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Cardinality Homogeneous Set 
Systems, Cycles in Matroids, 
and Associated Polytopes 

Martin Grötschel* 

Abstract. A subset C of the power set of a finite set E is called cardinality homogeneous 
if, whenever C contains some set F, C contains all subsets of E of cardinality | F |. Examples 
of such set systems C are the sets of all even or of all odd cardinality subsets of E, or, for each 
uniform matroid, its set of circuits and its set of cycles. With each cardinality homogeneous 
set system C, we associate the polytope P(C), the convex hull of the incidence vectors of all 
sets in C. We provide a complete and nonredundant linear description of P(C). We show 
that a greedy algorithm optimizes any linear function over P(C); we construct, by a dual 
greedy procedure, an explicit optimum solution of the dual linear program; and we describe 
a polynomial time separation algorithm for the class of polytopes of type P(C). 
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8.1 Introduction 
Cycles in matroids can be viewed as far-reaching common generalizations of Eulerian 
subgraphs and cuts of a graph. From an optimization point of view it is of interest to 
understand the polytopes naturally associated with cycles. 

The aim is to develop linear programming techniques for the solution of weighted cy
cle optimization problems. This chapter contributes to this issue by investigating a class of 
polytopes, namely, the polytopes associated with cardinality homogeneous set systems, 
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which properly contains, e.g., the class of cycle and circuit polytopes associated with 
uniform matroids. 

8.2 Matroids 
Good books on matroid theory are [6] and [11]. We follow their notation and terminology 
to a large extent. 

Let E be a finite set. We usually assume that E = {1 , . . . ,n} , n > 1. A subset X of the 
power set 2E of E is called an independence system if 0 e X and if, whenever I eX, every 
subset of / also belongs to X. An independence system X is called a matroid if, whenever 
I, J eX with | / | < | J | , there is an element j e J\I such that / U {j} e X. We also write 
M = (£", I) to give a matroid a name and stress that we are dealing with a matroid X on 
the ground set E. 

Every set in X is called independent and every set in 2E\X is said to be dependent. 
The minimal dependent subsets of E are called circuits (such sets do not properly contain 
other dependent sets). Every subset of E that is the disjoint union of circuits is called a 
cycle. For every set F C £", a set B C E is called a basis of F if B C F, B € X, and F does 
not contain an independent set Bf properly containing B, i.e., B is a maximal independent 
subset of F. 

If B is the set of bases of the ground set E of a matroid M = (F, Z), then B* := 
{E\B\B e B) is the set of bases of another matroid, denoted by M* = (£", X*) and called 
the matroid dual to M. By construction we have M** = M. It is customary to call the 
bases, circuits, and cycles of M* the cobases, cocircuits, and cocycles of M. 

It is well known that, for any graph G — (V, F), the set of edgesets of its forests 
forms the system of independent sets of a matroid, the so-called graphic matroid, denoted 
by M(G). The matroid dual to a graphic matroid is called cographic and is denoted by 
M(G)*. The circuits of a graphic matroid are the edgesets of the circuits of the underlying 
graph G. The cycles are the (not necessarily connected) Eulerian subgraphs of G, i.e., the 
edgesets of all subgraphs with nodes of even degree. The cycles of M(G)* are the cuts of G, 
i.e., edgesets of the form S (W) = [ij e E \i e W, j e V\W}. The circuits of a cographic 
matroid are the edgesets of minimal cuts. 

Another nice class of matroids is composed of representable (or matric) matroids. We 
choose a field F and an m x n matrix A with entries from F. A set / c E = { 1 , . . . , n] is 
called independent if the submatrix of A consisting of the columns indexed by / has rank | /1 , 
i.e., if the column vectors A.j, j € / , are linearly independent in the m-dimensional vector 
space over F. A matroid that is isomorphic to a matroid of this type is called representable 
over F. A matroid representable over the two-element field GF(2) is called binary. If M is ! 

representable over F» then this also holds for its dual matroid M*. 
There are many equivalent characterizations of binary matroids; see [11 ], Chapter 10. 

For instance, we have the following theorem. 

Theorem 8.1. The following statements about a matroid M are equivalent. 

(i) M is binary. 
(ii) For any circuit C and any cocircuit C*, \C f) C* | is even. 

(iii) Every cycle ofM is the symmetric difference of distinct circuits of M. 



Graphic matroids (and therefore also cographic matroids) are representable over any 
field and, hence, they are binary. 

One, in many respects, very simple class of matroids comprises the uniform matroids. 
They are defined as follows. We are given integers 1 < k < n. The ground set is E = 
{ 1 , . . . , n) and every subset with at most k elements is declared to be independent. This 
matroid is called the uniform matroid on n elements of rank k and is denoted by Uk,n • It has 
Q bases (the sets of size k) and ( ^ J circuits (the sets of size k + 1). The cycles of U^n 
are the sets of cardinality i(k + 1), 0 < i < L^pjJ • 

8.3 Cycle Polytopes 
Polyhedral combinatorics deals with the geometric description of combinatorial problems. 
Instead of solving a combinatorial problem directly, one associates a polytope with the 
problem and tries to solve the combinatorial problem as a linear program over this polytope. 
Two prominent examples are the Chinese postman and the max-cut problems. With respect 
to these problems, the approach works as follows. 

Given a graph G = (V, E) with weights ce on the edges e € £", we wish to find an 
Eulerian subgraph of maximum weight. To do this we define the polytope 

E Eulerian subgraph}, 

where x c = (X«?C)<?eE denotes the incidence vector of C with xf == 1 if £ € C and Xe = 0 
otherwise. CP(G) is called the Chinese postman polytope. Solving the Chinese postman 
problem is equivalent to solving the linear programming problem 

max cTxtx € CP(G). 

Similarly, given a graph G = (V, E) with weights ce for all e € E, finding a cut of G with 
maximum weight is equivalent to maximizing the linear function cTx over the cut polytope 

CUT(G) := conv{x
8(W) € RE\ W c V}. 

Cut problems have a wide range of applications and arise in various, sometimes disguised, 
forms. One such different looking but equivalent appearance is quadratic 0/1 -programming. 
The polyhedron arising here is the Boolean quadratic polytope investigated, e.g., in [7]. 

