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INTEGER POLYHEDRA ARISING FROM CERTAIN NETWORK DESIGN
PROBLEMS WITH CONNECTIVITY CONSTRAINTS*

MARTIN GROTSCHELt AND CLYDE L. MONMA¢

Abstract. In this paper a general integer lincar programming model is presented for the important practical
problem of designing minimum-cost survivable networks, and this model is related to concepts in graph theory
and polyhedral combinatorics. In particular, several interesting special cases of this general model are considered,
including the minimum spanning tree problem, the Steiner tree problem, and the minintum cost k-edge connected
and k-node connected network design problems. The integer polyhedra associated with these problems are
studied, those incqualities from natural ILP-formulations that define facets arc identified, the separation problem
for these facets is addressed, and how good lower bounds can be obtained from the models studied here is
indicated.
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1. Introduction. Far over thirty ycars, mathematical models arising from the design
and analysis of communication networks have been a major focal point for research
cfforts in the fields of operations research, graph theory, and discrete mathematics. This
fertile area has been stimulated by the great practical importance of the associated real-
world problems and the wide range applicability of these models on the one hand, and
the intercsting structural and algorithmic questions and the elegant theoretical results on
the other hand. The introduction of new types of networks and new technologies has
resulted in a rich variety of models which have been studied over the years.

A recent trend in communication nctworks is the emergenee of fiber optic technology
as one of the major components in the “network of the future.”” This transmission medium
1s cost effective, reliable, and provides very high transmission capacity. This combination
promises to usher in new telecommunication services requiring large amounts of band-
width. At the same time, the unique characteristics of this technology imply the need for
new network design approaches.

Survivability is an important factor in the design of communication networks. Net-
work survivability is used here to mean the ability to restore service in the event of a
catastrophic failure of a network component, such as the complete loss of a transmission
link or the failure of a switching node. Service could be restored by routing traflic through
other existing network links and nodes, assuming that the design of the network has
provided for this additional connectivity. Clearly, a higher level of redundant connectivity
results in a greater network survivability and a greater overall network cost. This leads
to the problem of designing a minimum-cost network which meets certain required
connectivity eonstraints.

Survivability is a particularly important issue for fiber networks. The high capacity
of fiber facilities resulis in much more sparse network designs with larger amounts of
traffic carried by cach link than is the case with traditional bandwidth-limited technologies.
This increases the potential damage to network services due to link or node failures. It
is nccessary to trade off the potential for lost revenues and customer goodwill against the
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extlra costs required to increase the network survivability. Recent work on methods for
designing survivable fiber communication networks by Monma and Shallcross (1989)
concludes that (1) survivability is an important issue for fiber networks, (2) “two-con-
nected” topologics provide a high level of survivability in a cost effective manner, and
(3) good heuristic methods exist for quickly generating **near-optimal” networks.

In §§ 2 and 3 of this paper, we present a general integer linear programming model
for the network design problem with connectivity constraints and relate this model to
concepts in graph theory and polyhedral combinatorics. In the remaining sections we
consider important special cases of this general model and study the associated integer
polyhedra, identify which natural inequalities define facets, address the scparation problem
for these facets, and indicate how good lower bounds can be obtained from these modecls.
Section 4 is concerned with the minimum spanning tree problem where a complete linear
description of the associated integer polyhedron is given. This result follows easily from
matroid theory (sec Edmonds (1971)) and is used in later sections. Related work for the
Steiner tree problem is described in § 5. Sections 6 and 7 examine the minimum-cost
network design problems with edge connectivity constraints and node connectivity con-
straints, respectively, from a polyhedral point of view. A model which combines both
edge and node connectivity constraints is considered in § 8.

2. A general model. In this section, we formalize the network design problems
which are being considered in this paper. A set V of nodes is given which represents the
locations of the switches (offices) which must be interconnected into a network in order
to provide the desired services. A collection £ of edges is also specified which represents
the possible pairs of nodes between which a direct transmission link can be placed. We
let G = (V, I}) be the (undirected ) graph of possible direct link connections. Each edge
e € I has a nonnegative fixed cost ¢, of establishing the direct link connection. The graph
G may have parallel edges but contains no loops. (Thus we assume throughout this paper
that all graphs considered are loopless but may have parallel edges. Graphs without
parallel edges are called simple.) The cost of establishing a network consisting of a subset
F < I of edges is the sum of the costs of the individual links contained in F. The goal
is to build a minimum-cost network so that the required survivability conditions, which
we describe below, are satisfied. We note that the cost here represents setling up the
topology for the communication network and includes placing conduits in which to lay
the fiber cables, placing the cables into service, and other related costs. We do not consider
costs which depend on how the network is implemented such as routing or multiplexing,
nor do we consider repeater costs. Although these costs are also important, it is usually
the casc that a topology is first designed and then these other costs are considered in a
sccond stage of optimization.

For any pair of distinct nodes s, ¢ € V, an [s, t]-path P is a sequence of nodes and
edges (vq, €1, Dy, €2, 5 U 1, €, U;), where each edge ¢ is incident with the nodes
v;.yando, (i =1, , 1), wherc vy = sand v, = ¢, and where no node or edge appears
more than once in . A collection Py, Py, +- -, P, of [s, t]-paths is called edge-disjoint
if no edge appears in more than one path, and is called node-disjoint if no node (except
for s and ) appears in more than one path. (Remark: In order to be consistent with
standard graph theory we do not consider two parallel edges as two node disjoint paths.)

The survivability conditions require that the network satisfy certain edge and node
connectivity requirements. In particular, for each pair of distinct nodes s, ¢ € V, three
nonnegative integers r,, ky, and d, are given, The numbers r,, represent the edge Sir-
vivability requiremenis and the numbers k., and dy, the node survivability requirements,
meaning that the network N = (V, /) to be designed has to have the property that, for
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each pair s, 7 € I of distinct nodes, N must contain at least r,, cdge disjoint [s, (]-paths
and the removal of at most k, nodes (dificrent from s and ¢) from N must leave at least
d,, edge disjoint [, 1]-paths. (Clearly, we may assume that k, = || — 2 forall g, 1 €
I/, and we will do this throughout this paper.) These conditions ensure that some com-
munication path between s and ¢ will survive a prespecified level of combined failures
of both nodes and links. The levels of survivability specified depend on the relative
importance placed on maintaining connectivity between different pairs of offices.

Let us now introduce, for each edge ¢ € E, a variable x, and consider the vector
space R”. Every subset F € E induces an incidence vector X" = (x{) .. : € R” by setting
X! = 1if e € F, X} = 0 otherwise, and vice versa, each 0/1-vector x € R”* induces a
subset F* = {¢ € E|x, = 1} of the edge set £ of G. If we speak of the incidence vector
of a path in the sequel we mean the incidence vector of the edges of the path. We can
now formulate the network design problem introduced above as the following integer
linear program.

(2.1) min 2, ;X
ije Il
subject to
(i) 2 2 Xxy=rg for all pairs s, 1€ V, s # t and
feWje VAW forall We Vwithse W,1¢ W,

(ii) 2 > x;zdy forall pairss,teV,s# tand
ie Wje V\(ZUW) forall Z < V\{s,t} with |Z| = ks and
forall Wg V\Zwithse W, 1¢ W,

(i) 0 = x; =1 for all ij € E,
(iv) xy integral forall ij e I:.

Note that if, for each pair s, ¢ of distinct nodes in V and for each set Z < ¥\ {s, 1} with
| Z| = ky, N— Z contains at least d;; edge disjoint [ s, ¢]-paths, then all node survivability
requirements are satisfied, i.e., inequalities of type (ii) need not be considered for node
sets Z < V\{s, t} with |Z| < kg. It follows from Menger’s theorem that, for every
feasible solution x of (2.1), the subgraph N = (¥, F*) of G defines a nctwork that satisfies
the given edge and node survivability requirements.

This formulation is quite general and, as far as we know, this mixture of node and
edge survivability requirements has not been considered in the published literature. (The
survey paper by Christofides and Whitlock ( 1981) discusses some related models.) Problem
(2.1) is NP-hard as it contains various NP-hard special cases. Some of them will be
mentioned in the sequel.

The classical network synthesis problem for multiterminal flows is obtained from
(2.1) by dropping constraints (ii) and (iv). In the standard formulation of the network
synthesis problem the upper bounds x,. = | arc not present. But our model allows parallel
edges in the underlying direct-link graph, or equivalently, allows the upper bound in
constraints (iii) to take on any nonnegative integer values for each edge. This linear
programming problem has a number of constraints that is exponential in the number of
nodes of G. For the case ¢; = ¢ for all ij € E, where ¢ is a constant, Gomory and Hu
(1961) found a simple algorithm for its solution. Bland, Goldfarb, and Todd (1981)
pointed out that the separation problem for the class of inequalities (i) can be solved in
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polynomial time by computing a minimum capacity cut; it thus follows by the ellipsoid
method that the classical network synthesis problem can be solved in polynomial time.

