reals is regular (see Welsh (1976) for a
definition). Seymour then showed that a matroid is regular if and only if it can be
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constructed via three (rather simple) types of compositions starting from three
types of matroids: forest matroids, duals of forest matroids and a particular 10-
element matroid. Edmonds pomted out that this characterization can be used to
decompose in polynomial time a gnven matric matroid into the three types of
matroids or to show that the matr01d is not regular, i.e. that the matrix is not
totally unimodular.

Another interesting line of research building on the proof techniques
developed for the treatment of the concepts defined above is the investigation of
so-called totally dual integral systems (TDI-systems). These generalize totally
unimodular systems in various ways. We do not go into details here and refer to
the survey papers Edmonds & Giles (1984), Pulleyblank (1983) and the
forthcoming book Schrijver (1984 a).

3.4  Separation Problems and the Ellipsoid Method

We have already seen that cutting off points by hyperplanes isan old idea
in combinatorial optimization which has led (among others) to the develop-
ments described in the foregoing sections. A new impetus came into the field
through the ellipsoid method.

The ellipsoid method is an algorithm developed by Shor (1970), (1977)
which has been considered for some time in nonlinear (in particular nondifferen-
tiable) optimization. Khachiyan (1979) observed that the ellipsoid method can
be modified (using some observations from linear algebra, number theory and
complexity theory) in such a way that it yields a polynomial time method for the
solution of linear programming problems. This result caused great and well-
deserved excitement in the world of mathematical programming,

It turned out that the ellipsoid method has even more potential and that
it is particularly suited for the design of polynomial time algorithms for
combinatorial optimization problems. These observations have been made by
Karp & Papadimitriou (1982), Padberg & Rao (1984) and Grétschel, Lovasz &
Schrijver (1981). We do not want to explain the ellipsoid method (this algorithm
is only used as a proof technique and can be replaced by other algorithms like the
new “simplex method” of Yamnitsky & Levin (1982)), but we would like to
mention the most important consequences which have led to new fields of
research.

To present the results correctly we would have to introduce quite a
technical machinery. We want to avoid this and state the results in a slightly
imprecise form, making, however, the essence of them clear. Let us introduce
the following three problems:

(3.26) Optimization Problem. Given a polytope P < IR" and a vector ¢ € Q". Find
a vector x* € P maximizing ¢* x over P or prove that P is empty.

(3.27) Separation Problem. Given a polytope P =< R" andavector y € Q". Decide
~ whether y € P, and if y ¢ P, find a vector d € Q" such that d" y> d" x for ail
x € P (i.e. find a hyperplane separating y from P):
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(3.28) Membership Problem. Given a polytope P<R" and a vector y e Q.

Decide whether y belongs to P or not.

Clearly, if one can solve the separation problem for P then one can solve

- the membership problem for P.

In order to speak about polynomial time algorithms for these problems
we have to specify the input lengths. For the vectors ¢ in (3.26) resp. y in (3.27),
(3.28) this is just the length of their binary encoding (rationals r are encoded by
encoding the numerator p and the denominator ¢ of a coprime representation

r =§.) An important consequence of the ellipsoid method is that we do not need
to know all the facet defining inequalities or all the vertices of P explicitly to
define the input length of P. It is sufficient to consider an upper bound on the
maximum input length of a vertex or a facet defining inequality of P and to use
this number as the input length. Thus, for the case of 0/1-polytopes P<R",
which we are particularly interested in, we can simply use the natural number 1
as input length of P, despite the fact that P may have a number of vertices and
facets which is exponential in n (like the matching polytope (3.6) and the
travelling salesman polytope (3.16)).

So, if we speak of a polynomial time algorithm to solve problem (3.26),
(3.27) or (3.28) we mean that this algorithm runs in time polynomial in the input
length of P (as defined above) and the input length of ¢ resp. y. The following
theorem is one of the most useful consequences of the ellipsoid method.

(3.29) Theorem. (a) Let P< R" be a polytope with rational vertices, then the

optimization problem (3.26) for P can be solved in polynomial time if and
only if the separation problem (3.27) for P can be solved in polynomial
time.
(b) Let P< IR" be a full-dimensional polytope with rational vertices for
which an interior point is known in advance. Then the optimization problem
(3.26) for P can be solved in polynomial time if and only if the membership
problem (3.28) for P can be solved in polynomial time. O

Note that the condition necessary for the validity of (3.29) (b) is almost
always fulfilled in the case of the 0/1-polytopes we consider. Most of these
polytopes are full-dimensional and contain the zero vector and all unit vectors,

1 ‘
n+1 , N
full-dimensional (like the travelling salesman polytope) then usually an equality
representation of the affine hull is known and the polytope can be projected to
make it full-dimensional (in a lower dimensional space).

Theorem (3.29) thus states that in order to be able to optimize over P in
polynomial time it suffices to be able to decide in polynomial time whether a
given point belongs to P or not. The latter problem looks much easier but — as
(3.29) states — has the same degree of difficulty as the former.

$O (1,...,1) is an interior point of these polytopes. If the polytopes are not
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We want to describe two applications of this theorem which also show
how good algorithms for some combinatorial optimization problems can be
used to design good algorithms for others.

