
Online Optimization of Complex Transportation
Systems

Martin Grötschel1, Sven O. Krumke1, and Jörg Rambau1

Konrad-Zuse-Zentrum für Informationstechnik Berlin (ZIB), Germany

Abstract This paper discusses online optimization of real-world transportation systems. We
concentrate on transportation problems arising in production and manufacturing processes,
in particular in company internal logistics. We describe basic techniques to design online
optimization algorithms for such systems, but our main focus is decision support for the
planner: which online algorithm is the most appropriate one in a particular setting? We show
by means of several examples that traditional methods for the evaluation of online algorithms
often do not suffice to judge the strengths and weaknesses of online algorithms. We present
modifications of well-known evaluation techniques and some new methods, and we argue that
the selection of an online algorithm to be employed in practice should be based on a sound
combination of several theoretical and practical evaluation criteria, including simulation.

1 INTRODUCTION

The strategic planning of complex transportation systems such as public transporta
tion networks, automatically guided vehicles in warehouses, etc. has received a con
siderable amount of attention in the last decade. Strategic planning is the stage of
system design where an object (e.g., a telecommunication network) is designed that
will remain static for a certain planning period (the network topology, and edge
capacities will not change) such that a few control parameters (e.g., routing and
switching) will allow an (almost) optimal handling of all input data (within a cer
tain realistic or predicted range). The system itself is usually not yet operational
when this "strategic optimization" takes place. Here, methods of offline optimiza
tion apply. The increasing computing power and significant advances in traditional
optimization techniques have resulted in substantial savings of resources in this area.

Despite many successes of this approach, e.g., for transportation systems, it has
turned out that achieving savings also requires an optimized operational control.
Such a control involves actions to be executed while a system is running; i.e., in
put data arise over time, have to be processed, and (irrevocable) decisions have to
be made before all input data are known. This means that methods of online opti
mization have to be employed. In many cases decision making has to satisfy certain
real-time requirements: every decision has to be made within strict time limits.

In this paper, we survey some new methods (beyond standard competitive anal
ysis) to obtain decision support for the choice of online algorithms in real-world
transportation systems. In each case, we are looking for a "good" online control
on the basis of online algorithms. The methods discussed are competitive analysis
against restricted adversaries (a variant of competitive analysis where the offline
adversary is given less power), analysis under A-reasonable load (we compare the

cost of the online algorithm to a certain property of the input), a-posteriori-analysis
(we perform an approximate, instance wise competitive analysis to compute a lower
bound on the unavoidable cost), and comparative simulation (we compare algo
rithms that run simultaneously in simulation experiments).

These concepts are employed along with standard competitive analysis in real-
world examples. We indicate which combination of methods could support deci
sions best.

The rest of the paper is structured as follows: We start out by sketching our
real-world examples in Section 2. In Section 3 we present the above mentioned
evaluation methods for online algorithms. In Section 4 the applications of traditional
and new methods to real-world systems is discussed. Section 5 summarizes what we
consider the key findings of our research.

2 FOUR REAL-WORLD EXAMPLES AND WHY THEY RAISE QUESTIONS

In this section we introduce four real-world online optimization problems. One com
mon feature is the difficulty to evaluate online algorithms for them.

The first example is the automated stacker crane in a production plant of Siemens
Nixdorf Informationssysteme AG (SNI). The question is in which order the stacker
crane should perform storage and retrieval operations so as to minimize the un
loaded travel time. We show that for the related objective "minimize the makespan"
(the time the system needs to serve a set of requests) we find a 5/2-competitive
algorithm. This is the REPLAN-heuristics already discussed in [10]. This algorithm
is, however, not competitive with respect to the minimization of the total unloaded
travel distance. Shall we use this algorithm anyway?

The second example studies a system of automated guided vehicles for commis
sioning greeting cards in a large distribution center of Herlitz PBS AG, Falkensee,
one of the main distributors of office supply in Europe. Orders specifying a combi
nation of greeting card sets have to be assigned to vehicles. These must stop at the
shelf positions where the corresponding cards have to be collected ("order picking").
The question is how orders should be assigned to vehicles so that the total number
of stops over all vehicles is minimized. It turns out that competitive analysis tells us
nothing about which algorithm to choose in practice. For a greatly simplified prob
lem we show that competitive analysis is even in favor of an intuitively senseless
algorithm. Is there an evaluation method that proves dumb algorithms to be dumb?

The next example is a pallet elevator in the same distribution center. In this case
it was already difficult to isolate a single objective function to be optimized. We
decided to consider several objectives: We want to guarantee a small average and/or
a small maximal flow time over a set of pallets requesting transportation. It turns out
that for these objectives there is no competitive algorithm, mainly because the cost
of an offline solution cannot be bounded from below. Can we evaluate algorithms
without using a lower bound on the offline cost?

Finally, we investigate the integrated elevator system plus conveyor belt that
distributes the pallets among the elevators. We find out that a similar analysis as

in the single elevator case is still valid; the improvements, however, are leveled off
by the conveyor control. Therefore, we studied an integrated optimization model
for the combined elevator-conveyor system. Does this help to improve the overall
performance of the system?

We will give answers to the above questions in Section 4 after we have intro
duced our "evaluation toolbox" in Section 3. Some of the answers are quite satis
factory, others show the need for further research.

3 MODELING AND EVALUATION TECHNIQUES

In this section, we present a sequence of methods to analyze the performance of
online algorithms. The methods are ordered by decreasing mathematical strength,
that is to say, the first method - if successful - yields the most rigorous analysis of
the ones in this section, the last one is merely experimental. (Classical competitive
analysis as described in [10] would belong to the very beginning of the section.)

3.1 Competitive Analysis with Restricted Adversaries

In restricting the class of algorithms for the adversary, one attempts to deal with the
(justified) objection - frequently encountered against competitive analysis - con
cerning the unrealistic power of the adversary against which performance is mea
sured. In standard competitive analysis the adversary is an optimal offline algorithm
which has complete knowledge about the whole input in advance. There have been
a number of approaches in the literature to devise "more realistic" adversary models
for specific problems than the omnipotent standard offline adversary.

For the exposition we consider the Online Traveling Salesman Problem ON-
LINETSP on the non-negative real numbers WQ endowed with the Euclidean metric
(see [10, Example 4] for the ONLINETSP in general metric spaces). The origin of
the salesman is the point 0. In the ONLINETSP requests for visits to cities (points in
a metric space) arrive online while the salesman is traveling. The salesman moves
at unit speed and starts and ends his work at the origin 0. The objective is to find a
route for the salesman which finishes as early as possible.

Each request is a pair <j\. = (tj., X-L), where tj. G R is the time at which request at
is released (becomes known to an online algorithm), and xt G EQ is the point
requested to be visited. It is assumed that an online algorithm does neither have
information about the time when the last request is released nor about the total
number of requests. An online algorithm must base its decisions at time t solely on
the requests released up to time t.

