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Let D, be the complete digraph on n nodes, and let P{, denote the convex hull of all incidence
vectors of arc sets of linear orderings of the nodes of D, (i.e. these are exactly the acyclic
tournaments of D,). We show that various classes of inequalities define facets of P, e.g. the
3-dicycle inequalities, the simple k-fence inequalities and various M&bius ladder Inequalities, and
we discuss the use of these inequalities in cutting plane approaches to the triangulation problem
of input-output matrices, i.e. the solution of permutation resp. linear ordering problems.
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1. Introduction and notation

This paper is a continuation of our paper Grétschel, Jinger and Reinelt (1985)
on the acyclic subgraph polytope. The polytope associated with linear orderings is
a face of the acyclic subgraph polytope. Our main objective is to investigate which
of the inequalities shown to define facets of the acyclic subgraph polytope in our
former paper also define facets of the linear ordering polytope. We adopt the
notations in graph theory and polyhedral theory of that paper.

A linear ordering (or permutation) of a finite set V with |V|=n is a bijective
mapping 0:{1,2,...,n}-> V. For u,ve V we say that u is ‘better than’ or ‘before’
v if o' (u) <o~ '(v). Among all possible linear orderings of V we want to find a
linear ordering which is the best according to some criterion. In many applications
a ‘value’ or a ‘cost’ can be associated with a linear ordering in the following way.
For every two elements u, v V a value ¢, and a value c,, are given which can be
interpreted as the profit we obtain from having u ‘before’ v resp. v ‘before’ u ina
linear ordering. Then the total value of a linear ordering clearly is given by

Cupe
o Hu)y<a " (v)

Given a linear ordering of the nodes V of a digraph then the arc set
{(4, v)| 0™ (u) < o™ }(v)} forms an acyclic tournament on V, and similarly, if (V, T)
is an acyclic tournament then this induces a linear ordering of V. Using this graph
theoretical interpretation we can state the linear ordering problem as follows.
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Given a complete digraph D, =(V, A,) with arc weights ¢, for all (i, j) € A,, find
a spanning acyclic tournament (V, T) in D, such that
e(T)= Y ¢
(i,)eT
is as large as possible. This problem is NP-complete, cf. Garey and Johnson [1979).

For ease of notation, whenever we shall use the word tournament in the sequel
we shall mean the arc set of a spanning tournament.

The linear ordering problem is sometimes also called the permutation problem
(Young (1979)) or the triangulation problem (Korte and Oberhofer (1968), (1969))
and is closely related to the feedback arc set problem and the acyclic subgraph problem,
see Gratschel, Jinger and Reinelt (1985) for a discussion of these relations, and
see Lenstra (1973), Marcotorchino and Michaud (1979) and Wessels (1981) for real
world applications of the linear ordering problem in triangulation of input-output
matrices, scheduling (minimizing average weighted completion time), sports,
archeology, social sciences, and psychology.

In subsequent constructions we will frequently have to manipulate acyclic tourna-
ments. The following notation will be convenient: (i), i,, ..., i,) denotes the arc set
of the acyclic tournament {(i, i) |j < k}, i.e. (i}, iy, ..., i,) is the acyclic tournament
induced by the linear ordering defined by the mapping o (}) =pforj=1,...,n

2. Dimension, valid inequalities

Let D,=(V, A,) be the complete digraph of order n, and set
o, ={Ac A,|A is acyclic}, @1
7, ={T< A,|T is an acyclic tournament}. (2.2)

Clearly, 7, = o, and for every A € o, there existsa T e 7, with A < T, Given weights
¢y for every arc (i, j) € A,, then the acyclic subgraph problem (for D,) is to solve
max{c(A)| A€ #,} while the linear ordering problem can be stated as max{c(T)| T e
7.}. In the following way polytopes can be associated with the acyclic subgraph
problem and the linear ordering problem.

Let R™, m'=|A,|=n(n—1), denote the real vector space where every component
of a vector xeR™ is indexed by an arc (i,j)€ A,. For convenience we write Xij
instead of x, ;). For every arc set A< A, the incidence vector x* € R™ of A is defined
as follows: xj =1, if (i,j) € A, and xy =0, if (i,j) # A. The acyclic subgraph polytope
PL.on D, is the convex hull of the incidence vectors of all acyclic arc set in D, i.e.

Pic=conv{x*eR™|Ac d,}. (2.3)

(This polytope is denoted P,c(D,) in Grétschel, Jiinger and Reinelt (1985). We
use here the shorter notation (2.3).) Similarly, the linear ordering polytope P{o on
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D, is the convex hull of the incidence vectors of all acyclic tournaments in D, i.e.
Plo=conv{x" eR™|Te J,}. (2.4)

Thus, every vertex of Pic resp. Pio corresponds to an acyclic arc set resp. acyclic
tournament in D, and vice versa.

