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We consider the important practical and theoretical problem of designing a low-cost communications network which can survive
failures of certain network componcnts. Our initial interest in this area was motivated by the need to design certain ““two-
connected’’ survivable topologies for fiber optic communication nerworks of intercst to the regional telephone companies. In this
paper, we describe some polyhedral results for network design problems with higher conneclivity requircments. We also report
on some preliminary computational results for a cutting plane algorithm for various real-world and random problems with high
connectivity requirements, which shows promise for providing good solutions to these difficult problems.

his paper focuses on the important practical and the-

oretical problem of designing survivable communi-
cation networks. Our initial interest in this area was
motivated by the problem of designing survivable topol-
ogies for fiber optic communication networks for the re-
gional telephone companies; see Belicore (1988) and
Cardwell, Monma and Wu (1989) for an overview of this
application and a description of a software tool devel-
oped at Bellcore. This application requires certain ““two-
connected’’ topologies so that special offices can
communicate after the failure of any single network link
or node.

Our earlier work on two-connected network design
problems included structural properties and worst-case
analysis of heuristics (Monma, Munson and Pulleybank
1990), practical heuristics (Monma and Shallcross 1989),
polyhedral results (Grotschel and Monma 1990,
Grotschel, Monma and Stoer 1992a), and computation
with a cutting plane algorithm (Grétschel, Monma and
Stoer 1992a). This naturally leads to theoretical and algo-
rithmic questions for network design problems with
higher survivability requirements. Structural properties
were considered in Bienstock, Brickell and Monma
(1990), and practical heuristics were considered in Ko
and Monma (1989).

This paper describes polyhedral results, including nat-
ural integer programming formulations, classes of valid
and facet-defining inequalities, and their associated sepa-
ration problems for network design problems with higher
connectivity requirements. We also report computational
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results with a cutting plane algorithm on some random
problems and on some real-world problems with high
survivability demands. The real-world problems we ob-
tained turned out to be quite difficult; indeed, more diffi-
cult than we expected based on our success in solving
network design problems for the telephone companies.
There seem to be several reasons for this:

a. the networks are large (almost 500 nodes), sparse, and
have many Steiner nodes;

b. conncctivity requirements of three or more seem Lo
be much more difficult than two-connected problems;
and

c. the cost structure is very regular which makes proving
optimality rather difficuit.

In Section 1, we describe the model of network surviv-
ability that we have in mind. The polyhedral results are
presented in Section 2. The cutting plane implementation
and computational results are presented in Section 3.

1. MODELS OF NETWORK SURVIVABILITY

In this section, we formalize the survivable network de-
sign problem that is being considered in this paper. To do
this, we need to introduce some notation.

A set V of nodes is given which represents the loca-
tions that must be interconnected into a network to pro-
vide the desired services. A collection £ of cdges is also
specified that represents the possible pairs of nodes be-
tween which a direct link can be placed. We let G =
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(V, E) be the (undirected) graph of possible direct link
connections. Each edge ¢ € E has a nonnegative fixed
cost ¢, of establishing the direct link connection. The
graph G may have parallel edges but contains no loops.
The cost of establishing a network that consists of a
subset ' C E of edges is thc sum of the costs of the
individual links contained in F. The goal is to build a
minimum-cost network so that the required survivability
conditions, which we describe next, are satisfied.
IfG=(V,E)isagraph, WC Vand F C E, then we
denote by G — W and G — F the graph that is obtained
from G by deleting the node set W and the edge set F,
respectively. For notational convenience we write G — v
and G — ¢ instead of G — {v} and G — {e}, respec-
tively. The diffcrence of two sets M and N is denoted by
MAN.
For any pair of distinct nodes s, ¢t € V, an [s, t]-path
P is a sequence of nodes and edges (v, €, Vi, €5, <.,
Vi_1, €5, V;), where each edge e; is incident with the
nodesv;_;andv(i =1, ...,!), wherevyg = sand v, =
t, and where no node or edge appears more than once in
P. A collection P,, P, ..., P, of [s, t]-paths is called
edge-disjoint if no edge appears in more than one path,
and is called node-disjoint if no node (except for s and ¢)
appears in more than one path. In particular, this implies
that parallel edges between a pair of nodes s and ¢ are
considered to be node-disjoint [s, #]-paths. This is in
contrast to standard graph theory; but this modification
of the definition was prompted by considerations that
arise in practical situations. We say that a graph G = (V,
E) is k-edge (respectively, k-node) connected if there are
k-edge (respectively, k-node) disjoint paths between ev-
ery pair of distinct nodes. We note again that this defini-
tion of k-node connectivity differs from that of standard
graph theory when parallel edges are present.
We measure connectivity between two nodes s and ¢,
and between nodes lying in a given node set W. Let G =
(V, E) be a graph with at least two nodes and W C V'
with [W| 2 2. We set
MG, W) :=the minimum cardinality of a subset
F of E, such that two nodes of W are
disconnected in G — F; and

k(G, W) :=the minimum cardinality of a set
SUF, where SCV and FC E, such
that two nodes of W are disconnected in
G-(SUF).

If |[W]| < 2 or if G has only one node then A(G, W) and
k(G , W) are defined to be oo.

The survivability conditions require that the network
satisfy certain edge or node connectivity requirements.
To model these survivability conditions, we introduce
the concept of node types. For each node s € " a non-
negative integer r., called the type of s, is specified.

The network N = (V, F) to be designed satisfies the
node survivability conditions if, for each pairs, ¢t € I of
distinct nodes, N contains at least r,, := min {r,, r}
node disjoint [s, t]-paths. Similarly, we say that N =
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(V, F) salisfies the edge survivability conditions if, for
each pair s, t € V of distinct nodes, N contains r,, edge
disjoint (s, t]-paths. These conditions ensure that some
path between s and ¢ will survive a prespecified level of
node or link failures. We introduce additional symbols
and conventions to denote these node- or edge-
survivability models.