Consider the problem of finding a minimum capacity (s,¢)-cut in a
digraph D = (V, A) with capacities c, 2 0 for alla € 4. We know that the shortest
(s,t)-path problem can be solved in polynomial time, for instance with the
method of Dijkstra (1959). By Theorem (3.14) we can find a minimum (s,2)-cut
by solving the linear program

min ¢Tx .
(3.30) (1H0=x,=1 forallac 4,
(2)Y x,=1 for all (s,¢)-paths Pc 4.

ae P

To be able to solve (3.30) in polynomial time it suffices by Theorem (3.29) to
solve the separation problem for the 0/1-polytope P-(D) defined by the con-
straints (1), (2) of (3.30) in polynomial time.

S0, given a vector y € Q" we have to check in polynomial time whether Y
satisfies these two systems of inequalities. To check (1) is trivial. If one of the
components of y is smaller than 0 or larger than 1 we obtain a separating’
inequality x, = 0 or x, < 1. In order to check the inequality system (2) of (3.30) we
may therefore assume that y satisfies (1). Now we consider the components y, of
y as “lengths” of the arcs a € 4, and we calculate a shortest (s, t)-path P* in D
with respect to the length vector y =(y,) (by Dijkstra’s method in polynomial

time). Nowif Y y, =1 then, since P*is a shortest path, y satisfies all inequali-

ae pr

ties (2), otherwise the inequality > x,21 separates y from the polytope

P (D). v’
This shows how a polynomial time minimum capacity cut algorithm can
be derived via Theorem (3.29) from a polynomial time shortest path algorithm.
In the second example we consider the acyclic subdigraph problem. By
Theorem (3.17) we know that the convex hull P 1c (D) of the incidence vectors of
acyclic subdigraphs of a digraph D = (V, A) satisfies

P;c(D)SP:(D):={xeR"|(1) 0<x,<1 for all a € 4
2 3 x,glCI-1 for all directed
aeC CyClCS CQA}

Given a vector y € Q" we can easily check inequalities (1), and to check (2) we
may assume that y satisfies (1). We now define new “lengths”

w,=1-y, forallae A.



274 Grotschel

" Foreach arc (i,j) € 4 we calculate a shortest (j, ))-path P;; in D with.respect tothe -
length vector w. Clearly, for each arc (i,j) € A, C;;:= P;; U {(i,)} is the shortest
“directed cycle (with respect to w) in D containing (i,7). Let C* be a shortest of

these cycles C;;, (i,j) € A. Suppose ). w,21then ) y,<|C*|—1 and thus —

aeC* . aeC*
by our construction— y satisfies all directed cycle inequalities (2). If ). w,< 1
aeC*
then ) »,>|C*|—1 and the inequality ) x,<|C*|—1 separates y from
ae C* ae C*

P.(D). Hence by using | 4| times a shortest path algorithm we can design a
polynomial time separation algorithm for R (D).

From Theorem (3.29) we can conclude that we can optimize over P.(D)
in polynomial time. This shows that for the class of weakly acyclic digraphs the
acyclic subdigraph problem can be solved in polynomial time.,

Note that in both applications described above the number of facets and
the number of vertices of the polytopes is exponential in the input size of D. Still
one can optimize in polynomial time.

In vartous applications it is important to test membership or solve the
separation problem. The design of such algorithms has been neglected for a long
time. Now that the ellipsoid method has shown the polynomial time equivalence
of these problems to the optimization problem (3.26), a considerable amount of
research is spent on inventing truly good combinatorial separation algorithms
which do not suffer from the numerical disadvantages of the ellipsoid method. -

For instance, Padberg & Rao (1982) have shown how to solve the
separation problem for the matching polytope (3.6), Cunningham (1984) has
designed a good combinatorial algorithm to solve this problem for matroid
polytopes (3.10). But there is still a lot to do. A major achievement would be the
invention of a good combinatorial algorithm for the polymatroid separation
problem. This would imply a good combinatorial algorithm for the minimiza-
tion of submodular functions (3.12). The only known polynomial time method
for this problem described in Grotschel, Lovasz & Schrijver (1981) utilizes the
ellipsoid method.

Generalizations of the ellipsoid method and further applications of this
method to problems in number theory, geometry, and combinatorial optimiza-
tion are described in the forthcoming book Groétschel, Lovasz & Schrijver
(1985). -

We want to mention a further example. In an outstanding paper H. W.
Lenstra jun. (1983) has shown that for fixed #n € N, given a rational (1, n)-matrix 4
and a vector b € Q™, one can check in polynomial time whether or not there is an
integral vector x satisfying 4 x < b. This result implies that integer linear pro-
gramming problems in fixed dimension can be solved in polynomial time. This
result follows quite easily from a newly developed method to find a reduced basis
of a lattice (see Lenstra, Lenstra & Lovasz (1982)) and the ellipsoid method.
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More generally, in fixed dimension one can even minimize a convex function
over the integral points of a convex body in polynomial time (cf. Grotschel,
Lovasz & Schrijver (1985)).

3.5  Cutting Plane Algorithms in Practice

In the foregoing sections we have mainly concentrated on theoretical
issues. Now we turn to computer implementations of the ideas described before.
We have outlined Gomory’s cutting plane algorithm and mentioned its practical
failure. The ellipsoid method together with the investigations of special combi-
natorial polytopes has shed a new light on this subject and seems to indicate that s
good cutting plane algorithms might exist provided that the cutting planes are
selected carefully. We shall describe now what this means in practice. - -

The approach works in the same way for 4" ?-complete problems and. -
problems in #. We also want to point out that this approach dates back to the -
fifties where Dantzig, Fulkerson & Johnson (1954) have used it for the solution

of a large Travelling Salesman Problem. The methods described in this paper -
have been neglected for a long time and found a revival onlyrecently. We outline
the basic issues of this technique by means of the 42 -complete acyclic subdi-
graph problem.
Each instance of this problem is given by a digraph D =( V,4) and arc
weights ¢,, a € A. As described in Section 3.1 resp. 3.2 we associate with each

instance of this problem a polytope P, (D) and want to solve
(3.31) max {¢"x|xe P,.(D)}.