In order to be able to apply linear programming techniques to solve the linear
ordering problem, we try to find a nonredundant system of equations and inequalities
which is as large as possible and satisfies P{o< {xeR™|Ax<b, Dx=d}.

First we want to determine the dimension of P{, and to find a minimal equation
system for Pfo.

(2.5) Theorem. Let n=2, then the system
xyt+x=1 foralli,jeV, i#}], (2.6)

is @ minimal equation system for Pio.

Proof. We have to prove (a) that every incidence vector of an acyclic tournament
satisfies the equation system (2.6), (b) that the matrix defined by (2.6) has full rank,
and (c) that every other equation d "x = d, with P]o < {x|d"x = d;} can be written
as a linear combination of the equations (2.6).

By definition, if i,j are two different nodes of a tournament 7, then T contains
arc (i,j) or arc (j,7) but not both, thus every incidence vector of a (acyclic)
tournament satisfies the equations (2.6). This proves (a). The proof of (b) is even
more obvious.

To prove (c) we assume that Pl < {x|dTx = d,} where d is a nonzero vector in
R™ We first show that d satisfies d; = d,, for all i # . Let i # j be any two nodes in
V, then the incidence vectors of the acyclic tournaments T, = (i, j, @) and T, = (j, i, @),
where @ is a linear ordering of V\{i,j}, satisfy d"x7=d"x"1=d, Hence 0=
d"x"—d"x"i = d;— d, which implies

dy=d, foralli#j
Let ajx =1 denote the equation x; + x; = 1 for i <j, then we obtain from the relation
above that d =Y, _, d,a; (implying dy=%,, d;) holds, and we are done. [l
(2.7) Corollary. For n=2,
n
dim Pio= ( 2) .0

The proof of Theorem (2.5) shows in addition that the equation system (2.6) is
also a minimal equation system for the tournament polytope, i.e. the convex hull of
the incidence vectors of the tournaments contained in D,. (The tournament polytope
is obviously the polytope associated with the bases of a partition matroid on A,
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and a complete and nonredundant linear description of this polytope is given by
the equation system (2.6) and the nonnegativity constraints.)

Acyclic tournaments are by definition exactly the acyclic arc sets in A, which for
every two nodes i # j contain one of the arcs (i, j) or (j, i) but not both. Thus, the
incidence vectors of acyclic tournaments are exactly those vertices of Pic satisfyi.ng
the equations (2.6). Since the inequalities x; +x;; < 1 for all i # j are valid inequalities
for Pic we can conclude

(2.8) Remark. For n =2, the linear ordering polytope Pfo is a (3)-dimensional face
of the acyclic subgraph polytope Phc. O

Remark (2.8) has an important consequence. Namely, every inequality valid with
respect to Pac is also valid with respect to P{,, and moreover, every complete
system for P, induces a complete system for P{,. It is, however, not true—as we
shall see—that every inequality defining a facet of Pic also defines a facet of P{o.

We now describe the classes of inequalities valid for P4 which were introduced
in Grétschel, Jiinger and Reinelt (1985). All these inequalities define facets of Pi.
In the next section we shall investigate which of these inequalities define facets of
Pio.

By definition, an acyclic arc set contains no dicycle. This implies that the intersec-
tion of the arc set of every dicycle C with every acyclic arc set contains at most
[C|—1 arcs. This immediately implies that the inequalities

x(C)= 3% x;=|C|-1, C adicyclein A, (2.9)
whec

are valid with respect to Pic and P{o. If C is a k-dicycle we call x(C)<k-1a
k-dicycle inequality.

For every integer k=3 a digraph D =(V, A) of order 2k is called a simple k-fence
if V consists of two disjoint node sets U = {u,, u,, . . . seyand W={wy, w,, ..., w}
such that

k
A= ‘LJ ({(uy wit o {(w; v) ' ve U\{u}}).
=]
The nodes in U are called the upper nodes, those in W the lower nodes. The arcs

(u, w;) going ‘down’ are called pales, the arcs (wy, u;), i# ], going ‘up’ are called
pickets, see Fig. 2.1 for simple 3-fence.

Fig. 2.1.
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A simple k-fence is a particular orientation of the complete bipartite graph K.
IF Ac A, is the arc set of a simple k-fence, then

x(A)sk’-k+1=|A]-k+1 (2.10)

is called a simple k-fence inequality. All simple k-fence inequalities are valid with
respect to Pjc and thus with respect to Piq.

Let C), C,, ..., C, be a sequence of different dicycles in the complete digraph
D, such that the following holds:

(2.11) k=3 and k is odd.

(2.12) C, and Cp,, (i=1,...,k—1) have a directed path P, in common, C, and

C, have a dipath P, in common.
(2.13) Given any dicycle C, je{l,..., k} set

I={1,...,k}n({j—2,j—4,j=6,...}u{j+1,j+3,j+5,... H.