Recall that Eulerian subgraphs and cuts are cycles of the corresponding graphic and 
cographic matroids, respectively; i.e., the Chinese postman and the cut polytope are special 
instances of a cycle polytope 

P{M) := conv{xc e R£ \C is a cycle of M}9 

which is the convex hull of the incidence vectors of all cycles of a matroid M on a ground 
set£\ 

Guided by the complete characterization of the Chinese postman polytope for all 
graphs by Edmonds and Johnson [3] and of the cut polytope for graphs not contractible 
to the complete graph ÄT5 by Barahona [1] and based on a deep theorem of Seymour [9] 
characterizing matroids with the "sum of circuits property" Barahona and Grötschel [2] 
characterized polytopes of certain binary matroids as follows. 



Let M be a matroid on £". Consider the systems of inequalities 

0<xe < 1 for alle 6 £ (8.1) 

and 

x(F) - x(C\F) < \F\ - 1 for all cocircuits C c E and all F QC, \F\ odd, (8.2) 

and define 
Q{M) := {x 6 WE\x satisfies (8.1) and (8.2)}. 

Because of Theorem 8.1 (ii), every incidence vector of a cycle of a binary matroid satisfies 
(8.1) and (8.2). And if J C E is not a cycle, there must be, by Theorem 8.1(H) and (iii), 
a cocircuit C and an odd subset F of C such that x J violates the corresponding inequality 
of (8.2). Thus, all integral points of Q(M) are incidence vectors of cycles—provided M is 
binary. The main theorem of [2] is as follows. 

Theorem 8.2. For a binary matroid M, P(M) = Q(M) if and only if M has no F7*, RxQ, 
andM{K$y minor 

Here, M{K$y is the cographic matroid of the complete graph on five nodes, F* is the 
matroid dual to the Fano matroid, and R\Q is the binary matroid associated with the 5 x 10 
matrix whose columns are the ten 0/1-vectors with three ones and two zeros. A minor of a 
matroid M ~ (£", I) is a matroid that can be obtained from M by deleting and contracting 
some elements of £". 

A precise description of all the facets of P{M) is given in [2], i.e., a complete and 
nonredundant characterization of P(M) for this class of binary matroids M. This yields, in 
particular, complete and nonredundant characterizations of the Chinese postman polytope 
for any graph [3] and for the cut polytope of all graphs not contractible to K$ [1], 

Grötschel and Truemper [5] have shown, among other things, that one can solve the 
separation problem for Q (M) for the class of matroids not containing F7*; hence by [4], for 
this class of matroids, one can maximize any linear function over Q{M). This implies that 
one can maximize over P{M) if M has no F 7 , R\o, M{K$y minor; thus, for this class of 
binary matroids, the weighted cycle problem can be solved in polynomial time. 

It turns out that knowledge about cycles in matroids and the associated polytopes 
is rather poor for matroids not in the class considered in Theorem 8.2. There is, e.g., a 
characterization of so-called master polytopes for cycles in binary matroids; see [5]. For 
another example, the facets of P(F$) are known; but—in contrast to Theorem 8.2—none 
of the inequalities defining 0(^7*) defines a facet of P(F7*); see [2]. The situation is even 
worse in the nonbinary case. Not even a decent integer programming formulation, such as 
max cTx, x e Q(M) D {0, 1}E for binary matroids M, is known in this case. 

Just as it was worthwhile to investigate a joint generalization of the Chinese postman 
and the max-cut problems yielding, e.g., a unified description of the associated polytopes, it 
may be rewarding to better understand cycles of those matroids that are more general than 
the matroids of Theorem 8.2, in particular, cycles of nonbinary matroids. 

Strangely enough, it is not even completely obvious how to generalize the concept 
of cycle to the nonbinary case. Looking at the proofs, e.g., in [2], it becomes clear that, 



! although cycles are usually defined as disjoint unions of circuits, the (in the binary case) 
equivalent definition that a cycle is a set that can be obtained from the set of circuits by 

staking symmetric differences (see Theorem 8.1) is of much greater help in proofs. It turns 
iout that, for nonbinary matroids, this second definition does not lead to anything interesting 
in general. It is also worth noting that condition (ii) of Theorem 8.1 is the one that yields the 
[So-called cocircuit inequalities (8.2), which provide an integer programming formulation 
land enable Theorem 8.2. This condition is not available in the nonbinary case. Is there a 
l condition that can replace it? 

To leave the class of binary matroids, there is a wonderful excluded minor theorem 
]0f Tutte [10] that, as one might hope, could lead the way, 

Theorem 8.3. A matroid is binary if and only if it has no minor isomorphic to #2,4. 

This result shows that all uniform matroids are nonbinary except for Uit„, n > 1, and 
172,3. ^ ^ s 0 suggests that investigating the cycles of uniform matroids may provide some 

[polyhedral insight. 
The cycles of U2A are its circuits, which are the four sets of size three, and the empty 

set. The convey hull of the corresponding five points (0,0, 0,0), (0, 1,1,1), (1, 0,1, 1), 
(1,1,0, 1), (1,1,1,0) in R4 is a simplex defined by the inequalities 

—Xi — X2 — *3 + 2*4 < 0, 

—Xi — X2 + 2*3 — X4 < 0, 

—X\ + 2*2 — #3 — X4 < 0, 

+2*1 — *2 — *3 — X4 < 0, 

+*1 + * 2 + *3+*4.< 3 ' 

I Unfortunately, there is not much one can learn from this observation. 

8.4 Cardinality Homogeneous Set Systems 
[The initial proof of a linear characterization of the class of cycle polytopes of uniform 
1 matroids became easier by generalizing this result to a more abstract setting. This will be 
I presented here. 

Let £" = { 1 , . . . , n} be a finite set. We will assume throughout the paper that E ^ 0, 
[ i.e., n > 1. We call a subset C c 2 £ cardinality homogeneous if, whenever C contains some 
i subset of cardinality k, 0 < k < n, then C contains all subsets of cardinality k. 

Example 8.4. The following set systems are cardinality homogeneous. 

