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ABSTRACT

We study the acyclie subdigraph problem and the linear ordering problem
from a polyhedral point of view. Insights into the facet structure of
polytopes associated with these problems lead to the formulation and
implementation of a cutting plane algorithm for the linear ordering
problem,
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‘I. Introduction and Notatiaon

The acyclic subdigraph problem (ASP) can be formulated as follows. Given
a digraph D with arc weights, find a set of arcs containing no di-
rected cycle and having maximum total weight. In Section II we investi-
gate this NP-hard problem from a polyhedral point of view and determine
several classes of facets for the associated acyclic subdigraph poly-
tope PAC(D)' These facets are induced by Dicycle Inequalities, M&bius

Ladder Inequalities and Fence Inequalities.

In Section III we show that the separation problem for the facet
defining dicycle inequalities can be solved in polynomial time. This
implies that the acyclic subdigraph problem can be solved in polynomial
time for weakly acyclic digraphs. Since planar digraphs are weakly a-
cyelie this generalizes a result of Lucchesi.

The ASP is a combinatorial optimization problem with a large number
of applications (triangulation of input-output matrices, archeological
seriation, minimizing total weighted completion time in one-machine
scheduling, aggregation of individual preferences etc.). It is often
formulated as a linear ordering problem (LOP) asking for a spanning
acyclic tournament of maximum total weight in the complete digraph D,

on n nodes. This problem is directly (polynomial time) equivalent to

the ASP. The associated linear ordering polytope PEO ig an (2)—di—

mensional face of PAC(Dn)' In Section IV we investigate which of the

facets determined for P (Dn) are also facets of PL

AC o

The partial knowledge of the facet structure of P gives rise

L0
to the formulation of an algorlthm for the linear ordering problem which
is described in Section V. The main part of this algorithm is a cutting
plane procedure using facet defining 1nequallt1es This is combined

with various heuristics and branch & bound techniques,

In Section VI we present some numerical results obtained with a
computer implementation of our new algorithm. These data are based on
optimum triangulations of a large number of input-output-matrices com-
piled by statistical offices of the European Community.

We conclude with a short discussion of research problems in Section
VII.

The ASP often appears in the literature in an equivalent formula-
tion under the name feedback arc set problem (FASP). A feedback arc set
in a digraph D 1is a subset of the arc set A lntersectlng each di-
rected cycle in D. Each instance of the FASP consists of a directed
graph D and a weight function on the arcs of D, and the objective is
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to determine a feedback arc set of minimum weight.

Clearly, if F 1is a feedback arc set in D = (V,A), then ANF is
acyclic, and conversely, if B © A 1is acyclic, then ANB is a feed-
back arc set in D. In particular, an acyclic arc set B < A of maxi-
mum weight determines a feedback arc set ANB  of minimum weight and
vice versa, so the ASP and the FASP are nothing but different formula-
tions of the same problem.

We assume that the reader is familiar with the basic concepts of
graph theory. We shall only consider simple graphs G = [V,E] and
digraphs D = (V,A) (without loops or parallel edges resp. arcs) with
node set V and edge set E resp. arc set A. We are mainly concerned
with digraphs. The following notation will be used.

If a = (u,v) is an arc of the digraph D = (V,A) then a is
said to be inetdent from wu and ineident to v, or u 1is the tail
and v is the head of a. We also say that the arc a = (u,v) goes
from u to v, and u and v are the endnodes of a. If X and ¥
are disjoint subsets of V then the set of arcs with tail in X and
head in Y is denoted by (X:Y). Two nodes u,v € V are called adja-
eent in a digraph D = (V,A) if (u,v) € A or (v,u) € A. A digraph
D = (V,A) is complete if for any two nodes, u,v € V, u # v, the set
A contains the arec (u,v) and the are (v,u). The (up to isomerphism)
unique complete digraph with n nodes is denoted by D,. For D= (v,4)

and V' €V we define A(V'):= {(u,v) € A| u,v € ¥'} and for A' ca
we define V(A'):= {u,v € V| (u,v) € A'} . B
If we take a graph G = [V,E] and assign a direction to each of
its edges, i. e. we define an arc set A on V such that for each
edge {u,v} € E, the set A contains exactly one of the arcs (u,v),
(v,u), then D = (V,A) 1is called an orientation of G = [V,E] .
For v € V the number deg (v):= |{(u,v) € A|u € V}| of arcs

entering v 1is called the indegree of v, the number deg+(v):=
[{(v,u) € A|u € V}| of arcs leaving v is called the outdegree of

v and the number deg(v) = deg (v) + deg+(v) is the degree of v.

If D= (V,A) and D' = (V',A') are digraphs such that V' =V
and A' © A then we call D' a subdigraph of D and D a superdi-
graph of D'. We also say that D' is contained in D. For D = (V,A)
and V' <V, A' €A the digraph D' = (V',A(V')) is called a node-
induced subdigraph of D and D" = (V(A'),A') an are-induced subdi-
graph of D.

A set of arcs P = {(v1,v2),(vz,v3),...,(vn_1,vn)} is called a

dipath (or a (v1,vn)-dipath) if v, # Vs for 1 # j. The length of a
dipath is the number of its arcs. A set of arecs C = {(v1,v2),(v2,v3),
...,(vn_1,vn),(vn,v1)} with v # Vj for i 4 j 1is called a dicyele

(or n-dicycle). The length of a dicycle C (a dipath P) is denoted
by Icl (IPI])
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A digraph or arc set is called acyelie if it contains no dicycle.
A tournament T = (V,A) 1is a digraph containing for any two nodes
u,v € V either arc (u,v) or arc (v,u) but not both. In the sequel
we shall also call the arc set A a tournament (assuming that the set
of nodes is given implieitly).

Clearly, an acyclic digraph D induces a partial ordering on the
nodes of D, and a spanning acyclic tournament D induces a linear
ordering on the nodes of D. Vice versa, every linear ordering of the
nodes of the complete digraph Dn gives rise to a spanning acyclic
tournament contained in Dn'

Let D = (V,A) be a digraph, D is said to be connected if its
underlying graph is connected, otherwise D is called disconnected.
D is strongly connected if for each pair u,v of nodes there exist a
(u,v)-dipath and a (v,u)-dipath in D. A node v 1is called an articula-
tton node if the removal of v and all arcs incident with v dis-
connects the digraph.

As usual, the complete graph on n nodes is denoted by Kn . A

graph G = [V,E] 1is bipartite if its node set V can be partitioned
into two nonempty disjoint sets V1,V2 with V1 U V2 =V such that

no two mneodes in v, (resp. no two nodes in V2) are connected by an

edge., If |V1| =m |V2| =n and E = {{i,j} | i€ Vi, J € V2} we

call G the complete bipartite graph and denote it by Km n -
2

Finally, a graph or digraph is called planar if it cean be drawn
in the plane such that no two arcs intersect.

To be able to apply methods of linear algebra to graph theory we
associate vectors to arc sets in the following way: Let D = (V,A) be

a digraph. If |Al = m we denote by rt the m~dimensional real vec-

tor space, for which the components of the vectors x € ]RA are in-
dexed by the arcs (i,j) € A, For convenience we denote a component by

*1; °r X, if e = (i,j). The ineidence veatonr X2 € IRA of an arc

set B c A is defined by setting x?j =1 if (i,]) € B and by setting
X5 0 otherwise. Incidence vectors for edge sets of undirected graphs

are defined in the same way.

If ¢ : A> R is a weight funetion on the arcs of a digraph
D = (V,A), the weight of a set of arcs B = A is

c(B) = )X C.. .
(i,j)es
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Similarly if we associate a variable ¥;: to each arc (i,j) we denote
by =x(B) the formal sum of the variables belonging to the arcs of B.

A polyhedron P < E{n is the intersection of finitely many half-

. m .
spaces in R . A polytope is a bounded polyhedron or equivalently the
convex hull of finitely many puints. We denote the convex hull of a set

m
§ € R by conv(S). The dimension of a polyhedron P, denoted by dimP
is the maximum number of affinely independent points in P minus one.

m
1f a € R {0}, ay € R, then the inequality alx g a, is said

to be valid with respect to a polyhedron P < R" if P < {x € R |

T f s . .
a’x & ao]. We say that a valid inequality aTx S a, defines a face of

0
P if @+ PN {x]| alx = ao} # P. A valid inequality alx s a4 defines

a facet of P if it defines a face of P and if there exist dimP
affinely independent points in P N {x laTx = ao}. Two face-defining
inequalities aTx S a;, blx S by are equivalent if P N {x| atx = ao}
=P N {x|bxe= byl

A polyhedron P < R" is called full-dimensional if dimP=m. For
every full-dimensional polyhedron there exists an inequality system
Ax ¢ b with P = {x |Ax S b}l which is unique up to multiplication by
a positive constant. If P is not full-dimensional then P is con~
tained in the intersection of hyperplanes, i. e. P has a representa-
tion of the form P = {x |Ax S b, Dx = d} .

If P = {x\ Ax § b, Dx = d} then we say that the system Ax S b,
Dx = d is complete for P. If D has full rank and {x |Dx = d} is
the affine space spanned by P, then Dx = d is called a minimal equa-
tion system for 7P. A complete system Ax b, Dx =d for P is called
nonredundant with respect to P if Dx = d is a minimal equation system
and if the deletion of any inequality of Ax S b results in a polyhe-
dron larger than P, It is known that in such a case for every facet of
P the system Ax S b contains exactly one inequality defining it, i. e.
every inequality of the system Ax S b defines a facet of P and no
twa inequalities are equivalent.

when dealing with polyhedra, especially algorithmically, we are na-
turally interested in minimal and nonredundant descriptiona by linear
equations and inequalities.