Then every set (L_J:‘=l C)\{e/|ie J} contains exactly one dicycle (namely
C,), where g, i€ J, is any arc contained n the dipath P,

(2.14) The cardinality of every smallest feedback arc set in UL, Cyis (k+1)/2
(or equivalently the largest acyclic arc set has cardinality IU:‘_1 Cl-
(k+1)/2)

Then we call the arc set M =UL, C,; a Mbbius ladder. For convenience we say

that the dicycles C;, Ciq, i=1,. .., k—1and C,, C, are adjacent (with respectto M.)

Assumption (2.14) implies immediately that for any Mdbius ladder M contained
in D, the equality :

(M) < |M|-"2L1 . (2.15)
is valid with respect to Pjic and thus also with respect to Plo.

The inequalities (2.10) can be generalized as follows. If D =(V, A) is a digraph,
(i, k) an arc of D and j a node not in D, then the digraph D'=(V', A") with
V= Vu{j}, A=A\, KD u{(i)), (J, k)} is called the digraph obtained by
subdividing arc (i, k).

A digraph D =(V, A) is called k-fence if it can be obtained from a simple k-fence
by repeated subdivision of arcs.

For an arc set A in D,=(V, A) let V(A)< V denote the set of nodes in D,
occuring as endnodes of arcs in A. Then the following inequalities are valid with
respect to Pic and Pio:

x(A)=<|A|-k+1 for all k-fences (V(A), A). (2.16)

Clearly, the inequalities (2.10) are special cases of (2.16). A main result of Grotschel,
Jiinger and Reinelt (1985) is that all inequalities (2.9), (2.15), (2.16) define facets
of Pjxc.

Let G,=[V, E] denote the skeleton of Py, i.e. G, is a graph whose nodes are
the vertices of P{'o, and two nodes are adjacent in G, if and only if they are adjacent
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(as vertices) on P{o. It is well-known in algebra that all n! permutations can be
obtained by starting with any permutation, applying a transposition and continuing
this procedure further (n!—2) times. One can easily show that the incidence vectors
of two permutations (linear orderings) obtained by a transposition from each other
are adjacent on P{q, cf. Young (1978). Thus we can conclude that G, is hamiltonian.
Moreover, Young (1978) showed the deeper result that G, has diameter two, thus
in principle, it is possible to reach any vertex of Plg from any other vertex in at
most two steps walking along edges of Pf,.

3. Facets of P{,

We shall now determine which of the inequalities (2.9), (2.15), (2.16) define facets
of the linear ordering polytope. We start by proving a useful lemma.

(3.1) Trivial-Lifting Lemma. Suppase a”x < a, defines a facet of Pls, n=2. Setting
a;=ay for all (i,j)e A, and @, p4y'= 8,1, ;=0 fori=1,..., n then @a"x < a, defines
a facet of PJ&.

Proof. First note that a set of vectors in P, is affinely independent if and only if
it is linearly independent since the affine hull of P{, does not contain the zero
vector. Moreover, it is obvious that @"x < a, is valid with respect to P} and is not
satisfied by all vectors x € P{g" with equality. It remains to prove that PJ&! contains
dy=dim P{5' = (";") linearly independent vectors satisfying @ "x < a, with equality.

Since a "x < a, defines a facet of P{othere are d :=dim P{g = (3) linearly indepen-
dent incidence vectors of acyclic tournaments Ty, Ty, ..., Ty in D, satisfying this
inequality with equality. Considering the incidence vector x™, i=1, ... ,d as the
i-th row of a (d, n(n—1))-matrix M’ then the linear independence of the vectors
implies the existence of a nonsingular (d, d)-submatrix M of M'. Let B< A, denote
the set of d arcs of D, corresponding to the columns of M.

We construct d, = d +n acyclic tournaments T;,j=1,..., d,and S, i=1,...,n
of D, as follows. If T, je{1, ..., d} is given by the linear ordering (iy, iz, ..., in)
then set T):=={n+1,1,..., i,). Moreover, choose any acyclic tournament, say S, in
D, whose incidence vector satisfies a "x < a, with equality. Assume S =(j, /2, ..., /n)
then set S;'={j1, ja, ..., o B+ 1, Jis1, .-, Ju)s i=1,..., n. The incidence vectors of
the acyclic tournaments T, S; in D, satisfy d7x < a, with equality by construction.

Now consider the following (d,, d,)-matrix N. The first d rows of N are formed
by the incidence vectors of the tournaments T}, T%,..., T4, and the last n rows
d+1,d+2,...,d, are formed by the incidence vectors of the tournaments
8, 83,..., S, the first d columns of N correspond to the arc set Bc A, defined
above, and the last n columns to the arcs (i, n+1),i=1,... ,

Clearly, the principal (d, d)-submatrix of N is the nonsingular matrix M. The
(d, n)-submatrix N, consisting of the first d rows and the last n columns of N is
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a zero matrix by construction. The (n, n)-submatrix N, consisting of the last n rows
and last n columns of N has the following form

10 -0
N2= "6
1 e 1

and thus is nonsingular. M and N, nonsingular and N, a zero matrix implies that
N is nonsingular.