(i) C = 2E, the set of all subsets of E\ 
(ii) C = {F QE\\F\ is even}; 

.(in) C={F QE\\F[ is odd}; 
; (iv) C = set of circuits of 
1 fy) C = set of cycles of 



To simplify Statements and proofs we introduce the following notation. Let E = 
{ 1 , . . . , n] be given. From now on, a == (a i , . . . , am) denotes a nonempty sequence of 
integers such that a,- 6 {0 ,1 , . . . , n) and 0 < a\ < a>i < . , . < am < n holds. We call such 
a sequence a cardinality sequence. We set 

C{n\ a^ := [C e E\ \C\ = a,-}, i = l « , 
m 

C(n\a) :== C(n\au . . . , a m ) : = j j c ( n ; a / ) . 
/=i 

Clearly, each cardinality homogeneous set system C is of the form C(n; a) for some ground 
set E = { 1 , . . . , n] and some cardinality sequence a = (ß\9..., am)\ thus 

?(n; a) := P(n\ au . . . , ßm) :== cont>{xc e R £ | C 6 C(n; a)} 

is a generic member of the class of polytopes associated with cardinality homogeneous 
set systems. We want to find a system of linear inequalities and equations describing the 
members of the class of polytopes P(n;a) completely and nonredundantly. 

There are some inequalities that are obviously valid for P(n;a): 
the trivial inequalities 

0<xj<U j = l , . . . , n , (8.3) 

and the cardinality bounds 
ai<x(E)<ami (8.4) 

where x(E) denotes the sum YleeE xe~x\-\-...-\-xn. 
We introduce now a new class of inequalities that we call cardinality-forcing inequal

ities (or briefly CF-inequalities). For a given cardinality sequence a = ( a i , , . . , am) set 

T := T{*\ flm) := {F £ E\ ax < \F\ < am, \F\ £ahj = 2 m - 1}, 

/ : = / ( F ) := msx[] 6 {1 m - 1}| a} < \F\} for all F e T, 

where T consists of all sets that are not in C(n; a) and have a number of elements that is 
between a\ and am. For F e T, f(F) denotes the index / 6 { 1 , . . . , m] with af < \F\ < 

For each F e J7, its corresponding CF-inequality, where / = / ( F ) , is the following: 

CFFOC) := J > / + i - \F\)Xj - £ 0^1 " af)*J * (*/+i " \F\)af =: s{F). (8.5) 
jeF jeE\F 

Proposition 8.5. 

(i) Every CF-inequality is valid for P{n; a). 
(ii) For every 0/l-vector y e RE\P(n;a) with a\ < y(E) < am there is at least one 

CF-inequality separating yfrom P{n\ a). \ 
(iii) There are YA^I X S ^ + i (*) CF-inequalities; i.e., the number of CF-inequalities is, 

in general, not bounded by a polynomial in n. 
(iv) CF-inequalities are completely dense; i.e., all coefficients are different from zero. 



Proof. 

(iv) The coefficient of a variable xj, j e E, in a CF-inequality is either a / + i — \F\ or 
\F\ — a/. These values are different from zero by definition. 

(iii) This follows from simple counting. 
(i) Let F 6 T, f = / ( F ) , and 5 6 C(n\ a). Substituting the incidence vector xS into 

the left-hand side of the CF-inequality CFF(X) < s(F) results in 

J>/+i - \F\)Xf - 2 ( |F| " */>*/ * (ö'+1 " |F|) |F ° 5| 
J 'eF >€ f f N F - ( | F | - a / ) | (F \F) fl S\. 

If |<S| < a/, then |F fl 5 | < a/ and xS obviously does not violate (8.5). 
If | 5 | > af, then |5 | > a / + i and hence | (F\F) n S | = \S\F\ > a / + 1 - |F | . 
Trivially, \F n S\ < \F\ =af + \F\ - af and we obtain 

( a / + l - |F|) |F 0 5| - (|F| - af) \{E\F) 0 5| 
< (a / + 1 - |F | )a , + (a / + 1 - |F |)( |F | - a,) - ( |F| - a / ) (a / + i - |F|) 
= (fl/H-i-IFI)«/, 

which shows that the incidence vectors of all sets in C(n; a) satisfy (8.5). 
(ii) Let y e {0, l}£ \P(n; a), ax < y(E) < am, be given and let F be the subset of E 

with x F = y. By our choice F eT. Substituting y into the CF-inequality associated 
withF yields the value (a/+i — |F|) \F\ on the left-hand side. This is larger than the 
right-hand side since \F\ > af, hence y violates the CF-inequality CFp(#) < s{F) 
associated with F. G 

Given a cardinality sequence a = ( a i , . . . , am), we introduce the polyhedron 

Q(n; a) := Q(n\ a{ am) := {x e RE\x satisfies (8.3), (8.4), (8.5)}. 

Proposition 8.5(i) yields 
P{n\d) c Q(n\a) 

and Proposition 8.5(ii) together with the cardinality bounds yields 

P(n\ a) = conv{x e {0, l}E|x e Q(n\a)}. 

In other words, 
max cTx, x e Q(n;a)t 

is a linear programming relaxation of 

max cTx, x e P(n\a). 

Our main result is the following. 

Theorem 8.6. For all E = { 1 , . . . , n] and all cardinality sequences a = (au . . . , am), 
P(n;a) =. Q(n\a). 
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We will prove this in several steps and give, moreover, a characterization of all facets 
of P(n\d). 

8.5 A Primal and a Dual Greedy Algorithm 
The proof of Theorem 8.6 consists of two algorithms and their analysis. We first state a 
greedy algorithm that finds, for every objective function c, a feasible solution for max cTx, 
x e P(n; a). Then we describe an algorithm that produces afeasible solution of the LP dual 
to max cTx, x € Q(n; a). We then show that the objective function values of the primal 
and the dual solution are identical. This yields, by a standard argument, that P(n; a) = 
Q(n\ a). 

We are given a ground set E — {1, . . . ,«}, a cardinality sequence a = ( a i , . . . , 
am), and weights c7-, j e E. We want to find a cardinality homogeneous set of largest 
weight. We do this with the following heuristic. 

Algorithm 8.7 (Primal Greedy Algorithm). 