Notice that the offline version of the ONLINETSP in ffi^" can be solved very
easily even in the presence of release times (the problem is almost trivial!). However,
in the online case, there does not exist an algorithm that always finds an optimal
solution. More specifically, it can be shown that there is no deterministic online
algorithm that achieves a competitive ratio smaller than 3/2. The competitive ratio

of 3/2 is achieved by the following very natural and simple strategy MR IN (see [7]
for the proofs):

Strategy MRIN("Move-Right-If-Necessary") If a new request is released and the
request is to the right of the current position of the server operated by MR IN,
then the MRIN-server starts to move right. The server continues to move right as
long as there are yet unserved requests to the right of the server. If there are no
more unserved requests to the right, then the server moves towards the origin 0.

D

In the lower bound construction the offline adversary abuses his power in the
sense that he can move to points where he knows a request will pop up without re
vealing the request to the online server before reaching the point. This has motivated
the concept of a "fair adversary" in the ONLINETSP: A fair adversary always keeps
its server within the convex hull of the requested points released so far. As shown
in [7] this adversary model indeed allows for lower competitive ratios. For instance,
the above mentioned 3/2-competitive algorithm MRIN against the conventional ad
versary is 4/3-competitive against the fair adversary. In addition, one can prove the
following:

Theorem 1 ([7]). There exists an online algorithm for the ONLINETSP in Mj with
against a fair adversary. Moreover, no determin

istic online algorithm can achieve a competitive ratio smaller than
the fair adversary. D

The use of a restricted adversary falls within the concept of comparative anal
ysis, which was introduced by Koutsoupias and Papadimitriou [14]. The authors
compare the performance of an online algorithm for the Paging Problem with that
of the best paging algorithm having limited lookahead. Let IT be a minimization
(online) problem. The comparative ratio of an algorithm ALG for IT relative to a
class B of algorithms is defined as the worst case ratio between the solution cost
produced by ALG and the best solution produced by an algorithm in B. If B is the
class of all offline algorithms for TT, then the comparative ratio reduces to the stan
dard competitive ratio.

The comparative ratio has also been studied in the context of online financial
problems. For most of these problems the standard adversary also appears to be too
strong. To obtain meaningful (theoretical) results about the performance, e.g., of
online portfolio selection algorithms, a comparison with a restricted class of offline
algorithms is used. We refer to [8, Chapter 14] for details.

3.2 Reasonable Load

This concept was motivated by the problem of minimizing the maximal or average
flow time of pallets transported by an elevator. Such a system can be modeled by
the so-called online dial-a-ride problem ONLINEDARP. The concept of reasonable

competitive ratio
against

load also works in a more general setting. However, we do not want to go too much
into abstraction in this paper, and we restrict our attention to ONLINEDARP, which
we explain in the sequel.

We are given a metric space (X, d) with a special point o G X (the origin).
Requests are triples r = (t, a, b), where a is the start point of a transportation task,
b its end point, and t its release time, which is - in this context - the time where
r becomes known to an online algorithm. A transportation move is a quadruple
m = (t,x,-y,R), where x is the starting point, y the end point, and t the starting
time, while R is the set (possibly empty) of requests the server has loaded during
the move. We say in this case, the move m carries R. The arrival time of a move
is the sum of its starting time and d(x,y). A (closed) transportation schedule is a
sequence (mi, m.2,...) of transportation moves such that

- the first move starts in the origin o;
- the starting point of mi is the end point of rru-i ;
- the starting time of mi carrying R is no earlier than the maximum of the arrival

time of rru-i and the release times of all requests in R (it may be later, though);
- the last move ends in the origin o.

An online algorithm for ONLINEDARP has to move a server in X so as to fulfill
all released transportation tasks without preemption (i.e., once an object has been
picked up it is not allowed to be dropped at any other place than its destination),
while it does not know anything about requests that come up in the future. In order
to plan the work of the server, the online algorithm may maintain a preliminary
(closed) transportation schedule for all known requests, according to which it moves
the server. A posteriori, the moves of the server induce a complete transportation
schedule that may be compared to an offline transportation schedule that is optimal
with respect to some objective function (competitive analysis). For a detailed set-up
see [4].

Recall that the flow time of a request is the difference between its completion
time and its release time, while the waiting time is the difference between its service
starting time and its release time. In the sequel, we are concerned with the following
objectives:

- Minimize the makespan (also called the completion time) for the given set of
requests. This is the time the server needs to fulfill all the transportation tasks.

- Minimize the maximal flow time (or waiting time) of the requests.
- Minimize the average flow time (or waiting time).

We will consider the online heuristics REPLAN and IGNORE from [10]. Since
we did not choose a particular objective function yet we need to specify according to
which objective function REPLAN and IGNORE will solve the corresponding offline
problems. We will evaluate REPLAN- and IGNORE-heuristics that use a different
objective for the local optimization than the one that is to be minimized globally in
the online problem.

Thus, for an arbitrary objective function obj we denote by REPLANo/,y resp. IG
NORE0^ the following online heuristics:

REPLANo/,y Follow the current plan. Whenever a new request becomes available
compute a new plan minimizing obj starting at the current position.

IGNORE0^ Follow the current plan; while executing it collect upcoming requests in
a buffer. When done and there are non-served requests in the buffer compute a
new plan for all these requests minimizing obj.

The motivation to consider the concept of reasonable load in this situation was
two-fold.

First, competitive analysis of ONLINEDARP provides the following [4]:

- The two online heuristics \Q^oHEmakesPan and R E P L A N " ^ ^ " 1 are both 5/2-
competitive for the goal of minimizing the make span of the schedule.

- For the tasks of minimizing the maximal (or average) waiting time or the maxi
mal (or average) flow time there can be no algorithm with constant competitive
ratio.

- In particular, the algorithms iGNOREma^aM and R E P L A N " ^ ^ " 1 that repeat
edly minimize the makespan of all known requests have an unbounded com
petitive ratio for the overall task of minimizing the maximal or average flow
time.

Second, in simulation studies a fundamental difference in the behavior of IG
NORE and RE PLAN was observed: the maximal flow times on similar inputs pro
duced by REPLAN varied a lot while the ones produced by IGNORE were better
predictable. The concept of reasonable load was developed to find a mathematical
explanation of this phenomenon.

We start with some useful notation.

Definition 2. The offline version of a request r — (t, a, b) is the request

The offline version of a request set R is the request set

An important characteristic of a request set with respect to system load consid
erations is the time period in which it is released.

Definition 3. Let R be a finite request set for ONLINEDARP. Let the release time of
a request r be denoted by t(r). The release span 6(R) of R is defined as

Provably good algorithms exist for the makespan and the weighted sum of com
pletion times. How can we make use of these algorithms in order to get performance
guarantees for minimizing the maximum (average) waiting (flow) times? We sug
gest a way of characterizing request sets which we want to consider "reasonable".

In a continuously operating system we wish to guarantee that work can be ac
complished at least as fast as it is presented. In the following we propose a math
ematical set-up that models this idea in a worst-case fashion. Since we are always
working on finite subsets of the whole request set the request set itself may be infi
nite, modeling a continuously operating system.

We start by relating the release spans of finite subsets of a request set to the time
we need to fulfill the requests.