Hence, we have shown that the incidence vectors of the 4, acyclic tournaments
T!, S, are linearly independent which implies that a’x<a, defines a facet of
P, O

Lemma (3.1) implies the interesting fact that whenever we know that an inequality
Y ayx, < a, defines a facet of Pl then the same inequality also defines a facet for
all linear ordering polytopes P¥o, k= n, in other words, a linear ardering polytope
‘inherits’ all facets of linear ordering polytopes of lower dimension.

The trivial inequalities, i.e. the hypercube constraints 0<x; <1, define facets of
P7,. However, the classes of facets given by the upper resp. lower bounds are
identical.

(3.2) Proposition. Let n=2, then the following holds.

(a) For all (i,j)€A,, x;=0 defines a facet of P!o. No two of these facets are
equivalent with respect to Plg.

(b) For all (i,j)€ A,, x;=<1 defines a facet of Pio. No two of these facets are
equivalent with respect to Plo.

(¢) Two inequalities x,>0 and x,,<1 are equivalent with respect to P, if and
onlyif p=Jj, q=i.

Proof. Itis trivial to see that x, =0 defines a facet of P?5. Thus lemma (3.1) implies
that the nonnegativity constraints give facets of P{oforalln=2. The nonequivalence
of two different nonnegativity constraints is obvious. This proves (a).

Since Pl is contained in the affine space defined by the equation system 2.6),
we get that x; =0 holds if and only if x; =1 holds. From this and (a), (c) and (b)
follow immediately. (1

(3.3) Theorem. Let n=3, then for every 3-dicycle {(i, J), (J, k), (k, i)} contained in
D, the 3-dicycle inequality

x1j+x_,'k+xk,-$2

defines a facet of Plo.

Proof. This is trivial to show for P} and follows for Plg, n=3,by Lemma (3.1). O
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It was shown in Grétschel, Jinger and Reinelt (1985) that all k-dicycle in-
equalities, 2=< k=< n, define facets of the acyclic subgraph polytope Pi.. We shall
see now that the 3-dicycle inequalities are the only ones of this class that also define
facets of P{o. We first prove a lemma.

(3.4) Lemma. Suppose a’x < a,, a=0, defines a facet of P{, n=3, and let (V, A)
be the subgraph of D,=(V, A,) induced by a, i.e. A={(i,j)e A,|a,; #0}. Suppose
(V, A) contains a node j which is contained in exactly two arcs (i,7), (j, k)€ A with
i# k. Then every vector xe€ P}q satisfying a x < ao with equality also satisfies the
3-dicycle inequality X+ X+ X <2 with equality.

Proof. Let T(a) denote the set of acyclic tournaments whose incidence vectors
satisfy a"x < a, with equality. We first prove that a; = Qe

Suppose a; < ay. First observe that each tournament Te T(a) contains at least
one of the arcs (4, j) and (j, k), for otherwise the tournament T resulting from T
by moving j to the last position yields a"x”" > q,.

Since a"x<a, defines a facet there exists T=(v,...,v,)€ T(a) with (i,/)e T
but (j, k) ¢ T. And since the outdegree of j is one we may even assume that v, =],
Setting S =(v,, vy, ..., v,-,) we obtain a"x*—a"x" =g, ~ a,>0; but this contra-
dicts the assumption that a "x=< a, is valid. Similarly, we can prove that a; is not
larger than ay, and hence ay = ay, say a'=a;=a;>0.

Let b"x = o denote the equation a(x, +x,;) = & which is satisfied by all x e P,
Then the inequality a"x+b"x < ao+ a is equivalent to a "x < a, with respect to Prg.
Now denote the 3-dicycle inequality o(x;+xp+xy)<2a by ¢"x<2a, then we
obtain that a”x < a, is equivalent to the inequality ¢"x+d "x <2a +a,— o, where
d is a vector arising from a by setting

dyqi=a,, forall (p, q)€ AN, ), (J, k), (i, k)}

3.5)
dU =dp=0,dyp=a,+a.

It is easy to deduce from the validity of a"x < a, that d "x < a,— « is valid for Plo.
Hence we obtain that a’x<a, is equivalent to an inequality which is the sum of
two valid inequalities one of which is the 3-dicycle inequality ¢"x<2a and the
other d "x < ay—a. This implies that for every vector x€Plo, a'x<a, is satisfied
with equality if and only if both ¢"x < 2a and d "x < a, — « are satisfied with equality.
this proves the lemma. [

Lemma (3.4) together with theorem (3.3) implies the following:

(3.6) Corollary. If a’™x<a,, a=>0, is a valid inequality with respect to P}g, n=3,
such that the subdigraph (V, A) of D, induced by a contains a node j contained in
exactly two arcs (i, j), (j, k)€ A, i # k, thena Tx < a, is either equivalent to the 3-dicycle
inequality x;+ X, + x,y <2 or does not define a facet of P?o. O
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(3.7) Corollary. No k-dicycle inequality (2.9), k=4, defines a facet of Pio.