Of special interest for our purposes are 0-I1-polytopes which are

'polytopes that can be defined by P = conv(S), § € {0,1]“. We call fa-

cets of a polyhedron P < R" which can be defined by an inequality
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x. 2 B or X, o for some 1€ {1,2,...,n} and 0,8 € R the tpi-
i .
vial facets of P, and the inequalities defining them irivial inequali-
ties.

Introductions to the kind of polyhedral theory we are interegted
in, can be found in BACHEM and GROTSCHEL (1982), SCHRIJVER (1984),
PULLEYBLANK (1983). .

We shall not discuss the theory of computational complexity here.
An excellent introduction and at the same time comprehensive survey of
computational complexity theory is the book GAREY and JOHNSON (1979).

Most results presented in the following sections are stated with-
out proofs. These can be found in GRUTSCHEL, JUNGER & REINELT (1982a,b),
JUNGER (1984), REINELT (1984).

II. The Acyclic Subdigraph Polytope (D)

Fac
We shall now study the facial structure of the class of acyeclic subdi-
graph polytopes PAC(D) which are polytopes associated with digraphs

D = (V,A) such that the vertices of PAC(D) correspond bijectively to

the acyclic arc sets B < A, In particular, we shall derive geveral
classes of facets of these polytopes. To avoid some degenerate situa-
tions we assume throughout the following that all digraphs considered
contain at least one arc,

We define

(11.1) PAC(D):= conv{x® € ®A | B S A is an acyelic are set in
D= (V,A)} .

With this definition we can formulate the Acyclic Subdigraph Problem as
the linear program

(11.2) maximize ch

subject to x € PAC(D)

where ¢ € ZA is a weight function,
As pointed out in Section I, our aim is to derive large classes of
facets of PAC(D) in order to be able to apply linear programming tech-

niques. First we shall summarize some trivial properties of PAC(D).

PAC(D) contains the zero vector (the incidence vector of the empty

set) and all unitr vectors (the incidence vectors of single arcs) in EA.
These [Al + 1 vectors are clearly affinely independent, so dim(PAC(D))

= |{A|l for any digraph D = (v,a).
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It is immediate from the definition that 0 £ x S y € PAC(D) im-

plies x € PAC(D). From this and the full-dimensionality we can con-

clude that there is a matrix A and a veetor b such that PAC(D)

in the system Ax £ b

{x € R" | Ax $ b} and each inequality de sd

0

defines a facet of PAC(D) and dx < dy is unique up to multiplica-
tion by a positive constant. Moreover, if de < d0 defines a nontri-
vial facet of PAC(D) then we additionally have d 2 0 and d0 > 0.

A straightforward observation is the following. Let D = (V,A) be
a digraph and let the inequality de £ d; define a facet of PAC(D)
for some d € ]Ki, do > 0. Define A':= {(u,v)] (v,u) € A} and D' =

A

T
.= ' ’] T el
(u,v)’} d(v,u)' Then d'"'x & 49 defines a fa

: , T _ _
cet of PAC(D ). This is trivial, since {x € PAC(D)| d'x = do}

(V,A'). Let d' € R, d'

fx€p, (0)]d"%=4d} .

For a digraph D = (V,A) and a vector d EZR? we define the

support of d in D by D, = (V(A),A) where A ={aEA|da>0}.

d:

The following lemma states some properties of facet defining inequali-
ties for PAC(D).

Lemma 11.3. Let D = (V,A) be a digraph and let the inequality djk
< dO 4efine a nontrivial facet of PAC(D) for some d E.mf s dO > 0,
Let Dd: (V(Ad),Ad) be the support of d in D.
(1) D, ie strongly connected.
(11) D4 t8 connected and contains no articulation node (7. e.
18 Z-connected). I
We shall now state two lemmata which are very helpful for proving
that the inequalities to be studied in the following define facets of

PAC(D) for certain digraphs D = (V,4).

If a= (u,w) €EA is an arc of D = (V,A) and v € V, then the
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digraph D' = (V',A') where V' =V U {v} and A' = (A\{(u,w)}) u
{(u,v),(v,w)} is called the digraph obtained from D by subdividing
the arc a € A.

Lemma II.4. (The Subdivision Lemma) Let D = (V,A) be a digraph

and d?x s dO be a nontrivial facet defining inmequality feor P, (D).

c

Let D' = (V',A') be the digraph obtained from D by subdividing the
arc (i,k) € A 1into the arce (i,j),(j,k) € A'. Set

P o=z €EANA4

duu' duu for all (u,v) s
! — | -

di ' di= dyge s
.-

dp:= dy *+ dyy

Then the inequality aTr dé defines a facet of ?AC(D').
The Subdivision Lemma provides a method to derive facets of PAC(D)

whose defining inequalities have arbitrarily large support. An immediate
question arises, mamely, is a "converse" statement true, i, e. is it
possible to derive a method to obtain facets of PAC(D') from nontri-

vial facets of PAC(D) by "contracting" ares in D ? It turns out that

this is indeed the case.

Given a digraph D = (V,A) and a = (u,v) € A we say that the di-
graph D' = (V',A') obtained from D by identifying the nodes u and
v and then removing loops and parallel arcs is obtained from D by
contracting the arc a € A. _ +

Let D= (V,A) and v €V satisfy deg (v) = deg (v) = 1. First
of all, it is clear that for any nontrivial facet of PAC(D) defined

by an inequality de Y d0 we must have d =4 , where u and w

uv W
are the unique nodes adjacent to v. To see this, suppose without loss
of generality that d > d . Since de s d defines a montrivial
uv vw 0
facet of PAC(D)’ we know de > 0. Furthermore, there must be an acyclic

arc set B € A whose incidence vector xB gatisfies deB = d

0 b}

B _ B B B . T
X = 1 and Xy = 0, because Xy = X = 0 would imply that d'x g
dg is not valid for PAC(D) since B' = B U {(u,v)} 1is an acyclic

. . T_B'
arc set in D with d'x° > d0 , and x, =1 forall x¢€ PAC(D)
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. . T .
gatisfying d'x = do would contradict the facet defining property of

T

A A
d¢'x § d, . But now the set B < A,B:= (B~{(v,®)}) U {(u,v)} 1is also

0 A
. T B
acyclic and d'x" =d, - d__+ duv >d

0 - contradicting the validity of

0 3

de £ d, . Thus we have established duv =d

0

Now we can formulate a counterpart to the Subdivision Lemma.

vw

Lemma 1I.5. (The Contraction Lemma) Let D = (V,A) be a digraph,

[

(2,j), (g, k) € A, 2 F k, deg (j) = deg+(j) = and suppose dT; g da

defines a nontrivial facet of PAC(D). Let D' (V',A') be the di-

graph obtained from D by contracting the arc (%,j) [(or equivalently
the are (j,k)). Set

dﬁu:: duv for all (u,v) € AN A!
%k': dij (:djk)
dé:z dO - dij .

Then the inequality d'Tx 1 db defines a facet of 3AC(D’).

We are now ready to present four classes of facet defining inequali-
ties for PAC(D) all of whose coefficients are either 0 or 1.

First of all, it is easy to determine which of the trivial inequa-
lities of the form X, 20, X, 1 for a € A(D) define facets of

PAC(D).

Theorem II.6. (Trivial Facets) Let D = (V,A) be a directed graph.

(1) The inequality =z, 20 defines a facet of PAC(D)

for all a € A.

(i) The inequality =, &1 defines a facet of PAC(D)

for a = (u,v) €4 if and only if a = (v,u) € 4 .
|

By definition, an acyclic arc set B <€ A of a digraph D = (V,A)
contains no dicycle, in other words, [B N C| £ [C| - 1 for every di-
cycle C < A. This immediately implies that the inequality

(I1.7) x(C):= T x.. S |G| - 1
(i,jyec *t
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is a valid inequality for P, (D) for each dicycle C CA.If C is a

AC
k-dicycle in D we call the inequality x(C) ; k-1 a k-Dicyele Inequa-
lity. The validity of the k-Dicycle Inequalities for PAC(D) for
k2 2 implies the inclusion
.= A < -

(11.8) PSP (D):= {x € R | 0 s X;5 8 1 for all (i,j) € a,

x(C) £ Icl - 1 for all dicycles

C<AinD= (V,A)}.

More importantly, but trivial to prove, we have

(I1.9) (D) = conv{x € PC(D)| x € {O,I}A}

FPac

which means that the problem

(II.10) maximize ch

subject to x(C) S |C| - 1 for all dicycles C <A

X integral

is an integer programming formulation of the Acyclic Subdigraph Problem.
This fact plays a central role in algorithmic approaches to the Acyelic

Subdigraph Problem and the Linear Ordering Problem. We shall return to
this in Section IV.

Theorem II.11. (Dicycle Inequalities) ILet € be a dicyele in a di-

graph D = (V,A). Then the Dicyecle Inequality x(C) S ICl - 1 defines
a facet of PAC(D).