Definition 4. Let R be a request set for the ONLINEDARP. A weakly monotone
function

is a load bound on R if, for any 6 G E and any finite subset S of R with 6 (S) <_6, the
makespan 0PTmakesPan{Soffline) of the optimum schedule for the offline version Soffline

of S is at most f (6). In formula:

Remark 5. If the whole request set R is finite then there is always the trivial load
bound given by the makespan of R. For every load bound f, we may set f (0) to be
the maximum completion time we need for a single request, since nothing better can
be achieved. D

A stable situation would be characterized by a load bound equal to the identity
on E. In that case we would never get more work to do than we can accomplish,
even if we had an optimal offline algorithm at hand.

If R has a load bound equal to a function id/p, where id is the identity and
where p > 1, then p measures the "tolerance" of the request set: An algorithm that
is by a factor p worse than optimal will still accomplish all the work that it gets.
However, we cannot expect that the identity (or any linear function) is a load bound
for ONLINEDARP because of the following observation: a request set consisting of
one single request has a release span of 0 whereas in general it takes non-zero time
to serve this request. In the following definition we introduce a parameter describing
how far a request set is from being load-bounded by the identity.

Definition 6. A load bound f is called (A,p)-reasonable for some A, p e E+ if

A request set R is [A,p)-reasonable if it has a (A,p)-reasonable load bound. For
p = 1, we say that the request set is A-reasonable, and we call a request set or a
load bound reasonable if it is (A, p)-reasonable for some A, p e E+. D

In other words, a load bound is (A,p)-reasonable, if it is bounded from above
by 1 /p • id{x) for all x > A and by the constant function with value 1 /pA otherwise.

Remark 7. If A is sufficiently small so that all request sets consisting of two or more
requests have a release span larger than A then the first-come-first-serve strategy
suffices to ensure that there are never more than two unserved requests in the system.
Hence, the request set does not require "scheduling" the requests in order to provide
for a stable system. (By "stable" we mean that the number of unserved requests in
the system does not become arbitrarily large.) D

Resonable load is a plausible restriction:

Observation 8 (Justification of Reasonable Load). Assume that a request set for
ONLINEDARP is not reasonable. Then the following holds: For all A > 0 there is
a request set with release span at least A whose offline makespan is larger than its
release span.

In other words: no matter how long one collects requests there is provably no
method to accomplish their service in a time equal to the collection time.

Finally, we state the theorem that mathematically shows the (somewhat sur
prising) fundamental difference of \GNOREmakesPan and REPL/KNmakesPan on ON
LINEDARP. (See [11] for a proof.)

Theorem 9. For ONLINEDARP under /^-reasonable load, I G N O R E " ^ ^ " guaran
tees a maximal and an average flow time of at most 2A, whereas the maximal and
the average flow time of REPLAN^**-5**"1 are unbounded.

In Sections 4.3 and 4.4 we present practical applications where an analysis under
reasonable load is possible.

3.3 A -Posteriori-Analysis

Competitive analysis - even in the case of existing competitiveness results - does
often not provide performance guarantees that appear convincing in an efficiency
oriented industrial environment. Consider a statement such as "The solution pro
duced is in each and every situation at most 3 times worse than the optimum". Will
a user be happy to hear that? Such a result is too weak in terms of the performance
ratio and too strong in the sense that it covers too many (from a customer's point of
view probably irrelevant) situations.

The same problem occurs in the framework of approximation algorithms: a per
formance guarantee for all instances of a problem is often not required. One ap
proach that made combinatorial optimization methods have impact in real life was
the delivery of instance-wise performance guarantees via the computation of so-
called lower bounds for the very special instance of the minimization problem to be
solved in a particular situation.

Lower bounds can usually be derived by relaxing side constraints of a prob
lem. The most prominent relaxation technique in combinatorial optimization is to
relax the integrality constraints, thereby transforming notoriously difficult (Mixed)
Integer Programs into efficiently solvable Linear Programs [10]. Optimal solutions

of these may be easier to come by, and an optimal solution of the original prob
lem cannot be cheaper than the one of the relaxed problem. On the other hand, the
value of any feasible solution to the original problem yields an upper bound for
the optimal solution. The gap between lower and upper bound at any stage of the
optimization process provides, thus, an instance specific quality guarantee: the dif
ference between the objective function values of the current feasible solution and a
presently unknown optimal solution is not bigger than this gap.

In this framework the role of fast approximation algorithms is to provide for
good feasible starting solutions. Good initial solutions often help to close the gap
between lower and upper bounds fast and, thus, help to speed up the optimization
process.

One can similarly compute lower and upper bounds for a special instance of an
online optimization problem. This leads to an instance-wise competitive analysis.
Since, in an online situation, a special instance is not known in advance, this kind
of analysis can only be applied after all decisions have been made. Therefore, this
approach is called a-posteriori analysis.

We now state an observation that shows what a-posteriori-analysis can achieve.
We concentrate on online optimization in the time stamp model (see [10] for details).
We may assume w.l.o.g. that all time stamps are positive, and we assume also that
the way how a request sequence is served by an online algorithm does not influence
this sequence. (This assumption is not always satisfied in real systems, since after
observing how an algorithm has handled the first elements of a request sequence,
the remaining requests may be altered or their order may be changed.)

Suppose that I is an instance of an online optimization problem in the time
stamp model and that A is an online algorithm for this problem. Denote by A (I)
the value of the solution A produces on I. Denote by J the corresponding instance
of the offline optimization problem induced by I where all requests are known in
advance and where a feasible solution has to respect all release times. Denote by K
the corresponding instance of the offline optimization problem induced by I where
all time stamps are removed (set to zero). Denote the optimal solution values of J
and K by OPT(J) and OPT(K), respectively.

Then the following simple observation can be made.

Observation 10 (Justification of A-posteriori Analysis). Let I, J, K be as above.
Then, under the above assumptions, there exist real numbers
depending on I and on the online algorithm A, satisfying
such that

The above chain of equations and inequalities yields two versions of instance-
wise competitive analysis depending on the chosen relaxations J or K. Usually, the
quality guarantee c(I, A) is reported as the relative gap

It is, however, not clear how the instance J can be solved. The corresponding
combinatorial offline problems may, in fact, be hard. Even worse, it is often not
apparent how to formulate these offline problems properly. The reason is that on
line problems in real life may come along with implicit restrictions that are diffi
cult to model. In this sense, online problems coming from practice are sometimes
"ill-posed". In such cases, one has to relax further side constraints in addition to as
suming full knowledge of the input sequence in the beginning. The resulting offline
problems may then turn out to be useless in practice because of rather poor instance
specific gaps. (Even for the relaxation K this is often the case.)

Thus, a-posteriori analysis is often used as follows: find relaxations between J
and K that model the online restrictions as faithfully as possible and replace OPT(J)
by the optimal objective function value of this modified problem. An example of
this technique can be found in 4.1.

3.4 Comparative Simulation

The draw-back of a-posteriori analysis is that all decisions have irreversibly been
made when the analysis of these decisions is available. One way out is testing the
system behavior in a simulation experiment. An a-posteriori analysis can be made
for every possible online algorithm. If the data used for the runs of the simulation
system is "typical enough" then one can hope that a strategy whose gap in the sense
of Observation 10 is convincingly small will behave well in reality.

