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Given a graph G =[V, E] with positive edge weights, the max-cut problem is to find a cut in
G such that the sum of the weights of the edges of this cut is as large as possible. Let $(K) be
the class of graphs whose longest odd cycle is not longer than 2K +1, where K is a nonnegative
integer independent of the number n of nodes of G. We present an O(n*k) algorithm for the
max-cut problem for graphs in ¢(K). The algorithm is recursive and is based on some properties
of longest and longest odd cycles of graphs.
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1. Introduction

The graphs we consider are finite, undirected and loopless, but they may have
multiple edges. We denote a graph by G =[V, E], where V is the node set and E
the edge set of G. For W< V, g# W # V, the set of edges with one end node in
W and the other in VIW is called a cut and is denoted by 8(W). Suppose ¢.>0
is the weight of e E. The problem of finding a cut 8(W*) such that ¢(8(W¥)) =
Y pes(wr) Ce 18 as large as possible is called the max-cut problem.

The max-cut problem is NP-complete for the class of all graphs, cf. Garey and
Johnson [5]. It is also NP-complete for the class of graphs with nodes having degree
at most three, and for the class of graphs having a node whose removal results in
a planar graph in which all nodes have degree at most six, cf. Barahona (1,2] and
Yannakakis [12].

On the other hand, the max-cut problem is known to be solvable in polynomial
time for planar graphs, cf. Hadlock [7], Orlova and Dorfman [9], and for weakly
bipartite graphs, cf. Grotschel and Pulleyblank [6]. Moreover, the cardinaiity version,
i.e. ¢, =1 for all e€ E, is solvable in polynomial time for graphs of fixed genus, cf.
Barahona [3]. We will use the fact that the max-cut problem is trivial to solve for
bipartite graphs. In particular, it G=[V, E ]is bipartite and V,, V5 is a 2-coloring
of V, then 8(V,)=8(V,)=E is the max-cut of G.
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Let 4(K), K a nonnegative integer, denote the class of graphs whose longest
odd cycle is of length not greater than 2K +1. %(0) is the class of bipartite graphs.
Connected components of the class %(1)\%4(0) have been characterized by Hsu,
Ikura and Nemhauser [8]. They also gave a polynomial-time algorithm for recogniz-
ing members of ¥(K) for any K that is independent of n, the number of nodes of
the graph (also see Section 5).

Most combinatorial optimization problems on graphs can be solved efficiently for
trees and many can be solved efficiently over %(0). Thus the absence of cycles (or
odd cycles) seems to make graph optimization problems easy, and it is natural to
ask the question if the absence of long cycles (or long odd cycles) also makes a
graph optimization problem easy. For the maximum weight clique problem this is
true since the cliques of a graph in %(K) have size at most 2K +1 and thus, for
fixed K, all such cliques can be enumerated in polynomial time. The maximum
weight independent set problem for graphs in $(K) also can be solved in polynomial
time for fixed K [8). Here we describe an algorithm which, for any n-node graph
G € %(K), finds a maximum weight cut in O(n**) time. Thus, this algorithm is
polynomial for every class 4(K) with K fixed.

While results of this type are of practical interest only for small values of K, they
are of theoretical significance in sharpening the delineation (if any) between the
classes P and NP. Of course, it would be inefficient to develop results of this type
problem-by-problem individually and so it would be very nice to have a general
result of the type:

If a combinatorial optimization problem is easy for bipartite graphs, then it is
also easy for 9(K) for every fixed K. We don’t, however, know whether this result
is true; for example, we don’t know if it is true for the minimum cardinality coloring
problem of the vertices of a graph, which is a trivial problem for bipartite graphs.
This study of the max-cut problem was undertaken, in part, to see if a general
methodology could be developed for a large class of combinatorial optimization
problems. While the design of our max-cut algorithm is based on an idea developed
in [8), it requires deeper theorems on the intersections of longest cycles in a graph;
these may be of interest in their own right. It still remains open whether the approach
can be extended to a large class of problems.