By Theorem (3.17) we know that P, (D) is contained in the polytope defined by

(1) 0=x,=1 forallae A4 A
2 ) x,g1C|-1 for all directed cycles C < 4
aeC
(3.32) (3) ) x,Z|F|~k+1 forall k-fences F< A4
< k+1
@ Y x,<|M| __er_ for all Mobius ladders M < 4
aeM

and that (almost) all of these inequalities define facets of P, (D). Instead of .
solving (3.31) we try to optimize ¢’ x over (3.32). Using the ellipsoid méthod:vizé' o
know that we can optimize over the polytope P.(D) defined by (1)-and (2) of
(3.32) in polynomial time. But the ellipsoid method is very in¢fficient in practice; .
so we replace it by (the nonpolynomial) simplex algorithm. Practical experience
has shown that the simplex algorithm works extremely fast on the average.
(Recent work of Borgwardt (1982) has established a theoretical explanation of - .
this.) Moreover, numerical experiments indicate that one can indeed optimize -
over Pc(D) in this way for quite large digraphs. . s
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For this we have to use the separation algorithm for P.(D) described in
Section 3.4. By choosing data structures carefully one can implement this
separation algorithm (based on shortest path techniques) so that it runs in
'0(|V(D)|?) time. For large digraphs this is quite a lot, so one often does a
preprocessing by running fast problem specific heuristics that try to find violated
inequalities. The design of such heuristics is guided by a careful analysis of
fractional solutions that come up during practical experience with such an
algorithm. It turned out empirically that such heuristics can significantly speed
up the actual performance.

Now it may happen that a solution x* satisfies all inequalities (1), (2),1.e.
x* optimizes cT x over P.(D), but that it is not integral. Then we try to cut off x*
using the inequalities (3) and (4) of (3.32). These inequalities are best possible
cutting planes, since they define facets of P, (D), but we do not know any
(nontrivial) algorithm that checks whether x* satisfies the inequalities (3), (4) or
not. (This situation usually occurs in A#"?-hard problems. There are “recogni-
zable classes” of facets and some, which are not “well-behaved”.) In such a case,
‘we again design heuristics, hoping that they will find some violated inequalities
of type (3) or (4). It might happen (and in practice it usually does) that by
iterating this cutting plane recognition procedure (using separation heuristics
combined with exact separation algorithms) one ends up with an integral solu-
_tion. In this case we have solved the acyclic subdigraph problem.

' If, however, the last optimum solution x* is not integral and no inequality
of type (1),...,(4) can be found that is violated by x*, then we go to our last
résort: branch & bound, cf. (4.6). Practical experience shows that in most cases
only a few branching steps are necessary to get to the optimum integral solution.

" There are quite a number of further tactical issues involved. One has to
decide how many cutting planes to add in each step in order to keep the LP small,
whether inequalities which are nonbinding in the present optimum solution
should be removed etc. Qur practical experience with this type of algorithms
shows that there is no general answer, Each problem has to be studied individu-
ally. But there is a good chance that such investigations result in practically quite
efficient methods.

Computational experience with cutting plane methods for hard problems
as described above is reported for instance in Crowder & Padberg (1980),
Barahona & Maccioni (1982), Grétschel, Jinger & Reinelt (1983), Crowder,
Johnson & Padberg (1983). Such an algorithm has been implemented for the
polynomially solvable matching problem as well. A surprising outcome of the
computational experiments reported in Grétschel & Holland (1984) is the
empirically observed fact that this (theoretically nonpolynomial) algorithm is as
fast as the best combinatorial matching algorithms. Thus, it seems that the type of
cutting plane algorithms described above deserves further attention, even in the
case of polynomially solvable problems.
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4.  Future Developments

It is impossible to survey — given bounded space — all flourishing
branches of combinatorial optimization and to discuss all significant recent
results. In Section 3 I have made an attempt to outline the developments in
polyhedral combinatorics, the subject closest to my own research interest, and I
have already pointed out various directions of future research in this area.

I will now present a (nonsystematic and probably unbalanced) collection
of further topics and problems which I think have future potential from a
theoretical or practical viewpoint and which are worth studying. I will give only
few comments and quote only very few references in order to keep within my
page limits. ] am sure that my opinion is biased but I hope that some readers may
find something of interest.

4.1  Relations to other Branches of Mathematics

In the first two sections (4.1) and (4.2) I would like to point out some of
my views about possible general future developments in the relations of combi-
natorial optimization to other mathematical fields, and I will give a few remark-
able examples.

(4.1) Integer Programming and Number Theory

It seems that integer programming and number theory (in particular the
geometry of numbers) study the same objects, but from very different viewpoints
and using quite unrelated methods. There should be a way to make the deep
results collected in number theory in the last centuries profitable for integer
programming. And vice versa, number theory might benefit from some of the
concepts and algorithms developed in integer programming.