Given a graph G = (V, E) and a vector of node types
r = (ry)ser» We assume, without loss of generality, that
there are at least two nodes of the largest type. If we say
that we consider the x\NCON problem (for G and r), then
we mean that we are looking for a minimum-cost net-
work that satisfies the node survivability conditions and
where & = max {r]s € V}. Similarly, we speak of the
kECON problem (for G and r). Furthermore, we define

r(W) :
con(W) .

max {r,:u € W}; and
min {r(W), (V- W)}
=max {rysEW,tEV - W}

forany W C V.letG = (V, E) beagraph. ForZ C V,
let 85(Z) denote the set of edges with one end node in Z
and the other in V\Z. It is customary to call 85(Z) a cut.
If it is clear with respect to which graph a cut 85(Z) is
considered, we simply drop the index and write §(Z).
We also write &(v) for §({v}). If X, Y are subsets of V
and X NY =@, weset[X-Y].={jEEiEX,jE
Y} thus 8(X) = [X : W\X]. If W,. ..., W, are pau-
wise disjoint subsets of V¥ we denote by [W, = ... W]
the set of edges with the end nodes in different node sets.
For any subset of edges FF C E, we let x(F) stand for the
sum Y ,epX,. Consider the following integer linear pro-
gram for a graph G = (V, E) with edge costs ¢, for all e
€ F and node types r_ for alls € I

min D, CeXe (1a)
e€E

subject to
x(8(W)) 2z con(W) forall WCV, §=W=V; (1b)

x(8-2(W)) = con(W) - |Z] (1)
for all pairs s, ¢t €V, s#¢, and
for all Z C W\{s, ¢} with 1 €|Z| <r, - 1, and
for all W C WV\Z withs E W, t & Wt

for alle € E; (1d)

foralle €E. (1e)

0sx, =1
x. integral

It follows from Menger’s theorem (see e.g., Chartrand
and Lesniak 1986) that the feasible solutions of (1) are
the incidence vectors of edge sets F such that N = (V,
F) satisfies all node survivability conditions; i.e., (1) is an
integer programming formulation of the ANCON prob-
lem. By deleting inequalities (i) from (1) we obtain, again
from Menger’s theorem, an integer programming formu-
lation for the KkECON problem. The inequalities of type
(1b) will be called cut inequalities and those of type (1c)
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will be called node cur inequaliries. Note that if one al-
lows |Z| = 0 in the class of incqualities (ic), one would
include the cut inequalities (1b).

The polyhedral approach to the solution of the
kNCON (and similarly the x\ECON) problem consists of
studying the polyhedron obtained by taking the convex
hull of the feasible solutions of (1). We set

kNCON(G; r) := conv {x € R{|x satisfies (1b, c, d, €)
KkECON(G; r) := conv {x € RE|x satisfies (1b, d, €)

2. POLYHEDRAL RESULTS

In this section, we will take a closer look at the polyhe-
dra kNCON and kECON, especially at further nonredun-
dant inequalities besides the cut and node cut
inequalities. The practical aim of this theoretical investi-
gation is to provide the basis for a cutting-plane algo-
rithm. We assume the reader is familiar with cutting-
plane methods and refer to Grotschel and Padberg (1985)
and Padberg and Grétschel (1985) for an in-depth treat-
ment. The general idea of a cutting-plane method is
10 solve an LP-relaxation of the problem at hand, and to
generate inequalities as they are needed. The routine
generating inequalities of a certain class needs to
solve the following problem, for a given fractional
LP-solution y.

Separation Problem (for a class C of inequalities)
Given a vector y decide whether y satisfies all inequali-
ties in C and, if not, output an inequality violated by y.

We call an algorithm that solves an (exact) separation
algorithm for C. The algorithm runs in polynomial time if
its running time is bounded by a polynomial in |V| and
the encoding length of y.

We will now describe several classes of valid inequali-
ties and indicate conditions under which some of these
inequalities define facets. It turns out that results of this
type are very technical.

2.1. Dimension and Trivial Inequalities

Given a graph G and node types », an edge e is essential
with respect to kECON(G; r) or kNCON(G; r) if
KECON(G - e; r) or kNCON(G — e; r), respectively,
is empty. We denote by kEES(G; r) the set of edges
essential for x\ECON(G; r) and by kNES(G; r) the set of
edges essential for K NCON(G; r).

Theorem 1. Let G = (V, E) be a graph and let r € {0,
1, ..., k}¥ be given.

a. Suppose that kECON(G; r)y is nonempty. Then
KECON(G; r) € {x € Rf|x, = 1 for all ¢ €
KEES(G; r)} and dim (KECON(G; #)) = |E| -
|KEES(G; ).

b. Suppose that kNCON(G; r) is nonempty. Then
KNCON(G; r) € {x € RE|x, = 1 forall e €

kNES(G; r)} and dim (kNCON(G; r)) = |E| —
IKNES(G; ).

See Grotschel and Monma for the general result and
proaf, also of the next theorem.

Theorem 2. Let G = (V, E) be a graph and r € 1Y such
rhat kECON(G; r) (respectively, KkNCON(G; r)) is full-
dimensional. Then

a. x, < 1defines a fucet of kKECON(G; r) (respectively,
ANCON(G; ) for all e;

b. x. 2 0 defines a facer of kECON(G, r) (vespectively,
kKNCON(G:; r)) if and only if for every edge f = e the
polytope  kECON(G — {e, f}; r) (respectively,
KNCON(G - {e, f}; 1)) is nonempty.

2.2. Cut Inequalities

In this section, we discuss the cut inequalities (1b)
x(6(W)) 2 con(W) forall W C V, § = W =# V. The
separation problem for cut inequalities can bhe performed
in polynomial time for nonnegative vectors (we are only
interested in O < y < 1) by using network flow or graph
connectivity algorithms as follows.

Let us consider the class %6 of cut inequalitics (1b) and
let y be some vector in R® with ) < y _foralle € E. We
view the components y, as capacities of the edges of the
given graph G = (V, F) and compute a1 Gomory-Hu tree
(using the Gusfield version that consists of |V/| — 1 calis
of a max-flow algorithm and some bookkeeping; see
Gomory and Hu (1961) and Gusfield (1987). The
Gomory-Hu tree has the property that, for any two
nodes u, v € V/, the minimum capacity of a cut separat-
ing « and v is given by the smallest weight of an edge
that is contained in the unique path linking u and v in the
Gomory-Hu tree. Having the Gomory-Hu tree T with
weights w, for all e € T we can determine whether y
satisfies all cut inequalities as follows. For each edge e,
let V. and V', denote the node sets of the two compo-
nents of (V/, T — ). If there is an edge ¢ € E with

w, < min {max {r,|v € V,}, max {r.|v € V,}}

then y violates the inequality x(8(V,)) = con(W), oth-
erwise y satisfies all cut inequalitics. Gomory-Hu trees
can be computed quite efficiently in practice. Thus, the
class of cut inequalities is very uscful for the cutting
plane approach from the algorithmic point of view. The
class of cut inequalities also contains many facet-defining
inequalities, which theoretically justifies the utilization of
cut inequalities.