The minimum spanning tree problem can be phrased as the task to find 2 minimum
cost connected subsct I’ € E of edges that span V. (See Graham and Hell (1985) for a
survey of work on this problem.) This problem can be viewed as a special case of (2.1)
as follows. We drop constraints (ii) and set, for all distinct s,{€ V, ry= 1 in constraints
(i). In § 4 we present a complete linear description of the integer polytope for the minimum
spanning trec problem which follows easily from matroid theory (see Edmonds (1971)).

Similarly, the closcly-related Steiner tree problem is to find a minimum cost con-
nected subset /< < E of edges which span a specified subset § < V of nodes. This prob-
lem is a special case of (2.1) where we drop constraints (ii) and set in constraints (i),
r,=1forall s, €S, and r, = 0 otherwise. This problem is NP-hard and will be dis-
cussed in § 5.

A graph with at least two nodes is k- edge (respectively, k-node) connected if there
are k edge-disjoint ( respectively, node-disjoint) paths between cvery pair of distinct nodes.
For our purposes, the graph K| consisting of just one node is k-edge and k-node connected
for every natural number k. For a graph G # K|, the largest integer k such that G is k-
edge connected (respectively, k-node connected) is denoted by A\ () (respectively, x(())
and is called the edyge connectivity (respectively, node connectivity) of G. Our dehinition,
for instance, implies that, for a graph G with # 2 2 nodes such that every two nodes are
linked by p edges, x(G) = n— 1 and AN(G) = p(n — 1) holds.

There have been many papers in the graph theory litcrature that study properties
of k-edge or k-node connected graphs. The problem of inding an optimal k-edge connccted
network is a special casc of (2.1) where all inequalities (ii) are dropped and where, for
all distinct s, t € V, r, = k. The problem of finding an optimal k-node connected network,
k < |V| — 1, is a special case of (2.1) as follows. We drop the constraints (1) and set,
for all distinct s, t€ V, k, =k — 1 and d, = 1.

Monma, Munson, and Pulleyblank ( 1985) consider the mininmun cost 2-connected
network design problem where the underlying graph G = (V, I } is a complete graph and
the costs satisfy the triangle inequality, i.e., cix = ¢; + Ci for all i, j, k € V. They show
that, for k = 2, there exists an optimal k-edge (respectively, k-node) connected solution
whose nodes all have degrees k or k& + 1, and such that the removal ofany 1,2, ---,0r
k cdges does not result in all connected components still being k-edge (respectively, k-
node ) connected. (This is extended to arbitrary k 2 2 by Bienstock, Brickell, and Monma
(1987).) They also show that these conditions “characterize” the optimal 2-connected
networks in an appropriate sense, but that this is not the case for k 2 3, We return 10
the k-connected network design problems in §§ 6 and 7.

3. The polyhedral approach. The main objective of this paper is to study the network
design problcm from a polyhedral point of view 10 sec which of the inequalities (i), (it),
(iii) of (2.1) (and which of further classes ofinequalities ) are suitable choices for a cutting
plane approach, i.e.. we want to find a tighter LP-relaxation of the IP {2.1) than the one
following from (2.1) by dropping the integrality constraints (iv). To do this, we define
the following polytope. Let G = (V, E) be a graph, let £ = {st]s,teV, s #},andlet
r. k,de 2% begiven. Then

(3.1) CON (G:r, k,d)y=conv { xe R | xsatisfies (i), - -+ ,(iv) of (2.1)}

is the polytope associated with the network design problem given by & and the edge and
node survivability requirements r, k, and d. (Above “conv’’ denotes the convex hull
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operator.) In the sequel we will study CON (G r, k, ) for various special choices of r,
k, and d. Let us mention here a few general properties of CON (G, r, k, ) that are easy
to derive.

Let G=(V.FE), r, k, deZ’ be given as above. Extending the terminology
of Bollobas (1978), we say that c€ E is essential with respect to (G r, k, d) (short:
(G r, k, d)-essential) if CON (G — e, r, k, d) = &. In other words, ¢ is essential with
respect to (G, r, k, d) if its deletion from G results in a graph such that at least one
of the survivability requirements cannot be satisfied. We denote the set of edges in £
that are cssential with respect to (G;r, k, d) by ES (G r, k, d). Clearly, for all sub-
sets ' < E\ES(G; r, k,d), ES(G;r, k,d) < ES(G — F;r, k, d) holds. Let dim (.5)
denote the dimension of a set S < R”, i.e., the maximum number of affinely independent
clements in S minus .

THEOREM 3.2. Let G =(V, L) be a graph and r, k, deZ® such that
CON (G r, k,d)# . Then

CON (G;r, k,d)c {xeR¥|x.=1 forall ceES(G;r k.d)},
dim (CON(G;r,k,d))= | E| — |ES(G;r,k,d)]|.

Proof. If ¢ € E is (G r, k, d)-essential then every vector x e CON(G; r, k, d)
clearly satisfies x. = 1. So CON (G r, k, 4) is contained in the affine space of dimension
| E| — |ES(G;r, k,d)| defined by the equations x,=1, ¢€ ES(G;r, k,d). Let
a’x = a be an cquation satisfied by all points in CON (G; r, k, d). We may assume
that ¢, = O for all e€ ES(G;r, k,d). If ee ENES (G, r, k,d) then the incidence vec-
tors of E and E\ {¢} are contained in CON (G r, k, d), and thus a"xF = a"x" ¢! =
o holds. This implies a, = 0 for all ¢ € E\ES (G r, k, d) and hence ¢ = (. Therefore,
dim CON(G:r, k,d)= | E| — |[ES(G;r, k, d)]. O

An inequality « 7 x < a is valid with respect to a polyhedron Pif Pc {x|a”x S a};
the set F, = {xe Pla’x = a} is called the face of P defined by a’x = «. If dim (J,) =
dim (P) — l and F, # 0 then I, is a facet of P and a’x £ « is called facet-defining or
facet-inducing.

THEOREM 3.3. Ler G =(V,E) be a graph and r, k, deZ% such that
CON(G;r, k,d)+ . Then

(a) x. = 1defines a facet of CON (G r, k., d) iffand only if c € ENES (G r, k, d),

(b) x,Z 0 defines a facet of CON(G,r, k, d) ifand only if e € ENES(G, r, k, d)
and ES(G;r, k,d) = ES(G —e;r, k, d).

Proof. By Theorem (3.2), none of the inequalities 0 = x, = 1, c€ ES (G 1, &k, d),
defines a facet of CON (G5 r, &, d).

(a) If ¢ € ENES (G, r, k, d) then the incidence vectors of £ and I\ { /'}, for each
e EN(ES (G, r, k,d)U {e}), satisfy x, £ 1 with equality and are linearly independent.
Thus x, = 1 defines a facet of CON (G r, &, d).

(b) Suppose ¢ € E\ES(G; r, k, d). If there is an edge / € ES(G — ¢;r, k, d)\
ES (G:r, k,d) then, for all xe CON(G;r, k,d), x, =0 implies x;= 1; thus x, 20
does not define a facet of CON(G:r, k,d). If ES(Gyr, k, d)=ES(G—e;r, k,d)
then let a7 x 2 « be a facet-defining inequality satisfied by all

xeF,={xeCON(G;r,k,d)] x,=0}.
By Theorem 3.2 we may assume that a, =0 for all g€ ES(G;r, k,d). Let fe

EN(ES(G; r, k,dYU {e}), then the incidence vectors of E\{e¢} and E\{c,/}
are by assumption in CON (G r, k, d) and satisfy a”x = «. This implies ¢, = 0. 1t fol-
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lows that ¢/x 2 « is a positive multiple of x. 2 0, and thus, x, 2 0 defines a facet of
CON (G r, k, d). a

Theorems 3.2 and 3.3 solve the dimension problem and characterize the trivial
facets. However, these characterizations are (in a certain sense) algorithmically intractible
as the next observation shows.

Remark 3.4. The following three problems are NP-hard.

Instance: A graph G = (V, E) and vectors r, k, d € Z1".

Question 1: Is CON (G; r, k, d) empty?

Question 2: Is ¢ € I an element of ES (G 1, k, d)?

Question 3: What is the dimension of CON (G #, k, d)?

Proof. Clearly, if we have shown that the first problem is NP-hard, the definition
of “essential® and Theorem 3.2 immediately imply that the other two problems are
difficult as well.