Sometimes even this is too much to ask for: even in an instance-wise analysis
the optimal offline algorithm may be too strong in the sense that the computed gap
is quite large for every conceivable, non-clairvoyant online strategy. Then we are
left with a comparison of online algorithms in simulation experiments.

One feature that makes this (somewhat "soft") method valuable is that evalua
tion is not limited to the computation of a single scalar objective function. Visualiza
tion of the system behavior may, e.g., help to grasp the influence of various online
strategies from different perspectives: efficiency, stability, predictability, maybe oth
ers. Some of these aspects are very difficult to hard-code in a mathematical model
so that the evaluation of simulation experiments by experienced human operators is
still one of the most commonly accepted ways of evaluating online algorithms. We
describe simulation experiments in all of our applications in Section 4.

4 THE TOOLBOX IN ACTION

In this section we apply the methods outlined in Section 3 including standard com
petitive analysis to the real-world problems sketched in Section 2. We describe the
systems and the corresponding mathematical models in more detail, show that clas
sical methods of evaluation of online algorithms are not sufficient, and apply com
binations of the methods from Section 3. Where a greater level of detail is beyond
the scope of this paper we provide references to the original research articles.

4.1 Automated Stacker Cranes

Siemens Nixdorf Informationssysteme AG (SNI) maintains a production plant in
which all their personal computers (PCs) and related products are assembled. Parts
are brought into one of six automatic storage systems (AUSS). The AUSS serve as
material buffers between the receiving area and the assembly lines located at each
side of the AUSS. For each of the AUSS, there is one stacker crane fulfilling trans
portation tasks between the receiving buffer, the storage locations, and the buffers
for the assembly line. (For a more detailed description of the layout, see [1].) The
goal is to minimize the unloaded travel time of the stacker crane.

Mathematical Models

If we were to minimize the total travel time (makespan) of the stacker crane then
our problem would be known as the online stacker crane problem ONLINESCP, a
special case of the ONLINEDARP, explained in Section 3.2. Here we are concerned
with a slightly different objective function.

The offline problem without release times can be modeled as an Asymmetric
Traveling Salesman Problem (ATSP). An instance of ATSP consists of a complete
directed graph D = (V, An) . Each node in V corresponds to a transportation task,
and the the weight of the arc from v to w corresponds to the travel time from the
end point of task v to the starting point of task w.

If release times have to be taken into account we are concerned with an Asym
metric Traveling Salesman Problem with release times, a special case of the Asym
metric Traveling Salesman Problem with time windows, the ATSPTW: here, for each
request r, there is a time window [er, £r] given with a release time (earliest possible
start of service) e r and a deadline (/atest possible completion of service) £r.

We investigated the ATSPTW because there were given deadlines for the service
of requests anyway.

Time windows impose precedence constraints on the order in which the requests
are served. Relaxing the time windows of an instance of the ATSPTW to the cor
responding precedence constraints yields an instance of the so-called Sequential
Ordering Problem SOP: here we are given a partial order on the set of requests and
we try to find a shortest tour through all requests respecting the given partial order.

The problems ATSP, SOP, and ATSPTW are NP-hard. While much attention had
already been paid to the investigation of the ATSP a thorough polyhedral study of
SOP and ATSPTW was carried out for the first time in [6]. Those results were later
strengthened in [1].

The goal was the design of a branch&cut algorithm able to solve on the one
hand typical instances of the ATSP used for the RE PLAN online heuristic and on the
other hand the larger SOP resp. ATSPTW instances used for the a-posteriori analysis
of several online heuristics (see Section 3.3). In the following we summarize the
achievements for the SOP as an example for the polyhedral investigations contained
in this article.

There are related results for the ATSPTW. We do not include them here since
they are of similar nature and their statement would not shed more light on the
principle situation. The interested reader may want to check again [1].

Let us start with the graph theoretic formulation of SOP. Recall that we are given
a complete directed graph D = (V = { 1 , . . . , n}, An) on n nodes with non-negative
arc costs ctj > 0. Moreover, in the SOP we are given a partial order "-<" on V with
1 -< i -< TL for all i e V, w.l.o.g. A feasible solution to the SOP is a set of arcs
forming a path that visits all nodes in V exactly once and that visits node i before
node j whenever i -< j . The goal is to find a feasible solution with minimal total arc
costs.

There are several possibilities to formulate the SOP as an integer program. The
polyhedral model chosen here is the following. We define the feasible arc set A as
follows:

For all feasible arcs (i, j) e A we introduce binary arc variables X-LJ meaning that
x-Lj = 1 if and only if arc (i, j) is chosen to be in the solution.

With the notation

an integer programming formulation of the SOP can be stated as follows:

The object of study is the sequential ordering polytope SOP defined as

This polytope had already been studied in [6], where new inequalities such as
the predecessor/successor inequalities were derived. The following theorem sum
marizes the new results achieved in our project group. For details see [1].

Theorem 11 (Offline Problems - Polyhedral Study). For SOP(n, -<) the follow
ing hold:

(i) If"<" is obeys a certain regularity condition then the dimension o/"SOP(n, -<)
equals | A| — 2n + 3 + |F|, where F is the set of nodes whose position in the path
is fixed by "-<".

(ii) There are three types of new valid inequalities for SOP(n, -<): the strength
ened D'^-inequalities, the strengthened J^-inequalities, and the strengthened
two-matching constraints.

We refrain from explicitely listing the inequalities here because the overhead
in notation would not pay off given the purpose of this article. The corresponding
results on the ATSPTW can be found in [2].

Evaluation of Algorithms
The online version ONLINEATSP of the ATSP is defined in the same way as the
ONLINETSP, except that the distances are not symmetric. A competitive analysis
of the ONLINEATSP with the objective to minimize unloaded travel time cannot
provide additional insight. The reason for this is the following: one can find request
sequences that can be served by an offline algorithm without unloaded travel time
and that incur a positive cost for any online algorithm. Thus, the competitiveness
ratio would be infinite: not particularly helpful.

If one, however, replaces the objective "minimize total unloaded travel time"
by the objective "minimize total travel time (makespan)" then - as we mentioned
already - we are concerned with a special case of the ONLINEDARP. Note that these
objective functions are equivalent in the sense that their function values only differ
by an additive constant and that, therefore, the sets of optimal solutions are equal.
From the point of view of competitive analysis, however, this change in the objective
makes a huge difference.

As an application of a result in [4] we mention the following (see Theorem 20):

Theorem 12 (Competitive Analysis). REPLAN is 5/2-competitivefor the problem
of minimizing the makespan of the stacker crane.

Such a performance guarantee does not really help a decision maker. Therefore,
it does make sense to evaluate the REP LAN-strategy by other means. An a-posteriori
analysis was also made: we investigated the ATSP, the SOP, and the ATSPTW as
relaxations in the spirit of Section 3.3.

Observation 13 (A-Posteriori Analysis). Real data sets from SNI provided the fol
lowing a-posteriori analysis for the REPLAN-strategy repeatedly solving the ATSP
of all known requests:

(i) The online solution is 46%-120% worse than an optimal a-posteriori solution
for the ATSP.

