Mathematical Programming 51 (1991) 141-202 141
North-Holland

Solution of large-scale symmetric travelling
salesman problems

Martin Grotschel*
Institut fiir Mathematik, Universitit Augsburg, W-8900 Augshurg, Germany

Olaf Holland**

Forschungsinstitut fiir Diskrete Mathematik, Institut fiir Operations Research, Universitét Bonn,
W-5300 Bonn, Germany

Received 18 July 1988
Revised manuscript received 31 July 1989

In this paper we report on a cutting plane pracedure with which we solved symmetric travelling salesman
problems of up to 1000 cities to optimality. Our implementation is based on a fast LP-solver (IBM's
MPSX) and mukes effective use of polyhedral results on the symmetric travelling salesman polytope.
We describe the important ingredients of our code and give an extensive documentation of its computa-
tional performance.

AMS Subject Classifications: 05C04, 05C45, 90C10.

Key words: Travelling salesman problem, cutting plane algorithms, polyhedral combinatorics,

Introduction

Developing theory for the travelling salesman problem (TSP) and solving TSP’s has
always been one of the central subjects of mathematical programming. The TSP
has not only fascinated mathematical programmers, operations researchers, and
economists. Now also physicists, engineers, biologists, and chemists get excited
about this problem. Reasons for this are certainly the facts that the TSP is easy to
state, it has very nice applications, but it is hard to solve.

This paper contributes to the solvability aspects of the TSP. We describe an
algorithm and its implementation with which large-scale travelling salesman prob-
lems can be solved to optimality. We see our work in a long line of attempts to use
linear programming techniques and exploit information about the facet structure
of the travelling salesman polytope. The history of this approach — outlined in

* Supported by DFG-Schwerpunkt “Anwendungsbezogene Optimierung und Steuerung”, Universitiit

Augsburg, Germany.
** Supported by SFB 303 (DFG), Forschungsinstitut fiir Diskrete Mathematik, Institut fiir Operations

Research, Universitdt Bonn, Germany.,

142 M. Grotschel, O. Holland | Large-scale TSP's

Grotschel and Padberg (1985), Padberg and Grotschel (1985) — started with the
seminal paper Dantzig, Fulkerson and Johnson (1954) and reached a temporary
peak in Crowder and Padberg (1980), who solved a 318 city problem, the largest
problem solved to optimality until recently.

About 1980 we decided to make more systematic use of the classes of facets
known for the travelling salesman polytope and to design a more powerful cutting
plane algorithm to solve TSP's to optimality. There were many stimuli for this
project. Around this time the ellipsoid method came into focus (with a revival of
cutting plane ideas), the importance of polynomial time separation algorithms was
discovered (see, e.g., Grotschel, Lovdsz and Schrijver, 1981, 1988), and Padberg
and Rao (1982) invented a fast separation algorithm for the perfect 2-matching
problem. Moreover, the computing power available increased considerably so that
we hoped to be able to at least double (in terms of the number of nodes) the size
of problems that can be solved to optimality. Our goal was to get close to the 1000
city barrier.

For this reason, one of us made up a geographical problem with 666 cities, he
thought to be very hard, as a challenge for our work. It turned out to be just that
in many respects. For instance, not only the integrality stipulations caused difficulties.
Some linear programs that arose were hard to solve, even for highly praised
commercial LP-codes like IBM’s MPSX. But we finally managed to overcome all
these obstacles.

We report here about the result of our work over these last years. Of course, this
was not a continuous effort, and there are much longer periods of neglect of the
problem than actual design and coding phases. We now feel that a stage is reached
where our code has attained its limits. We have achieved our initial goal to solve
travelling salesman problems up to 1000 cities. This, though, is still not a routine
matter and requires 2 substantial amount of computing time on large computers;
see Section 5. Some of the initial steps of our code design, restricted to certain
relaxations of the TSP, can be found in Grdtschel and Holland (1985, 1987). A
much more detailed documentation of the code and its design is Holland (1987).