Proof, We have already observed that x(C) £ [C| - 1 1is valid for
PAC(D)' Now suppose that C is a k-dieycle in D. It is trivial to see

that the k dipaths obtained from C by removing one arc from D form
a collection of acyeclic arc sets whose incidence veectors in RA are
linearly independent and satisfy x(C) £ k-1 with equality,

Now let (i,j) € A be an arc not in C. If both nodes i,j are
in € (in this case we call (i,ij) a chord of C), then remove from
C the arc (j,k) whose tail is j to obtain a (k,j)~dipath Pij . If

one of the endnodes of (i,j) 1is not in C, let Pi' be any dipath

of length k-1 contained in (. It is obvious that each of the arc

sets Pij U {(i,j)} 1is aeyclic and satisfies x(C) = k-1. Moreover, the
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incidence vectors of all arc sets constructed above (k dipaths and
IAl = k dipaths plus an arc) are linearly independent. This proves the
theorem. n

Clearly, we could prove Theorem II.11 in a less direct way by observing
that each 2-Dicycle Inequality of the form x,, + xji €1 for some 2-
1]
dicycle {(i,3),(j,i)} € A defines a facet of PAC(D) and applying
the Subdivision Lemma. In connection with the 2-Dicycle Inequalities we
can derive a simple but interesting result which further reduces the
class of valid inequalities to be examined for their facet defining
property.

Lemma II.12. Suppose Lthe inequality dfx s dO defines a facet of
p (D) for D= (V,A) and both d..>0 and d,. > 0 for two nodes
AC 1 Jr

2,0 €V and (i,7),(j,1) € A. Then dfx < da is equivalent to the 2-

eycle squal.it 2L o S A .
Dieycle Inequality TlJ + Tag 1 with respect to PAG(D)

{

We shall now present a very rich class of facet defining inequali-
ties.

Definition II.13. Let CJ’CE""’Ck be a sequence of different di-
eycles in a digraph D = (V,A) such that the following holds:
(Mi) k23 and k odd.

(m2)  C. and C. i € {1,2,...,k-1} have a directed

+1?

path P, in common, C, and €, have a dipath P,

in eommon.

(M3) Given any dicycle Cj , je{1,2,...,k}, set

J = {1,2,...,k} n ({j-2,j-4,j-6,...1 U {5+1,5+3,5+5,... 1),

Then every set (UZ:I Ci)\{gil 1 € J} contains exactly

one dicycle (namely Cj)’ where e; s 7 €J , 18 any
arc contained in the dipath P. .

(Md) The largest acyclic arc sel in UE—I ¢, has cardinali-

koo -k

ty W= Gl ~ 72
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k

=1
C...,1€{1,2,...,k-1}, and €; 5 C

Then we call the arc set M = U

Ci a Mobius-Ladder. For convenience

we say that the dicyecles €

1 1 Ti+1 k

are adjacent (with respect to M).
Axiom (M4) implies immediately that for any Mobius Ladder M con-
tained in a digraph D the M¥bius Ladder Inequality

+
(11.14)  x(0 $ (wl - <L
is valid with respect to PAC(D)'
The requirements (M1), ..., (M4) are of course not eagy to check

for a given arc set M, They are however precisely those assumptions
which make a certain proof method work. (M4) implies the validity of
(II.14) and (M3) implies that the sets M\{ei] i € J} minus any arc in

Cj are maximum cardinality aeyclic arc sets and that there are enough

acyclie arc sets of this kind to find |M| whose incidence vectors are
linearly independent. For even k the construction does not give any-
thing interesting. We might in fact also consider single dicycles as
Mébius Ladders for k = 1.

A "general" Mébius Ladder is depicted in Figure II. {5,

J'———T_—‘\\

- ! o
’C( 04 'I C.'n ¢ \\
” ~ A ‘I \
/ \\ P ~o _q'
! - —

f

Figure II.15

1f d1,C2,...,Ck is a sequence of directed cycles satisfying (M1)

and (M2) and if no two different nonadjacent dicycles G,, C, have a
1]

node in common, then the union of thege dicycles clearly forms a Msbius
Ladder. Such a situation is depicted in Figure TI.15. It may however
well be that different nonadjacent dicycles have a node or even a dipath
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in common, cf. Figures II1.16 and II.17.

Figure IL.16

Figure LI1.17

It should be clear how to generate large classes of Mobius Ladders
from the examples shown in Figures II.15, II.16, II.17.

Although this is not obvious at the first glance, there are Mdbius
Ladders all of whose defining dicycles are 3-dicycles, see Figure II.18
for an example.
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Figure II.18

The defining dicycles are induced by the seven node sets {1,2,3},
{3,1,7}, {7,3,6}, {3,6,5}, {6,5,2}, {5,2,4} and {2,4,1}. We leave it
to the reader to verify that the digraph displayed in Figure II.18 is
indeed a Mobius Ladder.

Unfortunately, Mtbius Ladders are in general not so well-structured
as in the above examples.

It would be a step forward if MSbius Ladders could be characterized
in a more "pleasant' way. Checking axiom (M4) is NP-hard for general di-~
graphs D. However, this does surely not mean that the definition given
above is useless, since we can easily exhibit very large classes of
Mtbius Ladders whose algorithmic exploitation can help in the solution
of large instances of the ASP.

It is easy to see that the axioms M), ..., (M4) dimply that no
two different dipaths Pi and Pj have a common arc (they may however

have a common node, see Figure II.16. Moreover, in view of Lemma II.12
we know that all dicycles Ci have length at least three. In case

k = 3, all three dicycles Ci have to have length at least four, Figu-

re 1I.19 shows the - up to isomorphism — unique M8bius Ladder defined
on three dicycles with the minimum number of arcs, where the commeon arcs
of adjacent dicycles have been emphasized.

Figure II.19
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Theorem II.20. (M8bius Ladders) Let M be a Mbbius Ladder defined
by the dicycles 01,02,...,Ck in D = (V,A). Then the M&bius Ladder

Inequality x(M) < |M| - E%l defines a facet of EAC(D).

We have already given some examples for which the membership in
the class of M8bius Ladder Inequalities is more or less straightforward

to check. In many more cases the determination of this membership is not
as easy.

As an example we consider a class of digraphs which can be directly
derived from Mdbius Ladders consisting only of 4~dicycles Ci y where

every dipath P, commen to C, and C. consists of exactly one arc
i i i+

1
p; and p, N pj =@ for all i # j, i. e. p; and P have no common

endnode,

Definition II.21. Let D = (V,M) be a M3bius Ladder consisting of
k 2 3 dieycles 01,02,...,Ck of length four such that each pair of

adjacent dicycles ¢, and Cipg s 1 € {1,2,...,k-1} respectively Cy

and 01 tntersects in exactly one are {ai’bi)’ i € {2,2,...,k} such

that the arcs (ai’bi) are pairwise node disjoint and let v € V. Then

we call the digraph D' = (V',W) with V':= v U {v} and ‘
We= MU {(a,v),(0,b.) | i € {1,2,...,k}}

a simple k-Wheel.
Figure II.22 shows a simple 3-Wheel and a simple 5-Wheel.

Figure 1I.22
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A digraph D = (V,A) 1is a k-Wheel if it can be obtained from a
simple k~Wheel D' by repeated subdivision of arcs. With every k-Wheel
D = (V,A) we associate the k-Wheel Inequality

Ik+1

2 -
It can be shown that k-Wheels are Mébius Ladders defined on k' = 3k
dicycles. Thus we cobtain

(11.23) x{a) s |A] -

Theorem I1I1.24. Let D = (V,A) be a digraph and D' = (V',A') be a
k-Wheel contained in D. Then the k-Wheel Inequality =x=(A') £ |A'| -

3k+1
2

defines a facet of PAC(D)' I

For more details and more nonobvious examples of Mébius Ladders
see JUNGER (1984).

Considering again the Mgbius Ladder with k = 3 depicted in Fi-
gure 11.19 and drawing it in a different way, cf. II.25, yields a basis
for a further class of facet defining inequalities.

Figure II.25

Definition II.26. For every integer k 2 3 a digraph D = (V,A) with
2k nodes is called a simple k-Fence tf V eonsists of diejoint node

sets U = {uz,ug,...,uk} and W = {ml,wg,...,wk} such that
k

(II.27) A= U
1=1

({(ui’mi)} u ({mi} : U\{ui}))

The nodes in U are called the upper nodes, those in W the lower

nodes and the arcs (ui’wi) are called pales and the ares (wi,uj),

177, ave ealled pickets.
'A simple k~Fence is a particular orientation of the complete bi-
partite graph K x (For k = 2, a simple 2-Fence would be a 4-dicycle.)
b}

See Figure II1.28 for a simple 4~Fence.
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I

Figure II.28

A k-Tence is a digraph D = (V,A) which can be obtained from a
simple k-Fence D' = (V',A') by repeated subdivision of arcs. If U'
and W' are the upper and lower nodes, respectively, of D' , then
clearly these node sets correspond in a unique way to node sets U re-
spectively W in D. We call the nodes in U and W the upper and
lower nodes, respectively, of D.