(ii) The online solution is 24%-98% worse than an optimal a-posteriori solution
for the SOP.

(Hi) The online solution is 3%-72% worse than an optimal a-posteriori solution
for the ATSPTW.

Since these gaps are not small enough to convince decision makers to use the
REPLAN-heuristics, simulation experiments were made.

Observation 14 (Comparative Simulation). On real data sets, REPLAN slightly
outperforms other online heuristics such as best insertion heuristics. The at SNI
previously used priority strategy with FIFO as a tie breaker performs roughly 50%
worse than REPLAN; the FIFO priority algorithm is no better than a random se
quencing of request.

Thus, the conclusion was to implement the REPLAN-heuristic.

Implemented Solution and Practical Impact
Although the subproblems to be solved within the REPLAN-heuristics are NP-hard,
there are codes available so that the REPLAN-heuristics can be used in real-time
situations in practice. In order to obtain an any-time algorithm [10], we implemented
an optimization process working in three phases:

Phase 1: Perform cheapest insertion (BESTFiT).
Phase 2: Run a random insertion. Then pick the winner of Phase 1 and 2.
Phase 3: Solve the ATSP to optimality (branch&bound from [2]) and replace the

old sequence completely by the optimal one (REPLAN).

Phase 1 runs in time linear in the number of requests and is always completed.
For the typical problem sizes that occur in our application (the number of requests
is less than 60) this is done in fractions of a second. Even Phase 3 could always be
completed within a few seconds. If the stacker crane becomes idle before Phase 3 is
finished, the optimization process is interrupted, and the best sequence found so far
is passed to the stacker crane.

Our simulation experience showed that REPLAN empirically gives the best re
sults on average. SNI provided data for one week of production. During this period
on one AUSS each generated task and each move of the stacker crane were recorded.
It turned out that in heavy load periods the times needed for unloaded moves could
be reduced by approx. 30%.

As a result the optimization package was put in use on five AUSS, and the results
were confirmed in everyday production.

4.2 Commissioning of Greeting Cards

One of the commissioning departments in the distribution center of Herlitz is de
voted to greeting cards. The cards are stored in four parallel shelving systems. In
accordance with the customers' orders, the different greeting cards are collected in
boxes that are eventually shipped to the recipient. Order pickers on eight highly
automated guided vehicles collect the orders from the storage system, following a

circular course. The vehicles are unable to pass each other. Moreover, due to secu
rity reasons, only two vehicles are allowed to be in the middle aisles at the same
time, whereas three are allowed in the first and last aisle.

At the loading zone, each vehicle is logically "loaded" with up to 19 orders from
a pool that changes over time. A dispatcher decides when to send a vehicle onto the
course. After leaving this area the vehicles automatically stop at a position where
cards have to be picked from the shelf according to the logical load. The goal is
the minimization of the makespan of all requests generated on one day subject to
some side constraints explained in [3,13]. Congestion among the vehicles should
be avoided. This is important because congestions lead to undesirable side-effects
(that are very difficult to evaluate mathematically). These include human order pick
ers leaving for an extra-break when their vehicles run into congestions. (For more
details consult [13].)

Mathematical Models
For the theoretical analysis it is necessary to provide a proper mathematical formu
lation of the problem under consideration. We remark again that the modeling phase
may already result in a heuristic approach because the practical problem comes in
day-to-day terms that have no straight-forward mathematical translations. The Com
missioning Vehicle Routing Problem (CVRP) to be considered in the competitive
analysis in Section 4.2 is the following.

An instance of CVRP consists of a set L = {1,2 , . . . , m}, the pick positions, and
a set of empty vehicles v i , . . . , vq , each with capacity C A request sequence CT =
r-|, T2,. . . consists of a chronologically ordered collection of sets of pick positions.

A vehicle to which C requests have been assigned is replaced by a new empty
vehicle. In the online situation we require that request n is permanently assigned
to vehicle v(rO before n+i becomes known and that the length of the sequence is
unknown until the last request comes in. That means, CVRP is an online problem in
the sequence model (see [10] for basic facts on online problems).

For a sequence of requests, a solution to the CVRP is an assignment of every
request n to a vehicle v(r0 so that the number of requests assigned to each vehicle
does not exceed C The objective is to minimize the total number of pick positions
assigned to the vehicles. In [13] it was shown that the offline version of CVRP with
no release times is already an NP-hard problem. In fact, solving the corresponding
integer program in reasonable time turned out to be out of reach for commercial
software packages like CPLEX.

One explanation for the intrinsic difficulty of this variation of a capacitated as
signment problem is given by the following result that we state informally here
(see [13] for details):

Theorem 15 (Offline Problem). The optimal solution of a certain linear-program
ming relaxation of CVRP corresponds to the evenly distributed fractional assign
ment, i.e., every request is partially assigned to each available vehicle.

This observation yields that the linear programming relaxation does not provide
any exploitable information on how to assign requests to vehicles.

Evaluation of Algorithms
In [13] the following result was shown:

Theorem 16 (Competitive Analysis). The following hold for the CVRP;

(i) Any rule for the assignment of requests to vehicles yields a C-competitive al
gorithm for the CVRP, where C is the capacity of a vehicle.

(ii) No online algorithm for the CVRP can be better than 2-competitive.
(Hi) The algorithm BESTFlT- setv[r\) to the vehicle whose number of pick posi

tions gets the least increase - is no better than C-competitive.

In other words: competitive analysis does not provide much insight. In particu
lar, the intuitively "reasonable" BESTFlT-heuristic is, from a competitive analysis
point of view, not better than any stupid rule.

Even worse: recent investigations showed that even for a substantially simplified
version of the CVRP we run into the odds of competitive analysis. In the following
excursion into theoretical online optimization we sketch the result.

Consider the following Online Bin Coloring Problem ONLINEBC: We are given
a natural number q > 0, infinitely many numbered bins with volume capacity C,
and a sequence of requests r-|, T2,. . . consisting of colored items of unit volume. We
have to place the items into the bins so that, at any time, no more than q bins contain
more than zero and less than C items. We have to stuff n into a bin before we get to
know r-L+i (sequence model). The goal is to minimize the number of colors in the
most colorful bin, i.e., the maximum number of items of distinct colors in a bin over
all bins.

This translates to the language of commissioning as follows: every request has
only one stop position, and we try to minimize over all vehicles the maximal number
of stops of a vehicle, rather than the total number of stops. (This is a useful objective
that helps to balance the vehicle load and, thus, to reduce congestion).

Consider the following online algorithms for ONLINEBC:

- Algorithm ONE BIN puts all items into one single bin until it is full. Then it
picks another bin etc. (This is a truly dumb algorithm.)

- Algorithm BEST FIT puts every item into the bin that already contains that color,
if such a bin exists. Otherwise, it puts the item into the bin with the least number
of colors so far, with ties broken arbitrarily.

The following theorem shows that standard competitive analysis is problematic
for this class of problems:

Theorem 17 (Competitive Analysis). The following hold for the ONLINEBC:

(i) BESTFlT is min{C,2q + [(qC - 3q + 1)/C\}-competitive.
(ii) ONEBlN wmin{C, (2q — ^-competitive.