Hao and Orlin (1994) devised an algorithm for finding a
cut of minimum capacity in a graph, which has the same
running time as the max-flow algorithm. But it does not
output a Gomory-Hu tree, which is needed in some of
our separation routines for the more general class of par-
tition inequalities described in subsection 2.4.




The following theorem was proven by Stoer (1992) and
gives necessary and sufficient conditions for a cut in-
equality to define a facet for kECON(G; r) when G is
(k + 1)-edge connected and where all nodes have the
same type k.

Theorem 3. Let G = (V, E) be a (k + 1)-edge con-
nected graph, let v, = k for all nodes v € V, and
letW = V be a nonempty node set. Define for each W; C
Wwith § = W, # W the deficit of W, as

defe(W;) := max {0, k — |8 gy (W)}

Define similarly for U, © W\W with § = U, = N\W
defe(U;) 1= max {0, k — |8 gy (U]}

The cut inequality

x(6(W)) <k

defines a facet of the polytope kECON(G; r) of k-edge
connected graphs if and only if

a. G[W] and G[V\W] are connected, and

b. forall edges e € E(W) U EQN\W), for all pairwise
disjoint node sets Wy, ..., W(p 2 0) of W with
W, = W for all i, and for all pairwise disjoint node
sets Uy, .o, Uylg 2 0) of VAW with U, = V\W for
all i, the following inequality holds:

q
defg-o (W) + 3, defs_.(U;)
1

i=1

!

We refer to Stoer for the details of the proof of Theorem
3 that is rather long and involved. We present a corollary
that provides some simple minimal sufficient and some
maximal necessary conditions on the connectivity of
G[W] and G[V - W]; these were ariginally proven in
Grotschel and Monma.
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Corollary 1. Let G = (V, E) be a (k + 1)-edge con-
nected graph, let r, = k for all nodes v € V, and let
W = V be nonempty node set.

a. If G(W] or G[W\W] is ar most (ki2ledge connected
then x(8(W)) 2z k does not define a facet of
KECON(G; r).

b. If G[W] and G[I\W| are k-edge connected, then
x(8(W)) = k defines a facet of kKECON(G; r).

For the case of kECON(G; r) and kNCON(G; r) prob-
lems with arbitrary node types, we do not know of any
general results characterizing those cut inequalitics that
are facet-defining. However, in the case of 2ECON(G; r)
and 2NCON(G; r) problems, i.c., where , € {0, 1, 2}
for all nodes v, we do know necessary and sufficient
conditions; see Grotschel, Monma and Stoer (1992b).
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2.3. Node Cut Inequalities

In this section, we discuss the node cut inequalities (1c).
x(8G-2(W)) = con(W) - |Z] (2)

for all pairs s, r € IV, s#t
for all Z C W\{s, ¢} with 1 <|Z| <r,, -1, and
forall WC WZ withse W, r ¢ W,

These inequalities are valid for KNCON(G; ) but are not
generally valid for kECON(G, r).

The separation problem for the class of node cut in-
equalities together with the cut inequalities is solvable in
polynomial time if we restrict the input to nonnegative
vectors. The algorithm works as follows. Consider the
class € of node cut inequalities (1c) and of cut inequali-
ties (Ib), let y be some vector in R* with 0 < y for all
e € E, and let G = (V, E) be the given graph. We con-
struct a directed graph D = (N, A) from G in the follow-
ing way. Each node v € V is replaced by two nodes v',
v" of N that are linked by an arc (v', v") with capacity
one. Each edge uv € E is replaced by two arcs (1", v’)
and (v", u’) each with capacity y,. Let S C IV be a set of
k nodes of maximal type, i.e.,», 2 r, for alls € S and
te€ WNS. Foralls € S and all ¢ = s withr,, > 1 we
compute a minimum capacity cut C’ of value ¢’ separat-
ing s” and ¢'. Such a cut is of the form 8§*(W') := {(i, J)
e W, je N\W'}, where W C N ands” € W'. The
arcs in C’ correspond either to arcs of the form (v', v")
for some v € V or to arcs of the type («”, w') for some
edge uw € E. Without loss of generality, if v" € W' and
v’ & W’ then either v can be moved to N\W’ or v’ can
be moved to W'. We let

Z = {v:(v',v)EC'Y},
Ci={uweL:(u", w)€e ('}, and
W:={velw,vew}

If ¢’ < rg, then we have found a node cut inequality
violated by y, namely where s, r, Z, and W are as just
defined and C = §,_,(W). Possibly Z = @, in this case
the cut inequality x(8,(W)) = r,, is violated. If ¢’ 2 r,,
forall s € § and ¢ = s with r;, 2 1, then there are no
node cut incqualities violated by y.

We know of no general necessary and sufficient condi-
tions for nodec cut inequalities to define facets of
kKNCON(G; r), except in the low-connectivity case, i.e.,
where r, € {0, 1, 2} for all v € V; seec Grotschel,
Monma and Stoer (1992b). Some (complicated) neces-
sary conditions and sufficient conditions for the general
problem are derived in Stoer.

2.4, Pattition Inequalities

In this scction, we discuss the class of partition incqual-
ities for kECON and kNCON problems that generalize
the cul inequalities (1b). For a graph G = (V, E) andr €
2%, we call a collection {Wy, ..., W, }(p 2z 2) of
subsets of V' a proper partition of V' if
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e W= fori=1,...,p;

e W,NW,=¢ forl si<js<p;

s UMW =1

e /(W21 fori=1,...,p.

Let [W, :...: W,] be the set of all edges having their

endpoints in different sets W; and let 7, : = {i| con(W,) =
1} and I, := {i| con(W,) > 1}. Then the partition in-
equality induced by {W,, ..., W,} is defined as

x([W: W, ]) (3)

p-1 if1, =9,
1

= E COH(W,') +|[1l,

2.4, otherwise.

It is not hard to see that the partition inequalities are
valid for tECON(G; r) and ANCON(G; r). Namely, if
con(W)) z 2 fori = 1, ..., p, any feasible survivable
subgraph has to use at least con(W,) edges of §(W,), so it
uses at least 2, con(W;)/2 edges of [W, :...: W,].
If there are sets W, with con(W,) = 1, then a feasible
solution using a minimum number « of edges of
(W, :...: W,] would either use at least two edges
of each 8(W,), [ = 1, ..., p (in which case, « is at least
fZ,E,Z con (W,)/2] + [14]), or |[8(W,)| = 1 for some W, (in
which casc induction on [/,| may be used by deleting W,
from the graph G and the feasible solution). So partition
inequalities are valid. The separation problem for parti-
tion inequalities is known to be NP-hard; see Grétschel,
Monma and Stoer (1992a).