Proof. Observe that the subdigraph induced by a k-dicycle inequality, k= 4, contains
nodes j as required in (3.6) and that no k-dicycle inequality is equivalent to a
3-dicycle inequality. [

Moreover, lemma (3.4) shows that facet lifting by subdivision of arcs does not
work with respect to Pyq, namely:

(3.8) Corollary. Suppose a"x < a,, a =0, defines a facet of P{o, n=3, and let (i, )
be an arc of A, with a;> 0. Set d,, = a,, for all (p, q)e A,N{(i, N}, @;=0, @y p4y =
Q= ap and @, 0= 8,4,,'=0 for allp#i, j, n+1, then a"x < ay+ ay is valid
for P1E! but does not define a facet of P15, O

The procedure with which @7x < a,+ ay is obtained from a” < a, is called sub-
division ot an arc. As shown in Grdtschel, Jiinger and Reinelt (1985), for the acyclic
subgraph polytope Pjc this subdivision method always produces facet defining
inequalities from (nontrivial) facet defining ones. By Corollary (3.8) this is not true
for the linear ordering polytope Pfq.

(3.9) Theorem. Let n=6 and let Ac A, be the arc set of a simple k-fence, k= 3. Then
the simple k-fence inequality

x(A)<k*-k+1
defines a facet of Pio.

Proof. Suppose (V, A) is the given simple k-fence in D, If we can show that
x(A)=< k*—k+1 defines a facet of P3k, i.e. of the linear ordering polytope on the
complete graph with node set V, then the trivial-lifting lemma (3.1) implies that the
simple k-fence inequality also defines a facet of Pro.

Thus we may assume that n =2k, and for notational convenience we assume that
V={1,2,..,n}, U={1,...,k}, W={k+1,..,n} where U resp. W are the set of
upper resp. lower nodes of the simple k-fence (V, A). Moreover, we denote the
minimal equation system (2.6) for P{o by Hx=1 where H is a ((3), 2(3))-matrix
of full rank.

Let F be the face of P, defined by the k-fence inequality, i.e. F=
{xe P{o|x(A)=k*—k+1}. To prove the theorem, we assume that there is an
inequality bTx < b, valid with respect to P} such that F < G={x € P{o|b"x= b}.
If we can show that there are a number x>0 and a vector A €R? such that
bT=pa”+ATH, where a’x = x(A), then we are done.

By addingto b an appropriate multiple of the row of H correspondingto x;+x; =1
we can make sure that either by = a; or by = a, for all (i,) € A,. Thus, since (V, A)
is an orientation of the complete bipartite graph K. and therefore contains no




52 M. Grétschel, M. Jinger, G. Reinelt | Facets of the linear ordering polytope

antiparallel arcs and since U and W are stable node sets, we may assume that our
initial vectar b satisfies

by = ay for all (i, j) € A, (1)
by=a;=0 for all arcs (i,j) e A,
with I1si<j<kork+lsi<j=sn (2)

It is known, cf. Grétschel, Jinger and Reinelt (1985, Prop. (2.11)), that an acyclic
arc set B < A satisfies a’x” = k?—k+1 if it either contains one pale and all pickets,
or two pales, say (i, k+i) and (j, k+;) and all pickets except for one of the two
pickets (k+1i, j), (k+j, i).

An acyclic tournament containing the pale (k, 2k) and all pickets is T=
(m, k, 2k, o) where 7 is any linear ordering of k+1,..,2k—1 and o is any ordering
of 1,...,k~1. Hence a"x" = k*~k+1 and therefore, by our assumption Fc G,
b™x" = by. Now suppose T,=(m, k, 2k 1,..., k—2,k—1) and T,=(m k,2k,1,...,
k— 1, k—-2) then 0= bTxT‘ - bTle= bk—2,k~1 - bk—-l.k—-2' By (2) we have bk—Z.k—l =0
and hence b_, ., =0. With the same argument we obtain

by=a;=0 foralll=i<j<k. (3)
Similarly we can consider the acyclic tournaments

Ta=(k+1,k+2,...,2k—1, k 2k o),

Ty=(k+2,k+1,k+3,..,2k—1, k, 2k, o)
whose incidence vectors x> and x™ are in F and therefore also in G. Again we get
0=b"x"~b"x"™=byy 42— bisrsr-1 Which, since Brries2=0 by (2), implies
bi+24+1=0. Repeating this argument yields

by=ay=0 forallk+l<i<j<2k (4)
Now consider the following three acyclic tournaments:
Si=(k+1,k+2,...,2k~2,k—1,2k—1,k 2k 1,2,..., k—2),
Sy=(k+1,k+2,...,2k—-2,2k—1,k 2k, k—1,1,2, ..., k—2),
Sy=(k+1,k+2,...,2k—2,2k k—1,2k—1,k 1,2, ..., k—2).