(Hi) BESTFlT is no better than 2q-competitive whenever C > 2q3 — q2 — q + 1.
(iv) No deterministic online algorithm can be better than 0{q)-competitive.

This proves that competitive analysis does not provide any hint as to which
algorithm should be chosen in practice, even in the restricted models of this section.

Implemented Solution and Practical Impact
Several heuristics that reduce the total number of stops and distribute them evenly
among the vehicles were implemented. These are versions of the BESTFlT algo
rithm, together with local exchange heuristics. The computation times of these al
gorithms are short so that they can be run in a real-time situation.

We implemented a detailed simulation model for the whole commissioning area
in which we compared our approach to the one used so far. Herlitz provided produc
tion data from a period of about six weeks, which were the basis for the comparison.
The main results are the following:

- A significant improvement with respect to the completion times of the orders
can be achieved.

- The number of vehicles, used at Herlitz, can be reduced from eight to six with
out any negative impact on the system performance.

- Congestions over a few seconds can be avoided completely.

We conclude that BESTFlT- althoughnot distinguished in the competitive anal
ysis - was the basis for significant improvements in practice. The simulation results
convinced Herlitz to test a prototype of the simulation program as a decision support
tool for the dispatcher.

4.3 Elevators

The automated pallet transportation system in the Europe-wide distribution center
of Herlitz PBS AG has been designed to handle all pallet transportation taks from/to
the receiving docks, the production and commissioning departments, the automated
shelf system, and the loading dock from where the products are shipped to the cus
tomers by trucks. This pallet transportation network runs on nine floors and is quite
complex. The overall goal is to run the operations "smoothly", a mathematically not
well-defined term that means something like: each individual transportation task
should be executed quickly, time windows (existing for some of the tasks) should
be observed, and the whole system should be congestion free. The last objective
may be in conflict with the others, and a difficulty is to find an appropriate balance.

We address here the elevators, one of the building blocks of the pallet trans
portation system. There are two systems of five elevators. Each elevator can carry at
most one pallet. Transportation requests occur (unpredictably) throughout the day
and are somehow distributed to the elevators. Congestion does frequently occur at
the entry points and should be avoided by running the elevators "well". Of course,
congestion depends on both the assignment of requests to the elevators and on the
control of the elevators. We discuss here the second issue.

At Herlitz, each elevator is controlled independently from the others; there is
no "master control" watching over the whole elevator system simultaneously. It is
therefore clear that optimizing the individual elevators may not result in the desired
congestion-free system, but it will at least help running the system faster. We de
cided to investigate the following problems for individual elevators and systems of
elevators (compare to Section 3.2):

- Minimize the makespan for the given set of requests.
- Minimize the maximal flow time of the requests.
- Minimize the average flow time of the requests.

While the makespan is a measure for how fast the system is as a whole the other
two objectives are rather a measure for the speed of the system as "experienced"
by the individual pallets. Note that in contrast to the makespan the maximal and
average flow times also make sense in a continuously operating system, i.e., with
infinite request sets.

Mathematical Models
The basic model chosen for investigating algorithms for the control of elevators
is the ONLINEDARP, which we introduced in Section 3.2. In the sequel we first
investigate the control of a single elevator. Briefly, this is the problem of how to
serve online transportation requests in a metric space which is a path, where the
server is assumed to have capacity one.

In the context of pallet transportation there is a subtle additional side constraint
involved: we do not have random access to the pallets waiting on a particular floor.
That means that requests from the same floor need to be scheduled in their order of
appearance, while requests on different floors can still be shuffled. This leads to the
problem ONLINEFIFODARP. Here the subset of requests occuring at a particular
point in the metric space must be served in the order of appearance.

As an extension of ONLINEDARP we also investigated the corresponding prob
lem with capacity larger than one, the ONLINECDARP.

In order to be able to use RE PLAN- or IGNORE-heuristics for any of the online
problems in real-time we need to find efficient algorithms for the corresponding
offline problems. In the following theorem we summarize the results:

Theorem 18 (Offline Problems). The following complexity results hold:

(i) There is a polynomial time algorithm for DARP on paths.
(ii) DARP on trees (even on so-called caterpillars) is NP-hard.

(Hi) There is a polynomial time algorithm for F IFODARP on paths.
(iv) CDARP is NP-hard on paths. D

Theorem 19 (Offline Problems). The following approximation results hold:

1. There is a 5 /^-approximation algorithm for F IFODARP on trees.
2. There is a 9'/' ̂ -approximation algorithm for F IFODARP on general graphs.
3. There is a ^-approximation algorithm for CDARP on paths. D

The observed performances of the approximation algorithms for FIFODARP
on instances occuring in the online situation (e.g., while applying the REPLAN-
heuristics) are much better. Therefore, these approximation algorithms can be used
to produce a starting solution for a branch&bound procedure to find reasonably good
offline solutions to feed the REPLAN-heuristics in real-time.

Evaluation of Algorithms
Motivated by results on the ONLINETSP in [5] we carried out a competitive anal
ysis for ONLINEDARP for the minimization of the makespan. The results are the
following:

Theorem 20 (Competitive Analysis). For the problem of makespan minimization
in ONLINEDARP the following hold:

(i) No deterministic online algorithm can be better than 2-competitive. {This fol
lows easily from [5].)

(ii) The REPLAN- and the \GNORE-heuristic are 5/2-competitive.
(Hi) There is a 2-competitive algorithm (called SMARTSTART in [4]).

In other words, we found one optimally competitive online algorithm for our
problem.

For the other objective functions, the approach via competitive analysis yields
the strongest conceivable negative result, i.e., no decision support at all:

Observation 21 (Competitive Analysis). There are no competitive algorithms for
the tasks of minimizing the maximal or average flow times in ONLINEDARP.

The concept of reasonable load (see 3.2) was developed to get at least a weaker
performance evaluation. We have already seen two canonical online heuristics in
that section: REPLANmakesPan and \GNOREmakesPan. Recall that both work by repeat
edly minimizing the makespan: while REPi_ANmafa,^aw computes a new plan when
ever a new request becomes available, iGNOREmafa^aw does not compute a new plan
before the old plan is completely served. What about REPLANma^ovv, REPLANT'̂ ™,
IGNORE"^™, IGNOREm'̂ OM;? What about the problems ONLINECDARP and ON-
LINEMDARP (more than one server)? Some answers are collected in the following
theorem:

Theorem 22 (Analysis Under Reasonable Load). For all of ONLINEDARP, ON-
LINEFIFODARP, ONLINECDARP, ONLINEFIFOCDARP, ONLINEMDARP, ON-
LINEFIFOMDARP the following hold under ^-reasonable load:

(i) The maximal and average flow times of I G N O R E " ^ ^ " are at most 2A.
(ii) The maximal and average flow times of REPi_ANmafa,^aw maybe arbitrarily

large.
(Hi) The maximal and average flow times of REP L ANavgflow maybe arbitrarily large.