The NP-hardness of Question | follows directly from a recent result of Ling and
Kameda (1987). They proved that the following problem is NP-complcte.

Instance: A simple graph G = (V, E); two nodes u, ve V, u # v; iwo nonnegative

integers a and b.
Question: Docs there exist a subset Z < V with |Z] = aand u, v € Z such that
G — Z contains at most & edge disjoint [u, v]-paths?
Suppose we could determine in polynomial time whether CON (G r, k, d) isempty for
the following ( very special) choice of r, k, d € Z bv. r=0; k,, = a and ky, = 0 otherwise;
d,, = b+ 1 and dy = 0 otherwise. Then we could obviously answer the above question
in polynomial time. a

However, for most cases of practical interest in the design of optical fiber networks,
the sets ES (G r, k, ) of essential edges can be determined easily, and thus the trivial
LP-relaxation of (2.1) following from (3.2) and (3.3) can be set up without difficulties.
(We will comment on this in the sequel.)

In fact, if we can determine ES (G, r, k, d), we can decompose min ¢'x, xe
CON (G r, k, d) into scveral subproblems as follows. If G, -+ -, G" are the components
of G — ES (G: r, k, d) then it is possible to compute vectors 7, kK odiGi=1,--,p)
such that G’ contains no (G r', k¢, d*)-cssential elements and such that the incidence
vector of = F¥' U U e U T U ES (G, k, d) is an optimum solution of
min ¢’x, x€ CON(G: r, k,d), where x' is an optimum solution of min (¢H'x,
xe CON (G5 k', d') and ¢’ is a projection of ¢ into an appropriatc space
(i =1, -+, p). The exact procedure is best described in an algorithmic framework, and
we leave the details to a forthcoming paper on this subject.

The procedure outlined above shows that we can confinc oursclves to the case that
CON (G r, k, d) is full-dimensional, and we will do so in the following. There is another
(technical) reason for this. If polyhedra are not full-dimensional, statements about non-
redundancy of certain systems often become quite ugly due to the necessity 1o exclude
cquivalent inequalities. This is also true in our case. It is not difficult to derive the results
for the lower dimensional cases from the results presented later. But the statements of
thesc thcorems are often rather complicated and we want to avoid unnecessary techni-
calities—there are enough technicalities in this paper anyway.

Before continuing let us remark that there is an easy way to improve upon the
formulation of (2.1) by excluding a number of incq ualities that are obviously redundant.

Given G = (V, E)and r, k, d € 2.7 let us extend the functions r and d to functions
operating on sets by setting

(3.5) r(W)=max {rylseW, e VAW } for We V
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and
(3.6) d(Z,W)=max {dy|se W,ie V\(ZUW),k, 2z |Z|} for Z, WS V.

We call a pair (Z, W), Z, W V, eligible (with respect to k) if ZN W =(J and
|Z| =k, for at least one pair of nodes with se W and re V\(ZU W). Then
CON (G r, k,d) is clearly contained in the solution set of the following systcm of
equations and inequalities.

(3.7) ) 2 2 xy=r(W) foral WV, # W+ V,
il je I\ W
(i) 2 > x; 2 d(Z, W) forall eligible pairs (Z, W)
fe W je ¥\(WUZ) of subsets of V;
(i) x; £ 1 for all if € ENES (G r, k, d);
(iv) x;; =1 forall j e ES(G; r, k, d);
(v) x;20 for all jj € ENES (G, r, k, d) with

ES(G:r, k,d)=ES(G - ¢;r, k, d).

In the subsequent sections of this paper we will investigate in more detail these and other
inequalities for special choices of r, k, and 4.

4. Connectivity. We will now consider one of the easiest special cases of our network
design problem (2.1). This case, however, will provide further insight and yield a new
class of interesting inequalities.

Given a graph G = (V, E)and W < V, the edge set

W)={ijjeE|licW, je V\W}

is called the cut (induced by W). (We will wnte §,(W ) to make clear—in case of pos-
sible ambiguities—with respect to which graph the cut induced by W is considered.) For
W, Whe IVwith WN W' = & we define [W: W'l = {ije Elie W,je W'}. So
SW)=[W.V\W].For Wc Vweset E(W)={ijeE|i,je W}.

In this section we assume that the underlying graph G = (V, E) is connected. As
before, multiple edges are allowed, but loops are not. Let 1 be the vector (of appropriate
dimension ) with all components equal to 1. Set

(4.1) CON (G):=CON(G;1,0,0).
In other words, CON (G) is the convex hull of all feasible solutions of the system
(4.2) (1) x(6(W))z!1 foral WV, B#W#V,;

(1) 0=x.=21 for all ¢€ E;

(1) x,€{0,1} for all e E,

where, from now on, we use the symbol x(F) to abbreviate the sum 2 .. X.. Another
way to state (4.1) is

CON (G)=conv { xFeR*|(V, F)isaconnected subgraph of G } .

That is why we call CON (G) the connected subgraph polyiope of G. 1t is easy (and well
known how) to solve

(4.3) min ¢”x,xe CON (G).
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This gocs as follows. Let /* be the set of edges ¢ with nonpositive weight ¢,. If (7, F) is
connected, stop. Otherwise contract the components of (V, F) to single nodes and compute
a minimum spanning tree 7 in the resulting graph, T U F yields an optimum solution
10 (4.3). It is also well known that the solution set of the LP-relaxation of (4.2), i.e., the
polyhedron defined by (i), (ii) of (4.2), is not integral in general, and that a complete
lincar description of CON ( () can be easily derived (see e.g., Cornuéjols, Fonlupt, and
Naddef ( 1985)) from Edmonds’ characterization of matroid polytopes—see Edmonds
(1970, 1971). We give this transformation here for sake of completeness.

Recall that the bases of the graphic matroid on G are the spanning trees of &, that
the bases of the cographic matroid are the complements of spanning trees, and that a set
is independent in a matroid if it is contained in a basis. Let » (r*, respectively) denote
the rank function of the graphic (cographic, respectively ) matroid on G = (V, £). Then,
for IF'c I, r( 1) = |V} — ¢, where ¢, is the number of components of (V, F), and

(4.4) r )= | Fl+ r(ENF) =+ E)=1F[ = |V + 1+ r(E\F).

Let IND* () be the convex hull of the incidence vectors x*, where F c E is independent
in the cographic matroid of &, 1.¢.,

(4.5) IND* ()= conv { x"eR¥|3 spanning tree T such that F= E\T'}.

The above definitions imply:

(4.6) CON (G)={1—yeR¥| yeIND* (G)},

(4.7) IND* (G)={1—xeRE| xeCON (G)}.

A subsel F < Eis called r*-closed if r*(F) < r*(F U {¢}) for all ¢ € E\F, and Fis
called r*-inseparable if there is no partition Fy, £, of Fsuch that r*(F) = r*(F) +
FP(Fy). (A family Sy, <<+, S, of subsets of a set S is called a partition of § if S; # 4,
i=1, -, mSNS=g, 1£i<j=mand§U---US,=S)Lat B(G)c E
denote the sct of bridges of G (a bridge is an edge that forms a cut). It follows from
Edmonds® resulls on matroid polytopes that

IND* ()= {yeR"| y.=0 for all ee B(G);
(4.8) y.20 forallee E\B(G);
y(F)Er*(F) florallFc £, with F
r*-closed and r*-inseparable } .

In lact, the lincar description of IND* (G) given above is nonredundant. Using relation
(4.6) and formula (4.4) we obtain the following nonredundant description of the con-

nccted subgraph polytope:
CON (G) = {xeR"*| x,= 1 for all e€ B(G),
Xe=1 for all ee E\B(G);
x(F)z |V|—1-r(E\F) forall FcEwith F

r*-closed and
r*-inseparable } .

Observe that the bridges of a graph are exactly the (G; 1,0, 0)-essential edges and rec_a]l
that a connected graph is bridgeless if and only if it is 2-edge connected. It is a nice
exercise to translatc the matroid properties “r*_closed™ and “r*-inseparable” into the
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Janguage of graph theory. The result (ignoring the technical details coming up by con-
sidering bridges) is the following theorem.
THEOREM 4.10. Let G = (V, E) be a 2-edge connected graph. Then CON(G) is
Sfull-dimensional and
(1) ! i x(6(Vv))zp—1 Sforall partitions Vy, -, V,0f V, p 2 2, such that
25 each subgraph (V;, E(V})) is 2-edge connected
and the graph obtained by contracting every V.,
{=1, -+, ptoa single node is 2-node connected,

(ii) x, =1 Sfor all ¢ € E;
(i) x,20 Jor all e € E such that (G — e) is 2-edge connected
is a complete and nonredundant linear characterization of CON (G). O

Since we can optimize any linear function over CON ((7) in polynomial time, it
follows from the ellipsoid method (see Grotschel, Lovasz, and Schrijver (1981, 1988))
that the separation problem for the linear system (i)-(iii) of (4.10) can be solved in
polynomial time. In fact, a specialization of Cunningham’s algorithm for the separation
problem for matroid polytopes (see Cunningham (1984)) yields a combinatorial sepa-
ration algorithm for this system.