By construction 8, contains two pales and all but one picket, S, and S, contain one
pale and all pickets. Thus the incidence vectors of S,, S, and S, are in F and
therefore in G. By taking differences we get

0=b"x%—pTx% = Bak—1akF bak—r ko1 + biar+ bpry
- b2[g2k~1 - bk—l,zk—l - bzk.k“ bk—l,k-

Six of the eight values b, are known from (1),...,(4), and hence we obtain
bak~1je~1= by Let us set a:=b,, .. Repeating this argument we obtain that each
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arc in A, antiparallel to a pale has b-value q, i.e.
bk+1_l=a; i=l,...,k. (5)

We now show that each arc in A, antiparallel to a picket has b-value «. Namely,
observing (1),...,(5), consider

0=bTx%—b"x%=by_y sp-y+ br—y et br—1,2k = Bakm1 k-1 = Bakmt1 — Bapk
=1+0+by_1p—a—0—1,
then we have b,_, ;= a; which by analogous arguments implies
byj=a forl<isk k+l<j<n, j#k+i (6)

Let A e RY be the vector defined by A, =0if Isi<jskork+lsi<jsnmi;=a
else, then (1), ..., (6) imply

bT=(1-a)a"+ATH. (7

Now consider the acyclic tournament S, (which has one pale) and the reverse
tournament S,. Since x5 € P} we get

bTx%=by=k(k—1)+1+(k=1)a=b"x%= (k(k-1)+)a+k—1.

This implies @ =<1, and therefore, (7) is the desired representation of b. This
completes the proof. [

The following observations that follow from Corollary (3.6) are immediate.

(3.10) Remark. (a) The simple k-fence inequalities are the only ones in the class
of k-fence inequalities (2.16) that define facets of P{o. (b) No two different simple
k-fence inequalities are equivalent with respect to Pro.

Corollary (3.6) also implies that a Mdbius ladder having a node of indegree and
outdegree equal to one cannot induce a facet of P{,. Let us therefore call a Mdbius
ladder, cf. (2.11), .., (2.15), simple if the digraph (V(M), M) does not contain a
node with indegree and outdegree equal to one. We now show

(3.11) Theorem. Let M be the arc set of a simple Mdbius ladder in D, consisting of
k=3 dicycles C,, C,, ..., Cy of length four such that each pair of adjacent dicycles
C, Ci1, i=1,...,k—1, C,, C, intersects in exactly one arc, say (a, b)), i=1,...,K,
and such that the arcs (a;, b,), i=1, ..., k form a matching in D,, cf. Fig. 3.1. Then
the simple Mdbius Ladder inequality

k+1 k+1

x(M)<|M|-—==3k-——

defines a facet of Piq.
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Proof. We shall proceed in a similar way as in the proof of theorem (3.9). In view
of the trivial lifting lemma (3.1) it is sufficient to show that x(M)=<|M|—(k+1)/2
defines a facet of P?%. So we assume n=2k

As before we denote the minimal equation system (2.6) for P{g by Hx=1.
Denoting ¢"x=x(M), c,=3k—(k+1)/2 and assuming that there is a valid
inequality d"x=<d, for P, with {xe Plg|lc"x=c}c{xe Plo|d x=d,} it is
sufficient for the proof of the theorem to show that there are a number =0 and
a vector A eRY such that d7 = ue” +ATH.

For notational convenience, we set {1,3,5,...,2k—1}={ay, a,,..., a;}, and
{2,4,6,...,2k}={by, b,, ..., b}, i.e. the node set of D, is V={1,2,...,2k}. This
implies that the intersection of the dicycles C,, C;,, i=1,...,k—1, resp. C;, Cy is
the arc (2i—1,2i),i=1,..., k

It is clear that if for any pair of different nodes i, je V we can present a partial
ordering T on V whose incidence vector xT satisfies ¢"x” = ¢, and which does not
imply i<j or j<i, we have shown the existence of two linear orderings on V in
one of which i is directly before j and in the other j directly before i. More precisely,
there are linear orderings

Tl=<a: i)js ﬂ): T2=(anjs ia ﬂ)r
where @ U B consists of all nodes in V\{j,;}, satisfying ¢™xTi=¢, and therefore
dTxT=d,, k=1,2. In such a case we have

O0=dy—dy=d"xT1—d"xTa= d,—d,

and therefore dy = d;;.
With the same argument as in the proof of (3.9) we can assume that
dy=cy for all (i, j)e M,

3.12
dy=cy;=0 for all (i,j) e A \{(r, 5)|(r, s)e M or (s, r)e M} with i<(j. )
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First we show that d, =0 for all (i, j) € A\{(r, 8)|(r, s}e M or (s, r)e M} (i.e. the
arcs which are neither in M nor antiparallel to any arc in M). Clearly, by symmetry
it is sufficient to do this for the arcs (i, 1), ie I ={3,5,6,7,...,2k—3,2k—2,2k~1}
and for (j,2), jeJ=1{4,5,6,7,...,2k—3,2k—2,2k}. By the discussion above we
only have to show for every pair {1, i} resp. {2, j} the existence of partial orderings
on V which neither imply i<1 nor 1< resp. neither j<2 nor 2<j and whose
incidence vectors satisfy ¢"x = ¢, (and therefore d"x =d,).