Theorem I1I.29. (k-Fences) Let D = (V,A) be a digraph and
p' = (V',A') be a k-Fence contained in D. Then the k-Fence Inequality
2(A') 2 |A'] - k+1 definea a facet of PAC(D)' ﬂ

Although all k-Fences contain MSbius Ladders as subdigraphs, no
k-Fence is - unlike k-Wheels ~ equivalent to a Mdbius Ladder except for
the 3-Fence. For assume that a k-Fence, k 2 4, is a Mdbius Ladder M
defined on k' dicycles. Comparing the righthand sides of the associated

]
inequalities, we obtain k-1 = k2+1 and therefore k' = 2k-3. By defi-
nition (Axiom (M3) of II.13), M must contain 2k~3 dipaths P, such
that the removal of certain 25%211 - 1 = k-2 arcs belonging to distinct

such dipaths leaves exactly one dicycle in M. None of these dipaths

can be a picket or a dipath obtained by subdividing a picket, since it

is easy to see that regardless of the choice of the remaining k-3 arcs
to be removed, at least two different dicycles remain. (In fact, the best
possible choice are k-3 arcs contained in pales not incident with the
chosen picket.) So the only candidates for the 2k-3 dipaths with the
desired property are the (possibly subdivided) pales of the k-Fence. But
there are only k such dipaths and k < 2k-3 for all k 2 4. Thus we
have proven

Remark II1.30. WNo k-Fence Inequality, k 2 4, is equivalent to a Mébius
Ladder Inequality. |
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Summarizing the previous results of this section we obtain
Theorem II.31.

P (D) S Pz {x € "z 20,

T, 21 for all (u,v) € A such that (v,u) € 4,
x(C) = |€1 - 1 for all dicyeles C <A ,
x(M) & |M| - Egl- for all Mébius Ladders M <4,

x{(F) s |Fl - k+1 for all k-Fences F < A, k 2 4}

and the inequalities dzfining P are a partial and nonredundant linear
deseription of EAC(D). ﬂ

All inequalities in II.31 have in common that their coefficients
are either 0 or 1. We shall now state a lemma which will enable us
to derive facet defining inequalities with arbitrary coefficients using
the nontrivial inequalities of II.31 as a basis.

Let D = (V,A) be a digraph and 4 € ]ﬁg . For any v € V we call

deg_(v):= I d
d (u,v) €A uv
the d-weighted indegree of v and
+
deg . (v):= L d
d (vou)€éa 2V

the d-weighted outdegree of v. By m+(v) resp. w (v) we denote the
set of arcs In A leaving resp. entering v. '

Lemma II.32. (The Node Splitting Lemma) [let D = (V,A) be a di-
graph and assume that dx S da defines a nontrivial facet of PAC(D)'
Suppcse v € V and there s an acyclie arc set B S A such that

d(B) = d, and either BN w (v) = ¢ or BNuw (v) =¢ ., Define D' =

(V',A')  such that V' = (ol U {u,w} and 4' = (A(v)) U 4
Lip,u) | (p,v) € 4} U {(w,q) | (v,q) € A} U {fu,w)} . Let & = min{deg ,(v)

deg;(v)} and

, .
dpq dpq for all (p,q) € A with v ¢ {p,ql

éu dpv for all (p,u) € 4’
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dh’,q = qu for all (w,q) € A'
d;w =4

! -
d() = a?o + 6

Then the inequality d’Tx 4 dé defines a facet of FﬁC(D)‘

The Node Splitting Lemma is a helpful tool for deriving new facets
of P,.(D).

If we consider the Dicycle Inequalities, we cannot obtain any new
facets since in this case each application of the Node Splitting Lemma
to a k-Dicycle Inequality yields nothing but a (k+1)-Dicycle Inequality.
In fact, node splitting is equivalent to subdivision of arcs in this
case., Similarly, the node splitting procedure does not yield any new
facets obtainable from Fence Inequalities, since each possible applica-
tion is equivalent to the subdivision of a pale.

The definition of M&bius Ladders seems to be inappropriate to allow
genera] statements about the new facets obtainable from M&bius Ladders
by node splitting. We confine ourselves to some special cases. As a
first example, we apply the Node Splitting Lemma to the Msbius Ladder
depicted in Figure II.16 where no node splitting operation is equiva-
lent to subdivision of arcs, see Figure II1.33, in which the arcs are
labelled by their respective coefficients and unlabelled arcs have co-
efficient one.

Figure II.33

For Wheels D = (V,A) it is not hard to see that each node v € V
satisfies the hypothesis of the Node Splitting Lemma. Figure II.34 shows
an application with respect to the second digraph depicted in Figure
I1.22,
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Figure II.34

III. Weakly Acyclic Digraphs
Let us recall the definition of PC(D):
(TT1.1) B (D):= {x € B* |0 < x;; §1 forall (i,j) €4,

x(C) s Icl - 1 for all dicycles

CcA in D= (v,A)} .

We know that PAC(D) c PC(D) and that all facets of PC(D) are also
facets of PAC(D). In this section we want to show that linear programs
over PC(D) are solvable in polynomial time. By a result of GROTSCHEL,

LOVASZ & SCHRIJVER (1981) a linear objective function can be maximized
over PC(D) in polynomial time if and only if the separation problem

for PC(D) can be solved in polynomial time, The separation problem

for PC(D) is the following

(111.2) "Given a vector y € QA, determine whether y € PC(D) and

M. GROTSCHEL ET AL,
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1f not, find a vector d € @A such that dTQ > dTé for all
x € PC(D) (a separating hyperplane).’

We shall now show that problem (III.2) is solvable in polynomial
time. Note that this cannot be done by checking all inequalities de-
fining PC(D) one by one, since PC(D) may have a number of nenequiva-
lent facets which is exponential in |V|. For instance, PC(Dn) has
exactly (2)(k—1)! facets arising from k-dicycles, 2 S k S n, so there
are together

.Q
(II1.3) vy :i= £ M&-1)1 2 (a~1)!
n k
k=2
nonequivalent nontrivial facets of PC(Dn), e. g- PC(DSO) has more

than 1.69 x 1063 nontrivial facets,

Suppose a vector y € QA is given, and we want to solve (III.2).
We can easily check by substitution whether y satisfies the trivial in-

equalities 0 8 Yik S 1. Hence, if one of these 1s violated we have found
a separating hyperplane. If Yik < 0, then X > 0 defines a separating
facet and if Vi > 1 then Xop £ 1 1is an inequality separating vy

from PC(D). For the following we may therefore assume that the given
y € QA satisfies 0 S Yk £ 1 for all (i,k) € A.

For every arc in A we define a "weight" w,

ix - 1-yik . If C is

any dicycle in D, then clearly y{(C) S [C| - 1 if and only if w(C) 2 1.

This implies that we can check whether y violates a dicycle inequality
by finding a dicycle C* whose weight w(C*) is minimum, i. e. a
shortest dicycle in D under w. Namely, if the minimum weight w(C%)
satisfies w(C*) 2 1 then all Dicycle Inequalities x(C) £ [C] - 1 are
satisfied by y; if w(C*) < 1, then y{(C*) > [C*| - | and hence a se-
parating hyperplane is found, which is a facet of PC(D) by Theorem
II.11.

What remains to be shown is that, given a digraph D = (V,A) with
arc weights v, 2 0 for all a € A, a shortest dicycle under w can

be found in polynomial time,., But this is easy by making appropriate modi-
fications of any polynomial time shortest dipath algorithm (like the
Dijkstra or Floyd-Warshall-method).

In fact, the separation algorithm for PC(D) outlined above can

be implemented so that its running time is 0(|V|3). From this we can
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A .
conclude that for any digraph D = (V,A) and any ¢ € R the linear
program

(III.4)  max ch, x E PC(D)
can be solved in polynomial time.

Definition III.5. A digraph D = (V,A) 1is called weakla acyelic @f
the acyelic subdigraph polytope PAC(D) equals PC(D)' Ligraphs which

are not weakly acyclic are called strongly cyeclie.

[

The version of the ellipsoid method described in GROTSCHEL, LOVASZ and
SCHRIJVER (1981) finds an optimum vertex solution when applied to the

problem max{ch |x € PC(D)}. So in case PAC(D) = PCCD) the incicence
vector of an aeyelic arc set is found, and so we get

Theorem III.6. The Acyclic Subdigraph Problem for weakly acyclic di-
graphs can be solved in polynomial time. :

Weakly acyclic digraphs are not too well understood yet. Below we have
collected what 1s known.

It is clear that acyclic digraphs are weakly acyclic, since a di-
graph is acyclic if and only if PAC(D) is the unit hypercube. On the

other hand, every digraph containing the support of any Ffacet defining
inequality presented in Section II (except for trivial inequalities and
Dicyele Inequalities) must be strongly cyclic.

On the other hand, if D is weakly acyclic then any digraph ob-
tained from D by adding a source or a sink ie weakly acyclic, more
generally, if D' and D" are two node-disjoint weakly acyclic di-
graphs and we create a new digraph D from D' and D" by adding
some arcs going from a node in D' to a node in D" , them D is
weakly acyclic. Similarly, if D' and D" are node disjoint and weakly
acyclic then the digraph obtained by identifying a node in D' and a
node in D" 1is weakly acyclic.

Moreover, it is easy to verify that every subdigraph of a weakly
acyclic digraph is weakly acyclic.

By the Subdivision Lemma and the Contraction Lemma it is clear that
the class of strongly cyclic digraphs is closed under subdivision of
arcs and contraction of arcs one of whose endnodes have indegree and
outdegree one. It turns out that this is also true for weakly acyclic
digraphs.