The basic approach here and in [8] is to start with a graph G € 4(K). If Gis
bipartite, we solve the max-cut problem directly, otherwise we transform G to
several new graphs whose longest cycles are shorter than the longest cycle of G.
The transformations are designed in such a way that a maximum weight cut in G
can be recovered from the maximum cuts in the new graphs. Continuing this process,
we eventually end up with bipartite graphs, and hence, a maximum cut in the original
graph G can be obtained inductively. Since we can guarantee that the overall number
of new graphs created in the reduction steps is not too large, we obtain the desired
polynomial time bound. A cut 8( W) is called an (s, t]-cutif se Wandre VIW. We
will need to consider the max-[s, t]-cut problem: Given a graph G =[V, E], two
distinct nodes s, r€ V and edge weights ¢, >0 for all e€ E, find an [s, t]-cut §( W¥)
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such that ¢(8(W?*)) is as large as possible. Clearly, by solving the max-[s, t]-cut
problem for every pair of distinct nodes s, t€ V we can find a maximum weight cut
in G.

On the other hand, if we have a max-cut algorithm we can solve the max-[s, t]-cut
problem as follows. We add to G a new edge f linking s and ¢ and call the new
graph G,. Then f is given a large weight (e.g. the sum of all edge weights plus one
suffices). It is obvious that all maximum weight cuts in G,, must contain the new
edge f. Hence, all maximum cuts in G,, are [s, t]-cuts, and therefore, if we remove
the edge f from any maximum weight cut in G, we obtain a maximum weight
[s, t]-cut in G. This shows that the max-cut problem and the max-[s, t]-cut problem
are polynomially equivalent.

2. Treating graphs that are not blocks

A graph G=[V, E] is connected, if for every two distinct nodes u,ve 'V, G
contains a [u, v]-path, i.e. a path whose end nodes are u and v. The maximal
connected subgraphs of G are the components of G. Every set W< V with the
property that the number of components of G — W is larger than the number of
components of G is called an articulation set. A connected graph with at least three
nodes is called 2-connected if it has no articulation set of size one, i.e. no articulation
node. A node-induced subgraph of a graph G which has no articulation node and
which is maximal with respect to this property is called a block of G. Clearly, each
block of a connected graph with at least two nodes is either 2-connected (if it has
three or more nodes) or consists of two nodes joined by an edge.

In this section we will describe how the max-cut problem for an arbitrary graph
can be reduced to a sequence of O(n) max-cut problems for blocks.

Let G be a disconnected graph with components C,i=1,...,s If 8(W,)are the
maximum weight cuts for the components C, i=1,...,5, then it is easy to see that
5(W) is a maximum weight cut of G for W= \U;., W. Hence it suffices to consider

connected graphs.
The blocks and articulation nodes of a connected graph G =[V, E ] can be found

in O(m) time, see Tarjan [10].

(2.1) Lemma. Let G =[V, E] be a connected graph with edge weights ¢, > G for all
ecE LetB,=[V, E],i=1,...,r, betheblocks of G. Then there is a node set W < 'V
such that 5,(W) is a maximum weight cut of G and 65(V,n W) is a maximum

weight cut of B, for i=1,...,r.

Proof. Since E=\J,_, E; and 85(W)nE =85(Wn V), we have Sc(W)=
Ui, (86(W)NE) = U, 8s,(W n V). This immediately implies the statement of

the lemma. O
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Lemma (2.1) and algorithm (2.2) given below show that the maximum weight
cut of a graph is determined by the maximum weight cuts of its blocks.

(2.2) Algorithm. Suppose G =[V, E]is a connected graph with edge weights ¢, >0
for all ec E, and B,=[V, E;], i=1,...,r are the blocks of G. Let 85(W,) be a
maximum weight cut of B, i =1, ..., r. We determine a node set W < V recursively
such that 85 ( W) isa maximum weight cut of G. Initially all blocks of G are unlabeled.

Step 1. Pick any block, say B, of G, and set W:= W,. Label B,.

Step 2. 1f there is no unlabeled block of G left, STOP.

Step 3. Pick an unlabeled block B; of G which has a node, say v, in common
with a labeled block. If vg WU W, or ve Wn W, set W= Wo W, If (ve W and
ve W, or(veg Wand ve W,),set W= WU (V\W,). Label B; and goto Step 2. T

It is easy to see that the final node set W constructed in (2.2) determines a
maximum weight cut §( W) of G. Moreover, using well-known search techniques,
algorithm (2.2) can be implemented in O(|E|) time, provided that a maximum cut
for every block is known. Thus algorithm (2.2) shows that in order to prove that
the max-cut problem is solvable in polynomial time for a class ¢ of graphs, it is
sufficient to prove that the max-cut problem is solvable in polynomial time for the
graphs in ¢ which are 2-connected.

