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An error in the proof, and in the statement of a generalization, of the result that submodular
getfunctions can be minimized over the subsets with odd cardinality is corrected.

In the paper mentioned in the title, we stated the following result. Let E be a
finite set, & a collection of subsets of E closed under union and intersection (a lattice
family) and f an integral valued submodular function defined on #, i.e. a function
fi F+Z such that fX)+f(X=f(XNY)+/(XUY) holds for X, Ye#F. Let
9C & such that E,P¢¥ and the following condition holds:

(#) If Xc9¥ and YeF % then either XNYe¥ or XUYed.

Then the minimum of f over the members of % can be found in polynomial time.
(It was assumed that one has a polynomial-time subroutine to compute " F
and U#, another one to decide if & contains a set containing a given x¢ E but
missing another given y€E, yet another polynomial time subroutine to check if Ye#
and one more polynomial-time subroutine to compute f(X) for Xc#. Further, it
was also assumed that a positive upper bound B on |f(X))| is given a priori; Fujishige
and Tomizawa observed that such a bound can be computed in polynomial time.)
' The most important special case of this result is that the minimum of a sub-
rodular function over a lattice family of subsets can be found in polynomial time
(ie. F=%). This special case was proved first separately. Another special case of
interest is when % is the collection of odd cardinality members of &, This generalizes
the result of Padberg and Rao [3] which finds a minimum weight odd cut in a graph.
Andrés Frank pointed out to us that there is a gap in the proof of the general
theorem. It turns out, in fact, that it is not true as stated. In this note we first give the
counterexample, then proceed to formulate the slightly stronger hypotheses on &
under which a similar theorem can be proved. All special cases of interest mentioned
in the original paper remain valid; however, the proof (i.e. the algorithm) turns out
considerably more involved. - .
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Example 1. Let E be a finite set, & =2F, f the rank function of a matroid on E
of rank k, and ¢={XSE: |X|=k}. Then # and ¥ satisfy the conditions in the
“theorem” mentioned above. Moreover, we have

" =k, if the matroid is k-uniform,

min {f(X): Xe9} < k, else.

Now it is easy to see by an “‘oracle” argument (see Jensen and Korte [2]), that it
takes exponential time in the worst case to decide if a given matroid is uniform. So
it takes exponential time to find the minimum of f over 4.

This construction is not a counterexample to the “theorem” stated above,
since E€%. But we can repair this by adding a new element e and letting E’=EU {e},
J(EN=f(E), F'=F and ¥9'=¢.

Consider the following condition on &% and %.

(% %) If thrce of the seté X,Y, XUY and XNY belong to #—% then the fourth
also belonps to % —%.

The following two propositions show the relationship between conditions
(*) and (#=»). '

Proposition 2. (% %) implies (%).

Proof. Suppose that X€¥ and Ye# —9. Then since # is a lattice family, i.e.
closed under uhion and intersection, we have that XU Y, XN Ye#. [fboth XU Y,
XNYeF —4 then exactly three of the sets X, Y, XUY and XNY belong to
F —%, which contradicts (# % ). So at least one of YUY and XY must belong
to¥%. | o

Proposition 3. If F =2 and 9, E¢ @ then (%) implies (% ).

Proof. Suppose that three of the sets X, ¥, XUY and XNY belong to #—¥;
we show that so does the fourth. There are essentially two cases to consider. '

Case 1. XUY, XNY and X belong to # —%. Then Yc¥% would immedi-
ately contradict (). .

Case 2. X, Yand (say) XNY belongto #—%. Consider Y'=YU (E-X).
Since X¢F —¥, XNY' =XNYcF —% and XUY' =EcHF —%, we have by (%)
that Y'€# —%. Butalso Y N{(XYUY)=YeF —% and Y'UXUY)=Ec# —9,
and hence again by (#), XUYcF -4. ||

: The main theorem in the Corrigendum is the following. Note that we had to
strengthen the hypothesis by replacing (#) by (* *); but we have also weakened it
by dropping the hypothesis that @, E¢ 4. o ' R

Theorem 4. Let ¥ and ¥ be two families of subsets of a finite set E, such that % is
cosed under union and intersection, 9 F and (% ») is fulfilled. Let f be a submodu-
lar function on % . Then one can find the minimum of f over & in polynomial time.
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Corollary 5- Lé’t ZF be a family of subsets of a finite set E closed under union and
intersection, and let a, beZ. Let f be a submodular function on & . Then min {f(X):
Xecg, |X|#Za (mod b)} can be found in polynomial time. |

Corollary 6. L€t F be g family of subsets of a finite set E closed under union and
intersection, and let of be an antichain in &. Let f be a submodular function on % .
Then one can Jind the minimum of f over & ~sf in polynomial time. ||

Proof. 7. First we remark that one may assume that % =2 1In fact, we may
assume that E€F, since those elements of E not contained in the unique largest
member of # (and hence in any member of &) can be deleted. Let, for each XS E,
I(X) denote the unique smallest member of # containing X. Define a set-function
g on 22 by g(X)=f(I(X))+2B|I(X)—X|. Then g is submodular, and g(X)=
=f(X) for every Xc%. Furthermore, define 4,=%U (2E—#). Then, obviously,
(= #)is fulfilled with 2% in place of # and %, in place of 4. By the definition of B,
g(X)>f(Y) for any XCE, and YE&, unless X=I(X), ie. Xe¢#. Hence

) min {g(X): X€%,} = min {f(X): XcF}.
Thus we shall assume in the sequel that F =25

II. Let T (9)=T={x€E: {x}c¥}, S={x€E: E-x¢9}, t=|T|. Let us
make a few oObservations about these sets.

Claim 1. If 94 % and E¢9, then S=T.
In fact, if e.g- {x}€¥ but E—x¢ % then by (*), one of § and E must belong to &.