The partial ordering defined by the Mobius ladder M minus the arcs (1, 2), (3, 4),
(7,8),...,(2k—7,2k~6), (2k—3,2k—2) does this for all pairs {1,i}, ie
I\{2k—2,2k—1}, and for all {2,5}, je J\{2k -3, 2k}. For i€ {2k—2,2k~-1} and
je{2k—3,2k} we can take the partial ordering defined by M minus the arcs (1, 2),
(5,6), (9,10),...,(2k—9,2k—8), (2k—5,2k —4), (2k — 1, 2k). This proves the first
claim.

Now let

a=(6,10,14,...,2k—8, 2k —4, 2k),
B=(1,11,15,...,2k—11,2k~7, 2k —3),
y=(8,12,16,...,2k—10, 2k —6, 2k —2),
8=(5,9,13,...,2k—9,2k—5,2k—1)

Assume dy, = £ and consider the following linear orderings on V:

TS = {d, ﬂa 1) 21 3: 4: Y 8)1 T4= (ar Bx 21 3, 4: 11 Y 5),
TS=(a1 ﬁl 3! 4: ll 2: Y 6)! T6=(a1 ﬁ: 4! 1) 2’ 35 Y 8)'

In view of axiom (2.13) it is easy to verify that ¢"x” = ¢, and therefore d 'x "' =d,
for i€ {3, 4, 5, 6}. Now we have

0=dy—dy=d x5 —d"x™
=dy+dyytdyy—dy—dy —dy
=14+0+d4,—d; —0—1
and therefore d,,=d,, = £ By taking the other appropriate differences we get
dy=dy=dy=dp=§

and in the obvious way d, = ¢ for all arcs (i, j) such that (j, i)e M
Defining A e R® by A, = ¢if (i, j) € M or (j, i) € M and A; = 0 otherwise, we obtain

dT=(1-¢)cT+AH.

Now consider the acyclic tournament T; and the reverse tournament T__,. By construc-
tion we have d "x™ =d,. Using the results about d derived above we get d x5 =
3k—(k+1)/2+£(k+1)/2 and d"x T = g3k — (k+1)/2) + (k+1)/2. Since x" e P{o
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we have by assumption d "xTs< d,,. This implies £=<1, and thus for u =1—¢
dT=puc"+1"H

is the desired representation. [

Using the same method of proof as above we can show the fallowing more general
result.

(3.13) Theorem. Let M be the arc set of a simple Mébius Ladder in D, consisting of
k=3 dicycles C,, . .., C, having the following (additional) properties:

(3.13.1) The length of C, is three or four, i=1,...,k

(3.13.2) Two adjacent dicycles have exactly one arc in common.

(3.13.3) If two nonadjacent dicycles C; and C;, i <j, have a common node, say v,
then v either belongs to all dicycles C,, C;.,, ..., C; or to all dicycles C,
Gy, Cy Cy, Cy,..., C

Then the Mébius Ladder inequality

k+1
x(M)$.|M[—T

defines a facet of Pi,.

The proof of Theorem (3.13) is not more complicated than that of Theorem (3.11).
However, quite a number of notational inconveniences arise which make it technical
ugly. We therefore give a sketch of the proof only.

Sketch of the proof. We start as in the proof of (3.13)assuming the existence of a
valid inequality d "x< d, defining a face of P{ which contains the face defined by
the Mdbius ladder inequality. We can make assumption (3.12) about the coefficients
of d

First we show that for any two nodes p, g which are on a 4-dicycle C, of M and
are not adjacent on C,, d,, =d,, =0 holds. This is done by exhibiting a partial
ordering where neither p before g nor g before p and extending these partial
orderings to linear orderings appropriately.