A particulary interesting class of weakly acyclic digraphs is given
by the following observation.

Remark III.7. Planar digraphs are weakly acyclic.

R
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Proof. This follows immediately from the planar version of the theorem
of Lucchesi and Younger (1978).

A direct coansequence of III1.7 is the following observation.

Corollary III.8. Let o'z s a, define a nontrivial facet of PAC(D)
for some digraph D = (V,A). Let D' = (V',A') be the subdigraph of D
defined by A':= {(i,j) € A Iai. > 0}. Then D' <is nonplanar or a di-
eycle. J

[

Moreover, we can show

Remark III.9. A digraph containing at most four different dicycles is
weakly acyelic.
[

Note that Remark III.9 is sharp in the sense that there is a strong-
ly cyclic digraph containing exactly five dicycles, namely the M8bius
Ladder depicted in Figure II.19.

A graph G (digraph D) is contractible to a graph G' (digraph
D'y if G¢' (D') can be obtained from G(D) by repeated deletion of
nodes and deletion or centraction of edges (ares). Kuratowski (1930)
has characterized planar graphs (digraphs) as those graphs (digraphs)
which are not contractible to (any orientation of) the nonplanar so-
called Kuratowski Graphs K3 5 OF KS . As an application of Remark

b

111.9, Figure III.10 shows two weakly acyclic orientations of the Kura-
towski Graphs. (The first one is a 3-Fence with one reversed picket.)

Figure III.10
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For open problems with respect to weakly acyclic digraphs see Section VII,

. n
IV. The Linear Ordering Polytope PLO

We now turn to the discussion of the linear ordering problem, Let Dn =
(V,An) be the complete digraph on n nodes. We shall define a polytope
whose vertices correspond to the spanning acyclic tournaments in An

and vice versa. Similar to the acyclic subdigraph polytope we shall then
study the properties of this polytope and try to describe it (at least

partially) by facet defining inequalities.
Let Dn = (V,An) be the complete digraph on n nodes and m = n{n-1),

Then the linear ordering polytope PEO is defined as the convex hull of

the incidence vectors of spanning acyelic tournaments in Dn y 1. e,

(Iv.1) PEO = cunv{xA € {O,I}m Ac An is a spanning acyclic tourna-
ment},

A first observation shows that this polytope is not full dimensional

LO

Therefore a complete linear description of PEO

since every point x € P®_ satisfies xij + xji =1, for all (i,j) € Ah'

will require inequali-

ties and equations.

A minimal equation system for PEO can easily be given.

Theorem IV.2. Let n 2 2. Then the system

z..+x.. =1,
1J gt

18 a minimal equation system for FEO .

forall ,j€V, 1#47, 4<j

As an immediate corollary we get
Corollary IV.3,

. oon _ 1 _on
dim PLO = E—n(n-l) = (2)-

[

n . n, .. .
Hence Py 15 a (2)—d1men51ona1 face of PAC(Dn) (the acyclic subdi-

graph polytope for the complete digraph Dn)' It is therefore reasonablea




ACYCLIC SUBDIGRAPHS AND LINEAR QRDERINGS 241
to check which of the facets of PAC(Dn) {(derived in Section II) are

n

t f P .

also facets o Lo

We first give some general properties of inequalities defining fa-

n . .. .

cets of PLO . From the simple structure of the minimal equation system
we get

Corollary 1IV.4. For every facet of PZO there existe an inequality

d?x s ao

that for every pair of nodes <i,j € V at least one of the coeffictents

a.. or a.. 18 equal to zero.
1] Jt qu I

defining it with nonnegative coefficients and the property

We call inequalities having the property that at least ome of the
coefficients ;5 °r aji is zero to be support reduced. If besides

this, all coefficients a3 are nonnegative we say that the inequality

T
ax fa

0

port reduced inequalities defines a kind of a normal form for inequalities

is nonnegative support reduced. The notion of nonnegative sup-

valid for PEO . We can show the following.

Lemma IV.53. Let agk s a, and bI& s bU be facet defining inequali-—

ties for P?, which are support reduced and have nonnegative ceeffi-

Lo

eients., If there exists an are (i,j) € An with aij >0 and bij =0

(or bij >0 and aij = 0) then the inequalities define different facets.

|

It is an open problem whether two nonnegative support reduced fa-

cet defining inequalities aTx b4 a5 and bTx -3 b0 satisfying a5 >0

if and only if bij >0 (i, e. having the same support) can be non-

equivalent.

Lerma IV.5 clearly gives an easy to verify condition for proving
that two facet defining inequalities are mot equivalent with respect to
n

PLO '
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We shall now state a lemma describing some useful general proper-
ties of facet defining inequalities.

)

Lemma IV.6., Let aT:c g a, be a facet defining inequality for EL() .

n 2 2.

(a) (Trivial 1ifting lemma)

Define a € lR(n+1)n by setting aij = aij y for all (Z,j) € An
and Ei,n+1 = En+1,ﬂ =0, fer L= 1,...,n Then a =z § a, de: finey
nti
a facet of PLO
(b) (Reversion lemma)
nin+l) . . _ .
If beER 18 defined by bij = aji for all (%,j7) € An
then bI; s a, 18 facet defining for i

ko i

Contrary to the acyclic subdigraph polytope where the trivial inequali-
ties are not always facet defining, we can show for the linear ordering
polytope

Theorem IV.7. Let n 2 2. The inequalities mij £ 1 and —mij S0

define facets of PZO for all (1,7) € A, + No two of the inequalities
Ty 31 and no two of the inequalities —xij S 0 are equivalent. An
inequality T = 1 defines the same facet as ., 50 if and only
if i1 =v and J = u. |

|

We now discuss the question of whether k~Dicycles induce facets of PEO
According to Theorem IV.2 the 2-Dicycle Inequalities are always satis-—
fied with equality by every point in on . It is easy to show the fol-

lowing result.
Theorem IV.8. Let C be a k-Dieycle in b ,nzk>3.
(a) The k-Dieycle Inequaility =(C) S |C| - 1 defines a face of P

. Lo
of dimension (g) - Eﬁ§:§i
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(b) The k-Dicycle Inequality =(C) < IC| - ! defines a facet of PZO

if and only tf k = 3 .

[

Based on the above considerations we can derive a result about the struc-
ture of facet defining inequalities which is similar to Lemma II.12.

Lemma IV.9. Let alz s a, be a nonnegative support reduced valid in-
equality for PZO , n 23, and Da = (V(A),A) be the support of a in
Dn . Suppose there is a node J € V which is contained in exactly two

arcs (i1,j), (J, k) € A. If T 1is an acyclic tournament whose incidence

. e T
vector satisfies ax = a

0 then it also satisfies T + xjk tay, S 2,

|

Applying this lemma we obtain another proof of Theorem IV.8 and as a

corollary we can conclude that there is no subdivision lemma for PEO .

The minimal equation system and the facet defining inequalities

derived so far define the following polytope, denoted by Pg .
n n(n-1) _ . .
(1v.10) P {x € R | xij+xji =1 for all i,j € {1,...,n} ,

i< ]
X, oK X £ 2 for all 3-dicycles

] {(L,$), (.0, &1} in D
x;. &0 for all i,j € {1,...,n} ,
] il

This polytope will play an important role in the formulation of an
algorithm for the solution of the linear ordering problem.
Running a vertex enumeration algorithm on a computer we could prove

that the polytope PEO is completely described by the trivial inequali-

ties and by the 3-dicycle inequalities for n £ 5. So the first candi-

date for having further facets is PLO .

Since we cannot apply subdivision to produce new facet defining in-
equalities, k-Fences, M8bius Ladders, etc. which are not simple cannot

induce facet defining inequalities for PEO . In the case of k-Fences
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we get

Theorem IV.11. Let D = (V,A) be a simple k-Fence conlained in Dn

]

4 . Ve .
n 2 2k, Then the k-Fence Inequality =z(A) s K" -k + 1 defince a favet

77
of PLO .

{

According to Lemma IV.5 different k-Fences induce different faccts of
n , .
PEO . Hence the number of facets of PLO » n 2 6, which are induced by

k-Fences is

13] 12
k§3 ((2:) ' (lzck)'kl) i 153 (n_—lzlllc')lT '

Up to now we did not succeed in proving that all simple Mdbius Ladders
induce facets of the linear ordering polytope (but we conjecture this
to be true). We were able to prove the facet inducing property for a

larpe subclass of the simple Mébius Ladders. The result is stated in the
following thecrem.

Theorem IV.12. [Let M pe the arc set of a simple M&bius Ladder in
D constating of k 2 3 dicyeles CI""’Ck having the following

(additional) properties:
a) The length of ¢, 18 three or four, ¢ = 1,...,k.
b)  Two adjacent dicycles have exactly one arc in common.
e} If tuo nonadjacent dicycles Ci and Cj y T < F, have a

common node, say v, then v eithen belongs to all dicyeles

Ci’ci+1""’cj or to all dicycles Cj’cj+1""’ck’cl’02""’Ci'

Then the Mobius Ladder nequality

zM) < Ml - %

defines a facet of Pgo for n 2 V(M) |

I

It can also be shown that all simple k-Wheel inequalities define facetg
of the linear ordering polytope.,
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V. A Cutting Plane Algorithm

Based on the theoretical investigations of the previous chapter we de-
veloped an algorithm for the solution of the linear ordering problem,
We shall now describe this algorithm in more detail.