For instance, ways to compute the Smith or Hermite normal form of a
matrix are known for decades, but only recently Kannan & Bachem (1979)
found an algorithm — using some nice combinatorial “tricks” — that calculates
these normal forms in polynomial time. On the other hand, H. W. Lenstra jun.
(1983), as mentioned in Section 3.4, proved — using number theoretic argu-
ments — that integer programming problems are solvable in polynomial time in
fixed dimension. In Grétschel, Lovasz & Schrijver (1984) a (still minor) attempt
is made to build a bridge between these two disciplines. In particular, a number
of algorithmic versions of various results known in the geometry of numbers are
proved.

It seems to me that the algorithm of Lenstra, Lenstra & Lovasz (1982) to
find a reduced basis in a lattice might be a first good tie between these two areas
(and algebra in addition). The algorithm was developed to derive certain results
in polyhedral theory (in particular about polytopes associated with combinato-
rial optimization problems) from the ellipsoid method. It turned out that it can
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also be utilized, cf. Lenstra et al. (1982), to factor polynomials over the rationals
in polynomial time. Kannan and Lovasz observed that one can derive from the
basis reduction algorithm a method which, given an algebraic number and a

“bound on the degree of its minimal polynomial, computes the minimal polyno-
mial in polynomial time. The basis reduction algorithm has recently been
applied by H. te Riele and A. Odlyzko, see te Riele (1983), to disprove the long
standing Mertens’ Conjecture. Moreover, the basis reduction algorithm is cur-
rently being used by several people to break cryptosystems, see €. g. Adleman
(1983) and Lagarias & Odlyzko (1983).

Cryptography, anyway, scems to be one of the reasons that has attracted
number theoretists to study complexity questions. The exciting developments in
prime testing and factoring of integers clearly show that nontrivial number
theory is able to contribute substantially to a better understanding of very down-
to-earth complexity or integer programming problems.

(4.2) Relations of Combinatorial Optimization to Other Mathematical
Disciplines

I have already mentioned before various contacts and fruitful coopera-
tions of the theory of combinatorial optimization with other branches of mathe-
matics. There is no way to be complete, but I would like to mention a few more of
these which I think are worth investigating.

Polyhedral combinatorics should be able to benefit significantly from the
developments in convex geometry, in particular the (general) theory of polyhedra.
Although the objects of study in these two areas are more or less the same there
have been very few applications of the “general theory” (as for instance describ-
ed in the book Griinbaum (1967)) to the study of concrete polyhedra (as
described in Sections 3.1 and 3.2). Mainly due to the work of V. Klee and his
collaborators the contacts get closer and more of the geometers get interested in
“real-world polyhedra” like matching polytopes and travelling salesman polyto-
pes. Maybe the new techniques developed in the theory of polyhedra will lead to
a proof of the Hirsch conjecture, or at least to proofs of this conjecture for more
classes of interesting combinatorial polyhedra (see for instance Klee & Klein-
schmidt (1984)). These lines of research may also produce a polynomial time
version of the simplex method, something of real practical interest.

A striking example of a fertile application of commutative algebra are the

‘results of Stanley concerning the enumeration of faces of various dimensions of
polytopes. Stanley extended and applied thie theory of graded algebras and their
Hilbert functions, and Cohen-Macauly rings to give (among others) tight upper
bounds on the number of faces in each dimension in terms of the number of
vertices. Subsequently, he combined these methods with some recent results in
algebraic geometry to complete the proof of McMullen’s conjectured characteri-
zation of the face-counting vectors of simplicial polytopes. An excellent account
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of these developments is given in Billera (1983). Billera also describes the first
attempts of an application of these methods to the study of integer solutions to
systems of linear inequalities. I am sure that the power of these methods has not
fully been recognized yet, and that we may expect further interesting results from
this approach.

I also believe that the methods of algebra have not been exploited enough
yet. Of course, algebra is so vast a field that in the concrete situation of a
combinatorial optimization problem‘it is almost impossible to guess which of
the algebraic techniques might fruitfully apply. Algebraic concepts certainly
have influenced the field. There are matching polynomials, chromatic polyno-
mials, chain groups and the like. But as Stanley’s approach shows, in certain
special cases the use of more sophisticated groups, rings etc. associated with a
. combinatorial object may result in deep new insights. This area of research is
almost untouched.

In general, the question we address here is “What is a ‘good’ representa-
tion of a combinatorial optimization problem ?”. The survey in Section 3 shows
how combinatorial optimization problems can be represented by means of
polyhedra, and it also proves that this method has lead to theoretically and
practically exciting new developments. But there is a host of further possibilities.

The paper Lovasz (1982), for instance, describes two interesting further
approaches. First Lovasz discusses a method introduced by W. W. and S. R. Li
to associate a certain polynomial with a graph. The ideas of this and the proof
techniques come from algebraic geometry. Using Hilbert’s Nullstellensatz it is
possible to determine the degrees of these polynomials and to obtain estimations
from these degrees for the chromatic number and the stability number of a
graph. In the second approach topology is used. With each graph G a neighbour-
hood complex 4 (G) is associated whose connectivity gives a lower bound on
the chromatic number. Both applications use nontrivial theory to obtain quite
surprising connections between algebraical resp. topological invariants and
combinatorial parameters. Applications of this kind, however, are quite spora-
dic. This is probably due to the fact that there are only very few people who know
enough from either area to see nontrivial connections.