Let us mention here that Manfred W. Padberg and Giovanni Rinaldi have, in the
recent years, developed a cutting plane code for the TSP that is based on the same
approach and uses very similar ideas, many of which have been outlined in Padberg
and Grotschel (1985). The design and the “tricks™ of their code have not been
documented completely yet, though some of the important ingredients appeared in
Padberg and Rinaldi (1987, 1990a,b). In fact, the announcement in Padberg and
Rinaldi (1987a) that a 2392 city problem was solved to optimality is really breath-
taking.

Before describing our work we would like to add a few *‘philosophical” remarks
concerning the questions: “What are all these efforts good for?” “Isn’t it better to
stick to heuristics?"

Everybody knows that travelling salesman problems may come up in tremendous
sizes in practice. For instance, Bland and Shallcross (1987) report about problems

M. Grétschel, O. Holland / Large-scale TSP's 143

from crystallography with up to 15 000 cities; we know drilling problems (for printed
circuit boards) of up to 60 000 cities. These problems seem far out of reach for our
present (exact) algorithmic machinery. For the time being, these sizes can only be
handled (approximately) with fast heuristics. We also do not advocate to solve, e.g.,
certain practical 1000 city drilling problems by running our code for a couple of
hours in order to save one minute of drilling time. But there are some large-scale
instances where knowing exact optima is important.

Optimization tools should not be applied blindly. One has to estimate whether
or not it pays to use them, whether exact or approximate methods are the appropriate
tools. We view our work mainly as a contribution to the state of the art of exact
problem solving using LP-techniques and cutting plane procedures combined with
heuristics and branch & bound.

Beautiful structural and algorithmic theory has been developed in the recent years.
If one considers mathematical programming as a branch of applied mathematics,
this should not remain just theory, it has to be put to work. The implementation
process is more than straightforward and — at times — frustrating work. Often new
interesting and challenging theoretical problems arise that have to be solved. But
most of all it is the justification and validation of our scientific approach. The
challenge of our time is large scale and we have to enlarge our algorithmic toolbox
in various ways. We should not only confine curselves to simple heuristics. Even
for really large scale problems exact optimization is sometimes possible (and
necessary). In addition, if only good approximate solutions are needed, the approach
described here can be used heuristically in many ways to obtain excellent upper
and lower bounds.

There is a further reason for our work. When starting this project, we had in mind
to show that polyhedral combinatorics is not only nice theory but also a powerful
algorithmic approach. We believe that the findings presented in this paper and the
computational results of many similar projects completed in the recent years corrob-
orate our point of view.

1. Notation

We will briefly mention a few symbols and definitions needed in the sequel.

We denote graphs by G=(V, E), where V is the node set and E the edge set. All
our graphs are simple, i.., contain no loops and no multiple edges. An edge e with
endnodes i and j is denoted by e = ij. The (up to isomorphism) unique graph on n
nodes where every two nodes are adjacent is called complete and is denoted by X,,.
The node set of a complete subgraph of a graph is called a cligue. If G is a connected
graph and W is a node set such that its removal disconnects G then W is called
an articulation set. A Hamiltonian cycle (a cycle that contains every node of the
graph exactly once) is also called a tour. .

144 M. Grétschel, O. Holland | Large-scale TSP's
For a graph G=(V, E) and W< V, we write
5(W):={ije E|ic W,je V\W} (=8(V\W)),
E(W)={ije E|i,je W}

The edge set 8(W) is called the cut induced by W. If W = {v} we write §(v) instead
of 8({v}).

If E is a finite set, then R® denotes the set of functions from E to R. This set is
a real vector space and can be viewed as the set of vectors x =(x,)..r Where each
component is indexed by an element of E. If xeRE and Fc E we write x(F) to
denote the sum ¥, ; X.. The incidence vector x© € R* of Fc E is the vector defined
by x'=1ifeeF, xf=0ifegF.