We do not know the performance of REPLANma^ow at present. We have, how
ever, found another provably good algorithm that imposes additional restrictions on
the repeatedly computed plans. We assume that this algorithm, called D ELTARE -
PLAN, knows A. The algorithm DELTAREPLAN follows the current plan. When
ever a new request comes up DELTAREPLAN computes a new plan minimizing the
makespan subject to the condition that all requests in the plan have a flow time of
no more than 2A. If the optimal plan is shorter than A then it is accepted as the new

file:///GNORE-heuristic

plan. Otherwise it is rejected, and the algorithm proceeds with the old plan. When
the old plan is done, a new plan is accepted in any case.

We could prove the following in [9]:

Theorem 23 (Analysis Under Reasonable Load). For all of ONLINEDARP, ON-
LINEFIFODARP, ONLINECDARP, ONLINEFIFOCDARP, ONLINEMDARP, ON-
LINEFIFOMDARP the following holds under A-reasonable load:

The maximal and average flow times of D ELTARE PLAN are at most 2A.

This theorem motivates the problem of finding out the A while working on a
A-reasonable request set. Observe that for, e.g., iGNOREmafa,^aw it is not necessary
to have information on the correct A.

Assume that D ELTARE PLAN dynamically computes and uses an approximation
A of A while working on a A-reasonable request set. If always A~ = 0 then we
observe that all plans are rejected and the algorithm behaves like iGNOREmafa,^aw,
thus the performance guarantee in Theorem 22 takes effect. More general: whenever
we underestimate A then DELTAREPLAN achieves the same performance guarantee
as in Theorem 23.

In the following we define a modification DYND ELTAREPLAN of DELTAREPLAN
that needs not know the real A. Algorithm DYN DE LTARE PLAN works similar to
DELTAREPLAN except that it computes a dynamically changing A. This Ais defined
to be the makespan of the latest accepted plan. The first value for A is the length of
the first plan computed. Whenever a new request occurs DYN DE LTARE PLAN com
putes a potential new plan with all flow times at most 2Ä. If the makespan of the
potential plan is at most A then DYNDELTAREPLAN accepts it as the new plan.

The following result could be achieved.

Theorem 24 (Analysis Under Reasonable Load). For all of ONLINEDARP, ON-
LINEFIFODARP, ONLINECDARP, ONLINEFIFOCDARP, ONLINEMDARP, ON-
LINEFIFOMDARP the following holds under /^-reasonable load:

The maximal and average flow times of DYNDELTAREPLAN are at most 2A.

A "heuristic reason" for the correctness of this result is the following: when
ever we underestimate A we may get fewer accepted new plans. But whenever no
new plan is accepted and the old plan is accomplished we are working like IG-
N0REmakesPan^ w M c h i s fine b e c a u s e 0f Theorem 22.

In order to get some idea how the investigated algorithms behave on the average
with respect to speed, stability, and predictability we carried out simulation studies
for the basic elevator control problem. In addition to our algorithms we tested the
heuristics FIFO and NN. The latter one always serves the nearest request next. More
over, we included the heuristic NN-MAXAGE. This heuristic works like NN except
that whenever a request is older than a maximal age parameter this request has to be
served next. These three heuristics are implemented as possible elevator controls in
the Herlitz system.

Observation 25 (Comparative Simulation). A simulation experiment on several
random data sets for the ONLINEDARP yielded the following results:

- The FIFO -heuristic is suitable only for very low load situations. Otherwise, the
maximal and the average flow times explode; heavy system congestion is ap
parent.

- The NN-heuristic produces very low average flow times on the average. The
maximal flow times are - especially in medium load situations - unpredictable,
i.e., sometimes very high.

- The NN-MAXAGE-heuristic cures the problem of unreliability of NN only in
low load situations. In high load situations it suddenly behaves like the FIFO-
heuristic and leads to heavy system-congestion.

- The REPLANmakespan-heuristic shows mostly good average flow times. Its maxi
mal flow times are comparable to NN, i.e., at times very bad.

- The \GNOREmakespan -heuristic produces slightly worse average flow times than
NN or REPi_ANmafa,^aw. The maximal flow times, however, are among the best
for all load situations. This heuristic is in a sense self-calibrating.

- The DYNDEUAREPLAN-heuristic behaves like iGNOREmafe^aM but shows on
the average a little bit worse maximal flow times and slightly better average
flow times.

The additional benefit of the simulation studies over a mere evaluation of an
objective function is the possibility of watching the system behavior as a whole. The
algorithm that is chosen eventually depends on the preferences of the administrator
of the system under consideration. At Herlitz, there is a strong focus on stability
over mere speed so that iGNOREmafa^aw and related heuristics seem suitable.

4.4 Integrated Elevator Systems

We mentioned in the previous section that the software at the Herlitz plant does
not support a so-called synchronized pallet transportation. This means the controls
for the individual elevators make their decisions without taking into account each
other's and the conveyor system's states. Thus, we investigated the control of single
elevators as discussed in the previous section. The interplay between these modules
of the transportation system is not negligible, though.

In simulation studies where the conveyor belts from and to the elevators were
included in the simulation system we found out that many effects observed for single
elevators are leveled out. This motivated the investigation of the integrated system of
conveyor belts and multiple elevators. Since the software base of the transportation
system at Herlitz cannot be changed easily; research results in this area do not have
direct bearing in practice.

Having this in mind we simplified the layout of the combined conveyor/elevator
system in order to approach an integrated system control in reasonable steps. At
Herlitz, on each floor, the conveyor system lets the pallets move on a circular belt
with one entry and one exit to the production and commissioning area. There are
five elevators in the interior of the circle. The pallets can reach and leave the cor
responding waiting slots via switches. The waiting/leaving slots have capacity one.

A pallet may move to the waiting slot only if the corresponding leaving slot on its
destination floor is empty.

The coupling in this system is very difficult to model. Moreover, one question
that arises in this context is whether layouts of this type are suitable for efficient
control. Thus, we started our investigation on the basis of the following hypothetical
layout: Pallets line-up in a waiting queue of infinite capacity. Behind that queue they
enter separate waiting queues in front of the elevators. We call this problem online
multi server sequential ordering problem, ONLINE TU-COST-SOP for short. The
task is to distribute pallets online to the elevator queues and to control the elevators
so that the maximal or average flow times are minimal.

The idea is to use a variant of the IGNOREmafa,^aw-heuristic. This requires min
imizing the makespan in the corresponding offline problem. Here, the makespan is
the time when the last elevator has finished. In contrast to the case of single eleva
tors, not all types of REP LAN-heuristics can be employed (at least not in a straight
forward form) because of the following problem: Once a set of pallets is distributed
among the elevator queues the pallets will immediately move into their queues. Be
cause the pallets cannot change the elevator the decision which elevator a particular
pallet should take can not be revised.

Mathematical Models

The main idea is to model the problem as an ATSP on the request digraph (cf. Sec
tion 4.1) with two modifications: first, there is more than one server. Second, the
pallets in the waiting queue at a particular elevator on some floor need to be served
in a FIFO order. Each of these generalizations of the ATSP has been studied already
in the literature: the first one in the case of a single server type was reduced to the
single server case in [15]; in a more general form for servers with distinct proper
ties (m-C0ST-ATSP) it was studied in [12]. The second one was already discussed
in Section 4.1. We decided to investigate the combined problem m-C0ST-S0P: the
multi server sequential ordering problem.