1. Sort the elements of E such that c± > C2 > . . . > c„. 
2. If ca,n > 0, set Cg := { 1 , . . . , am] and go to 6. 
3. If cai < 0, set Cg := { 1 , . . . , a\] and go to 6. 
4. Otherwise (i.e., ca,n < 0 < cai), let us define the following integers: 

• p is the largest integer in { 1 , . . . , n] such that cp > 0 > cp+i, 
• q is the index in { 1 , . . . , m] such that aq < p < aq+i, 

5. If h > 0, set Cg := {1, . . . , a ? +i} , 
elseCg := {1 aq}. 

6. Output Cg. 

We call Cg the greedy solution; xCg is a vertex of P(n\ a), so its objective function 
value cTxCg is a lower bound for max cTx,x e P(n;a), which in turn is not larger 
than the value of its linear programming relaxation, i.e., of the corresponding LP over 
Q(n;a): 

max cTx 

Xj < 1, 7 = 1, . . . , / ! , 
—x(E) < —ai, 

x(E) <am, 

£ ( * / + i - \F\)xj - J ] (\F\-af)Xj < (a / + i - \F\)af for all F e T, 



We denote this LP by L (n; a; c). Let us state the LP dual to L (n; a; c), for which we assume, 
without loss of generality, that the elements of E are ordered such that ci > c^ > . . . > c„: 

tt 

Mj - v + w + ]T(a/+i - 1*1) yF - Z ) d F l ~ a / ) yF>cj, j = l,-..9 n, (8.6) 

v, w > 0, 
uj > 0 , j = 1, . . . , n , 
yF > 0, F eF. 

We denote this dual LP by D(n; a; c). We call the inequalities (8.6) above dual CF inequal
ities. 

If the objective function c satisfies c0m > 0 or cai < 0, the optimality of the greedy 
solution is easy to see. 

Remark 8.8. If c0m > 0, set w := cam, Uj := cj — cam for j = 1,..., öm, and set all other 
variables to zero. 

If Cai < 0, set v := — cai ,Uj := cj — cai for j = 1 , . . . , a\, and set all other variables 
to zero. 

In both cases, the solution is feasible for D{n\a\c) and the objective function value 
is equal to the value of the greedy solution C8. 

Let us now assume that the primal greedy algorithm has to enter step 4 and thus that 
the index q is defined. We will handle this case by discussing three different possibilities: 
h = 0, h < 0, and h > 0. 

Before entering the case distinction, we define a set TQ that consists of the following 
subsets of T\ 

Fk := {1,2, . . . , k], k = aq + 1, aq 4- 2 , . . . , ag+i — 1. 

We claim that an optimal solution of L(n; a\ c) can be found by solving the relaxed LP 
i LjrQ(n\ a\ c) that is obtained by dropping the cardinality constraints and all CF-inequalities 
' but those coming from the sets F e TQ. This means that L^0(n; a;c) has the following form: 

max cTx 

xj < 1, ; = l , . . . , n , 

k n 

2^(ßg+i —k)X]~ 2 j (* ~ a?) xj - (a<?+i —k)aq, k = aq 4 - 1 , . . . , ag+i — 1, 
7=1 j=*-M 

x > 0. 

We point out that the incidence vector xC* of the greedy solution Cg satisfies all CF-
inequalities associated with sets F e ^ o with equality. 



The dual to this relaxed LP, denoted by D?Q(n\ a\ c), is 

min ] P uj + Yl ^+1 " *>a« ̂ * 

Uj > 0 , j = 1 n, 
M > 0, t = flg + 1 , . . . , a?+i - 1. 

We claim that, for objective functions not covered by Remark 8.8 and for which h = 0, 
DFQ(II\ a; c) can be solved as follows. 
Algorithm 8.9 (Dual Greedy Algorithm for h = 0). 

1. For/: = a? + 1 , . . . , ag+1 — 1 set 

* • - Ck ~ c*+1 

2. For; = 1 , . . . , a?+i set 

)3 , + l~ l <3,+l--l 
U*J ■= CJ - 12 (a*+i - *) yh + Z) (* - ^ i v 

3. Set all other variables to zero. 
We call the solution w*, y* defined in Algorithm 8.9 the dual greedy solution. Let us 

state a few observations that follow directly from the definitions. 

Remark 8.10. 

(a) Since c* > c^\ and aqJr\ > a?, all values y'p are nonnegative. 
(b) Deleting all variables set in step 3 to zero, the dual CF-inequalities for j = a?+i + 1, 

. . . , n reduce to 

fr-a,+l 

Since Cj > c/+1, checking whether these inequalities are satisfied by the dual greedy 
solution, it suffices to prove that 

^ + 1 - 1 

A=a?+1 

This is the case if we can prove that w* = 0. 
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(c) Deleting all variables set in step 3 to zero, the dual CF-inequalities for j = 1, 2 , . . . , 

aq + 1 reduce to 
a,+i-l 

UJ+ 2Z ißq+x-k)yh >cj. 

The values u*j are set in step 2 of Algorithm 8.9 in such a way that these inequalities 
are satisfied with equality by the dual greedy solution. Since cj > cy+i, to prove that 
«J > 0 it remains to show that w*+/2 > 0. 

(d) Proving feasibility of the dual greedy solution for Dj%(n\ a; c) reduces to showing 
that 

w* > 0, ;' = flg + l , . . . , f l 9 + i . 

We will show that, in fact, u* = 0, j = aq + 1 , . . . , aq+\. 

Remark 8.11. If h = L ^ + i Cj = 0> then 

«/ = = 0 , j = aq + 1 , . . . , aq+\. 
aq+\ - aq 
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The definitions of the values «y in Algorithm 8.9 and Remark 8.11 imply immediately 
the following remark. * 
Remark 8,12. If h = 0, then ] 

u) = cj - c ^ + i , ; = 1 , . . . , ^ . \ 

Let us now determine the objective function value J2%i u) + Hl^a'+i s(^k)yFk °f « 
the dual greedy solution. ; 

By definition and Remark 8.11, u*j = 0 for j > aqt Taking the values of the other ^ 
variables from Remark 8.12 and recalling that h = 5Z?=a +i cj w e obtain j 

EM5 = E u J + E «J^E^-^^+I- * 
x 

The second term in the dual objective function yields <> 

= — - — T) (fl9+i - *) to - cjk+1) !j 

flxl_fl . E *!+!<*- E *c*- E fl*+ic* i 
9 + x * \*=a,+l *=*,+! k=aq+2 

\ * flg+i -aq) q 

Adding the two objective function terms we obtain 

E w ? + E (fl?+i - *)«*?* = E c ; = c(C '̂ 
which is the value of the primal greedy solution. These calculations prove the following. 