A set PcRE is a polytope if it is the convex hull of finitely many points. An
inequality a"™x<a is valid with respect to P if P<{xeR?|a"x=<a}. A valid
inequality a"x < o defines a facef of P if H:={x € P|a'x= e} has dimension one
less than P. An important fact from polyhedral theory is the following. If PcRF
is a polytope then there are an equation system Ax=b and an inequality system
Dx<d such that P={xeRf|Ax=b, Dx<d}, A has full row rank and each
inequality of Dx=<d defines a facet of P.

Finally, the (symmetric) travelling salesman problem is the following. Given a
complete graph K, =(V, E) and distances ¢; for each edge ije E. Find a tour T
with ¢(T) as small as possible. Without loss of generality, we will assume throughout
the paper that all distances c; are integral.

2. A short summary of some polyhedral results

To avoid some trivial technicalities let us assume from now on that the number n
of cities (or nodes of the complete graph K,) is at least 6.

Given a complete graph K, =(V, E), the (symmetric) travelling salesman polytope
Q% is the convex hull of all incidence vectors of tours of K. Thus

Qr=conv{y’ eR®|T<E is a tour}.

The interest in this polytope derives from the fact that the symmetric travelling
salesman problem can be solved by solving min{c"x|x€ Q%} which —in some
sense — is a linear program. The polytope Q% has been the subject of intensive
investigations. A quite complete summary of the results on QT published to date
can be found in Grotschel and Padberg (1985). (Let us mention, though, that very
recently D. Naddef and G. Rinaldi and S. Boyd and B. Cunningham (personal
communication) have discovered large new classes of facet-defining inequalities for
Q%) We will briefly describe those equations and inequalities valid for Q% that
will be used in the sequel.

The affine hull of Q% is defined by the linearly independent equations

x(8(v))=2 forallve V. (2.1)

M. Gratschel, O. Holland | Large-scale TSP's 145
Thus dim(Q%) =|E|—|V|. The trivial inequalities
0O<x,=<1 foralleeE (2.2)

also define facets of Q% as well as the subtour elimination constraints (see Grotschel
and Padberg, 1979) introduced by Dantzig, Fulkerson and Johnson (1954)

x(E(W))<|W|-1 forall WcV, 3<|W|<n-3. (2.3)

Using (2.1) one can see that an inequality x(E(W)) <|W|—1 is equivalent (defines
the same facet) to x{(E(V\W))=<|V\W|-1. This in turn is equivalent to the cut
constraint x(8(W)) =x(8(V\ W))=2. So the system of cut constraints

x(8(W))=2 forall WeV, 3<|W|<n-3, (2.4)

defines the same facets of Q7 as the system (2.3).
Let H, T,,..., T, be a system of subsets of V. The inequality

X(E(H)+ T x(E(T)<|H|+ ¥ (T|=1)=[3s] 23)

is called a 2-matching constraint (introduced in Edmonds (1965) to give a complete
description of the 2-matching polytope) if H, T, ..., T; satisfy

[TnH|=1, i=1,...,5, (2.6a)
|[T\H|=1, i=1,...,s (2.6b)

(2.5) is called comb constraint if H, T\, ..., T, satisfy
|Tin H|=1, (2.6a")
|T\H|=1. (2.6b")
Grétschel and Padberg (1979b) proved that a 2-matching constraint or a comb
constraint defines a facet of QY if, in addition, the node sets H, T,, ..., T, satisfy
s=3-and 5 odd, (2.6¢)
T.nT;=0 1<i<js=s (2.6d)

The following class of valid inequalities for Q7, which contains all nontrivial
facet-defining inequalities listed above, was introduced by Grotschel and Pulleyblank
(1986).

A clique tree is a connected graph C composed of cliques that satisfy the following
properties (in the following we shall always consider clique trees as subgraphs of K,):

(i) The cliques are partitioned into two sets, the set of handles and the set of reerh.
(ii) No two teeth intersect.

(iii) No two handles intersect.