The relations of combinatorial optimization to other branches of mathe-
matical programming are manifold. Nonlinear programming, stochastic pro-
gramming, and integer programming borrow from and stimulate each other.
Two significant contributions of nonlinear programming to combinatorial opti-
mization are the development of the ellipsoid method (see Section 3.4) and its
extension to a powerful tool in combinatorial optimization, and moreover, the
technique of Lagrangean relaxation of (hard) combinatorial optimization
problems together with the design of subgradient algorithms (incorporated in
branch & bound schemes) for the solution of these Lagrangean relaxations
(cf. Fisher (1981) and Geoffrion (1974) for surveys).
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4.2  General Areas of Future Research

The next problem areas concern developments in combinatorial optimi-
. zation which, I think, need further study and which may contribute significantly
to a better theoretical understanding of combinatorial optimization or to a
better use of the theory in practice.

(4.3) Generalizations of Min-Max Results

The presently best survey of min-max results in combinatorial optimiza-
tion theory is Schrijver (1983). Schrijver has collected all results known to date,
classified them with respect to area and generality and described their relation. I
have already mentioned in Section 3.2 (for the special case of submodular
functions) that major research projects are carried out to unify these results and
find a general setting which allows a better understanding of the fact that certain
combinatorial objects stand in a r...n-max relation to others (cf. K6nig’s Theo-
rem in Section 3.2) while other quite similar ones do not.

Major contributions to this area are, for instance, the results of Mader
(1978a) (1978 b) on edge resp. vertex disjoint S-paths and Seymour’s results on
flows in matroids, cf. Seymour (1977) (1981).

Further progress in this min-max theory is highly desirable not only from
a theoretical point of view. Min-max relations usually are good optimality
criteria and therefore often form the backbone of polynomial time algorithms.

(4.4) Speed-Up and Lower Bounds for Easy Problems

Algorithmic research with respect to problems solvable in polynomial
time mainly concentrates on the two subjects mentioned in the heading. There
has been significant progress with respect to the first in the recent years, while
almost no nontrivial results can be reported about the second.

There are two ways to get better algorithms for easy problems. Either one
finds a new method with better time or space complexity or one modifies one of
the existing algorithms in some way. The first case — of course — is rather rare.
The research efforts on the second in the recent years were quite successful and
have not only brought up a list of new “tricks” with which such speed-ups can be
obtained, but also a general theory of algorithmic techniques and data handling
procedures which provides a powerful tool for algorithm improvements. A very
nice account of this theory can be found in Tarjan (1978). Gabow (1983) reports
about the success of the scaling technique.

For example, the speed-up techniques were particularly successful with
respect to calculating maximum flows in networks and shortest paths in di-
graphs. The original (nonpolynomial) Ford-Fulkerson algorithm for network
flows has been modified and remodified in various ways and quite substantial
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running time improvements were obtained, see Tarjan (1983a) for a survey of this.
There are a number of competing shortest path algorithms each of which has
been subject to various modifications. Recent improvements on shortest paths
methods in planar graphs are reported in Frederickson (1983). A new variant of
Dantzig’s algorithm with good expected running time is presented in Bloniarz
(1983).

A surprising example of speed improvement by a new method was the
0(n'°&") matrix multiplication algorithm of Strassen (1969). Stimulated by this,
there has been further progress in the meantime, see for instance Coppersmith &
Winograd (1982) where a matrix multiplication algorithm with running time less
than 0 (n>4955%) is described. These authors give a speed-up theorem and by this
they also show that there is no best matrix multiplication algorithm. A similarly
striking case is the planarity algorithm of Hopcropft & Tarjan (1972) which
proved that for a graph G = (¥, E) planarity can be tested in 0(|V|) time.

Whenever such improvements are obtained a question that arises is
whether or not this new algorithm is best possible with respect to time (or space)
complexity. This leads to the task of finding lower bounds for the computational
complexity of a combinatorial optimization problem (with respect to some
machine model, like RAM or Turing machines). So the question is, can one
prove that for every instance of a combinatorial optimization problem of input
length n at least p(n) steps are necessary for its solution, wherep: N —NN is some
function (e. g. a polynomial).

There are some trivial bounds. For instance if two (n,n)-matrices have to
be multiplied then each entry of the two matrices has to be touched at Jeast once.
Thus, at Jeast 2n? steps are necessary to compute the product of two (n,n)-
matrices. Similarly, for the determination of certain graph parameters all nodes
or all edges have to be examined at least once. So one gets lower bounds | V| or
| E| for the number of steps necessary to calculate this parameter, see Rivest &
Vuillemin (1978). ' |

- Itis somewhat astonishing that such lower bounds are often the only ones
available, and for most casy combinatorial optimization problems the gap
between the complexity of the best known algorithm and the best lower bound
for its solution is considerable. A discussion of methods to establish lower
bounds can be found in Weide (1977).

(4.5) Heuristics for Hard Problems

Most of the combinatorial optimization problems that come up in the
real world are A" ?-complete. But solutions have to be found, e.g. for the
routing of garbage collection trucks or the layout of a computer chip, and
mathematicians cannot hide behind an mtractabnllty proof and leave the prob-
lem to the imagination of economists or engineers. Practice demands the design
of heuristic algorithms which produce a “good” solution of the problem.
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Heuristic methods for hard problems are widely used by practitioners
with (more or less) satisfactory success. For many years the judgement of the
quality and effectiveness of heuristic methods was largely based on empirical
- computational experience. That is, some test runs on “representative” real world
and some “representative” randomly generated problem instances were perfor-
med and the method which yielded the “best result on the average” was chosen to
be used.

The recent years have seen an increasing mathematical interest in the
performance analysis of heuristics. In particular, two new tools — “worst-case-
analysis” and “average case analysis” — have been developed and provide
reasonable means to judge the quality of a heuristic algorithm.