As has been stated before, the linear ordering problem for the com—

n{n-1)

plete digraph Dn = (V,An) and a given vector c € R of arc

weights can be formulated as the following linear program:

v.1) maximize ch

n

bject t
subject to x € PLO

The key concept of our procedure is to solve a sequence of suc-
cessively stronger relaxations of the above linear program. Moreover,
our relaxations should congist only of inequalities which define facets

n
of P .

LO

0f course we would like to use all 3-Dicycle Inequalities because
any integral solution satisfying all 3-Dicycle Inequalities corresponds
to an acyclic tournament. Since we do not know in general how to handle
Mtbius Ladder and k-Fence Inequalities efficiently we decided to deve-
lop heuristics to incorporate at least the inequalities associated with
the smallest digraphs of these two classes into our algorithm. We have
chosen the 3-Fence and the two Mébius Ladders containing six nodes (the
first Msbius Ladder is depicted in Figure V.2 and the second one is ob-
tained by reversing all arcs). For abbreviation we call these M8bius
Ladders to be of type MG . Using these facet defining inequalities we

can formulate the following linear programming relaxation.

Figure V.2
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Maximize L
L]
i#]

c..X,.
1] 1]

subject to

(v.3)

x(C) = 2 for all 3-dicycles C in An

x(F) £ 7 for all 3-Fences F in An

x(M) £ 8 for all M&bius Ladders M of type Mg in An
xij + xji =1 forall 1 5£1i<j35n

5 20 forall 1 Si,j€n, 14 ]

The central step of the algorithm is to first try to solve this

linear program. If it has an integral optimum solution then it corre-
sponds to an acyclic tournament of maximum weight since all 3-Dicycle
Inequalities are satisfied; if not, we have to start an ordinary branch
& bound routine to eventually get the integral optimum.

Observe that this linear program consists of (2) equations, n(n-1)

nonnegativity conditions, 2-(2) 3-Dicycle Inequalities, 120-(2)

3-Fence Inequalities and 360'(2) Mobius Ladder Inequalities. Due to

this enormous number of conatraints (e. g. 7, 627, 578, 875 for

n = 50) it is unreasonable (and in practice even for small problems im-
possible) to list them all explicitly and solve the linear program using
some commercial computer code. Therefore an approach via cutting planes

is preferable. We now give a sketch of this procedure in a pseudo pro-
gramming language.

(V.4) Procedure Cutting-Plane:

(*Solve LP using cutting planes)

P:= {x E‘m?‘n-1)|xij+xji =1, forall 15Si<jsn,

X s 20, forall 1 £ 14i,j € n} ;

found:= true;
do while(found);

T
Solve max{e x| x € P} and ler x* be the optimum solu-

=

tion; if there exists a facet defining inequality aTx < ag

such that aTx* > a, then do;
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P:=PnNn {x € IRn(n_1)[ aTx g ao} ;

found:= true;
end;
else found:= false;
end;
if =x* is integral
then x* solves the linear ordering problem;
else start branch & bound;

end cutting-plane.

This procedure just shows the principle of the cutting plane
approach and several statements have to be made more precise. Especially
the following problems have to be considered.

(1) How can the separation problem (i. e. the detection of
violated inequalities) be solved ?

(2) Which violated inequalities should be added to the linear
program if there are more than one available ?

(3) Should some classes of facet defining inequalities be
preferred to other classes ?

We shall answer these questions in the sequel.
Before starting to solve the linear programming relaxation we can do
some preprocessing to decrease the problem size.

By exploiting the structure of the minimal equation system we can
eliminate one half of the variables. The variable Xij , ] <1 1s sub-

stituted by I—xji in all inequalities and in the objective function.

E. g. the 3-Dicycle Inequality

<
Xig ¥ Xgp t Xyq B2

is transformed into

X + xjk - Xy 21
if 1< j <k, or into the inequality

- - <
Xig T Xy T 20
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if i > j > k. The trivial inequalities become @ s Xi4 £ 1 for all
1$1i<j3<n.
Also the objective function coefficients have teo be updated accor-
n
. . . ~T . -

dingly and we get the new objective function c¢'x with c € ﬂi(z) and
c.. = (ci.—c.i) for all 1 £ 1< j & n. An easy calculation shows that
1 J 1]

the objective function values of corresponding solutions for the original
and the transformed problem differ by the constant zi>j cij

Applying this transformation we do not locose too much insight into
the original problem but have the advantage of decreasing the amount of
storage needed and the computational effort in the computer implementation.

From a geometrical point of view the transformation replaces the

=n

polytope PEO by the polytape PLO , which is its projection into the

n
real vector space im(Z) according te the minimal equation system,

For a drawing of the projected polytope ﬁio c nf’ consider Fi-

gure V.5. This polytope has six vertices and 8 facets. Two facets are
given by the 3-Dicycle Inequalities and all other facets are trivial.

<3,2, 1> <3,1,2> x

Figure V.5
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We now focus attention on the central part of the cutting plane al-
gorithm, i. e, the detection of violated inequalities. (Note that there
is no separation problem for the trivial inequalities because the ini-
tial linear program consists of all the trivial inequalities and there-
fore they are satisfied by all subsequent solutionms.)

(V.6) Detection of Violated 3-Dicycle Inequalities

We detect violated 3-Dicycle Ineqaulities simply by enumeration over all
possible ones. This procedure has time complexity 0(n3) since there
exist 2-(;) different 3-dicycles in An . It is not known whether there

exists an algorithm of complexity less than O(n3) which finds a vio-
lated 3-Dicycle Inequality (if one exists). Because the 3-dicycles con-
straints are the most essential ones (at least from a practical view-
point) it is valuable to enumerate all violated constraints of this elass.

Moreover, a time complexity of 0(n3) is tolerable in practical applica-
tions. In Section VI we shall discuss computational trade-offs observed
when inserting all violated 3-Dicycle Inequalities or only certain sub-
sets of them.

(v.7) Detection of Violated k-Fence Inequalities

In the case of facets induced by k-Fences enumeration of all pogsible
inequalities is no longer feasible. Already for k = 3, enumeration has

time complexity O(n6). Since we do not know of any efficient algorithm
to solve the separation problem for k-Fences (such a procedure may not
exist) we have to confine ourselves to heuristics. Since 3-Diecycle In-
equalities are easily handled it is reasonable to only search for vio-
lated 3-Fence Inequalities if all 3-Dicycle Inequalities are satisfied
and the current LP solution is fractional. Hence we are interested in

the structure of vertices of Pg which violate a 3-Fence Inequality.

One such vertex can be determined in the following way. Let F = (VF’AF)

be a 3-Fence in the complete digraph D6 and Cp € 1R30 be its inci-

s s s . . . T
dence vector. Maximizing the objective function cpX over Pg we get

an optimum solution y* which can be depicted as follows
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Figure V.8

In this figure broken lines correspond to fractional components
with value-% (in both directions) and solid lines correspond to compo-

nents having value 1. The components indexed by arcs antiparallel to
the pickets have value O,

This vertex solution clearly violates the 3-Fence Inequality
x(AF) £ 7 since the sum of its F-components is equal to 7.5. Generali-

. . n .
zing Figure V.8 we can construct for every k > 3 a vertex of PC vio-

lating a k-Fence Inequality.

Our heuristic for finding violated 3-Fence Inequalities is based
on the above observation but takes into consideration that the fractio-
nal components of vertices violating a 3-Fence Inequality may be diffe-~

rent from -% whenever the current polytope is not the "pure" polytope

n . . . .
PC . It is assumed that a common property of vertices violating a

3-Fence Inequality is the nonintegrality of the pale components,
If y 1is the solution of the current linear program in the cutting
plane algorithm then we define a corresponding (undirected) graph

Gy = (V(Ay),Ay) by setting Ay = {{i,3}| ¥ij is fractionall}. The

separation routine for 3-Fences can then be outlined as follows: LEnume-

rate the triples of nonadjacent edges of G , i. e, edges having no

common node. Take these edges as pales of a 3-Fence and test whether one
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of the eight 3-Fence Inequalities is violated which can be constructed
from all possible orientations of these edges.

The worst case complexity of this procedure is still 0(n6) but in
practice the running time is moderate, especially when y has only few
fractional components.

The following observation illustrates that it might not be worth-
wile to extend the heuristic to k-Fences with k 2 4.

Theorem V.9. ILet [ = (VF,AF) be a k-Fence, k 2 4. If the vector Yy

Ly eontained in Pg n{z € an{n_I)l r satisfies all l-Fence Inequalities
. . b4 1

! <& ] < —

for 1L < k} then ylag) &k k+1+ 777 ;

The theorem shows that a vector y violates a k-Fence Inequality
by at most EéT provided it satisfies all smaller l-Fence Inequalities.

This indicates that the k-Fence Inequalities might be of less practical
relevance for k > 3.

(V.10) Detection of Violated Msbius Ladder Inequalities
As the 3-Fence heuristic our MBbius Ladder heuristic is based on the

examination of vertices of Pg violating a certain Mébius Ladder In-
equality.
Suppose M = (VM,AM) is the M#bius Ladder of Figure V.11 and

Cy € IRBO is its incidence vector. If the objective function cﬁx is

maximized over Pg we get the following optimum solution y* with

ciy* = 8.5.