(iv) Each tooth contains at least two and at most n —2 nodes and at least one
node not belonging to any handle.

146 M. Grotschel, O. Holland | Large-scale TSP's

(v) The number of teeth that each handle intersects is odd and at least three.

(vi) If a tooth T and a handle H have a nonempty intersection, then HN T is
an articulation set of the clique tree.

Grotschel and Pulleyblank (1986) showed that, for every clique tree C with
handles H,, ..., H, and teeth T,..., T, the following clique tree inequality defines

a facet of QF,

3 H(E(H)+ X *(E(T))

< ¥ [H|+ L (IT|-1)-3s+1)=s(C), (2.7)
i=1 j=1

where, for every tooth T, the integer #; denotes the number of handles that intersect

T. Note that the facet-defining comb inequalities are exactly the clique tree

inequalities associated with clique trees with only one handle.

Setting
Q%:={xeR"|x satisfies (2.1), (2.2), (2.3)}, (2.8a)
4= {xeR"|x satisfies (2.1), (2.2), and the 2-matching
constraints (2.5), (2.6a,b)}, (2.8b)
nL:={xeR"|x satisfies (2.1), (2.2), and the comb
constraints (2.5), (2.6a",b"}}, (2.8¢)
ori= {xeR"|x satisfies (2.1), (2.2), (2.7)}, (2.8d)

we see that Q%< Qers Qe < Qay and Qe Qors Os.

Our approach to solving min ¢"x, x € Q¥ is to use linear programming relaxations
that can be defined by the polyhedra QF, Qim, Q¢ and Qc&r. We will see later that
the linear program

min{c"x|xe Q&N Qim

which has a number of constraints that is exponential in n can be solved in
polynomial time (in theory) by the ellipsoid method. In practice it can be solved
by a simplex-based cutting plane procedure with reasonable efficiency. We do not
know how to solve linear programs of the form min{c"x|x € QZ}, min{c"x |x € Qcr},
or min{c"x|x € Q%} in theory or practice efficiently but we are able to generate some
comb and some clique tree inequalities through separation heuristics (see Section
4). Thus or LP-based attack on the TSP ends with an optimum solution x* of a
linear program

min{c"x|x € Q},

where Q is a polytope that contains Q7F and is contained in Qs Q. If x* is the
incidence vector of a tour, we are done; otherwise we resort to branch & bound.

M. Gratschel, O. Holland |/ Large-scale TSP's 147

3. Outline of the code

We have explained the “philosophy” of our polyhedral approach to the TSP above.
It is, however, a nontrivial and time consuming task to make this idea work.

We sketch now the important basic ingredients of our code. Details on cutting
plane generation will be presented in Section 4. We assume that an instance of the
symmetric travelling salesman problem is given by the number n of cities and by
distances ¢; € Z, 1 <i<j=n The code has the four stages indicated in Figure 3.1.

tour heuristic
(initial upper bound)
1
Held & Karp-Lagrange
relaxation
(initial lower bound)
!
LP-based
cutting plane procedure

branch & bound 1

Fig. 3.1.

3.1. Preprocessing

The first two stages are mere preprocessing phases that help to speed up the cutting
plane and the branch & bound phase. Their role is the following.

(1) Tour heuristic. By running heuristic procedures we generate several tours,
The best tour found is later used to set up a starting basis for the initial LP of the
cutting plane phase. The set E of edges that appear in at least one of the tours
generated is stored. It is used to set up the initial linear program. Moreover, the
length U of the best tour is utilized in the branch and bound phase as an upper bound.