Claim 2. If 9&<%, then for any ASE, one has Ac¥ iff ANTe9. ‘
For, let AMNZES, and choose a maximal set A" such that ANTSA'SA and
A’c%. If A= A’ then choose any uc A—A'. Then A’€¥, (u}¢% and A'N{u}=0¢9.
Hence by (* %), .4’ U{u}€¥, which contradicts the maximality of 4". So 4"=4 and
thus A€%. The reverse implication follows by the same argument. [

III. ' We now describe the algorithm in the case when' #¢% and E¢9.
This will be the most difficult case, in the other cases the necessary modifications will
simplify the argument.

So let E, @¢%9. We shall describe an algorithm to minimize f over ¢ in
time O(|E*p(|E |, log, B)) where p(z, log, B) is an upper bound on the time needed
to minimize a submodular setfunction over all subsets of a set of cardinality at
most n, whose walues are bounded by B. If 7= then ¥=0, and we are done.

First we find a.set A such that TNA»0, T—A=0 and f(4) is minimal.
This can be done by t(t—1) applications of the submodular function minimization
algorithm, by applying it to find the minimum of fover all sets 4 with (UJ]SEASE—v
for all pairs 2, »€ T, u#v (note that |T|=2 by Claim 2). We call 4 a splitter.

If Ac% then we are done. In fact, any set 4’¢¥ satisfies TNA"#0 and
T—A'#0, by Claims 1 and 2 above, and so f(4)=f(4") for each A’€¥, by the
choice of A. So we may assume that 4¢%. ~ -

Let A, =_A4ANT, A;=T—A. It follows by Claim 2 that A4 4. Take two new
elements @, and a,, and define E=(E—4)U{ay}, =

F00) if X< E-A,,
ﬁ(X-)_:{f(X-—a,UA,) if XS E, ack,
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and ' ' ‘ .
9,= (Xe9: X € E—ANI{X S B a,°X, X—a,UAeH).

It is straightforward to check that fiisa submodular setfunction on the subsets of
E, and %;C2E satisfies (# »). Furthermore, 8, E49%,. - :
We claim that :

 min {f(X): Xe%} = min {min {£,(X): X€}: i = 1,2).

The sign = is obvious: if X is a set minimizing the right hand side, and say
Xc%,, theneither X'=X or X'=X—a,U 4, is asetsuch that X'€% and f(X)=
=f(X). | _ . n e
To show the reverse inequality, let X€% be a set minimizing the left hand
side. If XNA,=@ then X¢% and f(X)=f,(X), and so we are done. So we may
assume that X 4,50, Similarly, if A,C X then X'=X—4,U {a,}¢%, and f(X)=
=f;(X’)," and the assertion follows again. So we may also assume that A4, X.

Since X¢% but A§¥%, it follows by (#) that gither XUAE¥ or XNA€Z,
We treat the first case; the second is similar. . : , )

Since X UAc¥, we have that f(XUA)=f(X) by the choice of X, Further-
more, since (XNAYNT=XMNA;#0, and T—(X¥XNA)2T—-A#0, we have that
JIXNA)=f(A) by the choice of A. Using the submodularity of f we get
FSXYUAD+H/(XNA)=f(X)+f(4). So equality must hold everywhere, in particular
X UA=f(X). So. XUA is also niinimizing f over 4. But then X’'=XU 4
— AU {a,}€%, and fi(X")=f(X), whence the assertion follows again. '

Thus we have found that in order to find the minimum of f over &, it suffices
to find the minimum of f; over %, and the minimum of £, over %,. Going on similarly,
we can split each of these subproblems into two, or find the minimizing set right away.
This describes the algorithm to find the minimum of f over 4. - -

We still have to show that this algorithm runs in polynomial time. The main
observation is that T(%)=4,, i.e. the set of singletons in ¥ is split into two non-
empty parts to obtain the sets of singletons in %, and %,. This implies that the number
of splitters to compute during the procedure is at most t—1<|E|. To compute one
splitter takes less that |E|* submodular function minimizations, and so the whole
algo;ithr’n takes-only about |E[*s(|E], log B) time. This completes the case when
0, E¢¥. - : . : ' :

- IV. Suppose that #¢% but Ec¥. We follow the same argument as in III
with slight modifications. First'we find a_set 4 such that - TN A@ and flA) is
minimal. This is easily achieved by t applications of the submodular function minimi-
zation algorithm. - R :

. If Ac% then we are done -again, s0:suppose that A4%. Set A, =ANT;
take a new.element @, and define _ S ) _ ,

f&) o if XS E—4,

f(X—a:lUA:l) if ‘ Xg_ El! a,_EX,

4 ={Xe¥: X S E-A)U{X S B ay€X, X—a,UA4,€9).

| “f1<'x)={

and
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Alsg define Ea=4, f,(X)=f(X) for XS4 and 4,=24N%. Then f;is submodular
Oon the subsets of E; and %S 2F: satisfies (» %). It also follows just like in part ITI that

min {£(X): X€4)} = min {min {£,(X): Xc%}: i =1,2}.

SO again it suffices to minimize f; over &, and £, over 4, The second of these tasks can
be sglved in polynomial time by IIL Since |[T(#4,)|=|4;|<|T|, we are finished by
nduyction.

v. The cases when #¢% but E¢% and when ), E€¥ can be treated simi-
larly. N
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