5. Steiner trees. Let G = (I/, I) bc a connected graph, and let S, | S| 2 2, be a
subset of the node set. S'is called the set of terminal nodes, V'\ S is called the sct of Steiner
nodes. Define a vector r¥ € Z.5" by setting »§ = [ forall s, 1€ S, s # rand rS = 0 elsc,
and let

(5.1) CON (G;S)=CON(G;r%0,0).

Then CON (G S) is the convex hull of all incidence vectors X” such that all nodes in .S
belong to the same component of (¥, F). Another way to say this is that CON (G S) is
the convex hull of all incidence vectors X” where F contains a Steiner tree of G (with
V'\ § being the set of Steiner nodes). Thus for ¢ € R every optimum vertex solution of

(5.2) min ¢’ x, x€CON (G;.8)

yields an optimum Steiner tree. The LP-relaxation for (5.2) that is provided by (2.1),
respectively, (3.7) and our special choice of , &, and d has the tollowing constraints:

(5.3) (1) x(8(W))=1 forall W< Vsuch that
WNS# & and S\W #+ &;
(i) 0=2x. 51 forall e e E.

For | S| = 2,say S = {s, 1}, the integral solutions of (5.3) are precisely the incidence
vectors of edge sets F < F that contain an [s, ¢]-path. In fact, it is easy 1o derive from
any shortest path algorithm that the polyhedron defined by (5.3) is integral; thus in case
| S1 =2, CON(G; §) = {x e R”| x satisfies (5.3) (i) and (1i)} holds.

Let us call an cdge ¢ € E a Steiner bridge if G — ¢ contains no [s,t]-path for some
nodes s, t € S. We denote the set of Steiner bridges of a graph & by B(G S). It is easy
to sec that B(G; S) = ES(G; %, 0,0). For S = V the Steiner bridges are just the bridges
of G, i.e., B(G; ¥V} = B(G); for | S| = 2, say S = {s, t}, the Steiner bridges are the
edges that are on every [s, ¢]-path. Such edges are called (s, []-bridges. Let us denote
the subgraph of G induced by the node set W by G[Wl.ie,G[W]= (W, E(W)). Using
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this terminology, a nonredundant characterization of the convex hull of the incidence
vectors of edge sets containing an [, ]-path can be derived easily.

THEOREM 5.4. Let G =(V, E) be a connected graph, let s, 1€V be two dif-
Jerent nodes and assiume that G contains no (s, t]-bridge. Then the dimension of
CON (G { s, t}Yisequal to 1 E| and the following system is a complete and nonredundant
characterization of CON (G {s, 1}):

(1) x(8(W))z 1 Jforall cuts (W) such that
se W, te V\ W,
and GIW ] and GIV\W] are connected,

1 Jorall e€ E;

1A

(i) x,
(iii) a.20 forall e € E such that G — e contains no (s, t]-bridge.

The system (5.3) is in general not a complete description of CON(G; ) if S
is any set of terminal nodes with | S| Z 3 and G a general graph, not even for the other
“extreme and simple” case where S =V, as Theorem (4.10) shows (note that
CON (G) = CON (G V).

A natural way to generalize the system given in (4.10) to the Steiner tree problem
is to consider the following system of inequalities:

I . N
(5.5) (i) 5 S x(8(V))yz p— | forallpartitions ¥y, -+, Vyof Vyp2 2,
i=1 such that |[V,N S|z 1fori=1,- -, p;

(i) 0=x. 51 forallee E.

Clearly, all inequalities of the system (5.5) are valid for CON (G S): but—as ab-
served by White, Farber, and Pulleybiank (1985)—they are not sufficient to describe
CON (G; S), not even for graphs as simple as series-parallel graphs.

System (5.5) seems, however, to be a reasonable LP-relaxation of the Steiner tree
problem as the following result shows.

THEOREM 5.6. Let G = (V, E) be a connected graph, let S € V be a set of terminal
nodes and assume that G contains no Steiner bridge. Let Vi, <+, V), p = 2, be a partition
of V such that ViNS# & fori=1,--,p. Then

n

ST X6V 2p-
=1

defines a facet of CON (G; S) if and only if

(a) G[V:]is connected for i =1, . D,

(b) G[Vi] contains no Steiner bridge with respect to the set S;:= SN Vi of terminal
nodes fori =1, =+, p;

(c) the graph G = ( V. E) obtained from G by contracting each node sct V, to single
node is 2-node connected.

(Comment: If | S;| = I, no cdge of G[V,] is a Steiner bridge.)

Proof. Suppose one of the graphs G[1/], say G[V1], is not connected. Let V| be
the node set of a component of G[V,] such that (VAV)HNS# . Since G is connected
there is a node set V,, j€ {2, * -, p},say V5, such that Vy and V, are connected by an
edge. But then the inequality L x(a(V\V) + x(3(V, U V) + Pax@)Ep -
{ belongs to class (5.5) (ii) and its sum with x, 2 0 for all ¢ € [V] : V3] is equal to
L3 x(8(V;)) 2 p— 1. So the latter inequality does not define a facet. We may thus
assume that G[V;] is connected for all /.
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Suppose G{V;}, for some i € {1, ---, p}, contains a Steiner bridge, say ¢, with
respect to S;. We will show that every D < E with x? € CON (G S) and satisfying
aTx=14 3., x(6(V;)) 2 p — | with equality contains e. This implies that a"x 2 p —
| does not define a facet. Suppose there exists D € £\ {¢} with x” € CON (G; S) and
a"x” = p — 1. Since ¢ is a Steiner bridge of G[ V], D must contain a path linking two
Steiner nodes contained in different components of G[V;] — ¢. Thus D' = D U E(V})
satisfies X2 € CON (G, S) and a?x® = p — | and contains a cycle C containing ¢ and
an edge, say f, of 8(¥;). But then D" = (D'\ {f}) U {e} satisfies x”" € CON (G; S) and
a’x?" = p — 2, a contradiction.

Suppose G is not 2-node connected. Let ¥ = {vi, -+, v,}, where v, is the node
obtained by contracting V;, i = 1, -+« | p. We may assume that v, is a cut-node such
that {v,, -, v.} is the node set of one component of G—v,. Set W, =V, U
Ufciwr wiand Wy = ¥, U UY_, v, Then 3 Z9., x(8(V;)) 2 p — 1 is the sum of
the two valid inequalities § (x(8(W))) + Z6.2x(6(V;))) 2 c— 1 and L (x(6(W:)) +
Zlecix(d(Vzp-c

This shows that if one of the conditions (a), (b), (¢} is not satisfied then the given
inequality does not define a facet of CON (G .S).

Now let ¢?x =1 Z7., x(8(V})) Z p — | be an inequality of type (5.5) (ii) such
that (a), (b), and (c) are satisfied. Let H7x = be an equation such that £, =
{xeCON(G;S)|a'x=p—1} g F={xe CON(G;S)|b"x = 8} and such that F,
is a facet of CON (G 5).

Note that, by construction, every spanning tree T of (¢ corresponds to a forest (also
denoted by T') of G such that, for each subset Bof 4 =U!_, E(V,), the incidence vector
of BU T satisfies a’x = p — | with equality.

We first prove that b, = 0 for all e € 4. Let ¢ € E(V;) for some i€ {1, -+, p}.
Choose two nodes s € SN V; and r € S N (F\V}). Since G contains no Steiner bridge
there exists an [, {]-path P in G not containing ¢. Choose an edge f € £ N §(V,;) and
construct a spanning tree T of G containing /. Set D= T'U 4 and D, = D\ {e}. Since
G[V;] 1s connected for every j and since ¢ is not a Steiner bridge of G[V;], by construction,
x®, xPe CON (G; S)and a’x? = a"xP = p — 1. Thus b7x? = "% 2 which implies
b,=0.

Let e, f be different elements of E(= £\ A). Since G is 2-node connected there
cxists a cycle C of G containing eand f. Let T be a spanning tree of G containing C\ {¢}
(but not /). Then T' = (T\{e}) U { [} is also a spanning tree of G. Set D = 7' U A
and D'=T"U 4. Clearly Xx°, x*" € CON (G; S)and 0 = 6"x” — b"x”' = b, —- b;. This
implies that 67x is a multiple of a”x which proves that a”x = p — 1 defines a facet of
CON (G, S). a

Theorems 3.2, 3.3, and 5.6 immediately give the following result.