We have chosen the following heuristic procedure. We first run the next neighbor
heuristic 50 times starting with randomly chosen nodes. Each of the (different) tours
produced this way is used as a starting tour for our implementation of the Lin-
Kernighan heuristic — see Lin and Kernighan (1973). These methods are well-known
and it is not necessary to describe the details here,

We would like to point out, however, that the Lin-Kernighan heuristic is rather
time consuming. Running the procedure described in (1) in the standard way requires
as much and sometimes even more time than the whole cutting plane and branch
& bound method to be described later. Considerable parameter adjustments and
coding efforts are necessary to make this heuristic run in acceptable time. On the

148 M. Gritschel, O. Holland | Large-scale TSP's

other hand, we (and of course others as well) have noticed that a good upper bound
is as crucial as a good lower bound for a successful branch & bound phase. Thus,
the quality of the upper bound achieved in this stage does have a serious impact

on the overall performance of the algorithm.
Recall that our goal was to create a code that can solve symmetric travelling

salesman problems of up to 1000 cities to optimality. This requires handling linear
programs of up to half a million variables. We do not know any LP-code that can
solve such linear programs. Thus, it is necessary to reduce the dimensions consider-
ably. The reduction must, of course, be done in such a way that global optimality
can still be proved. A first reduction step is based on the following procedure.

(2) Held and Karp- Lagrange relaxation. We solve the 1-tree relaxation described
in Held and Karp (1970, 1971), using a standard subgradient algorithm. The largest
value found in this procedure gives a lower bound L for the optimum tour length.

In theory, the solution of the Lagrange relaxation of the 1-tree problem gives the
optimum value of min{c"x|x € Q&}. In practice, however, this value is rarely obtained
through this procedure. By making good choices in the step length parameter etc.
of the subgradient algorithm, good lower bounds for min{c"x|x € Q¢} can, in fact,
be computed quickly.

(3) First variable reduction. Using the upper bound U found in (1), the lower
bound L and the best 1-tree T found in (2) we can eliminate some edges based on
a standard reduced cost criterion. For instance, if ee E\(T n §(1)), where 1 is the
special node of the 1-tree, we know that T u {e} contains exactly one cycle C not
containing node 1. Suppose £; = ¢; -+ A; + A; is the cost of edge e, where A;,ie V, is
the set of best Lagrange multipliers. If f is an edge with largest cost £, among the
edgesin C\{e} then edge e can be eliminated if &, — &, > U — L — 1. A similar criterion
can be used for the edges ee 6{1)\T.

Let Ec E be the set of edges that can be eliminated due to these criteria, and
let H be the tour giving the upper bound U. Then E’:=(E\E)u H is a set of edges
that is guaranteed to contain at least one optimum tour of the original TSP. Thus
we can restrict ourselves to considering the subgraph G=(V, E') of K,,.

This finishes the description of the preprocessing phases. The variable elimination
procedure described above is quite effective. Table 3.1 gives an overview of the
results achieved in this way. The columns have the following meaning. “Problem
(NUM)” is our name for the instance of the TSP. The number appearing in the
name gives the number of cities of the TSP. (Details about the problems can be
found in the appendix.) The second column shows the lower bound computed by
the method described in (2). The third column reports the upper bound found in
(1). The fourth column “%GAP” shows the maximal possible deviation (in percent)
of the length U of the tour found in (1) from the optimum tour length. It is computed
by means of the formula (U —L)*100/L. The fifth column “Problem variables”