Remark 8.13. If h = 0, the dual greedy solution w*, y* is optimal for the LP D(n; a; c) 
1 and has the same value as the primal greedy solution. 

We now indicate how the solution of the case h = 0 can be utilized tp handle the cases 
h < 0 and h > 0. 

Remark 8.14, If A < 0, we increase some of the objective function coefficients cj 9j = 
aq +1,..., aq+u such that, after the increase, the ordering of the variables is still respected 
and such that h = 0. Note that this change of the Cj values does not change the value of 

! the primal greedy solution (in fact, now {1 , . . . , aq) and {1 , . . . , fl^+i} are both optimal) 
! and that any feasible solution of D(n\ a; c) after increase is feasible for the LP without 
< modification. Thus applying Algorithm 8.9 to the modified dual LP D(n; a; c) provides a 
i solution w*, y* that is feasible and optimal for the unmodified D(n; a; c) and has the same 
i value as the primal greedy solution. 

Remark 8.15. If h > 0, we modify the objective function vector c into a vector d by 
lecreasing some of the coefficients cj 9j — aq + 1 , . . . , aq+i, to values c'j such that dx > 
d2 > . . . > dn and h! = X ^ +1 c'j = 0. If Ig and Vg are the primal greedy solutions with 
respect to c and c', respectively, then clearly c(Ig) = d(Vg) + h. If we now use Algorithm 

18.9 to solve Djr0(n; a\ d), we obtain an optimal solution w', / for Z>(«; a\ d) with value 
d(If

g). Setting u*j := u'j + Cj - dj , j = 1 , . . . , n, and y* := / yields a solution «*, y* with 
value d(I'g) + h = c(Ig) that is feasible for D(n\ a\ c). This implies the optimality of x;* 
for L(n\ a\ c) and of «*, y* for D(n; a\ c), 

This finishes the discussion of all cases occurring in the treatment of the dual LP 
! D(n\ a\ c). Hence, the proof of Theorem 8.6 providing a complete linear description of all 
; polytopes associated with cardinality homogeneous systems is also finished. 

We now put together all the pieces of the dual greedy algorithm discussed above to 
i specify the complete greedy algorithm that solves the dual LP. 

Algorithm 8.16 (Complete Dual Greedy Algorithm). Let E — {1,... ,«}, a cardinality 
sequence a = (ci\,..., flm), and an objective function c = (c\,..., c„) be given. 

1. Set all variables v, u>, w,, yp of D(n\ a\ c) to zero. 
2. Sort the elements of E such that c\ > c% > . . . > cn holds and set d := c. 
3. Ifcam >0,set 

u> := cam, 
uj :=cj-cam for; = l , . . . , f lm . 

Goto 11. 
4. Ifcfll < 0, set 

v := -c f l | , 
uj := Cj - cai for j = 1, . . . , a\. 



5. Otherwise, let p be the largest integer in { 1 , . . . , n] such that cp > 0 > cp+i, and let 
q be the index in { 1 , . . . , m} such that aq < p < aq+\. Set 

6. If h < 0, modify the objective function values as follows. 
For k = aq + 1, flg + 2 , . . . , a9+i do 

7. If fc > 0, modify the objective function values as follows. 
For k = /?, p — 1 , . . . , A9 + 1 do 

*'}, 

11. Output the nonzero variables. 

As outlined before, the solution w*, y* is feasible and optimal for the dual LP D(n\ a\ c) 
and has the same value as the primal greedy solution. 

Let us remark that the dual solution constructed above is one of typically very many 
optimal solutions. For instance, any modification of the c/s in step 6 that makes h equal 
to zero and maintains the ordering Cj > c/+i and that is different from the one chosen in 
step 6 yields a different optimal dual solution. Even if we assume that all objective function 
coefficients are integral, the above solution is, in general, fractional. There are cases where 
all or some optimal dual solutions are integral, but we know examples where, for c e Z", 
no optimal solution of D(n; a; c) is integral; see Example 8.18 below. 
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Remark 8.17. If the objective function values are sorted, then the Primal Greedy Algorithm 
8.7 (steps 2-6) and the Complete Dual Greedy Algorithm 8.16 (steps 3-11) perform a 
number of arithmetic steps that is linear in n on numbers whose size is linear in the input 
length. Thus, the running time of the algorithm is dominated by sorting, which requires 
0{n\o%n) steps. 

Recall that a system of linear equations and inequalities is called totally dual integral 
(TDI) if, for any integral objective function, the LP dual to this LP has an integral optimum 
solution. We now indicate that none of the three linear systems that can be naturally 
associated with cardinality homogeneous set systems is TDI. 

Example 8.18. Consider the ground set E = {1, 2, 3,4}, the cardinality vector a = 
(«1, a2) — (1, 4), and the objective function vector cT = (2, 2, 1, —3). The linear system 
0(4; a) gives rise to the LP 

(Q) max 2x\ -I- 2*2 + #3 - 3*4 
0<xj < 1, ; = 1 4, 
l < x ( E ) < 4 , 

CFF(x) < s(F) for all K £ with |F | € {2, 3}. 

The linear system consists of 20 inequalities that describe P(4; 1, 4) completely. This 
system, however, is redundant; see Proposition 8.21. The following LP has only five 
inequalities, has the same solution set, and is nonredundant: 

(NRQ) max 2x\ + 2x2 + x3 - 3x4 

x(E) > 1, 
CFF(x) < 1 = s(F) for all F c E, \F\ = 3. 