COROLLARY 5.7. Let G = (¥, E)} be a connected graph, S = V a set of at least two
terminal nodes and assume that G contains no Sieiner bridge. Then dim (CON (G, 8)) =
| E| and the following sysiem is a nonredundant system of facet-defining inequalities for
CON(G; S):

p
(i) % 2 x(8(Vy)yzp— 1 forall partitions vy, -+, Vool Vipz 2,
i=1 such that G is 2-node connected and,
Jori=1,--- p,ViNS+* & and
G Vi) is connected and contains no Steiner
bridge with respect (0 V, N &

(i) x. =1 forallee E,
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(iii) x, 20 for all e € E such that G — e
contains no Steiner bridge.

Note that the nonredundancy parts of Theorems 4.10 and 5.4 follow directly from
Corollary (5.7).

Bascd on the paper of Prodon, Liebling, and Groflin (1985), Prodon ( 1985) has
generalized the incquality system (5.5) (i) for CON (& S) to the system (5.9) defined
below. We give a polyhedral proof of the validity of these inequalities.

PROPOSITION 5.8. Let G=(V, EYbeagraphand Sc V, | S| Z 2, a set of terminal
nodes. Let F be a set of subsets of V such that

(a) | 7| 21,

(b UNS#* B forall Ue F,

(c) (M\Upes UYNS* B.

For each edge ¢ = uv e k| set

AMF e, u,v)=|{UeF|luelU,veU}|,
a,(F)=max { A(F;e,u,0),A(F;e,v,u)},
and define
a(F)=(u(F ))ocs€R"
Then
(5.9) aF) xz |7

is valid with respect to CON (G S).

Proof. We prove the validity of (5.9) by induction on | #|. For |#| = 1, say
F = {W}, (5.9} is nothing but the (valid) cut inequality x(8(W)) Z 1 already considered
in (5.3) (1).

We now assume that (5.9) is valid for CON (G; ) for all set systems satisfying (a),
(b), (c) with at most p 2 | elements. Let # < 2" be a set system satisfying (2}, (b),
(¢} with p + | elements. For ease of notation, let us set V= V\(U, .z U).

Let / be the set of all (unordered) pairs { U, W} with U, W e Z , such that there
is an edge ¢ € I with one endnode in U (or in W) and the other endnode in WA\U (or
in U\W). Moreover, let J be the set of nodesets U € F such that there exists an edge
¢ € E with one endnode in U and the other endnode in V.

We define new sct systems as follows. For { U, W} € 1, set

.‘TU;4/E(3‘_\{U, ”/})U{U UW},

and for U € J, set Fy = F\{U}. Clearly, each of the systems F uon and F o has
cardinality p and satisfies (a), (b), and (¢). Let

bix= Y alFuw)Tx+ 2 al(Fy)' x
{uWyel Vel

By induction hypothesis, the inequalities of type (5.9) associated with the systems . iy
and the systems F , are valid for CON (G; S). Thus bTx = (| 1] + |J))pis also valid.
We will now prove (componentwise) that ([ 7] + [J] - Da(F) x z b"x. From
this observation we can conclude that a(F) x 2 ([ 1| + [JD/([ 1 + [J| = 1}p, and
thus validity of a(F )" x z | F | follows by rounding up the right-hand side.
By definition, for every edge ¢& E, a(F)YZ a(F )2 alF)— 1| for all
{U,W}el, and a(F) Z a{F )z a(F)— 1 forall Ue J; moreover, a(Fuw) 2
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0 for all {U,W}erland a(Fy)=20 for all Ue J. Thus, for every edge ¢ € E with
a{F)=0,wehave b, = 0.

Let ¢ = nv € E be an edge with a.(F) > 0.

Casel. u,veVv.

Case 1.1, A(F;e,u,v)> A(F;e,v,u).Set F'={U eF|u elU,vd U'}. By
definition there are at least a.(F ) sets in & ', and moreover, since v € V there is at least
oneset, say W', in F\F withve W' . SetI'=s {{U, W'}|U' e F#'}. Then I' = I and
A F yw) = a(F)— 1foral {U', W}el Thus

b= 2 alFyw)t 2 alFy)S (1| +|[J)alF)-|TI'|

(Uwiet Ueld
S +1J] - Dad F).

The case A(F; e, v, u) > A(F; e, u, v) follows by symmetry.

Case 1.2. M(F e,v,u)=AF;e,u,v). Let F'={UeF|luelU,veU'}
and F"'={U"'€F|lueU',velU"}. By assumption |F'| = |F"| =a,(F). Set
I'=s{{u,u"}\U eF' U"e F"}. Then |I'| = a,(F)? and U (Fyrygn) =
a.(F)— lforall { U, U"} e I'. This implies as before b, = (| I| + | JDa(F)— |I'| £
(LT + 1] = Da(F).

Case2. e V), sayuec V\Vandve V. Let F' = {Ue F|ue U). Then by
definition a,(F) = A(F; e, u,v) = | F'| and F' < J. Obviously, a.(F ) = a,(F) —
I forall Ue #', and hence

be=([Il+ 1 /Nad F Y= |7 | 211 + || = 1)a(F).

This finishes the proof. a

It is easy to find some necessary conditions for an inequality (5.9) to define a facet
of CON (G). But it is currently unknown which of the inequalities (5.9) defines facets
of CON (G, S).

Given a graph G = (¥, E), a node set S < V, and a vector »y € R* (we may assume
0 = p = 1), it is easy to solve the separation problem for v and the inequality system
(5.3) (1) by computing a Gomory-Hu tree for the graph G = (V, E) with the values Pes
e € E, considered as edge capacities. (The Gomory-Hu method for finding a minimum
capacity cut is, for instance, described in Hu (1969) or Grétschel, Lovasz, and Schrijver
(1988).) The Gomory~Hu tree contains an cdge with capacity smaller than one whosc
removal separates two nodes in S if and only if y violates at least one of the inequalities
(5.3) (1). This implies (sce, e.g., Grétschel, Lovész, and Schrijver (1988)) that the LP-
relaxation of (5.2) coming from (5.3) can be solved in polynomial time.

The Gomory-Hu tree can be used to find some violated inequalitics of type (5.5)
(1) heuristically. But a polynomial time separation procedure for the system (5.5) is not
known. The same holds for Prodon’s system of inequalities defined in Proposition 5 8.

6. Edge connectivity. By setting r, = k (k a positive integer), and o, = k,, = 0 for
all s, 1€ V, s ¢t we obtain the following special case of (2.1), respectively (3.7):

(6.1) min ¢7x
(1) x(3(W))2zk forall WeV,F+ W+ 1V,
(i) 0=x,51 for all e € L,

(ii) x,e{0,1} forall e € E.

The feasible solutions of (6.1) are exactly the incidence vectors of all edge sets C < [I-
such that (V, C) is k-edge connected (i.c., every pair of nodes of G is linked by £ edge
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disjoint paths). So (6.1)is asking for A minimum cost spanning k-edge connected subgraph
of G. To simplify notation in the following, we will just speak of a k-edge connected

edge sct C and mean that (V, C) is a (spanning) k-edge connected subgraph of G. Let
us sct

ECON (G k)=conv { X“eRE|(V, () is k-edge connected }.

ECON (G, k) is called the polytope of k-edge connected subgraphs of G. Clearly, ECON
(G; k) = CON(G; k1, 0, 0), and for k = |, we have ECON (G; 1) = CON (G)—see
§ 4. The dominant of this polytope, i.e., the polyhedron ECON (G; k) + R”% has been
considered in Cornuéjols, Fonlupt, and Naddef( 1985) who showed, among other results,
that ECON (G;2) + RE = {xeR*|x2 0, x(8(W)) 2 2foral We V, I + W# V}
if G is series-parallel.

We will now give a technical characterization of those inequalities of type (6.1) (1)
that define facets of ECON (G k). To do this we introduce further notation. An edge ¢
of a graph G = (V, E) is called k-edge-essential if G — e is not k-edge connected. So the
k-cdge-essential edges of G are exactly the edges that are (G k1, 0, 0)-essential. By
Theorem (3.2), ECON (G; k) has dimension | I} if and only if G is k-edge connected
and contains no k-edge-essential edge. By Menger’s theorem the latter condition is equiv-
alent to G and is (k + 1)-edge connected.