An alternative way to find a maximum weight cut in G (having the same time
complexity as (2.2)) is to first construct the graph G’ =[V, UiZ, 85 (W))] which is
bipartite and then to determine a bipartition of V.

3. {u, v}-Fragments and node set shrinking

We will now describe two techniques for reducing the max-cut problem on a
graph G to a sequence of max-cut problems on related graphs.

Let G be a 2-connected graph that has an articulation set of size two and suppose
{u, v} is such an articulation set. Let H,=[V,, E\},..., H,=[V,, E,] be the com-
ponents of G —{u, v}.

Fori=1,2,...,rlet H =[V!, E!] be obtained from the subgraph of G induced
by V! =V,u{y, v} where a new (possibly parallel) edge is added linking « and .
The new edge is assigned a large weight given by min{c(8(u)), c(8(v))}+1. The
graphs H/ are called the edge-added {u, v}-fragments of G. Let H " =[V!,E7]be
the graph obtained from H| by identifying # and v into a node w and removing
any loops that occur. The graphs H/ are called the condensed {u, v}-fragments of
G.

The edge-added and the condensed {u, v}-fragments Hj, ..., H', HY,...,H}
are called the {u, v}-fragments of G. Figure 3.1(a) shows a graph G with nodes
u, v, Fig. 3.1(b) the edge added {u, v}-fragments, and Fig. 3.1(c) the condensed
{u, v}-fragments of G.
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Fig. 3.1.

We claim that the max-cut problem for G can be solved by solving the max-cut
problem for all condensed {u, v}-fragments and for all edge-added {u, v}-fragments.

Because 8(W)=8(V\W), there is always a maximum weight cut 6(W) of G
which either satisfies u, ve W or ue W, vg W. Hence, if we can construct a set W”
with u, ve W"” such that ¢(8(W")) is as large as possible among the sets W with
u, ve W and a set W' with ue W' and vZ W’ such that ¢(86(W')) is as large as
possible among the sets W with ue W, vZ W, we can find a maximum weight cut
of G by comparing the weights of these two cuts.

Suppose 8( W) is a maximum weight cut of the condensed {u, v}-fragment HY
of G such that W/ contains thenewnode w,i=1,...,r.Set W":={J,_, (W/\{w}) U
{u, v}. Then it is easy to see that among all cuts §( W) of G with u, ve W, §(W”")
is one with maximum weight.

Suppose 8( W) is a maximum weight cut of the edge-added {u, v}-fragment H]
of G. Then because H| contains the new edge uv of large weight, §(W;) is a
maximum weight [, v]-cut. We can suppose that ue W, i=1,...,r. Again it is
trivial to show that for W' := U;=1 Wi, 8(W’)isacutin G whose weight is maximum
among all cuts 8(W) with ue W and v & W.

Therefore by calculating 8(W’) and 8(W") from {u, v}-fragments of G and
comparing their weights, we obtain a maximum weight cut of G.

A further (trivial) reduction method uses the shrinking of node sets. For the
graph G =[V, E] and node set T < V, the graph obtained from G by shrinking T
is the graph obtained by replacing the node set T of G by a new node t and iinking
a node ve V\T with ¢ by as many edges as there are edges linking v to a node
in T.

Suppose G=[V, E] and a node set S< V of cardinality /=2 are given. We
partition S into two nonempty sets S; and S, and denote the graph obtained from
G by shrinking §, into a node s, and S, into a node s, by G, ,,. (Note that G, ,, is
independent of the order of shrinking S, and S,.) Now consider all 20711 possible
partitions of S into two nonempty subsets S, and S,, and suppose that 8( W, ;) is
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a maximum weight cut of G;,, such that s; € W. Suppose that 8( W, .,) is a cut among
all these cuts with largest weight. Then §( W) is a maximum weight cut of G, where
if 6, neW,,, W=(W, \{t,n})uT,uT,, and if 1€ Wi LEW,,, W=
(W, Mnh o T,

The last reduction is, of course, useful only if / is small compared to n and if the
shrunken graphs G, ,, have some interesting properties. In our case, we shall shrink
the node set of a longest cycle of G. Therefore we have to show that by shrinking
such a node set we obtain graphs in which the max-cut problem is ‘easier’ than in G.

4. Properties of longest cycles

Our algorithm exploits several properties of the intersections of longest cycles
that will be described in this section. Throughout this section we assume that G is
a 2-connected graph with at least three nodes.