In the proof of the Dual Greedy Algorithm we showed that (for this ordered objective 
function) the LP Ljr0(4; a\ c): 

(GQ) max 2x\ + 2*2 + X3 — 3*4 
2xi + 2x2 - *3 - x4 < 2 (F2 = {1, 2}), 

xi + x2 + x3 - 2x4 < 1 (*3 = {1,2, 3}), 
0 < x , < 1 ; = 1,2,3,4, 

yields an optimum solution of (Q). Note that the LPs (Q), (NRQ), and (GQ) have three 
optimum solutions, namely, the incidence vectors of the sets {1}, {2}, and {1,2, 3,4}. (Q) 
and (NRQ) have, as mentioned, the same solution set. However, (GQ) is a strict relaxation. 
The solution set of (GQ) has some fractional vertices, such as x' = (0, 1, 1,1/2). 

The LP dual to the "greedy LP' (GQ) has a unique optimum solution, which is the 
one provided by the Dual Greedy Algorithm: y*x^ = 1/3, r̂* 2 3} = 4/3, and all other 
variables equal to zero. The dual program of (NRQ) also has a unique optimum solution: 
)fi,2f3} = 5/3, y*X2 4} = 1/3» and all other variables equal to zero. The dual to (Q) has a 
face of dimension 1 as the set of optimum solutions. This face is the convex hull of the 
two vertices just mentioned. It contains no integral point. Thus none of the three linear 
systems is TDI. (These computations have been carried out by PORTA [8] and were verified 
by hand.) 



8.6 Facets 
We now address the nonredundancy issue and determine the inequalities of Q{n\ a) that 
define facets of P (n; a). As before, we assume throughout this section that E = {1 , . . . ,«} , 
n > 1, and that a = (« i , . . . , am) is a cardinality vector. 

We indicate only a few of the relatively simple proofs. They are all based on well-
known facts about 0/1-matrices. The fact used most is that, for 0 < k < n, the 0/1-matrix 
M{n\ k) with n columns and the (£) rows consisting of all 0/1-vectors with k ones and 
n — k zeros has rank n. In other words, the incidence vectors of the sets in the set system 
C(n\ k) — {C C E | \C\ = k] (which form the rows of M{n\ k)) are linearly, and thus 
affinely, independent. Clearly, if k = 0 or k = n, there is only one such vector, the zero 
vector or the all-ones vector. Proving that a certain inequality cTx < a defines a facet 
of P{n\ a) amounts to observing that certain incidence vectors of sets in C{n\ a) (with 
additional properties) satisfy cTx < a with equality and form a set of vectors of affine rank 
equal to dim P(n; a). 

Using the facts mentioned above we can easily determine the dimension of P{n\ a). 

Proposition 8.19. Let E = {1 , . . . , n] and let a = (a\,..., am) be a cardinality vector 

(a) lfm = 1 anda\ = Oorai = n, thendimP{n\ a) = 0. 
(b) lfm — 1 and 0 < a\ < n, then dim P{n\ a) = n — 1. 
(c) If m = 2 and a\ = 0, «2 = «, then dim P(n; a) = 1. 
(d) In all other cases, dim P{n\ a) = n. 

The case m = 1 is very special and easy to handle. 

Proposition 8.20. Let m = 1; i.e., we are only interested in the system of subsets ofE with 
cardinality a\. 

(a) Ifai = 0, then P{n\ a{) = {x € E" | xi = x2 = . . . = xn = 0}. 
(b) Ifai = n> then P(n; a{) = {x € R" | #i = #2 = . . . = xn = 1}. 
(c) Ifai = landn>2, then P{n\ a{) = {x € M" | x(E) = 1, xj > 0, j = 1 , . . . , n}. 
(d) Ifai =n-l andn > 2, then P(n; a{) = [x € R" \ x(E) = n - 1, 

xj < 1, j = 1, . . . ,»}. 
(e) If I < ax < n — 1 andn > 4, then P(n\ a{) = [x € Rn \ x(E) = a\9 

0<xj < 1, ; = 1, . . . ,»}. 

r/ie /ineflr systems above define P(n; a\) completely and nonredundantly. 

Proposition 8.20 provides a complete investigation of the nonredundancy issue for 
the case m = 1, The term hypersimplex is often used to name a polytope of type P{n\ a{). 
In the terminology of this chapter, a hypersimplex is the circuit polytope of some uniform 
matroid Uk,n\ i.e., Proposition 8.20 covers the circuit polytopes of uniform matroids. 

We also refrain from providing all facet proofs in detail because many special cases 
have to be considered. Let us just, as one example, discuss the nonnegativity constraints 
thoroughly. 

Given E = { 1 , . . . , n] and a cardinality vector (a = au ■. •»a>m)> when does XJ > 0, 
j = 1 , . . . , n, define a facet of P(n; a)! First of all, because of symmetry, we have to 
consider just one of the indices, say j — 1. 
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If m = 1 and a\ = 0 or a\ = n (see Propositions 8.19(a) and 8.20(a), (b)), then 
P(n;a) is an affine space and has no facets at all. 

Let m = 1 and 0 < a\ < ft. The set of vertices of P(n; a\) satisfying x\ = 0 is 
nothing but the set of incidence vectors of C(n — 1; a{) to which a first component with 
value zero has been added. The matrix M(n — 1; a{) has rank n — 1 unless a\ — n - 1. 
Adding a first column of zeros to M(n — 1; a\) yields a matrix of affine rank n with one 
exception. If a\ — n — 1, the affine rank is 1 only. Thus we conclude that xj > 0 defines 
a facet of P(n\ ci\) if m — 1 and 1 < a\ < n — 2 but not if a\ = n — 1; see Proposition 
8.20(c), (d), (e). 

Suppose now that m = 2. If a\ = 0 and ai = n (see Proposition 8.19(c)), then 
P[n\ a) is just the piece of line from the zero vector to the all-ones vector. In this case, all 
nonnegativity constraints Xj > 0, j = 1 , . . . , ft, define one and the same facet of P(n\ a), 
which consists of the zero vector only. If a\ = 0 and a% = n — 1, then xj > 0 does not define 
a facet of P(n\ a) except when n = 2 (and in this case xj > 0 appears as a degenerate case 
of a CF-inequality; see Proposition 8.21(c)). If a\ = 0 and 1 < fl2 £ " ~ 2, then Xj > 0 
defines a facet of P(n\ a\, ai)-

Because of symmetry all observations about xj > 0 can be easily translated into 
corresponding observations about xj < 1. 