M. Gritschel, O. Holland [Large-scale TSP's 149

Table 3.1
Heuristic upper and lower bounds, reduction of variables

Problem Lower Upper %GAP Problem %VAR
(NUM) bound bound variables
17 20477274 2085 1.82 40 29.41
21 2696.6135 2707 0.39 31 14.76
24 1 265.2850 1272 0.53 41 14.85
42 684.1273 699 2.17 188 21.84
48 4953.3513 5046 1.87 210 18.62
48H 114259497 11461 0.31 84 7.45
57 12 758.6891 12 985 1.77 332 20.80
70 669.0735 675 0.89 223 9.23
96 54 544.2939 55209 1.22 557 12.21
100A 20 920 6091 21282 1.73 681 13.76
1008 21 736.3089 22 141 1.86 847 17.11
100C 20 460.2047 20749 1.41 619 12,51
100D 20999.9530 21294 1.40 617 12.46
100E 21770.0528 22068 1.37 602 12.16
100R 9653.7772 9690 0.38 181 3.66
120 6902.3900 6951 0.70 528 7.39
137 68 926.6767 69 853 1.34 1196 12.84
200R 9 550.3396 9653 1.07 721 1.62
202 39 502.0277 40214 1.80 7249 KR
229 133 180.3029 134 666 1.12 3879 14.86
300R 10 282.9372 10424 1.37 1742 3.88
318 31 182.3861 31404 0.71 2753 5.46
400R 9 496.0431 9617 1.27 2520 3.16
43] 170 121.4302 171778 0.97 24354 26.28
442 5038.7512 5083 0.89 7 990 8.20
500R 9161.2755 9271 1.20 3503 2.81
532 27 357.0196 27 829 1.73 43 282 30.64
600R 9 571.4626 9732 1.68 6 654 3.7¢0
666 292 188.0715 296 371 1.43 66913 30.22
700R 10120.141% 10305 1.83 10052 4.1}
800R 10 094.6417 10 286 1.90 13 406 4.19
900R 0 995.6538 10233 2.38 20 544 5.08
1000R 9962.3615 10 156 1.94 20774 4.16

contains the number |E’| of variables remaining after the elimination procedure (3)
has been executed. The sixth column “%VAR” shows the percentage of the number
of remaining variables |E'| compared to the number |E| of original variables. E.g.,
in problem 500R only 2.81% of the variables are left for the final optimization step,
while in problem 202 still 35.71% of the variables remain to be processed.

3.2. The cutting plane phase

This phase is the core of our algorithm. We enter it from the preprocessing phase
with a subgraph G'=(V, E') of K, =(V, E), a tour H whose length gives the upper
bound U and with the set E < E' of edges that appeared in at least one of the

150 M. Gratschel, O. Holland [Large-scale TSP's

tours generated by the heuristic of (1). A flow chart of our cutting plane procedure

can be found in Figure 3.2.

The aim of this phase is twofold. We want to produce a *‘very good™ lower bound
for the optimum tour value by LP-techniques and we want to set up a linear program
whose 0/1-solutions contain the incidence vector of an optimum tour. To do this

INPUT: Q@
- reduced graph G' = (V, E'),
- objective function ¢’ : E' — 2,
— upper bound U/ and corre-
sponding tour H,
— set E of edges occuring in
heuristically determined tours.

!
Determine candidate edge set O]
E" C E of the NN ‘next neighbours';
Er: = E” UE

!
Define 1.LP:
min /7 z
:(J(u)ﬂE") =2, veEV
0<zn <1, " €E"

!

Porce variables z,.,e € H, (@
into the LP-basis using
INSERT
l —
Cell PRIMAL to obtain (&
DUAL L5 I LP-optimum z*;
construct solution graph Gz.

v

RESTORE (9 pragress too small yea
old basis
insufficient
accuracy
> l Cutting plang recognition O]

Add cuts Cutting Determine get Q

to the LP planes E~ of variables to be
Eliminate rows {ound added tg the LP

?

Add varisbles §3 yes
E~ to the LP:
E'=EFE"UE~

L Branch & Bound @3 I

Fig. 3.2.

M. Grétschel, O. Holland [Large-scale TSP's 151

we first generate a set of edges E”< E and an inequality system A"x"<b", x"e R®,
such that the value of the linear program

minimize ¢"Tx"

) (3.1)
subject to A"x"s b"

is a true (and good) lower bound for the length of a shortest tour (¢" is the restriction
of the vector ¢ to the compaonents E").

The matrix A" and the edge set E” are not defined in advance. They are a result
of the row and column generation scheme to be explained below. A" has (by
construction) the property that it can be extended in a canonical way to a matrix
A with | E| columns such that all inequalities of the system Ax < b are either equations
of the form (2.1) or define facets of Q%. Moreover, min{c""x"| A"x"=< b"} =
min{¢"x|Ax =< b} holds.