THEOREM 6.2. Let G = (V, E) be a (k + 1)-edge connected graph, k = 1. Then,
forweV,8+W#V,

x(8(W))zk

defines a facet of ECON (G k) if and only if

(a) for each edge e € EN§(W), there exists a set C S 6(W') such that
(a)) |C| =k, and
(ay) CU(EN(B(W)U {e})) is k-edge connected, und

(b) there exist edge sets C, -+, Cy < 8(W), where s = |6(W M, such that
(b)) ICil =k, i=1,--,3s,
(by) CiU (EN(8(W)) is k-edge connected, and
(B3) the s X s-matrix M whose columns are the incidence vectors x G e R¥)

is nonsingular.

Proof. Suppose (a) and (b) are satisfied. Set a’x = x(8(H/)) and let bTx 2 B de-
finc a facet F, of ECON (G; k) that contains the face F,, = {x € ECON (G kKla'x =k}.

Let ¢ € \&(W) and let C, = C U (E\(§(W) U {e})) be the k-edge connected
subset of E existing by (a). Then D = C, U {e} is also k-edge connected and, by (a,)
we have a”x ¢ = a™xP = k. Thus, since F, € [, b"x% = b7x” holds. This implies b. =
0. It follows that b, = 0 for all e € EN&(W).

The incidence vectors of the k-edge connected sets D, = C; U (EN&(W)), i =
[, -, s, satisfy a’x? = k and hence h"x? = 8. Consider the equation yIM =17
Clearly, the vectors (8/k)17 and b7 in R**") (where b is the vector obtained from & by
deleting the components E\&(W)) are solutions of this equation. Since M is nonsingular,
b = (B/k)1 has to hold. This implies that ¢ = (k/B)", and thus, a”x 2 k defines a facet
of ECON (G k).

If (a) does not hold then there is an edge e € E\§(W) such that, for no subset C of
§(W) with |C| = k, the set CU (EN(O(W)U {e})) is k-edge connected. Hence either
no k-edge connected edge set satisfies x(&( W)) 2 k with equality (and thus this inequality
does not define a facet) or every k-cdge connected subset D € I with | DNs(W)| =k
contains ¢. Thercfore { x € ECON (G k)| x(§(W)) = k} € {xe ECON(G; k)| x. = 1}
and x(8(W)) 2 k docs not definc a facet.
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If (b) does not hold, then the set of vertices contained in the face
F={xeECON (G;k)[x(8(W))=k}

is not linearly independent. Hence, as ECON (G k) is full-dimensional, F is not a facet
of ECON (G k). a

Theorem 6.2 is merely of technical interest and does not provide insight into the
graph theoretical properties that make an inequality x(6(#))  k a facet-defining one.
In fact, in contrast to our earlier belief, there seems no easy way to use connectivity prop-
erties only to decide whether or not such an inequality defines a facet of ECON (G k).
This will become clear by the following observations.

PROPOSITION 6.3. Let G = (V,E) be (k+ 1)-edye connected, k=2, and W<
V owith @+ W#V such that G[W] and G[V\W] are k-edge connected. Then
X(6(W)) 2 k defines a facet of ECON (G k).

Proof. We first show that (a) of Theorem 6.2 is satisfied. Let e = yv € E\§(W),
say ¢ € E(W). If G' = G[W] — e s k-edge connected then C U (EN(§(W) U {e})) is
k-edge connected for every set C < §(W) with |C| = k. So let us assume that \(G') =
k — 1. This implies that G' contains a cut of cardinality k — 1 that separates u and v.
Among all node sets W, W, c Wwith W, N W, = G suchthat ue W,,ve W, ec
§(Wy),eed(W ), |86 W,)| = |6g (W ,)| = k— | (note that such sets exist) we choose
W, and W, such that W, and W, have cardinality as small as possible. Since G is
(k + 1)-edge connected there exists an edge € £ with one endnode in W, and the
other in V'\W, and one edge ¢ € I with one endnode in W, and the other in V\W.
Let C be any subset of 8(H’) with |C| = k and /, g € C. (Here k 2 2 is needed.) We
claim that D = C U (E\(§(W) U {e})) is k-edge connected. Suppose not; then there
must be a cut §(Z) in G” = (V, D) with &k — 1 or fewer cdges. It follows from our as-
sumptions that §,+(Z ) does not separate any two nodes of ¥\ W, that it must separate
u and v (so we may assume that 1z € Z) and that {§,.(Z)] = k — 1. Since the cut car-
dinality function |d.-| is submodular on the subsets of nodes of ;' we obtain 2k —
22 |36 (W) + 1064 2)] 2 18- (W, N Z)| + [8(W U Z). As |bg(X)| 2k -1
for all cuts in G' we can conclude that |8q(W, N Z)| = k — 1, and thus by the choice
of W,, we have W, = W, N Z. But then [ € §5+(Z) and thus [65-(Z)| Z k, a contra-
diction. This proves that (a) of (6.2) is satisfied.

For every C < 6(W) with |C| = k, C U (E\S(W)) is k-edge connected and the
matrix whose columns are the incidence vectors of all possible k-element subsets of §(1)
has obviously full row rank. Thus a matrix M as required by (b) of (6.2) exists. Hence
the theorem follows from (6.2). O

The next example shows that the connectivity requirements on G[W]and G[V\W]
cannot be weakened. They are, in a sense, best possible.

Example 6.4. Letk = 1 and G, = (V,, E,) be a minimal (k — 1)-edge connected
graph (i.e., G, is (k — 1)-cdge connected and each edge is (k — 1)-edge essential) with
at least £ + | nodes of degree k — 1. (Such graphs exist for all large enough orders.) Let
G be the graph obtained from the disjoint union of G| and the complete graph K., =
(V, E2) of order k + 1 by adding all edges that link a node in Gy to a node in K., .
G 1s clearly (k + 1)-edge connected. The inequality x(8(F,)) 2 k does not define a
facet of ECON (G k), since there is no set C < 8(¥)with |C| = ksuch that CU E, U
E, is k-edge connected (because at least one node in ViUV, CU E| U E,) has degree
k—1).

On the other hand a cut inequality may define a facet of ECON (G; k) even if
G[W]and G[V\W] are not highly connected as the next example shows.

Example 6.5. Consider four complete graphs on node sets 4, B, C, D with k& = 4
nodes. Link all nodes in 4 U B to all nodes in CU D, add asetof Tk/21+ | node disjoint
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edges with one endnode in A4 and one in B, and add a set of [k/21 + | node disjoint
edges with one endnode in C and the other in D. Let & = (V, E) be the graph obtained
this way. G is (2k + [k/21 + 1)-edge connected. Let W= A4 U B. Then the edge (and
node) connectivity of G{W1and G[V\W]is[k/21+ 1. Using Theorem (6.2) it is easy
to show that x(&(W)) 2 k defines a facet of ECON (G} k).

The above example is an extreme case. The next observation shows that the con-
nectivity of G[W ] and G[V\W] cannot be smaller than [k/21 + 1 if the associated
inequality defines a facet.

PROPOSITION 6.6. Let k = 2, G = (V, E) be a (k + 1)-edge connected graph and
WcV, & # W+ V, such that the edge connectivity of GIW | or G V\ W] is not larger
than Tk\21. Then x(6(W)) does not define a facet of ECON (G k).

Proof. We may assume without loss of generality that G[W]is[k/21-edge connccted
but not (Tk/21 + 1)-edge connected. By Menger's theorem G[W] contains an edge e
such that G[W] — ¢ is not Tk/21-edge connected. [t is easy to see that each k-edge
connected edge set FF < E with X (6(W)) = k contains edge ¢. Hence by Theorem 6.2,
x(8(W)) 2 k does not define a facet of ECON (G k). a

Propositions 6.3 and 6.6 yield the following result for the cases k = 2, 3 which are
of particular practical interest.

COROLLARY 6.7. Let k€ {2, 3} and let G = (V, E) be a (k + 1)-edge connected
graph. Let W V, & # W+ V. Then x(8(W)) 2 k defines a facet of ECON (G k) if
and only if G{ W1 and G{V\ W] are k-cdge connected.

Recall that Theorem 4.10 (or Corollary 5.7) yields that, for a 2-edge connected
graph G and for a node set W< V, O+ W# V, x{(6(W))Z | defines a facet of ECON
(G 1)if and only if G{W]and G[V\W] are 2-edge connected.

Given G = (V, E)and p e RF, 0 < y £ 1, the separation problem for y and (6.1)
(i) can be solved in polynomial time by computing a cut 8(W*), & # W* # V, of
minimum capacity y(8(W *))—for instance by the Gomory-Hu method. If y(§(W*))
< k the vector y violates x(8( W *)) 2 k, otherwise all inequalities (6.1) (i) are satisfied
by y. Hence the LP-relaxation of the minimum cost k-edge connected subgraph problem
following from (6.1) (by dropping the integrality constraints (iii)) can be solved in poly-
nomial time.