If a\ = 0, then CF-inequalities exist for all F with a\ < \F\ < a%> A moment's 
thought reveals that these inequalities are redundant unless \F\ = 1. In this case the CF-
inequality («2 — 1)** — Ylj^k XJ — 0 defines a facet for all k € { 1 , . . . , ft}. This observation 
immediately translates into an equivalent observation for the case a% — ft. 

We summarize the situation for m = 2, except for the case 1 < ci\ < ci2 < n — 1, in 
the following. 

Proposition 8.21. Suppose m — 2. 

(a) If a\ = 0 and az = 1, then 
P(n; 0,1) = {x € R" | *(£) < 1, *,• > 0, ; = 1 , . . . , ft}. 

(b) If a\ = 0 and 1 < az < n — 1, fAe« 
/>(«; 0, a2) = {* € IT | x(£) < fl2. 

(«2 - l)x* - E ; ^ *; < 0, fc = 1 , . . . , ft, *, > 0, ; == 1 , . . . , ft}. 
(c) /^fli = 0 «/id «2 = w — 1, then 

P(«; 0, n - 1) = [x € Rn | *(£) < ft - 1, 
(ft - 2)xÄ - J2j& *; < 0, * = 1,. . . ,«}. 

(d) /jfai = 0 «/id «2 = n> then 
P(ft;0,ft) = {* €Rw |x* »x,+i = 0 , i = 1 , . . . , » » 1, 0 < x i < l } . 

(e) /^fli = 1 and ai — n, then 
P(n\ 1,«) = {* €W\x(E) > l,HJ¥:kXj-(n--2)xk < 1, k = 1,. . . ,«}. 

( f ) ( f l < f l l < f t — 1 flftd «2 = W, fAtfft 
P(n;aun) = {* € M" |*(£) > fli,*; < 1, ./ = 1,. . . ,«, ' 

(g) //fl! = ft — 1 flftd fl2 = "> 'Äeft 

P(ft;ft-l ,ft) = {A: €M" | X ( £ ) > ft - 1, JC; < 1, j = 1,. . . ,«}. 

All linear systems above are complete and nonredundant. 



To finish the discussion of the nonnegativity constraints we observe that, whenever 
there is an index i such that 0 < fl, < a,+i < ny then xj > 0 (and for symmetry xj < 1) 
defines a facet of P(n\ a). 

The cardinality constraints are, of course, equations if m — 1. They define facets in 
the following cases. 

Proposition 8.22. Let m>2. 

(a) lfa\ > 1, thenx(E) > a\ defines a facet ofP{n\ a). 
(b) If am < n — 1, then x(E) < am defines a facet ofP(n; a). 

Let us finish the discussion with the CF constraints. We already considered the special 
cases when a\ — 0 or am — n. The general case is as follows. 

Proposition 8.23. Let m > 2 and 1 < a\ < at+i < n. Then for all F c E with 
aj < \F\ < fll+i the corresponding CF-inequality 

CFF(x) = £ ( a , . + 1 - \F\)XJ - £ (\F\ - a , ) * , < fo+1 - \F\)ai ^s(F) 
jeF jeE\F 

defines a facet ofP{n\ a). 

The proof of Proposition 8.23 is based on the fact that the incidence vectors of sets in 
C(n; a) satisfying the CF-inequality are the subsets of F of cardinality a,- and the subsets of 
E of cardinality a/+l containing F. A simple calculation shows that these incidence vectors 
form a set of affine (in fact linear) rank n. 

With this observation we can finish the discussion of the case m — 2. 

Proposition 8.24. Letm = 2 and I <a\<a2<n — \. Then the inequality system defining 
Q(n\ a) provides a complete and nonredundant description ofP(n; a). 

The remarks above also immediately yield a full characterization of the case m > 3. 

Theorem 8.25. Let E = { l , . . . , / t } , n > 2, and let a = (fli,. ..,.am)> m > 3, be 
a cardinality vector Then the following system of inequalities provides a complete and 
nonredundant description ofP(n\ a). 

(a) xj > Qfor all j € E unless m = 3 and a = (0, n — 1,«). 
(b) xj < 1 for all j € E unless m = 3 and a = (0,1,«). 
(c) x(E) > ay unless a\ — 0. 
(d) x(E) < am unless am = n. 
(e) EjeF(*f+i-\F\)xj-Ej*E\F<\F\-af)xJ ± (am - \F\)af for all F z ? 

unless ay — Qand2 < \F\ < ai oram = nandam-i < \F\ < n - 2. 

Summarizing the results above, we can state that the linear system defining Q(n; a) is 
not only a complete description of P(n\ a) but also is nonredundant, with a few exceptions 
for m < 3 and whenever a\ — 0 and am = n. 
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Theorem 8.25 (and the discussion of the cases m — 2 and m = 3) yields, for every 

uniform matroid U*iW, a complete and nonredundant description of its cycle polytope and its 
circuit polytope. As a byproduct we obtain the well-known characterization of the convex 
hull of all 0/1-vectors with an even or odd number of ones. 

A consequence of Theorem 8.25 is that, among the polytopes associated with cardi
nality homogeneous set systems, the polytope P(n\ 1, n — 1), which has 2n vertices where 
any pair of vertices is adjacent, has the largest number of facets, namely, 2". 

Example 8.26, To finish the facet discussion and give another example for the execution 
of the Dual Greedy Algorithm we consider the uniform matroid U39. The circuits of 11^9 
are all subsets of E — { 1 , . . . , 9} of cardinality 4; the cycles of t/3,9 consist of its circuits 
together with the empty set and all subsets of E of cardinality 8. In the notation of this 
chapter the set of cycles of t/3,9 is the cardinality homogeneous set system C(9; 0,4, 8). 
The cycle polytope P(U3t9) = P(9; 0,4, 8) has 1 + ß) + Q = 136 vertices. The system 
describing the polytope Q(n\ 0,4, 8) has the form 

0 < * , < 1, ; = 1,.. . ,9, 

0 < x(E) < 8, 

J > / + i - \F\)xj - J2 (\F\'af)xJ ± (*/+i - Î D af 
JeF jeE\F 

for all F c E with \F\ €{1,2, 3, 5, 6,7}. 