Figure V.11
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. 1 .
Again broken lines correspond to components having value 3 (in

both directions), solid lines have value 1 and the cpomponents with
value 0 are not shown. If we reverse all arcs of M !'and maximize as
above we obtain the same figure except that all integral components of
y* are set to their opposite values.

The heuristic we developed exploits the noticeable fact that y*
has only seven (resp. fourteen when considered in both directions)
fractional components which (n addition have a nice structure. It works
as follows: If y 4is the solution of the current linear program the
"fractional" graph Gy = (V(AY),Ay) is constructed the same way as for

the 3-Fence heuristic. By enumeration we look for 4-~cycles without dia-
gonals in this graph corresponding to the 4-cycle {{1,2}, {2,3}, {3,4},
{4,1}} of Figure V.11. Then it is tried to find a further node w being
adjacent to this cycle like node 5 of the figure. If this is success—
ful we enumerate the nodes adjacent to w as possible candidates for

the role of node 6. The six nodes determined by this method are treated
as the nodes of a Mtbius Ladder as shown in the figure and it is checked
whether y violates one of the associated inequalities.

The worst case complexity of this method is of course still 0(n6)
but if there are not too many edges in Gy and if the search for the

above mentioned subgraphs is implemented using data structures 1ike adja-
cency lists one can hope for a tolerable running time in practical appli-
cations,

Thia finishes the discussion of the separation routines.

Having formulated the basic components we can now combine them to
build the entire algorithm, The following design principles were con-
sidered to be reasonable.

(1) Avoid branch & bound as long as possible.

(ii) Call 3~Fence and Mdbius Ladder separation heuristics only if
there are provably no violated 3-Dicycle Inequalities.

The motivation for (i) is based on the practical experience in in-
teger programming of many researchers who have shown that branch & bound
algorithms tend to consume a large amount of computer time whenever the
LP-relaxation is not tight enough. The 3-Dicycle Inequalities are pre~
ferred because they have to be present to exclude infeasible integral
solutions and because they can be detected more efficiently than the
other classes of inequalities. Moreover, their insertion keeps the
sparsity of the matrix of constraints.

We now describe our computer implementation of the cutting plane
algorithm which works in principle as the procedure outlined at the
beginning of this chapter.

The initial LP can be solved trivially by setting a variable xij
te 1 if its objective function coefficient Eij is positive and to
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0 otherwise. The augmented linear programs obtained after the insertion
of viclated inequalities are solved by using the IBM LP-package MPSX/370.
Before solving a pew LP we eliminate all constraints which are not bin-
ding at the previbus solution in order to get smaller LPs. As long as
violated 3-dicycles are detected we do not search for violated inequali-
ties of the other two classes. For inserting violated 3-Dicycle Inequali-
ties we tested three different strategies.

(1) all violated
All violated inequalities are inserted.

(ii) k most violated
This strategy adds the k most violated 3-Dicycle Inequali-
ties to the linear program since they may have the greatest
influence on the optimization process. To avoid expensive
sorting we actually do not insert exactly the k most vio-
lated inequalities but determine the k cuts to be added by
the following hucket sort procedure: We partition the inter-
val [0,1]. (these are the possible violations) into small
intervals 11,12,...,11 ; for each violated inequality

<

e . . T . .
a'x = ao its violation s = a"x% - ao is determined and the

1

inequality is sorted into the interval Ij with s € Ij

Then the k cutting planes are chosen from the "highest"
intervals in the obvious way. In our application we have set
1 = 20.

{(1ii) arc disjoint
In this modification a subset of violated 3-dicycles is added
with the property that mo two corresponding 3-dicycles have
an arc in common. This strategy is based on the heuristic
idea that one inequality might be sufficient to locally de-
crease the infeasibility of the current solution and that it
is not necessary to have one component xij in many newly

inserted cuts. The violation of the single inequalities is
not taken into account.

If all 3-Dicycle Inequalities are satisfied and x* is nonintegral
it is tried to find violated Mtbius Ladder Inequalities which are all
added to the linear program. In case the heuristic could mnot find cutting
planes of this class the separation routine for 3~TFences is called. The
preferential treatment of the Mobius Ladders will become clear from the
discussion of the computational results. We ghall also compare the per-
formance of the above strategies in the next chapter.

If no cuts could be generated and x* 1s integral we are done be-
cause x* solves the given linear ordering problem, if not, we have to
pass over to a branch & bound procedure.

Since the implementation of branch & bound algorithms is well known
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we do not elaborate on this but just describe some features specific to

our algorithm. We have implemented a depth first sear?h through tbe

branch & bound tree and the branching is done by setting some variable

X.. to 0 or 1. In each node of the tree we solve the respective 1i-
1]

near program using MPSX/370 and still add cutting planes whenever viola-

ted ones could be detected.

- For various features of a branch & bound algerithm (temporary and

permanent fixing of variables, stopping criteria) cne needs good lower

bounds for the value of an optimum solution. As is usually done we try
to heuristically find such good solutions, i. e. linear orderings with

a "high" objective function value. Our heuristic first tries to take the

structure of the LP solution x* into account. For every node i € V

we calculate

i) = —-xX . X5,
(V.12) s(i) kfi Cie (1 xki) + ifj clelJ

and sort the nodes such that s(i1) 2 s(i2) 2 ... 2 s(in). Starting with
the linear ordering <i1,i2,...,in> » We then try to make improvements

by successive shifting operations of the form o = <1,2,...,i-1,i,i+1,...
3=1,3,3+1,...,n> > <1,2,, 0 ,1-1,1, 7,041, 000,771,141, ... ,0> respectively
g+ <1,2,...,i-1,i41,...,3-1,4,1i,j+1,...,n> until a local optimum is
obtained,

Another important component of a branch & bound algorithm is the
possibility to fix the values of some variables permanently (i. e. the
values do not change throughout the rest of the calculations) or tempo~-
rarily (i. e. the values are valid in the whole subtree rooted at the
current node).

We apply two criteria for the fixing of variables

(i) reduced cost eriterion
We keep in memory the reduced costs after the linear pro-
gramming part. The x* found there gives a true upper bound
for the optimum value of the linear ordering problem. Having
improved the lower bound L we may be able to fix further
variables permanently using a reduced cost criterionm. Let
dij denote the reduced cost of a nonbasic variable x;. of

the optimum LP-solution x* at level 0, then we can do the
following

- if x¥. =0 and ETx* ~LZ=2-d,, thenwe fix x., =0
ij ij i
permanently (since every LP-solution with xij = 1 has a value

which is not larger than L, no linear ordering with i1 before
i can be better than the present one).
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—_ T
- If xtj =1 and ¢ x*-L = d then we fix X, = 1 per-

13

manently (since every LP-solution with xij = 0 has a value
whieh is not larger than L).

If we take the reduced costs at the current node into account
we may use the reduced cost criterion to fix variables tempo-
rarily in the subtree rooted at the current node.

(ii) transitive implications
If xij = 1 and xjk = 1 have been fixed temporarily (per-

manently) then we can fix Xgp =1 temporarily (permanently)

because of transitivity. Similarly, X, 5 =0 and xjk =0

implies Xy

Fixing of variables is a very essential component of a branch &
bound algorithm, egpecially if the gap between upper bound and lower
bound is small, quite a large number of variables can be fixed after the
LP part, In spite the fact that we could physically eliminate the per-
manently fixed variables from the problem, we actually do not do this,
mainly because data structures and LP updatés would become more compli~
cated.

This relatively short presentation of the algorithm should be suf-
ficient to get an impression of how thecretical results can influence
the development of procedures for solving problems arising in practical
applications. In the next chapter we shall report on the computational
results we obtained when applying our algorithm to the solution of the
triangulation problem for input-output tables.

= 0 by transitivity.

VI. Computational Results

In this section we report about the computational experiences we have
with the algorithm described in the previous section. All experiments
were run on a SIEMENS 7.865 of the Deutsche Forschungs- und Versuchs-
anstalt flr Luft— und Raumfahrt in Oberpfaffenhofen. Due to the limited
space we shall only state the main results; for a more extensive dis-
cussion cf. GROTSCHEL, JUNGER & REINELT (1983a).

The linear ordering problem (or one of its equivalent versions)
has many real-world applications. Lists of such applications can be
found for instance in KORTE & OBERHOFER (1968), LENSTRA (1973), LENSTRA
(1977) or JUNGER (1984). One example is the triangulation of input-~out-
put tables.

In input-output analysis the economy of a region (usually a state)
is divided into n sectors, and an (n,n)-input-output matrix X is
constructed where the entry xij denotes the amount of deliveries from




256 M. GROTSCHEL 15T AL,
sector 1 to sector j in a certain year. The problem to permute the
rows and columns of X simultaneousaly such that the sum of the entries
of the permuted matrix above the main diagonal is as large as possible
is called triangulation problem. Considering an entry Xy of an (n,n)-

input-output matrix X as the weight of the are (i,j) of Dn one

obtains a linear ordering problem. Triangulated input-output matrices
allow interesting interpretations of the structure of an economy and
comparisons between different countries, cf. WESSELS (19§1). .