Then we show that for any two nodes p, g such that (p, g) is an arc of M, i.e.
d,, =1, we have d,, = £ Here we use the same technique as in the proof of (3.11)
to show that the arcs antiparallel to arcs of the Mgbius ladder have d-value &

Finally we show that, for any two nodes p, g of M which are not on a common
cycle of M, d,,=d,, =0 holds. For this we construct a partial ordering in which
neither p before g nor g before p holds and extend this partial ordering appropriately
to linear orderings. This is the most complicated construction since a number of
cases depending on the ‘relative location’ of p and g in M have to be considered
to show that such a partial ordering indeed exists. Of course all linear orderings
constructed above must have the property that their incidence vectors satisfy the
Mobius ladder inequality with equality. O
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It is clear that all Mdbius ladders satisfying the assumptions of Theorem (3.11)
also satisfy the assumptions of Theorem (3.13), thus the latter theorem is more
general. Figures 3.2 and 3.3 show two simple Mdbius ladders which satisfy
(3.13.1), ..., (3.13.3). The inequalities induced by the M&bius ladders shown in Figs
3.2 and 3.3 define facets of P{q, n large enough.

In Fig. 3.3 we have labeled two nodes v and w. If we identify these two nodes
then the resulting graphs is still a Mdbius ladder satisfying (3.13.1}, (3.13.2), but
not (3.13.3). We believe that our assumption (3.13.3) is not a necessary one for the
result of (3.13), it only makes the technical details of the proof much easier. We in
fact conjecture more generally that all simple Mébius ladders induce facets of Pf.
However, since we do not have a ‘nice’ constructive characterization of Mdbius
ladders we do not see how one can prove this.

It is easy to see that within each of the classes of facet defining inequalities of
Pl described in (3.2)(a), (3.3), (3.9), and (3.13) no two different inequalities are
equivalent; moreover, no two inequalities from different classes are equivalent with
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one exception, namely, every simple 3-fence is a simple Mobius ladder described
in (3.10) consisting of three 4-dicycles. Thus we can conclude:

(3.14) Theorem. Letn=2, and let D, =(V, A,) be the complete digraph on n nodes.
Then the following system of equations

xitx,=1, iLjeV, i#}, (3.15)

is a minimal equation system for the linear ordering polytope Pio. The following four
classes of inequalities define facets of Pl

x;=0 1<ij=n, (3.16)
Xyt X+ X <2, I<i<j<ks=n, (3.17)
x(A)<k®~k+1 for all simple k-fences A< A,, k=4, (3.18)
k+1 , vy
x(M) =3k 5 for all simple Mébius ladders M < A,
as defined in (3.13), k=3. (3.19)
The system of equations and inequalities (3.15), ..., (3.19) is a partial nonredundant

linear characterization of P{o. 0O

4. Final remarks

The partial description of Pf'g given in (3.14) can be used in a linear programming-
cutting plane procedure to solve linear ordering problems. We have implemented
such a method and combined it with branch-and-bound-techniques. This code seems
to be quite successful. We were for instance able to triangulate all input-output
tables available to us. The largest dimension of such a table was n = 60 (see Grotschel,
Jinger and Reinelt (1984b) for an economic analysis of these results). We do not
know of any other code that can handle such sizes.

The description of Pig given in (3.14) is not complete. We know some further
facet defining inequalities different from those in (3.14). Nevertheless, even the
partial description given by the equations (3.15), the nonnegativity constraints (3.16)
and the 3-dicycle inequalities (3.17) often suffices to prove optimality in an LP-cutting
plane approach. In most of our triangulation problems the optimum solution to the
LP given by the constraints (3.15), ..., (3.17) was integral. Since the integral points
contained in the polyhedron defined by (3.15), ..., (3.17) are exactly the incidence
vectors of acyclic tournaments, an optimum linear ordering was found. A description
of our code and the computational experience with it can be found in Grétschel,
Jinger and Reinelt (1984a).

We can show that the linear ordering polytope is completely described by the
system (3.15),...,(3.17) for n=2,3,4,5. For n=6 the simple Mobius ladders on
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6 nodes (these are the ones shown in Fig.4.1) have to be added, but we do not
know whether these are all facets of Pfo. Actually, Bowman (1972) ‘proved’ that
a complete description of Plq is given by the system (3.15), (3.16) and (3.17). Of

course, each of the inequalities (3.18) or (3.19) provides a counterexample to this,
for n =6, see also Young (1978).

Fig. 4.1,

Because of the simple structure of the equation system (3.15) it is quite easy to
eliminate one half of the variables (without losing too much insight into the structure
of the inequalities etc.) simply by replacing each variable x;, i>j, by 1—x;. This
way we obtain a projection Pro of Plo contained in the space R®. P}y is a
full-dimensional polytope, and each of its vertices corresponds to an acyclic tourna-
ment in D, and vice versa. Our cutting plane procedure for the linear ordering
problem, of course, uses this projection and optimizes over Py instead of Plo,
since this is more space economical.

To give an example of such a projected polytope we have made a drawing of the
polytope PlocR*, Fig. 4.2, This polytope has 6 vertices and § facets. Two facets
are given by the 3-dicycle inequalities, all other facets are trivial.

Z13 ’
I (2,1,3) {1,2,3)

113.4-221 +z33 =2

P / —3

. Pro

Z12 + 23 + 231 = 2

Z13
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