We know of no general necessary and sufficient condi-
tions for partition inequalities to define facets of
KECON(G; r) or kNCON(G; r). Some special cases are
dealt with in Grétschel and Monma (1990) and Stoer. We
state here one particularly nice result of Stoer.

Theorem 4. Let G = (V, E) be a complete graph with
k + 1 parallel edges between each pair of distinct nodes
and let r € 2¥. The partition inequality (3) given by a
proper partition W, W,, ..., W, of V withp 2 2
defines a facet of kKECON(G; r) if and only if at least
one of the following conditions hold:

a. E con(W,) is odd;

i€
b. 1I,=8; or
c. p=2.

One tool in the proof of Theorem 4 was an algorithm for
constructing feasible solutions for kECON(G; r) with a
minimum number of edges. This is interesting in its own
right. The construction procedure is a modification of an
algorithm by Chou and Frank (1970).

Algorithm
Given an instance (G, r) of the kECON problem, where

¢ G = (V, E) is a complete graph of p nodes with at
least k + 1 parallel edges between each pair of nodes,

er. 2 2forallv € V, ¥ o, r, is even, and there are
two nodes of the highest type k,

find a subgraph N of G, feasible for the \ECON prob-
lem, using a minimum number of edges of G, namely
Z\‘El’ "‘./2.

STEP 1. Choose any orderv,, ..., v, of the nodes in
V which is imagined to be cyclic. If the highest node type
k is even and there are nodes of odd type, the order
should be chosen in such a way that there are two nodes
(say u and v) of odd type that separate two nodes (say x
and y) of type & in the cycle formed by the edges v,v,,
VoV, «v., YV e, i traversing the cycle, we encoun-
ter these four nodes on the order «, x, v, y. (Necessarily
there are at least two nodes of highest type & and at least
two nodes of odd type, if any.)

STEP 2. Construct a subgraph N’ from the empty set
by adding a cycle through all nodes of type at least §
respecting the given order fori = 2,4, ...,k fk s
even (ori = 2,4, ...,k — 1if k is odd).

STEP 3. Let {w,, w,, ..., w;} be the set of all nodes
of odd type numbered in the way they are met when
scanning through {v,, v,, ..., v,} in the given order.
(The starting node of the scan does not matter, nor does
the direction. Note also that the number ! of nodes of
odd type must be even.) Construct the desired subgraph
N by adding to N’ the matching consisting of edges
wiwpay (0= 1, o000, 172).

It can be shown that the separation problem for partition
inequalities is NP-hard, even if we restrict attention to
vectors y with 0 < y < 1; sec Grotschel, Monma and
Stoer (1992a). However, there are fast and successful
heuristics for the separation of partition inequalities; and
our computational experiments have revealed that parti-
tion inequalities are very helpful for solving network sur-
vivability problems; see Section 3.

2.5. Node Partition Inequalities

In this section, we consider the class of node partition
inequalities which generalize the node cut inequalities in
a manner similar to how the partition inequalitics (3) gen-
eralize the cut inequalities (1b). Consider a graph G =
(V,E)Yandr € Z¥. letZ,C ...C 2, CV, k2 2 be
node sets with |Z;] = j - 1 for j = 2, ..., k. Let
{W,, ..., W,} be a proper partition of IAZ,, such that at
least two node sets in the partition contain nodes of type
k. Define I, := {ilr(W;) 2 j}forj = 1, ..., k. The node
partition inequality induced by W,, ..., W, and
Zy, .-, Z, is given by

X((WraWpiZe ) - x(U foy Uiy, [2;:W4])
z2p-1. (4)

Theorem 5. The node partition inequalities (4) are valid
for KNCON(G; r).




Proof. In the case where p = 2, the node partition in-
equality (4) defines a node cut inequality which is valid
(see Section 1). The case p 2 3 is treated by induction.

So let {W,, ..., W,} and Z,, ..., Z, induce a node
partition inequality with p 2 3. Let W, be the node set
with the smallest value of H(W;). Define j 1= r(W,).
Then fori = 1, ..., p ~ 1 the node partition incquality
induced by Z,, ..., Z, and {W,, W,, ..., W, U
W,, ..., W,_,}is valid and has a right-hand side of p -
2. Note that none of the coefficients of the left-hand side
of this new inequality is larger than in the original in-
equality, and that the coefficients of edges in [W; : W]
have dropped to 0. Adding all these node partition ine-
qualities and the node cut constraint x(SG_ZI(Wp)) z 1
gives an inequality a’x 2 (p — 1)(p — 2) + 1, where
all coefficicnts of a” have a value of at most p — 1.
Dividing this inequality by p — 1 and rounding up the
right-hand side and all coefficients of the left-hand side
produces the desired node partition inequality with the
right-hand side p - 1.

It is known to be NP-hard to separate this class of
inequalities; see Grétschel and Monma. Some necessary
and some sufficient conditions for these inequalities to
define facets are known only in a few special cases; see
Grotschel, Monma and Stoer (1992b) and Stoer (1992).

It can be shown that the separation problem for parti-
tion inequalities is NP-hard, even if we restrict attention
to vectors y with 0 € y < 1; see Grotschel, Monma and
Stoer (1992a). However, there are fast and successful
heuristics for the separation of partition inequalities; and
our computational experiments have revealed that parti-
tion inequalities are very helpful for solving network sur-
vivability problems; see Section 3.

2.6. r-Cover and Lifted r-Cover Inequalities

A nice combinatorial relaxation of the kECON (and then
the ANCON problem) is the r-cover problem that can be
defined as follows. Given a graph G = (V/, E) and posi-
tive integers r, foraliv € I, anr-coverisaset F € E of
edges such that |F N 8(v)| z r, for all v € V. Clearly,
every solution of an ECON problem defined by a graph
G and node types r € N is an r-cover. Hence, if edge
weights are given in addition, a lower bound for the
ECON problem can be determined by solving the r-cover
problem which means finding a »-cover of minimum
weight. This relaxation is of particular interest since
the r-cover problem can be solved in polynomial time.
The polynomial-time solvability follows from the fact
that the r-cover problem can be transformed into a
(1-capacitated) b-matching problem.

In his paper, Edmonds (1965) not only gave a polyno-
mial time algorithm for solving the b-matching problems,
he also determined a complete linear description of the
b-matching polytope. Edmonds’ blossom inequalities for
the 1-capacited b-matching polytope of a graph G =
(V, E) can be transformed to the r-cover case. This
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transformation (see Gratschel, Monma and Stoer 1991),
yields the r-cover inequalities, valid for ECON(G; r),
that have the form:

*(E(H)) + x(§(H\T) 2 {( S r— |T|)/2] (5)

vEH
forall HC V, and all T C §(H).