Already in 1964, W. Krelle proposed to solve the triangulation
problem by means of integer programming techniques, see KRELLE (1964).
Algorithms have been designed by DE CANI (1969), who solved 1Q-sector
problems by hand (after two hours of computation) using a linear pro-—
gramming relaxation and improved related approaches have been imple-
mented as computer codes by MARCOTORCHINO and MICHAUD (1979) and BOENCHEN-
DORF (1982). Both codes essentially maximize over (IV.10) thus having
no guarantee for a feasible (integral) solution. For this reason branch
& bound approaches searching for an integral optimum appeared to be more
promising and in fact, the most heavily used algorithms in practical
applications were "pure" branch and bound procedures which never solved
linear programming relaxations explicitly. The first approach of this
kind was designed by KORTE and OBFRHOFER (1968, 1969), who implemented
their algorithm on a computer and were able to solve random instances
of the trianpulation problem with up to 13 sector and real-world in-
stances with up to 18 sector. LENSTRA (1973) presents an improvement of
Korte and Oberhofer's algorithm, and KAAS (1981) was able to solve random
25-sector problems and real-world 34-sector problems on a computer by
using a heuristic to obtain suboptimal dual solutions providing the ne-
cessary upper bounds in his branch & bound procedure.

We were mainly interested in solving real-world triangulation prob-
lems for input-output tables. We had 30 (44,44)-matrices of Furopean
countries compiled by the Statistical Office of the European Communities
Luxemburg, one (50,50)-matrix from the Belgian Ministry of Economics and
14 matrices of the West German Economy (11 (56,56)-matrices compiled by
the Deutsches Institut fiir Wirtschaftsforschung, Berlin, and 3 (60,60)-
matrices compiled by the Statistisches Bundesamt, Wiesbaden). The size
range of these tables convers almost all input-output~matrices that have
been compiled so far all over the world. Moreover, it should be annotated
that optimum solutions of the corresponding triangulation problems were
not known.

We first triangulated the 45 tables using the all-violated strategy.
As a surprising fact, it turned out that all tables could be triangulated
without ever entering the branch & bound stage, and moreover, that ex-
cept for four cases already 3-Dicycle Inequalities were sufficient to
golve the problems to optimality. In these four exceptions the imsertion
of a few additional M&bius Ladder Inequalities (which were readily found
by our heuristic) lead to the determination of an optimum triangulation
within the linear programming phase. In no case 3-Fence Inequalities
were required. The computing times were approximately 1.5 minutes for
the 44-sector tables, 2.5 minutes for the 50-sector table, 5 minutes for
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the 56-sectar tables and {0 minutes for the 60-sector tables. These xe-
sults show that the cutting plane approach compares favorably with the
other approaches and can solve problems of sizes far beyond the scope of
algorithms which are not LP-based.

In spite of the fact that the elimination of nonbinding constraints
resulted in a considerable reduction, the sizes of the final linear pro-
grams varied from about 1,500 rows for the 44-sector problems to about
3,500 rows For the 60-sector problems. In case of the 60-sector tables
we actually inserted at most 2,000 cutting planes in each step to pre-—
vent storage problems. We then applied the k-most violated and the arc-
disjoint cutting plane generation strategy to scme of the problems.
Application of the arc~disjoint strategy could reduce the LP sizes by
70 % on the average compared to the all-violated strategy, requiring
about six times the number of cutting plane generation steps. The CPU
time was slightly increased. The k-most-viclated strategy gives larger
LPs and a smaller number of cutting plane phases with increasing k.

The best CPU time was attained for a medium-sized k (e. g. k = 300

in case of the 44-sector problems). A possible explanation for this is

the following: in the arc disjoint strategy or for a small k the cutting
plane generation routine is called quite often and has a significant
effect on the overall computing time; for large k the LPs involved con-
tain many rows and the reoptimization is time consuming. Therefore, it
seems to be the best compromise to limit the number of cutting planes
inserted by choosing an appropriate k depending on the problem sizes.
Whenever storage is a scarce resource one should insert arc disjoint
cutting planes.

The previous discussion has shown that the real-world problems
could be solved "quite easily". The success of the cede with respect to
these problems does not carry over to random problems. Particularly bad
are uniform distributions. For instance we encountered one problem of
size (50,50) which the code was unable to solve (within the time available
to us). Of course, a uniform distribution means that almost every solu-
tion is nearly optimal, and these types of problems are usually extremely
hard to solve. We also generated twenty random problems with 20 sectors,
where the entries were uniformly distributed in the interval [(0,100].
These problems were triangulated within about 25 seconds, but here 4
of the problems could only be solved using branch & bound {(the correspon-
ding branch & bound trees consisted of up to 11 nodes).

On the other hand, we successfully solved an (80,80)—problem which
was randomly generated such that its "structure" roughly corresponds to
a real input-output table. This indicates that 60 sectors are not the
limit for our code when applied to real-world problems.

ViI. Open Questions .

In the previous sections we have tried to outline how the insight into
the facet structure of polytopes related to the Acyclic Subdigraph Prob-
lem and the Linear Ordering Problem lead to new complexity resulte as
well as to practically useful algorithms.
There are several interesting open problems associated with our poly-
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hedral results and we would like to close our exposition with a short
discussion of some of these problems.

The most interesting subject for further research appears to be a
better characterization of Mébius Ladders. As we have seen in Section II,
these digraphs give rise to a very rich class of facets of PAC(D) and

we do not know of any nontrivial facet inducing inequality whose support
does not contain a Mébius Ladder. (Also dicycles can be viewed as Mibius
Ladders, as we have pointed out.) In fact, Definition II.13 is designed

tc postulate exactly those properties which are needed in our proof of
Theorem II.20. However, the axioms given in Definition II.13 do certainly
not give rise to an efficient procedure for deciding the membership of

a digraph to the defined class. A better understanding of the nature of
Mobius Ladders seems to be of great value, in particular, a better charac-
terization is necessary to be able to attack the separation problem for
PAC(D) associated with Mgbius Ladders.

A less ambitious, but nevertheless nontrivial task is the polynomial
time detection of violated Wheel or Fence Inequalities, the former class
being an example of a better characterized subclass of M6bius Ladder In-
equalities. Of course, the solution of the same problem is interesting
for any well-characterized subclass of MSbius Ladder Inequalities, some
of which have been outlined in Section II.

All theorems stating the facet defining property of certain inequali-

ties de g d0 for PAC(D) presented in Section II required only that

the support Dd of these inequalities be contained in D. The general
technigque to prove these result was to show that de S do defines a
facet of PAC(Dd) and then derive the general result by lifting the in-

equality to a facet defining inequality for P _(D) by adding zero-com-

AC
ponents to d for all a € A(D)\~A(Dd). This procedure is often called

trivial lifting (“trivial" because all lifting coefficients are zero).
While it was easy to show that trivial lifting is possible in all cases
considered in Section II, we have unsuccessfully tried to obtain a ge-
neral result of this kind, namely, under what conditions is it true that
a facet defining inequality for PAC(D) can be trivially lifted to a

facet defini i i ! Yo i

facet d ining inequality for PAC(D ), where D' is any superdigraph
Remember that for PEO we have a related result, namely the Trivial

Lifting Lemma IV.6, which states that every facet of PEO

vially lifted to a facet of PES1 . In the case of PAC(D) however, the

can be tri-
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facet defined by the inequality X £ 1 for some a € A(D) cannot be
trivially lifted to a facet of PAC(D') where D' arises from D by

adding the reverse arc of a to A.

A number of Further research problems are associated with weakly
acyclic digraphs. Also here, a 'nice" (nonpolyhedral) characterization
would be desirable. A related problem is to investigate minimally strong-
ly eyclic digraphs, i. e. strongly cyclic digraphs in which the deletion
or contraction of any arc results in a weakly acycliec digraph. (The 3-
Fence is a trivial example.) In Section III, we have given some construc-
tions preserving weak acyclicity and provided sufficient conditioms for
a digraph to be weakly acyclic, but we feel that stronger results are
possible. All nontrivial facet inducing digraphs we have discovered, ex-
cept for the dicycles, are contractible to an orientation of K3 3

3

Since all strongly cyclic digraphs must be nonplanar by Remark III.7
they must be contractible to an orientation of Ky 5 or R, by Kura-
3

towski's characterization of nonplanar (di-)-graphs. We could not prove
but we conjecture that D5 is weakly acyclie, A partial enumeration of

the vertices of PAC(DS) on a computer supports our conjecture. Such a

result would be a strong motivation to consider whether the class of all

digraphs not contractible to an orientation of K3 5 are weakly acyclic.
]

By the Lucchesi~Younger Theorem we know that the system of inequali-
ties defining Pg(D) := {y@®A|0Sy14=1, y(C)2l for all dicycles C in D}
is totally dual integral (TDI) for planar digraphs.
It should be investigated whether the linear system defining PC(D) is

totally dual integral for weakly acyclic digraphs. This would imply an
interesting new min-max result relating the maximum weight of an acyelic
arc set in a weakly acyclic digraph to the minimum weight of a certain
dicycle covering in the digraph. However, our efforts to prove this have
failed so far. The main reason appears to be the absence of an appropriate
characterization of weakly acyclic digraphs and we feel that the solution
to this problem will be a major contribution towards an answer to the
TDI-ness question.

With respect to the linear ordering problem we do not know any in-

equality defining a facet of P:O which - in its nonnegative support
reduced form - has other coefficients than zero and one. We believe there
are such facet defining inequlities. It would be interesting to have a

good criterion to determine whether an inequality defining a facet of

. n
PAC(Dn) also defines a facet of PLO .
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