In worst-case analysis one tries to prove a performance guarantee for a
heuristic, i.e. to show that for every instance of an optimization problem a
certain algorithm produces a solution whose value differs from the optimum
value by no more than, say, p per cent. Of course, one would like to have a very
fast algorithm with best possible performance guarantee.

Results of this type are surveyed in Fisher (1980), Garey & Johnson
(1979), Grétschel (1982) and Korte (1979). It turns out that hard problems differ
very much with respect to their “approximability”.

For instance, no performance guarantee for polynomial time heuristics
can be given at all for the symmetric travelling salesman problem (1.1), unless
P =ANP. But if the intercity distances c;; satisfy the triangle inequality
¢ij+ 2y, 1 Si<j<kzn, then the 0(n?) algorithm of Christofides (1976)
produces a tour which is at most 50 % longer than the optimal tour. It is
unknown whether a smaller bound can be achieved in polynomial time.

There are hard problems for which heuristics with provably best possible
polynomial time performance guarantee exist. For example, Hochbaum &
Shmoys (1984) describe a polynomial time heuristic for the k-center problem
(with triangle inequality) which gives a solution whose value is at most twice as
large as the optimum value, and they prove that the existence of a polynomial
time approximation algorithm with better performance guarantee would imply
P=NP.

Very few hard problems can be approximated up to any given accuracy.
One such example is the knapsack problem. (Find a 0/1-vector maximizing ¢" x
over all 0/1-vectors satisfying a” x £5.) For this problem Ibarra & Kim (1975)
have designed a so-called fully polynomial approximation scheme which is an
algorithm that, given an instance of the knapsack problem and a rational ¢> 0,
produces a solution S such that the error of the value ¢(S) of S relative to the
optimum value is at most &, and which has a running time which is polynomial in
the input length of the instance and &7 1.

Striking progress has been made with respect to the bin packing problem
(pack n items into as few bins as possible). The First Fit heuristic (Pick any item
and put it into the first bin into which it fits!) was shown by Garey et al. (1976) to
give no more than {§th of the optimum number of bins, D. Johnson (1973)
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proved that a variant of this, First Fit Decteasing, produces 11 th of the optimum
value, Yao (1980) improved this to 4 — ¢ for some very small &> 0. Finally
Fernandez de la Vega & Lueker (1981) gave a linear time algorithm — based ona
linear programming relaxation — which for any fixed ¢> 0 gives no more than
(1 + &) times the optimum number of bins. But the running time of this algorithm
increases very quickly with & getting small. Karmarkar & Karp (1982) conside-
red the dual of the Fernandes de la Vega & Lueker linear program and applied
the ellipsoid method to obtain a fully polynomial approximation scheme, see
Coffman, Garey & Johnson (1983) for a survey.

For many hard combinatorial optimization problems no polynomial
time heuristic algorithms with good (or any) performance guarantee are known.
For example, for the acyclic subdigraph problem, see Section 3.2, a trivial algo-
rithm gives a 50% relative error (Take any linear ordering of the nodes of
D =(V, A), let B be the arcs of D which are consistent with this ordering and let
B’ := AN\ B. Then clearly B and B’ are acyclic and the value of B or B' is at least
1/2 of the optimum value!), but nothing better is available. For the asymmetric
travelling salesman problem (with triangle inequality) no constant bound is
known. All known performance guarantees depend on the number of cities.

For problems, like the TSP, where no performance guarantee can be
given at all, worst-case analysis is not an appropriate tool to judge a heuristic
algorithm. More promising in such (but not only in these) cases is a probabilistic
analysis of the performance of a heuristic. The idea here is the following. Given a
combinatorial optimization problem, then with each n € IN a probability distri-
bution over the instances of input size n is associated. Then one tries to prove
that with probability tending to 1 (with growing input size) a certain heuristic
produces a solution whose value is &-close to the optimum solution.

Algorithms with such a good average-case behaviour have been designed
for various hard combinatorial optimization problems, (e. g. the TSP and the
acyclic subdigraph problem), but this area is still in its infancy. Most of the
algorithms that have been analyzed are extremely simple (and it has empirically
been observed that they perform rather poorly (within the practically relevant
problem sizes) compared with other widely used heuristics). It seems, however,
to be a very difficult problem to make the stochastic machinery work for more
sophisticated algorithms.

Surveys of this approach are Karp (1976), Lueker (1979) and Weide
(1980). Two interesting papers, for example, are Halton & Terada (1982) and
Burkard & Finke (1984). An annotated bibliography of the probabilistic analy-
sis of algorithms is Karp (1984).

(4.6) Exact Optimization Algorithms for Hard Problems

In many real world situations it is necessary (or desirable or profitable) to
know the true optimum solution of a problem instance and not only a “good”
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~ solution. Thus, algorithms have to be designed for hard problems which empiri-
cally show good running time performance. It would of course be even better to
be able to prove that such algorithms run fast on the average (within some
probability model), but to my knowledge no result of this type has been obtained
so far for #"?-complete problems.

There are two principle methods available for solving hard problems
exactly. One is the cutting plane technique described in Sections 3.3 and 3.5. The
other is the branch & bound method.