Secondly A" and E" have the property that, by using reduced cost criteria, an
extension of A" to a matrix A and an extension of E” to a set of variables E is
possible such that the solution set of the 0/1-linear program

AT

minimize ¢ X
subject to AfX<b, (3.2)
7e{o, 115,

contains the incidence vector of a shortest tour of the original problem. The
0/1-program (3.2) is the input to the branch & bound part of the algorithm, unless
the solution (3.1) is the incidence vector of a tour {and we do not call branch &
bound).

To achieve the goals described above, it would seem sensible to choose the edge
set E' (of remaining variables) as the set of variables E” to set up the linear program
(3.1). Although our elimination procedure (3) is quite successful (see column %VAR
of Table 3.1) the number of variables |E’| is, in general, still much too large (e.g.,
|E'| =66 913 for the 666-city problem), even for fast commercial LP-solvers. So we
decided to do the following.

(4) Selection of initial variables. We initially select a ‘““candidate set” E" of edges
(of which we hope that they will contain an optimum tour) as follows. Depending
on the parameter NN (we have used 0=< NN =< 10) to be set before execution of the
algorithm, we determine, for each node ve V, a subset E, of edges of 8(v) with
cardinality NN having smallest length among all edges in §(v) and set

= E,UE,
vcV

where E is the set of edges occurring in heuristically determined determined tours,
see Section 3.1. This procedure is indicated in Box 2 of Figure 3.2. E is added to
the “next neighbour edges” |J,., E, to guarantee the existence of a tour in

152 M. Gritschel, O. Holland |/ Large-scale TSP's

G"=(V, E"). The cutting plane procedure is initialized with the variable set E", see
Box 3 of Figure 3.2,

We now outline the LP solution techniques, the basics, and the main loop of the
cutting plane part of our algorithm. These are indicated in Boxes 3,4,...,11 of
Figure 3.2.

To solve the linear programs coming up we used IBM's package MPSX/370. This
contains a quite fast LP-solver, though, for the application to be described in this
paper, it does have some drawbacks that will be discussed later.

(5) Initial LPand initial basis. The initial linear program is defined in the standard
fashion. We generate all degree constraints (2.1) and the upper and lower bounds
(2.2). As outlined before we restrict the LP to the initial variables E" defined in (4).
Thus our first LP is of the form

minimize ¢" x
subjectto x(8(v)N E")=2 forall veV, (3.3)
0<x,=<1 forall e"e E".

It is well known that, for every tour of the graph G”=(V, E”), one can determine
a basis of (3.3) with the given tour as associated basic solution. We initialize our
LP-solver by introducing the best tour H known at present as a starting basis using
the MPSX-routine INSERT. (By the choice of E”, we have H < E".) This process
is indicated in Boxes 3 and 4 of Figure 3.2.

We now enter the main loop through Boxes 5, 6, . .., 11 of Figure 3.2 and describe
a general step.

To call the MPSX-routine PRIMAL in Box 5 we have to know a basis of our
present LP. This is at hand in the first call due to (5). In a general step, a basis will
be part of the output of the routine DUAL called in Box 11. PRIMAL determines
an optimum solution x* of the present LP. To process and analyse x* we generate
the graph G,+:=(V, E,+) defined by

E..:={e€ E"[x¥>0}. (3.4)

The next step, Box 6 of Figure 3.2, consists of a couple of tests. We first check
whether x* is the incidence vector of a tour. If this is the case we go to the variable
generation procedure of Box 12. Then we check whether the cutting plane procedure
has “‘tailed off”’. We do this in the following way. Every tenth time we enter Box 6
we compare the present optimum LP-value y* with the optimum value y of the
linear program solved ten iterations (of the main loop) before. If y*—y =<1 we feel
that further cutting plane generations will not pay and exit from the loop to Box
12 of Figure 3.2. In a third test we check for numerical accuracy. MPSX offers some
parameters to do this. If we feel that the present accuracy is insufficient, we leave