The following definitions are needed in this section. A path Pin G =[V, Elisa
sequence of edges e, e,,. .., e, such that e, = v, &,=0,0s,..., €, = v,_, 0, and
such that v; # v; for i # j. The nodes v, and v, are the end nodes of P and we say
that P is a [v,, v, ]-path. The nodes v, i=1,..., k—1 are the internal nodes of P.

The number k of edges of P is called the length of P. If P= €1,6r,...,€. 1S a
[vo, vk ]-path and e, =v,v, € E then the sequence e, €-,..., &, €. is called a
cycle of length k+1. A cycle (path) is called odd if its length is odd, otherwise it
is called even. The length of a path or cycle C is denoted by [C |. The length of a
longest cycle of a graph G is called the circumference of G. For convenience of
notation we shall sometimes consider paths or cycles as subgraphs of a graph.

Two paths P,, P, are called internally disjoint if the set of internal nodes of P,
(resp. P») is disjoint from the set of nodes of P, (resp. P,). If two [u, v]-paths P,
P> are internally disjoint then P, U P, denotes the cycle obtained by concatenating
P, and P-.

Two nodes u, v are called adjacent on a cycle C if uv is an edge of C. Note that
u and v may be adjacent in G without being adjacent on C.

The following proposition is obvious.

(4.1) Proposition. (a) Every pair of longest cycles of G meets in at least two nodes.
(b) If two longest cycles of G meet in exactly two nodes, then these two nodes are
not adjacent on either of the two cycles. —

(4.2) Theorem. Let C, and C. be two longest cycles of G whose intersection is the
set {u, v}. Suppose C, = P, U Q, and C, = P, u Q-, where P,, P>, Q,, Q- are internally
disjoint [u, v]-paths. Then

(a) paths P\, P>, Q,, Q, have the same length (which implies that \C,i=C, is
even).
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(b) {u, v} is an articulation set of G and every truncated path P,, P,, Q,, Q,
obtained from P,, P,, Q,, Q- by removing the two endpoints u and v belongs to a

different component of G —{u, v}.

Proof. Note first that because of (4.1)(b) all paths P,, P,, Q,, Q, have length at
least two.

(a) Clearly, P, u Q, and P,u Q, are cycles of G which by assumption cannot be
longer than |C,| =|C,]. This means |P; U Q,|<|C,|=|P, u Q,| and hence |Q,| <|Q,];
similarly [P, U Q,|<|C,|=|P, U Q,] and hence |Q,|<|Q,|, which proves |Q,|=|Q,|.
By symmetry we get |P,|=|P,|.

Now P,uU P, and Q,u Q, are also cycles which are not longer than |C,|=|C,,
ie. |Pyu P,y <|C)|=|P,uQ,], which implies |P,|<|Q,|, and |Q,u Q,|<|C,|=
| P, U Q,], which implies |Q,|<|P,|. Thus we get |P,|=|P,|=|0;|=]|0,).

(b) Suppose not all of the truncated paths P,, P,, Q,, O, are in different
compenents of G —{u, v}. Without loss of generality, we may assume that P, and O,
are in the same component of G —{u, v} and that there is a node x on P, a node %
on Q, and an [x, y]-path R in G —{u, v}, which, except for x and y, has no other
node in common with P,, P,, Q,, Q-.

In G, node x splits P, into a [, x]-path P} and an [x, v]-path P7, and node y
splits Q, into a [u, y]-path Q] and a [y, v]-path QF; see Figure 4.1. Note that

Fig. 4.1.

QU P URUQ] and Q,u Q) UR U P/ are cycles in G not longer than [C,|=
IC,l=]Q,u P,|. Hence

|O,u Py URUQY|<|0Qyu P, UPY| implies |RuQY|<|P!]
and

|Q,u QiU RUP]<|Q,uPIUPY] implies [QjuR!<|Pil.
This gives

Q| <2|R[+]|Q}|+|Q7|<|Pi[+[P{|=]P\|=]|Q],

which is a contradiction. [
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(4.3) Theorem. Suppose two longest cycles C, and C, of G meet in exactly two
nodes, say u and v.

(a) Then all longest cycles of G contain u and v, but not the edge uv.

(b) For every longest cycle C of G, the two pieces of C —{u, v} in G —{u, v} belong
to different components of G —{u, v}.