The guiding idea of the branch & bound technique is to enumerate all
feasible solutions in an “intelligent manner”. The enumeration is organized in
such a way that at every step the universe of feasible solutions is partitioned into
disjoint subsets and that at every step lower and/or upper bounds for the value of
the best solution within these subsets are computed. If (in case of a maximization
problem) this upper bound for a certain subset is smaller than the present best
known feasible solution or the best known lower bound, all solutions contained
in this subset can be omitted from further considerations. Otherwise the subset is
split into smaller pieces to obtain a finer partition of the set of all feasible
solutions, and the procedure is continued.

It is apparent that the relative success of a branch & bound method
heavily depends on the partitioning strategy and the quality of the bounds that
are computed. The determination of bounds is the most important feature of
such algorithms and a large part of the research effort in the last years has gone
into finding methods for computing good bounds with reasonable computatio-
nal effort.

It is impossible to compare these two approaches in general with respect
to their quality. Historically the cutting plane methods came first. They were
then superseded in the sixties by the branch & bound algorithms. In particular
the technique of Lagrangean relaxation developed in the early seventies consi-
derably improved the performance of these algorithms. Now there is a revival of
cutting plane methods as described in Section 3.5. But still all such quality
judgements are extremely problem specific. An approach, working well for some
problem, might fail in another. This also shows that we do not know enough
about the “character” of hard problems.

The current trend is to combine the two methods and enrich them with
various heuristic features. These approaches and their combination are descri-
bed in Grotschel (1982). Most of these techniques have in fact been developed in
order to solve travelling salesman problems. This problem seems to have become
astandard hard problem for which everybody tries to show the success of his new
ideas. The branch & bound algorithms existing for the travelling salesman
problem are surveyed in Balas & Toth (1983) and the cutting plane methods for
this problem in Padberg & Grotschel (1984).
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(4.7) Adaptation to Technical Progress

Without the rapid development of computers the explosive growth of
combinatorial optimization in the last thirty years is unimaginable. It is absolu-
tely hopeless to try to solve 15-city travelling salesman problems by hand.
However, even the biggest computer cannot handle 30-city problems using brute
force enumeration only. But the joint progress in mathematics, algorithm design
techniques and computer hardware makes it possible to solve 150-city problems
routinely, and even problems with more than 300 cities have been solved, cf.
Crowder & Padberg (1980,

The last years brought two new technical developments: microcomputers
and parallel computers. Both these two technologies have already influenced the
research in combinatorial optimization.

With respect to microcomputers an attempt is made to design algorithms
for combinatorial optimization problems which are particularly suited for these
types of machines, especially to give small companies which have no access to
large computing facilities the possibility to benefit from the results obtained in
mathematical programming. The public interest in these developments is, for
instance, shown by the growing number of technical sessions on this subject at
meetings of the Operations Research Society of America. I have, however, the
feeling that due to further technical progress this problem area will disappear
within the next ten years, say. I believe that in a few years we shall have cheap
desk calculators with 10 Megabyte or more central memory, and so there will be
no need any more for special purpose algorithms for computers with small
central or peripheral memory.

More significant is parallelization. Most of the existing algorithms can-
not be parallelized, and so really new methods have to be developed to exploit
the power of these new computers. Very interesting progress has been made in
this area in the recent years. It is impossible to survey all the theoretical and
practical aspects of parallelism here. We recommend the very up-to-date anno-
tated bibliography Kindervater & Lenstra (1984) on this subject, and the 4" Z-

completeness columns seven and eight by D. S. Johnson (1983) in the Journal of
Algorithms.

4.3 Some Concrete Open Problems

Before, I have outlined general developments in combinatorial optimiza-
tion which I expect or hope for. Now I would like to mention a few concrete open
problems which I am interested in. Most of the problems are probably nontri-
vial. I do not consider this problem list representative for the field. The problems
reflect my own research interests.

The first group of problems could be called “combinatorialization of
ellipsoidal results”. What I mean by this is the following. A host of combinatorial
optimization problems was shown to be solvable in polynomial time using the
ellipsoid method, cf. Section 3.4. The ellipsoid method is — for various reasons
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— not a really good algorithm from the practical point of view. But for quite a
number of combinatorial problems these ellipsoidal algorithms are the only
polynomial ones known to date. Thus, I would like to see good combinatorial
algorithms for these problems. The following problems are of particular interest.

(4.8) Problem. Find a polynomial time combinatorial algorithm to solve the
weighted stable set, clique, clique covering and colouring problem on
perfect graphs.

There has been some progress recently by the Grenoble group (Burlet, Fonlupt,

Uhry et al.) who gave good combinatorial algorithms for these problems for

large classes of perfect graphs, but the general case seems to be hard. A side

remark on perfect graphs! Maybe a proof of

(4.9) The Perfect Graph Conjecture. A graph is perfect if and only if it contains
neither an odd chordless cycle of length at least five nor the complement of
such an odd chordless cycle as an induced subgraph.

could shed new light on the structure of perfect graphs and provide the tools for

a good algorithm, see the books Golumbic (1980) and Berge & Chvatal (1984)

for perfect graphs and conjecture (4.9).

The second problem of this ellipsoidal group is:

(4.10) Problem. Find a polynomial time combinatorial algorithm to minimize
submodular functions.

Problem (4.10) has already been mentioned in Section (3.2), see Theorem (3.1 2).

Such an algorithm could be derived from a positive solution of

(4.11) Problem. (Polymatroid Separation Problem). Given a submodular
Junction f: 2% — @ satisfying f(9)=0 and SS TS E = f(S) <f(T).
Set

Po={xeR*®|Y x,Sf(F) forall FSE
eefF
x,20 forallee E}.