There is one further subtlety involved: since in the m-CoST-SOP-model the
maximal length of a tour in the request graph over all servers is minimized we need
to take into account the loaded travel time in the arc costs. Otherwise we might get
a solution where all the servers have similar unloaded travel times but their total
travel times (makespans) may vary a lot and the makespan of the whole system is
not optimal at all. That means: in the case of more than one server minimizing the
makespan and minimizing the unloaded travel times are no longer equivalent.

Having this in mind, our model is almost the same as the m-C0ST-ATSP in [12]
except that it also contains the corresponding precedence forcing constraints. These
look like the constraints (4) in 4.1. We do not want to reproduce the complete model
here. We just state that several properties of the SOP and the m-C0ST- ATSP survive
in their common generalization m-CoST-SOP.

Theorem 26 (Offline Problems - Polyhedral Study). The following hold for the
m-Cosi-SOY-polytope:

- The dimension of the m-CoST-SOP-polytope for regular precedences equals
m(n 2 — |R|) — n, where R is the set of comparable pairs of nodes.

- Modified versions of the so-called <J, n, Vo-ff and Vo-n-inequalities are valid
for the m-CoST-SOP-polytope.

- Facets of the one-server subproblem of m-C0ST-S0P can be lifted to facets of
the m-C0ST-S0P.

Computational experiments have shown that the integrated optimization of all
servers yields an improvement in the unloaded travel times of 50% on the average.

Evaluation of Algorithms
It turns out that, also for the ONLINE TTL-COST-SOP, the analysis under reasonable
load is analogous to the previously discussed cases.

Theorem 27 (Analysis Under Reasonable Load). The maximal and average flow
times of \GNOREmakespan for the ONLINE m-C0ST-S0P under A-reasonable load
are at most 2A.

This theoretical result is hard to implement in a real-time compliant way: the
TTL-COST-SOP turned out to be very difficult. It rarely happens that one can find
optimal solutions for instances with 20 requests in less than a minute. The real-time
restrictions on an elevator control rather require answers within seconds. Thus, only
heuristic solutions can be used in the online situation. Evaluation of such heuristics
is research in progress.

There is another strong argument against using the unmodified iGNOREmafa^aw:
all servers but one would very frequently wait idle for the last server to finish its
part of the plan. This can be by-passed by, e.g., letting the servers work on some
requests inbetween. Still, the theoretical analysis matches reality much less than in
the single server case.

Preliminary simulation studies on the basis of simple heuristics for the m-CoST-
SOP and on modified IGNORE- and NN-heuristics are no longer in favor for the
IGNORE-approach for certain parameter settings.

This shows among other things that it is quite hard to find a well-performing
online control of an integrated transportation system.

5 CONCLUSION

We have discussed various evaluation methods for online optimization problems on
the basis of four real-world examples. I turns out that, usually, only a combination
of such methods is able to deliver convincing advice to decision makers.

To meet real-time requirements fast offline optimization algorithms are needed,
in general, as building blocks for the online heuristics such as IGNORE and REPLAN.
We have, e.g., introduced fast approximation algorithms for DARP that enable us to
run these heuristics in real-time in the elevator control problem.

We have shown that, for the evaluation of online algorithms, classical compet
itive analysis may lead to either void conclusions (all algorithms are equally bad

for the minimization of flow times for O N L I N E D A R P) or may even be in favor of a
senseless algorithm (O N E B I N is best possible for O N L I N E B C) . New methods such
as analysis under reasonable load provide new insight in some of these cases. For
example, we could tell which of the two online heuristics IGNORE and REPLAN is
more suitable with respect to the minimization of flow times for the O N L I N E D A R P .

The observation of the system behavior as a whole in simulation experiments is
still unavoidable because, this way, it is possible to monitor more complex effects
than the projection to a one-dimensional objective function can possibly detect.

R E F E R E N C E S

1. N. Ascheuer, Hamiltonian path problems in the on-line optimization of flexible manufac
turing systems, Ph.D. thesis, Technische Universität Berlin, 1995.

2. N. Ascheuer, M. Fischetti, and M. Grötschel, Solving the asymmetric travelling sales
man problem, with time windows by branch-and-cut, Preprint SC 99-31, Konrad-Zuse-
Zentrum für Informationstechnik Berlin, 1999.

3. N. Ascheuer, M. Grötschel, S. O. Krumke, and J. Rambau, Combinatorial online opti
mization, Proceedings of the International Conference of Operations Research (OR'98),
Springer, 1998, pp. 21-37.

4. N. Ascheuer, S. O. Krumke, and J. Rambau, Online dial-a-ride problems: Minimizing
the completion time, Proceedings of the 17th International Symposium on Theoretical
Aspects of Computer Science, Lecture Notes in Computer Science, vol. 1770, Springer,
2000, pp. 639-650.

5. G. Ausiello, E. Feuerstein, S. Leonardi, L. Stougie, and M. Talamo, Algorithms for the
on-line traveling salesman, Algorithmica (2001), To appear.

6. E. Balas, M. Fischetti, and W. Pulleyblank, The precendence constrained asymmetric
traveling salesman polytope, Technical Report 15213, Carnegie Mellon University, Pitts
burgh, 1992.

7. M. Blom, S. O. Krumke, W. E. de Paepe, and L. Stougie, The online-TSP against fair
adversaries, Proceedings of the 4th Italian Conference on Algorithms and Complexity,
Lecture Notes in Computer Science, vol. 1767, Springer, 2000, pp. 137-149.

8. A. Borodin and R. El-Yaniv, Online computation and competitive analysis, Cambridge
University Press, 1998.

9. B. Glück, Online-Steuerungen automatischer Transportsysteme bei vertretbarer Belas
tung, Diplomarbeit, Technische Universität Berlin, 2000.

10. M. Grötschel, S. O. Krumke, J. Rambau, T Winter, and U. T Zimmermann Combinato
rial Online Optimization in Real Time, Ulis volume.

11. D. Hauptmeier, S. O. Krumke, and J. Rambau, The online dial-a-ride problem, under rea
sonable load, Proceedings of the 4th Italian Conference on Algorithms and Complexity,
Lecture Notes in Computer Science, vol. 1767, Springer, 2000, pp. 125-136.

12. C. Helmberg, The m-cost ATSP, Proceedings of the 7th Mathematical Programming
Society Conference on Integer Programming and Combinatorial Optimization, Lecture
Notes in Computer Science, vol. 1610, Springer, 1999, pp. 242-258.

13. N. Kamin, On-line optimization of order picking in an automated warehouse, Ph.D. the
sis, Technische Universität Berlin, 1998.

14. E. Koutsoupias and C. Papadimitriou, Beyond competitive analysis, Proceedings of the
35Ü1 Annual IEEE Symposium on the Foundations of Computer Science, 1994, pp. 394-
400.

15. G. Reinelt, The traveling salesman - computational solutions for tsp applications, Lec
ture Notes in Computer Science, vol. 840, Springer, 1994.