The separation problem for the class of r-cover inequali-
ties and vectors in the unit hypercube can be solved in
polynomial time as follows . Suppose that x* € Qf , x*
z 0 is given. We define a new vectory* «= 1 — x* and
a l-capacitated b-matching problem by setting b, =
deg(v) — r, for allv € V. Then it is easy to see that x*
satisfies all r-cover inequalities (5) if and anly if y* satis-
fies the blossom inequalities for the corresponding
b-matching problem which read:

Y(E(H)) + y(T) s[( > b+ |T|)/2} (6)

vel

for all WC V and all T C 8(H).

Padberg and Rao (1982) have designed a polynomial time
algorithm for the separation problem for the class of
blossom inequalities (6). This algorithm is based on the
Gomory-Hu procedure for finding a minimum cut in a
graph with nonnegative edge capacities. If the Padberg-
Rao algorithm yields an inequality

1)

that is violated by y* then x* violates the r-cover in-
equality

X(E(H)) +x(8(HN\T) = M S - ITl)/zl.

vel

Y(E(H)) +y<T)s[( S by +

vel

In case some of the nodes have type 1 the r-cover ine-
qualities can be strengthened as:

x(E(H)) + x(8(HN\T) 2 [(VEH% L m)/z]

+{veHlr, =1} (7)

These incqualities are valid for A ECON(G;; r) but not for
the r-cover polytope. To solve the separation problem
for the class of strengthened r-cover inequalities (7) heu-
ristically we do the following. We declare all nodes of
type 1 to be of type 2 and apply the procedure described
before for the modified node types. If the Padberg-Rao
separation algorithm finds a viofated blossom inequality,
then the corresponding strengthened r-cover inequality
(7) is violated. However, this trick does not yield an
exact scparation routine because there may be violated
inequalities of type (7) that this procedure does not find.
This is clue to the fact that the transformation of node
types may violate one of the requircments for the
Padberg-Rao procedure to work correctly; i.e., this
method is a heuristic for strengthened r-cover inequali-
tics (7) in case nodes of type 1 are present.
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We now generalize the r-cover inequalities further. Let
G = (V,E)beagraphandr € {0, ... ,k}". Let H # VV
be a node set, called the handle, and let T € §(H). For
eache € T we denote by T, the set of the two end nodes
ofe. The sets T,, e € T, are called reeth. For simplicity
we also call the edges e € T teeth in this section. If an
edge e € T is parallel to some edge f € T, we count T.
and T as two sets, even if T, = T,. Let {H,, ..., H,},
p = 3, be a partition of H into nonempty disjoint node
sets such that

er(H) z1fori=1,...,p;

¢ no more than con(H;) — 1 teeth intersect any H,, i =
Y

o at least three H, are intersected by teeth;

® Yies, con(H;) — |T| is odd, where I, := {i| con(H;) =
23.

Let I, := {i| con(H;) = 1}. We call
X((Hy . 2H,)) + x(8(HN\T)

21(2 con(H;)—|T|+1)+|Ill (8)
2 \;él,
the lifted r-cover inequality induccd by H, ..., H, T.
[t is not hard to show (see Stoer) that the lifted r-cover
inequalities (8) are valid for Y‘ECON(G}; r) and hence for
kNCON(G; r). Some necessary conditions are known
for these inequalities to definc facets for k\ECON(G; r),
and one can easily see that these inequalities do not de-
fine facets for kNCON(G; r) for “‘highly” connected
graphs G, see Stoer. It is known that the separation
problem for lifted r-cover inequalities is NP-hard; see
Grotschel, Monma and Stoer (1992a). We have produced
a separation heuristic for class (8) that uses some graph
manipulation techniques (such as the shrinking of edges)
and is based on an analysis of the Gomory-Hu tree, as
provided by the Padberg-Rao algorithm (1982).

2.7. Further Remarks on Valid Inequalities

We note that we know more general versions of some of
the classes of valid inequalities introduced before, and
we also know additional classes of inequalities valid for
ECON(G; r) or NCON(G; r). We have omitted the in-
traduction of these classes here because many technical
definitions are necessary to describe them, and we do not
have general results about the dimensions of the faces
that they define, and we could not make any algorithmic
use of them so far. Some information about these classcs
can be found in Stoer.

There is a rich literature in polyhedral combinatorics
on facet manipulation techniques, i.e., methods by which
new types of facets can be derived from known classes.
These techniques usually run under the name ““facet lift-
ing”” or “‘facet extension.”” A number of lifting results are
shown in Stoer. Included are techniques such as: addi-
tion of an edge, addition of a node, and cxpansion of a
node w into a node set W where all edges in E(W)

receive a coefficient zero in the lifted inequality. The
description of these techniques and the proofs of the as-
sociated lifting results are rather technical and not pre-
sented here.

Our results about characterizing those inequalities
among the classes of valid inequalities described before
that are facet-defining for kECON(G; r) or kNCON(G;
r) appear somewhat unsatisfactory. In fact, they are. But
having worked on the facial structure of thesc polytopes
for some time we are convinced that general results cov-
ering large classes of graphs and node types simulta-
neously are very hard to obtain. Theorem 3 gives a
glimpse at the technical subtleties involved in a seem-
ingly simple-locking case. The main difficulty we see is
that a slight change of the graph or node type may result
in a considerable change of the problem complexity and
the polyhedral structure. For instance, if », = 1 for all
v € V, kECON(G; r) is equal to ANCON(G; r), which
is nothing but the convex hull of the incidence vectors of
all the supersets of spanning trees of G; changing a few
node types to zero we obtain an NP-hard Steiner trec
problem; setting r,, = 2 for all v € ¥/, 2NCON(G; r) and
2ECON(G; r) contain the traveling salesman polytope
onG.

Based on our observations, we think that more inves-
tigation should go into the study of more restricted, prac-
tically relevant cases and not into the investigation of the
whole range of k\ECON or kNCON polytopes.

3. A CUTTING PLANE ALGORITHM AND
COMPUTATIONAL RESULTS

In this section, we give an outline of our cutting plane
algorithm for the kECON and kANCON problems. We
describe it for the kANCON problem. The algorithm for
the kECON problem is derived from the kNCON prob-
lem by skipping all those separation routines that check
inequalities that are valid for ANCON(G; r) but not for
KECON(G; r).