Find a combinatorial polynomial time separation algorithm Jor P, (In fact
it suffices to find an algorithm which checks whether the point
- (L1,...,1) e R® is contained in P,.) -
Cunningham (1984) has a good algorithm (based on network flow techniques)
which solves (4.10) in case f satisfies in addition f(S)ZL|S|forall SC E.

. Inorder to get efficient cutting plane algorithms for hard combinatorial
optimization problems it is necessary to have polynomial time separation algo-
rithms for large classes of facet defining inequalitjes of the associated polyhedra,
see Sections 3.1, 3.2, 3.4 and 3.5. With "respect to the travelling salesman
polytope Q7 the following problem is unsolved, cf. Theorem (3.16). -
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(4.12) Problem. Find polynomial time algorithms which check whether a given
point y € QF satisfies the comb inequalities (3.16) (4) resp. the cligue tree
inequalities (3.16) (5) and if not provide a violated inequality of this type.
Padberg & Rao (1982) can handle a special case of the comb inequalities (the
so-called 2-matching inequalities), but not more is known. Similarly for the
acyclic subdigraph problem we have (cf. Theorem (3.17)).

(4.13) Problem. Find polynomial time algorithms that check whether a given
! point y € Q7 satisfies all k-fence inequalities (3.17) (3) resp. all Mébius
ladder inequalities (3.17) (4) and if not yield a violated inequality of this
type.

It follows from results of Grotschel, Lovasz & Schrijver (1981) that the
facets of polyhedra associated with easy problems are algorithmically well-
characterized in the following sense.

(4.14) Theorem. IfP, < IR" isa polytope associated with a combinatorial optimi-
zation problem (as described in 3.1) which is solvable in polynomial time
and if ¢ x is an objective function such that y = max {c"x|x € P,}, then one
can find in polynomial time n facet defining inequalities af x S o; and
nonnegative rationals A;, i=1,. .. ,n such that

c=Ava + ... +Aa, and y=2A4,04+ ... +A,a,. [

Theorem (4.14) shows that in some way one can “get his hand on the facets” of
P,, which suggests, that it should be possible to find an explicit linear characte-
rization of P,. However, there are some problems whose associated polytopes
have resisted all characterization attacks so far. .

A graph is called claw-free if it does not contain the graph K, as an
induced subgraph. '

' (4.15) Problem. Finda complete linear characterization for the convex hull of the
incidence vectors of stable sets in claw-free graphs. L
Minty (1980) and Sbihi (1978) have shown that maximum stable sets in claw-free
graphs can be found in polynomial time. Giles & Trotter (1981) discovered some
“wild” facets of stable set polytopes of claw free graphs, and Chvatal (unpublis-
hed) showed that the Chvatal rank of this class of polyhedra is unbounded. So
this is probably a tough problem. ‘ ' . .
For graphs with positive edge weights it is easy to find not only shortest
paths but also shortest paths and cycles of even or odd lengths using matching
techniques or modifications of Dijkstra’s method. Similary, in digraphs shortest
odd dicycles are easy to compute. The polytope Py (D) of shortest (s, t)-pathsina’
digraph D has the nice description given in Theorem (3.13). Nothing similar is

known if a parity condition is added.
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Let G=(V,E) be a graph, D=(V, 4) be a digraph and let s,z€ V be
different nodes. Define

0,(G):= conv {y* € R*|P < E contains an (s,f)-path of even length}
0,(G):= conv {x" € R*|P < E contains an (s, t)-path of odd length}
Q3(G):= conv {¥“ e R¥|C< E contains an even cycle}
Q. (G):= conv {y“ e R¥|C< E contains an odd cycle}

and let P, (D),. ..,P,(D) be defined analogously (replacing (s, f)-path by direc-
ted (s,¢)-path and cycle by directed cycle).

(4.16) Problem. Find complete linear characterizations of the polytopes
Q1(G),...,04(G) and P, (G),...,P,(G). [J

Finally I would like to repeat a very interesting and difficult problem mentioned
in Section 3.2, whose solution probably also depends on a good characterization
of a certain polyhedron.

(4.17) Problem. Design a polynomial time algorithm for the weighted matroid
, matching problem for matric matroids.

4.4 Further Information and Conclusion

The number of books on combinatorial optimization (and related areas)
is not too large. A short list of relatively new books — each with a different
emphasis — is: Christofides (1975), Garey & Johnson (1979), Garfinkel &
Nemhauser (1972), Golumbic (1982), Grétschel, Lovasz & Schrijver (1985),
Lawler (1976), Lawler, Lenstra & Rinnooy Kan (1984), Lovasz (1979), Lovasz &
Plummer (1984), Papadimitriou & Steiglitz (1982), Recski (1985), Schrijver
(1984a), Tarjan (1983). Soon the book O’hEigeartaigh, Lenstra & Rinnooy Kan
(1984) will appear that contains annotated bibliographies on various
branches of combinatorial optimization. In these books more detailed informa-
tion can be found about the concepts and problems whose developments have
been surveyed in this paper.

In the thirty years of its existence combinatorial optimization has develo-
ped into a fertile and rapidly expanding field. It has many relations to other
mathematical disciplines (I hope I could point this out), manifold nontrivial
applications to areas like Physics, Management, Economics, Engineering etc.
Fortunately, combinatorial optimization has not split into a pure, a computatio-
nal, and an applied branch (yet), and a large part of the attraction of this field (at
least to me) originates from the fact that still many new problems come into the

field from (quite varying) issues of the real world which cannot be solved
routinely.
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