7. Node connectivity. Parallel edges do not play a role in nodc connectivily ques-
tions. Thus we assume throughout this section that all graphs G = (¥, E) considercd are
simple. Setting in (2.1} dy, = 1, ry = k, and ky=k—-1(keZ, |l =kZ|V| - 1)for
all s, { € I/, we obtain the following integer linear program:

(7.1) min ¢’ x
i) x(6(W)) 2k forall Wec I,

(i) x(8;_(W))=z 1 forall node sets Z < Vwith
| Z| = k — | and all node sets
We V\Z, 3+ W+ V\Z,;

(i) 0=x, = | forall e € E;
(iv) x,€{0,1} forall ce .

Clearly, every optimum solution of (7.1 ) is a minimum-cost spanning k-node connected
subgraph of &. The polytope
NCON (G:k)=conv { X“ eR"[(¥,C) is k-node connected }

is called the polytope of k-node connected (or just k-connected) subgraphs of G. For k =
1 this polytope coincides with ECON (G: 1)and CON ((). Note that NCON (G k) &
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ECON (G k). Using the observations of § 4 we can immediately strengthen (7.1) to the
following ILP:

(7.2) min ¢’ x
(1) x(8(W)) =z k foral We V, 3+ W+#V,
p
(1i) 1 > x(bg-VNzp—1 forall Zc Vwith [Z| =k — |
2,5 and all nontrivial partitions
Vi, -, V,of V\Z,p2 2;
(m) 0=2x.=1 forall e € E;
(iv) x.€{0, 1} forall e€ E.

It follows from our remarks in § 6 that the separation problem for (7.2) (i) and (iii) can
be solved in polynomial time. Our remarks in § 4 imply that the separation problem for
(7.2) (ii) and (iii) can be solved in polynomial time for every fixed node set Z. Thus,
for k fixed, the separation problem for (ii) and hence the LP-relaxation of (7.2) are
solvable in polynomial time.

We will now investigate NCON (G; k) and find out which of the inequalities of
(7.2) induce facets of the polytope of k-node connected subgraphs.

We will call an edge e of a graph G = (V, E) k-node essential if G — ¢ is not k-node
connected. The k-node-essential edges of G are thus precisely the (G, k1, (k= 1)1, 1)-
essential edges of G. By Theorem 3.2, NCON (G; k) has dimension | £| if and only if
G is k-node connected and contains no k-node-essential edge. In particular, NCON
(G; k) has dimension | E| if G is (k + 1)-node connected.

The results of § 6 concerning the cut inequalities x(6(W)) 2 k for ECON (G'; k)
carry over 1o the case of node connectivity, Only minor modifications in the proofs and
examples have to be made. We thus only summarize these observations and give no
proofs. The main proof technique is an appropriate modification of Theorem 6.2.

THEOREM 7.3. (a) Let G = (V, E) be a k-node connected graph, k Z 2, without k-
node-essential edge and let W < V, & + W # V, such that GIW]and GIV\ W] are k-
node connected. Then x(8(W)) 2 k defines a facet of NCON (G k), ¢f. (6.3).

(b) If x(8(W)) 2 k defines a facet of NCON (G k), where G = (V, EYis a k-node
connected graph, k = 2, without k-node-cssential edge and We V, 3 + W # V, then,
Jor each e € E(W ) and for each fe E(V\W), K(G([W]— {e})and x(G[V\W] - {1
are at least [k[21, ¢f. (6.6).

(c) Forevery k 2 1, there are (k + 1)-node connected graphs G = (V, E) and sets
W< Vsuchihat GIW]is (k — 1)-node connected, G [(VNW1]is(k+ 1)-node connected
and such that x(8(W)) 2 k does not define a facet of NCON (G k), ¢f. (6.4).

(d) For cvery k 2 4, there are (k + 1)-node connected graphs G = (V,E) and
sets W V such that «(G(W]) and «(G[V\W]) are cqual 1o [ )21+ 1 and such that
x(8(W')) 2 k defines a fucet of NCON (G k), ¢f. (6.5).

We will now give a technical characterization of those inequalities (7.2) (ii) that
define facets of NCON (G k).

THECREM 74. Letk = | and let G = (V, E) be a k-node connected graph without
k-node-essential edge. Lot Z < V with |Z] =k -1 and let V,, -- -, Ve,p 22 bea
partition of VNZ. Let E' = E(V\)U --- UE(V,) U E(Z) U 8(Z) and let G = (V, E)
be the graph obtained from G by deleting Z and contracting vV, , - -- |V ». Then

1 P

3 2 x(0G-2(V))=x(E\E')=x(E)Zp— I

i=1
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defines a facer of NCON (G k) if and only if

(a) for each edge e € 7' there exists a spanning tree T in G such that TU E'\ { e}
is k-node connected;, and

(b) there existsa set Ty, ««+ | T, of spanning trees in G, where s = |E|, such that:

(b,) 77U L' is k-node connected, aned

(by) the s X s-matrix M whose columns are the incidence vectors X' € R% is non-
singular.

Proof. Lc‘tlZ € Vwith |Z| =k — | and a partition V|, -+, V,of V\Z,p = 2,
be given. Set a’x =4 2. x(8¢- V), F.= {xe NCON (G; k)ja"x=p— 1}, and
let us callanedgeset C = E tig{zt if (¥, C) is k-node connected and « "X = p — 1, ie,,
ifxtel,. Note that £ = L'UE, and since G is k-node connected and without k-node-
essential edge, G is 2-edge connected.

Supposc (a) and (b) hold and that 5”x = 8 defines a facet F, of NCON (G; k)
containing F,. Condition (a) implies that, for each edge ¢ € L', there exists a spanning
tree T'in G such that C.= T'U E'\ {e} is k-node connected. Since | C, MU= | 8- (V) =
p — 1 we can conclude that C, is tight, hence, since £, € Fj,, b7x = g holds. But, for
C, = C, U {e}, we also have a™x € = p — | and thus #"x € = 8. This implies b7x " =
bTx ¢ and hence b, = 0 for each e € E".

D,=T, UEistight fori=1, -+, sby(b). The cquation y”M = 17 is solved
by the vectors (8/(p — 1))17 and 5" of R¥ (where b is the vector obtained from & by
deleting the components E’). Since M is nonsingular, we have b7 = (8/(p — 1))1 T
Clearly 8/(p — 1) # 0, and thus we can conclude that a = ((p — 1)/B8)b which implies
that F, defines a facet of NCON (G; k).

If (a) does not hold then there is either no tight set at all (and hence a’xzp-1
does not define a facet) or there is an edge ¢ € £ such that each tight set C € E contains
¢. This implies that F, € {x € NCON (G; k)| x, = 1} and hence F, does not define a
facet. If (b) does not hold then the sct of vertices contained in the face £, does not span
a hyperplane of R”, and thus, as NCON (G; k) has dimension | E|, F,is not a facet of
NCON (G k). O

As in the case of Theorem 6.2 we scec no way to translate conditions (a)and (b) of
Theorem 7.4 equivalently into nice graph theoretical properties, in particular, into con-
nectivity requirements. An casy consequence of Theorem 7.4 is the following.

THEOREM 7.5. Let G = (V, E) be a k-node connected graph, k 2 1, without k-node-
essential edge. Let Z € V with 1Z] =k — 1, andlet 'V, -+, V,, p & 2, be a partition
of VNZ. IfGZU V] —els le-node connected jor every edge e in G[V; U Z] and for
everyi€{l, -, p}and if G = (V, E) is 2-node connected then 122 x(6g-AVi)) 2
p = 1 defines a facet of NCON (G5 k).

Proof. To prove (b) of Theorem 7.4 we first show that for every spanning tree
T of G=(G—2Z)/Vi/--/V, the edge set C=TULE, where '=E(V)U--- U
E(V,)UE(Z)YU8(Z)i1s k-node connected. By assumption, forevery i€ {1, ---,p} and
every two nodes u, v € V, U Z, the graph G[V,U Z]and hence its supergraph (V, C)con-
tains k node disjoint [u, v]-paths. Let w € Vi, v € V;, i # j. The edge set C\(E(Z)U
8(Z)) contains a [u, v]-path P by construction. Let ¢ be the last node of V; and /; the
first node of ¥} that is encountered by going from u to v along P. Since G[V,U Z] is
k-connected it contains a (u, ZU {¢})-fan and similarly G[V;U Z] contains a
(v, Z U {(;})-fan. This implies that C contains & node disjoint [u, v]-paths, and thus C
is k-node connected.