This system has 395 inequalities. By Theorem 8.25(c) the lower cardinality bound and by 
(e) the CF-inequalities for \F\ e {2, 3} do not define facets. It follows that P(9; 0,4, 8) has 
exactly 274 facets. 

Let us now maximize the objective function c r = (15,12, 11,10, 8, 6, —2, —5, -8) 
over P(9; 0,4, 8). The Primal Greedy Algorithm yields C8 = {1, 2 , . . . , 8} with c(C8) = 
55 and determines p = 6, aq = 0,2 = 4, aq+\ = «3 = 8, and h = c$ + . , . + 
eg = 7. The Complete Dual Greedy Algorithm 8.16 first modifies in step 7 the ob
jective function to cf = (15, 12, 11,10, 8 , - 1 , - 2 , - 5 , -8 ) so that hf = cf

5 + ... + 
Cg = 0. We have shown in Section 8.5 that we can replace the LP with 274 facet-
defining inequalities with the system Lj?0(9; a; cf) consisting of 18 upper and lower bounds 
and only 3 additional CF-inequalities corresponding to the sets Fk — {l,...,fc},& € 
{5,6,7}: 

max 15#i + 12^2 + 11*3 + 10*4 + 8*5 - #6 - 2^7 - 5*8 — 8*9 

0 < * , < 1 ; = 1,.. . ,9, 

3*1 + 3*2 + 3*3 + 3*4 + 3*5 — #6 — #7 — #8 — Xg < 12 (F5), 

2xi + 2*2 + 2x3 + 2x4 + 2x5 + 2x6 - 2x7 - 2x8 - 2x9 < 8 (F6), 

*1 + X2 + #3 + X4 + X5 + X$ + X-i - 3*8 - 3*9 < 4 (F7). 



The dual LP A F 0 ( 9 ; a\ c') has the following form (where yk — yFk)\ 

min ux -f-... + «9 + 12)>5 + 8j 6 + fyi 

Wi + 3 j 5 +2} ' 6 + }'7> 15, 

«2 + 3^5 + 2y6 + y? > 12, 

M3 + 3 y 5 + 2 y 6 + y 7 > 11, 
W4 + 3J5+2J6+}5? > 10, 

W5 + 3}>5+2:y6 + ;y7>8, 

"6 - J5 + 2ye + yi > - 1 , 

«7 - 3*5 - 2^6 + J7 > - 2 , 
«8 - J5 - 2)>6 - 3 j 7 > - 5 , 
WQ-JS ~2y6-3y7 > - 8 , 
tti.-.-.w^ys.ye.y? > 0 . 

The Dual Greedy Algorithm 8.9, which is step 8 of Algorithm 8.16, yields the following 
c'-optimal solution: 

y*:=l-(c'7-c'i)=3-, 

u\ := 7, «2 = 4, M3 = 3, M4 = 2, M5 = . . . = M9 = 0, 

of 2V0(9; a\ c'). To turn this solution «', / into a solution «*, y* of Z)^-0(9; A; C) we have 
to modify the values w'. belonging to indices j where the objective function c was changed. 
In our case we only have to modify u'6 = 0 to wjjj = u'6 + cj — c'j = 7 (this is step 10 
of Algorithm 8.16), i.e., >>* := / , «J :— w'y with the exception that u*6 = 7 is an optimal 
solution of the dual LP D^-0(9; a\ c) and, as we have shown, also of the LP Df0(9; a\ c). 
The value of this solution is 55 = c(Ig). 

The optimum solution of Dj?0(9\ a; C) is by no means unique. The face of the optimal 
solution of this LP has, in fact, 10 vertices. 

8.7 Separation 
Since we can optimize over P(n\ a) in polynomial time we can also solve the separation 
problem for P(n\ a) in polynomial time by the general results described in [4], There is, 
however, a much simpler separation algorithm. 

Let a vector y € Q" be given. It is, of course, trivial to check the bounds 0 < xj < 1, 
7 = 1,. . . ,«, and the cardinality constraints a\ < x(E) < am by substituting y into these 
inequalities. We may, thus, assume that y satisfies them. 



Suppose now that y violates, for some F e T of cardinality k9 the corresponding 
CF-inequality, i.e., 

^ ( « / + i ™ *) yj ™ X ] ( / : ~ a / ) yj > ( f l / + i " *W-
jeF jeE\F 

Let F* be a set in T of cardinality k such that £y e F* yj is maximum. Then, clearly, 
y violates the corresponding CF-inequality as well. In fact, the CF-inequality associated 
with F* is a "most violated" inequality among all CF-inequalities coming from sets in 
T of cardinality k. Finding such a set F* is easy. We sort the components of y such that 
yi >yi > . • • > yn. We set F* : = { ! , . . . , / : } . Then y satisfies the CF-inequality associated 
with F* if and only if y satisfies all CF-inequalities associated with sets in T of cardinality 
k. This observation gives the following very simple polynomial-time separation algorithm 
for P(n; a), which, in its major step, can also be viewed as a greedy algorithm. 

Algorithm 8,27 (Greedy Separation Algorithm for P(n;a)), Let E = {1 , . . . ,«} , a 
cardinality vector a = (ai, • • •, cin), and a vector y e Qn be given. 

1. If y has a component smaller than zero or larger than one, report that a bound is 
violated by y and stop. 

2. If y(E) < a\ or y(E) > am, report that a cardinality constraint is violated by y and 
stop. 

3. Sort the components of y such that yi > yz > •.. > yn-
4. For k = a\ + 1 to am — 1 and k ^ a,-, i = 2 , . . . , m — 1 do 

k 

If X ] ( a / + 1 " * ) W ~ H (k~af)yj > (af+i-k)af, where / = / ({l *}), 

then output that y violates the CF-inequality corresponding to { 1 , . . . , k}. 

If the greedy separation algorithm produces no violated inequality, then y is in P (n; a). 
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