Our cutting plane procedure starts with solving the LP:

minimize ¢ 'x (9)
subject to x(&(v)) =r. forallv €V withr, 2 1,
0sx, =1 foralle€e E

consisting of at most |V/| degree inequalities and the 2|Z|
trivial incqualities. Almost all of these define facets of
ENCON(G; r), if kNCON(G; r) is full-dimensional (see
Theorem 1). An optimal solution y € R* of this relax-
ation of the kNCON problem is usually not feasible for
the polytope ANCON(G; r). (If it were, we would be
finished.)

So, in each iteration of the cutting plane algorithm we
try to find inequalities {more specifically- cut, node cut,
partition, node partition, and lifted r-cover inequalities)
that are valid for ANCON(G; #), but are violated by y.
Geometrically, such an inequality defines a hyperplane in

Jo—




RE separating y from thc kECON-polyhedron, a so-
called ““cutting plane.” The hcuristics and exact algo-
rithms for finding inequalities violated by a given y are
called separation routines.

We add all the violated inequalities found by our sepa-
ration routines to the current LP and solve the revised
LP to get a new optimum solution y. (We do not solve
the new LP from scratch, but use postoptimization.) We
repeat this process until the current optimal LP solution
y happens to be feasible for KkNCON(G; r), or no further
inequalities violated by y are found. In the second case,
we proceed with a branch-and-cut method.

In the first case (y [easible), we know that y is opti-
mal, because the present LP is a relaxation of the
#NCON problem. Note that feasibility of y is identical
with y being a {0, 1}-vector that satisfied all cut con-
straints and node-cut constraints. This feasibility crite-
rion is easy to check.

Since we are using only a subset of all facet-defining
inequalitics for ANCON(G; r), we cannot be sure to find
an optimal solution with such a cutting plane algorithm
for all graphs G, cost functions ¢, and node types r. In
any case, even if the present fractional solution y is not
feasible, its objective function value ¢y provides a lower
bound for the kANCON problem, which is increased with
every iteration (or at least, it does not drop).

We summarize the cutting plane algorithm as follows,

Algorithm (Cutting Plane Algorithm for kKNCON)

1. Solve the LP (9). Let y be an optimal solution.
2. While y is not feasible for ANCON(G; k) do:

a. find valid inequalities violated by y, add them to
the LP, delete some redundant inequalities, and
resolve the LP. Let y be a new optimal solution.

b. If no violated inequalities can be found, perform
branch and cut.

In 2a we first determine violated lifted r-cover inequali-
ties, when no violated partition inequalitics can be found.
At present, we have a preliminary version of a code for
solving survivability problems with higher connectivity
requirements. To test our code for general kNCON prob-
lems, we first used a set of random problems. Later, we
also obtained test data for a real-world 3NCON problem,
which arose in the design of a communication network
on a ship. Both types of test problems have their ““draw-
backs,”” however. Most random problems turned out to
be too easy, and the ship problem confronted us with
many ncw difficulties.

We first report about our computational results on ran-
dom problems. We used the same set of random data as
Ko and Monma used for their high-connectivity heuris-
lics. So we will be able to compare results later. All
running times reported are on a SUN 4/50 IPX worksta-
tion. The LP-solver used is a research version of the
CPLEX-code provided to us by Bixby (1992). This is a
very fast implementation of the simplex algorithm.
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The test set consists of five complete graphs of 40
nodes and five complete graphs of 20 nodes, whose edge
costs are independently drawn from a uniform distribu-
tion of real numbers between 0 and 20. For each of these
ten graphs, a minimum-cost, k-edge connected subgraph
fork = 3, 4, 5 is to be found. The next table reports the
number of iterations (minimum and maximum) and
the average time (in seconds) taken by our code to solve
these problems for k = 3, 4, and 5, respectively. Only
the time for the cutting plane phase is given.

# Nodes # Iterations Average Time (Secs.)

K = 3 4 5 3 4
20 1-2 1-5 14 0.43 0.51 0.58
40 1-2 1-2 1-4 154 195 2.36

All problems except one 3ECON instance on 20 nodes
were solved in the cutting plane phase. In fact, 20 of the
30 problems were already solved in the first iteration
with the initial LP (9). For the instances not solved in the
first iteration, at most four lifted r-cover inequalities (8)
had to be added to obtain the optimal solution. Except
for one 3ECON instance, no partition inequalities were
added. So, the average solution time is mainly the solu-
tion time for the first LP.

All optimal solutions for the XECON problems were at
the same time feasible and hence optimal for the corre-
sponding ANCON problems, except the one 3ECON
problem which could not be solved in the cutting plane
phase. There the optimal solution (obtained by branch
and cut) is 3-edge connected, but not 3-node connected.

These excellent results were surprising, because we
always thought high-connectivity problems to be harder
than low-connectivity problems. But this does not seem
to be true for random costs.

The high-connectivity heuristics of Ko and Monma
performed reasonably well. The relative gap between the
heuristic (#) and the optimal solution value (o), namely
100 x (h — o)/o, computed for the previous set of
random problems, ranged between 0.8 and 12.8 with an
average of 6.5% error (taken over all problems).

The second sct of test problems were five complete
graphs whose 40 nodes were placed randomly in a
square, and whose edge weights are the Euclidean dis-
tances between the end nodes. All nodes are of the same
type k, where k ranges between 1 and 5, so five kECON
problems arc derived from each of the five graphs. The
1ECON problems were solved with a spanning trec
algorithm.

Table | shows the computational results for these
problems. Its entries are:

K the required connectivity;
P the number of partition incqualities used in the
cutting planc phase;
RC the number of lifted r-cover inequalities used in
the cutting plane phase;
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Table 1
Performance of Branch and Cut on Euclidean Problems

K IT P RC COPT Gap TT
1 77.20-95.31

2 3-10 54-70 0-8 90.69-107.72 0.00-0.23 0-1

3 3-6 35-74 4-24 156.83-184.95 2.12-2.65 33-324
4 1- 2 40-46 0- 4 221.64-264.39 0.00 0-1

5 1- 8 40-44 0-15 307.12-363.19 0.00-0.98 0-186

IT the number of iterations in the cutting plane
phase;
COPT the optimal value;

GAP the relative error between the optimal value and
the lower bound achieved by the cutting planc
phase;

TT the total running time (with branch and cut,
etc.} in minutes.

All k-edge connectivity problems with even k, except
one 2ECON problem, could be solved in the cutting
plane phase. The running time for the cutting plane phase
was at most six seconds for all problems. Of the SECON
problems, two could be solved in the cutting plane phase
in two iterations. Two other SECON problems were
solved by branch and cut in at most three minutes, and
only one took 186 minutes. For all 3ECON problems,
branch and cut had to be employed to bridge the gap.
The relatively large gaps in the 3ECON problems indi-
cate that our separation routines should be enhanced to
find the partition and r-cover inequalitics still violated by
the last LP-solution and that, maybe, other facet-dcfining
classes of inequalities for the kECON polytope for odd &
are needed. Because of this poor performance and be-
cause of the nonavailability of good upper bounds, the
branching procedure degenerated into enumeration for
several instances.