Let M be the matrix whose columns are the incidence vectors of all spanning trees
of G. Using the arguments of the end of the proof of Theorem 5.6, we can easily show
that the 2-node connectedness of G implies that M has full row rank. Hence M contains
a nonsingular s X s-submatrix M.
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To prove (a) of Theorem 7.4, let ¢ € E’' be an arbitrary edge, say e € £(V, U Z).
Since e is not k-node-essential with respect to G[V, U Z ], G|V, U Z] — eis still k-node
connected. By assumption and from the arguments used above, it follows that for every
spanning tree T of G, TU E'\ {e} is k-node connected. O

The conditions of Theorem 7.5 are, in particular, satisfied if G is (k + 1)-node

connected and if G[V;U Z]is (k + 1)-connected forall ie {1, ---, p}.
Observe that, for k = [, Theorem 7.5 implies that, for any 2-edge connected graph
G = (V, E), any partition V1, - -+, ¥, of ¥, p 2 2, such that G[V,] is 2-edge connected

induces a facet defining inequality § 27| x(8(V))) 2 p— 1 of NCON (G: 1) = CON (G).
By Theorem 4.10 these are exactly the facet-defining inequalities of CON (G) of this
type. It is easy to see that “G[V;] is 2-edge connected for i = 1, -, p” is a necessary
condition for an inequality of type (7.2) (ii) to define a facet of NCON (G k). However,
this condition is far from being sufficient for k 2 2.

In fact, the connectivity conditions on G[V; U Z] in (7.5) cannot be weakened
further. For instance, we can show that for every k = 1 there exists a (k + 1)-node
connected graph G = (V, E) with node sets Z, V/,, - - -, Vo< Vsuchthat |Z]| =k —I;
Vi, Va, «++, V, is a partition of ¥ and such that G[Z] is a complete graph, G[Z2U V]
and G[V;] are k-node connected for i = I, ---, p and the corresponding inequality
LY. x(86-2(V:)) Z p — | does not define a facet of NCON (G k). We describe this
construction for the case where k is even in the following example.

Example 7.6. Let & = 2r, r Z 1. We construct a graph G = (V, E) with 5k — 1

nodes as follows. Let A4, 7= 1, - -, 8 and Z be node sets with the following properties
V=ZUU}L A, |Z| =k -1 and Z induces a complete subgraph of G. All A; are
stable sets of G and satisfy | 4,| = r. Every node of Z is linked to every node of 4, U

Ay U 45 U 44 by an edge.

Every node of 4, is linked to every node of A (i <j)byanedgeforj=1i+ 1
(i = l,2,3,5,6,7),i=1andj=4,i=5andj=8,i=3andj=7,i=4andj=8.
The scheme of the graph & obtained this way is displayed in Fig. |.

It is easy to see that for V, = Ui, 4, ¥, = UX_ ¢ 4, the graphs G[V], G[Va],
G[ZU V], G[Z U V3] are k-node connected and that G is (k + r)-node connected. But,
for every edge e with one endnode in 4, and the other in Ay, or one endnode in 44 and

FI1G. 1
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the other in Ay, there is no spanning tree 7'in G = (G ~ Z)/V,/V, (ie., T'is just an
edge) sueh that 7U E(V,) U E(V,) U E(Z) U §(Z)\ {e} is k-node connected. So by
Theorem 7.4 the corresponding inequality does not define a facet of NCON (G k).

We will now give, for every k 2 2, an example where no two nodes in G[Z] are
adjacent and where «(G[Z U V;]) = 1, yet the corresponding inequality defines a facet
of NCON (G k).

Example 7.77. Let k 2 2. We construct a graph ¢ = (V, E) with p + k¥ — 1 nodes,
where p 2 k + 1 as follows. Let Z < Vwith |Z| = k — 1 be a node set such that no two
nodes in Z are adjacent. Let ¥'={v,, ---,v,} be further p 2 k -+ 1 nodes and set
Vi={v},i=1,--+,p. The subgraph of G induced by V' is complete and every
node of ¥’ is linked to every node of Z by an edge. Thus G[Z U V;] is a star and
(G2 U V:]) = 1. Itis easy to see that G is (k + 1)-connected and that properties (a)
and (b) of Theorem 7.4 are satisfied.

The results of this section show that dropping the integrality stipulations (iv) from
(7.2) yields a reasonable (and, for small fixed k, computationally tractable) LP-relaxation
for the problem of finding a spanning k-connected subgraph of minimum cost.

8. Node and edge connectivity mixed: A model used in practice. We will now in-
troduce a model that describes the current situation in the area of building fiber optical
networks faithfully—see Monma and Shallcross ( 1989) for a detailed overview of the
approaches to design “‘survivable” communication networks. This model contains a mix-
ture of certain node and edge connectivily requirements. As far as we can see, graphs
with these kinds of “‘mixed connectivity™ properties have not received much attention
in the graph theory literature nor have the related optimization problems been considered
seriously in combinatorial optimization.

As before we begin with the graph G = (V, E) that describes the possible direct
connections between the given locations of switches. (Recall that two nodes s, / € V are
called (facally) k-connected or (locally) k-edge connected if G contains k [ s, t]-paths that
are node-disjoint or edge-disjoint, respectively.) In the network design area it is common
to classify the locations by “type.” So, for each node s € V" we introduce two connectivity
parameters, denoted by r, and k,; r; is called the edge connectivity type, k, the node
connectivity iype . As usual we have a cost ¢, for all e € E. We are looking for a subset C
of the edge set £ of minimum cost ¢(C) such that for every two nodes s, 1€ V, s # {,
(¥, C) contains min {r,, r,} edge-disjoint [s, {]-paths and min {k, /} node-digjoint
[, {]-paths.

The conditions stated above require that the “cable network™ (¥, C) is locally
min {r,, r,}-edge connected and locally min {k,, k, } -connected. Since local k-connect-
edness implies local k-edge connectedness we may assume that

(8.1) rizlk, forallseV.

Setting, for all s, € V, 5 # {, rg = min {rer},dy=1,and ky= min {k,, k } — I, we
sce that the problem defined above can be viewed as a special case of (2.1).
In telephone network applications of the type considered here, we typically have

(8.2) ro, ke€{0,1,2}) forallsel.

(But we also know of a communication network application with &, € {0, I, -+ -, 5}
The nodes s € V with r, = k, = 0 are the Steiner nodes. They are not required to be in
the fiber optical network but they may be used to construct the network. The nodes
(respectively, offices or locations) s with k, = 2 are sometimes called “special offices.”
They frequently carry high loads of communication traffic. Their failure—without the
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possibility of rerouting-—would be fatal to the system and result in considerable losses
(financially and in customer good-will). .

Using (2.1) and (7.2) we can formulatc the mixed conncclivity problem described
above as an integer linear program as follows;

(8.3) min ¢7x
(1) x(&(W))Zmin{r,,r,} forals,teV, s+t and
foral WeV,se W, rd W,

r
(i) 12 x(8(V)Nzp-1 foralls,teV, s+ ( and for all
i=t ZeVN{s, 1}, 1Z| =min {k, k3 — 1,
and all nontrivial partitions
Vi, oo, Vyof F\Z,p2 2,

(iii) 0=x,=1 for all ¢ € E;

(iv) x,€{0, 1} forall c€ E.

Needless to say, (8.3) belongs to the class of NP-hard optimization problems; in
fact, this is true even in the case where k and r satisfy (8.1) and (8.2), since the Steiner
tree problem is a special case.

As before, to address optimization issues it is natural to introduce a polytope as-
sociated with the integral solutions of (8.3). So, let G = (V, E) be a graph and k € R,
r € RY be two vectors of nonnegative integers. Then

CON, x (G)=conv { xeR*| x satisfies (8.3)(i), - - - ,(iv)}

is the convex hull of the incidence vectors x¢ of edge sets C = E such that for every two
nodes s, 1 € ¥, s # {, the subgraph (¥, C) is locally min { k, k, } -connected and locally
min {r,, r, }-edge connected.

As mentioned before, the separation problems for the inequality systems of (8.3)
can be solved in polynomial time, for r; and k, small, with not so small degrees of the
polynomials of the running time functions, however. To get practically efficient cutting
plane algorithms for the solution of (8.3) we have to use heuristic separation routines in
addition.

The theoretical work presented here on (partial) characterizations of facets will be
used to design fast heuristic separation algorithms. Qur work on polyhedral properties
of CON,, (G), as well as on computational aspects of the LP-relaxation that follows
from (8.3), is still in progress and will be reported in a forthcoming paper.
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