Considering the gaps and the running times, we may
conclude that k-edge connectivity problems for even k
are easier to solve than those for odd £ 2 3, and that the
k-edge connectivity problems with odd k become easier
for ““large” k. One reason for the difference between
even and odd k may be that, for even &, the only facet-
defining partition inequalities are the cut inequalities,
which are easy to find.

Concerning the structure of the solutions, all optimal
solutions for even k were regular graphs, except for one
2ECON instance, where two nodes of degree 3 appeared.
For k = 3, the solutions are not necessarily k-node con-
nected. Some are only 2-node connected.

‘The optimal values can be said to be roughly linearly
increasing in k, from k& 2 2. By the way, the lower
values in column COPT of Table I are all due to the same
problem instance, and the upper values too.

To give an impression of the solution structures,
Figure 1 was included, depicting, for one of the graphs
and & = 1, ..., 4, the optimal kECON solutions in
clockwise order.

One real-world application of survivable network de-
sign, where connectivities higher than two are needed, is
the design of a fiber communication network that con-
nects locations on a military ship containing various
communication systcms. The reason for demanding high
survivability of this network is obvious.

The problem of finding a high-connected network to-
pology minimizing the cable installation cost can be for-
mulated as a 3INCON problem. We will describe the
characteristics of this problem in what follows.

We obtaincd the graph and cdge cost data of a generic
ship model. It has the following features. The graph of
possible link installations has the form of a three-
dimensional grid with 15 layers, 494 nodes, and 1,096
edges, which is depicted in Figure 2.

The ship problem comes with three different options:
the node types may vary; the costs may be normal or
random; and the underlying graph may be reduced or not.
Of the grid’s 494 nodes, there are 461 regular nodes
(depicted by hollow circles), 30 special nodes (depicted
by filled circles) in the main part of the ship, and three
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Figure 1. Solution of Euclidean problems for k = 1-4.




Figure 2. Grid graph of the ship problem.

priority nodes (depicted by triangles) in the ship’s tower.
The special and priority nodes represent various commu-
nication, command and control systems to be intercon-
nected by the network. The regular nodes represent fiber
junction boxes where the fiber cable can be routed. The
notation “‘shipxyz’* will be used to indicate that the reg-
ular nodes are of type x, special nodes are of type y and
priority nodes are of type z. So ship013 is the problem,
where the three nodes in the tower are of type 3, the 30
special nodes in the body of the ship are of type 1, and all
other 461 grid nodes are of type 0.

No branch and cut was used because of the long com-
putation times for some of the problems. Inequalities that
are nol almost tight are removed from the LP, but are
still kept in a pool of inequalities. But since even this
pool grew too much, inequalities are removed from there
that have not been violated for more than five iterations
in a row. All problems were solved as ECON problems.
No node partition inequalities were used.

The upper bounds were produced by a heuristic for
NCON problems (not ECON) that tries to eliminate as
many edges from the input graph as possible, starting
with the first edge. (This heuristic was written by Bill
Cook.) The input graph was the graph of cdges formed
by the support of the best fractional solution, and the
edges were ordered by increasing value of the fractional
solution. (Not by incrcasing costs, as all horizontal cdges
have the same cost.)

The normal cost structure is highly regular. The costs
are roughly proportional to the distances between nodes,
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with the feature that horizontal distances are much
longer than vertical distances. (The grid shown in Figure
2 has been scaled. Also, contrary to the graphical repre-
sentation, the horizontal layers do not always have the
same distance from each other.) With this cost structure,
it is much cheaper to route vertically than horizontally.
Since there exist many shortest paths between any two
nodes, there will also exist many optimum solutions to
the survivable network problem. So the problem is
highly degenerate. Degeneracy together with the size of
the ship problem caused us to run into difficulties. We
also considered “‘random”” uniform [0, 1] costs which
were scaled so that the overall cost of the edges re-
mained the same as in the original problem. These prob-
lems were indicated by appending “‘rand”’ to the problem
name.

We considered “reduced” versions of these problems
where we removed some of the ““unnecessary’’ nodes in
the lower left and right hand corner of the grid, and also
deleted some of the horizontal layers of the grid contain-
ing only nodes of type 0. It is not obvious at all that
corners of a grid may be cut out and layers may be
deleted without affecting the optimum objective function
value of the problem. But nevertheless, we used these
reductions heuristically to cut down problem sizes in the
hope that some optimal solution of the original graph is
still contained in the reduced graph. For the ship023
problem, this hope was confirmed. These reduced prob-
lems were denoted by appending red to the problem
name.

VAN

i

Figure 3. Reduced grid graph of the shipl3 problem.
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Table 11
Sizes of Ship Problems

Original Graph

Reduced Graph

Problem 0 1 2 3 Edges 0 1 2 3 Edges
ship013 461 30 0 3 1096/0 128 28 0 3 325/6
ship023 461 0 30 3 1096/0 249 0 30 3 607/6
ship033 461 0 0 33 1096/0 300 0 0 33 719/9

Figure 3 shows the reduced graph of the ship013 prob-
lem. The result of the reductions can be seen from Table
II, whose columns list, from left to right, the problem
names, and, for the original ship graph and the reduced
ship graphs, the number of nodes of type 0, 1, 2, and 3,
the total number of nodes and the total number of edges/
number of forced edges. The forced edges are those
edges contained in some cut of size 3 separating two
nodes of type 3, which must be contained in any feasible
solution. Table II shows that the reductions are enor-
mous, yet there are still many more nodes of type 0 than
nodes of nonzero typc in each problem.

When we applied our code to the reduced graphs, the
fractional solutions still looked frequently like paths be-
ginning at some special node and ending in some node of
type 0. To cure this problem, we made use of the follow-
ing type of inequalities

x(8(v)\{e}) = x,
for all nodes v of type 0 and all ¢ € §(v).

These inequalities (we call them con0 inequalities) de-
scribe algebraically that nodes of type 0 do not have
degree 1 in an edge-minimal solution. This is not true for
all survivable networks, but it is true for the optimum
solution if all costs are positive. So, although these in-
equalities are not valid for the KNCON polytope, we

used them to force the fractional solutions into the cre-
ation of longer paths.

Table III gives some computational results of our cut-
ting plane algorithm on the several versions of the ship
problem. The entries from left to right are:

Problem name with ‘‘red’” for reduced and
“rand” for random costs;

The number of edges minus the number of
forced edges;

IT The number of iterations (i.e., LPs solved);

Problem

VAR

Part The number of partition inequalities (3) added;
RCOV The number of lifted r-cover inequalities (8)
added;
LB The lower bound (i.e., optimal LP value);
Gap (UB-LB)/LB in percent;
Time In minutes : seconds.

Table IV gives a breakdown of how time was spent. The
entries from left to right are:

Problem Problem name with ‘‘red” for reduced and
“‘rand” for random costs;,
PT Time spent for reduction of the problem (in
percent);
LPT Time spent for LP solving (in percent);
CT Time spent for separation (in percent);

Table II1
Performance of the Cutting Plane Algorithm on the Ship Problems
Problem VAR IT Part RCOV LB UB Gap Time
ship013 1,088 3,252 777,261 0 211957.1 217428 2.58 10122:35
ship013red 322 775 200,570 0 217428 217428 0 426:47
ship013rand 1,088 1,273 301,190 0] 171409.8 171409.9 0 2783:15
ship023 1,088 15 4,090 0 286274 286274 0 27:20
ship023red 604 12 2,372 0 286274 286274 0 1:54
ship023rand 1,088 11 3,649 0 245905.8 248249.0 0.94 42:31
ship033 1,082 42 10,718 1 461590.6 483052 4.64 55:26
ship033red 710 40 9,817 0 462099.3 483052 4.53 34:52
ship033rand 1,082 89 23,505 0 422169.6 428535.5 1.50 198:17
shipl13 1,090 128 17,199 0 002691.0 918691 1.77 4724:55
shipl13rand 1,090 45 4,343 0 789280.7 817352.1 3.55 13:33
ship123 1,088 61 13,210 0 906691.0 930691 2.57 1167:37
shipl23rand 1,088 1,942 54,846 9 834951.9 856666.7 2.60 694:20
ship133 1,084 176 21,564 0 945052.0 1008808 6.74 119:15
ship133rand 1,084 582 22,788 0 941568.2 969578.7 2.97 195:11
ship223 1,085 5 541 0 940925.0 940925 0 0:44
ship223rand 1,085 5 625 0 1090417.5 1090430.0 (.001 0:54
ship233 1,081 5 532 0 1028193.0 1029176 0.09 0-54
ship233rand 1,081 10 599 6 1172230.3 1183636.9 0.97 1:53




Table IV
Computation Time on the Ship Problems

Problem PT LPT CT MT Time
ship013 0.0 75.6 23.9 0.5 10122:35
ship013red 0.0 68.5 30.1 1.4 426:47
ship013rand 0.0 64.0 35.1 0.9 278315
ship023 0.0 13.1 86.4 0.4 27:20
ship023red 0.1 39.2 58.6 1.9 1:54
ship023rand 0.0 2.7 97.1 0.2 42:31
ship033 0.0 31.2 68.2 0.6 55:26
ship033red 0.0 41.1 58.4 0.5 34:52
ship033rand 0.0 27.6 7.8 0.4 198:17
shipl13 0.0 98.4 1.6 0.0  4724:55
shipl13rand 0.0 42.0 56.8 1.2 13:33
ship123 0.0 97.9 2.1 0.0 1167:36
ship123rand 0.0 23.9 75.7 0.5 694:19
ship133 0.0 60.4 38.9 0.7 119:15
ship133rand 0.0 32.0 67.3 0.7 195:11
ship223 0.3 18.7 76.7 4.5 0:44
ship223rand 0.2 15.9 79.8 4.1 0:54
ship233 0.2 22.4 74.5 2.9 0:54
ship233rand 0.1 9.5 88.7 1.7 1:53

MT Time spent on miscellaneous items, input,
output, etc. (in percent);
Time Total time in minutes : seconds.

Several problems were solved to optimality: ship013
(normal costs, reduced), ship023 (normal costs, reduced
and not reduced), and ship223 (normal costs). The
ship223 problem with normal costs ended up with a frac-
tional solution of value 940,925, but the primal heuristic
found an integer solution with the same value.

Reduction paid off by a factor of at least 20 in the
computing times of the ship013 and ship023 problems.
The reduction of the ship023 problem did not affect the
optimal value.

The largest gaps are for the ship033 and ship133 prob-
lems for normal costs, reduced or not reduced. More
polyhedral investigation is probably required in these
cases. By inspection, we found a few more violated par-
tition inequalities. So, also better separation routines for
partition inequalities are needed.

The problems ship013 (not reduced, normal and ran-
dom costs) and shipl13 (not reduced, normal costs) took
longest. The solution of ship013 (not reduced, normal
costs) is distributed over the whole net with many small
fractionals. This shows that tree-like problems are not
well handled. Problems with many nodes of type 2 are
easier than problems without nodes of type 2.

Lifted r-cover inequalitics (very few, however) were
found only for the ship033, ship123, ship233 problems.
Therefore, better separation routines for r-cover inequal-
ities for this special kind of graph are needed.

As one can see from Table [T our code is still painfully
slow for the problems involving many nodes of type 1. In
each iteration, only small progress is made. Although
many inequalities are added, they do not produce big
structural changes in the fractional solution. A better

GROTSCHEL, MONMA AND STOER /1023

Figure 4. Optimum solution of the reduced ship23
problem.

strategy might be to add structured sets of partition or
cut inequalities that somehow anticipate the ‘“‘escape ma-
neuvers’” of the fractional solution.

An optimal solution to the reduced ship023 problem is
shown in Figure 4. We do not understand yet why our
code solves the ship023 problem rather easily and why
there is still a gap after a long running time of our cutting
plane algorithms for other problems. Probably, the
“small’”” changes of a few survivability requirements re-
sult in more dramatic structural changes of the polyhedra
and thus of the inequalities that should be used. It is
conceivable that our code has to be tuned according to
different survivability requirements settings.

To summarize our computational results, for surviv-
ability problems with high connectivity requirements,
many nodes of type 0 and highly regular cost structure
(such as the ship problems) much still remains to be done
1o speed up our code and enhance the quality of solu-
tions. This is in contrast to our previous work (see
Gréatschel, Monma and Stoer 1992a) on applications in
the area of telephone network design, where problem
instances typically are of moderatc size and contain not
too many nodes of type 0, and where our approach pro-
duces very good lower bounds and even optimum solu-
tions in a few minutes. Yet, we see our work as a
promising step toward solving problems with high-
connectivity constraints.
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