Proof. (a) We may assume as in (4.2) that C; =P, u Q, and C,= P, U Q, and that
P, P,, Q,, Q, are the four truncated paths in G —{u, v}, which by (4.2)(b) are in
different components of G —{u, v}.

Suppose C is a longest cycle of G not containing {1, v}, say u is not on C. This
implies that C —{u, v} is either a path or a cycle in G —{u, v}, and hence C—{u, v}
belongs to one component of G —{u, v}.

By (4.1)(a) C and C, meet in at least two nodes. Since u is not on C, there is a
node on C;—{u, v}, say on Py, that is also on C—{u, v}. Similarly, there is a node
on C,—{u, v}, say on P,, which is also on C —{u, v}. Since C —{u, v} is connected
in G —{u, v}, this implies that P, and P, are in the same component of G —{u, v},
contradicting (4.2)(b).

If C meets C, or C, only at u and v, then by (4.1)(b), u and v are not adjacent
on C. Thus if uv is an edge of C so that C—{u, v} belongs to one component of
G —{u, v}, then C —{u, v} intersects C, —{u, v} and C,—{u, v}, which we have just
shown to be impossible.

(b) Let C=PuU Q be a longest cycle of G, where P and Q are [u, v]-paths. Let
P and Q be the paths in G—{u, v} obtained by truncating P and Q. Then two of
the paths P, P>, Q,, O, say P, and Q,, are in different components of G —{u, v}
then P and Q. This implies that P, U P and Q, U Q are cycles in G. Moreover, they
are longest cycles having exactly two nodes in common, namely u and v. Hence by

-

(4.2)(b), P and O are in different components of G—{u, v}.

For our purposes, the following corollary bounding the circumference of the
{u, v}-fragments of G (cf. Section 3) is of particular importance.

(4.4) Corollary. Let u and v be two nodes that form the intersection of two longest

cycles of G. Then the circumference of each of the {u, v}-fragments H,, ..., H',
HY,...,H; of G is smaller than the circumference of G, and all {u, v}-fragments
are blocks.

—_

Proof. Immediate from the construction and Theorem (4.3).

5. Finding a longest cycle

For every graph constructed in our algorithm, we must know a longest cycle
explicitly. The algorithm showing that such a cycle can be found in polynomial time
is based on a result of Voss.
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(5.1) Theorem [11]. Let G be a 2-connected, nonbipartite graph whose longest odd
cycle has length l,. Then the circumference of G is at most 2(l,—1). O

Let #(!) denote the class of graphs whose circumference is at most [, then Theorem
(5.1) implies that every graph G € 9(K) is contained in #(4K). Therefore we can
use brute force to find a longest cycle in G.

Our algorithm works as follows. Suppose a graph G =[V, E]e () is given. We
first use depth-first search to check whether G is a forest. If G is a forest, we stop.
Otherwise, let C be a cycle of G found by depth-first search. Set p:=|C|.

Next we construct a sequence W, W,, ..., W, t=(]), containing all /-element
subsets of V.

In the general step, we pick a set W, not yet examined and for every s, p<s=<]|,
we generate every sequence wy, w,, ..., w, of s different nodes of W, Then we
check whether this sequence forms a cycle in G.

If it forms a cycle, say D, then we proceed as follows. In case s =p we check
whether C and D have exactly two nodes in common. If this is the case, we label
the two nodes on C also contained in D. If s> p, then D is longer than C and we
set p=s, and C = D, and continue.

Note that the algorithm either shows that G is a forest, or if not, produces a
longest cycle C. Moreover, if G contains a cycle D with [C|=|D| and C and D
meet in exactly two nodes, then these two nodes are labeled (but D is not recorded).
By Theorem (4.3)(a) all longest cycles of G contain the two labeled nodes.

The enumeration of all (}) /-element subsets of V can be done in O(n') time. For
! fixed, the time needed for the enumeration of all sequences of nodes wy,..., w,
in W, is independent of n. Thus, the overall running time of our enumeration
algorithm to find a longest cycle in a graph G e %#(I) is O(n'). For G € 4(K) we
therefore need O(n**) time to construct a longest cycle.

6. The algorithm

In the preceding sections we have described all aspects of the algorithm and all
the results on which it is based. We will now put the pieces together and estimate
the complexity of the procedure.

The algorithm works inductively. Either the present graph G is bipartite and we
can solve the max-cut problem trivially, or we construct several new graphs
G,, G,,...,G, from G. G is called the father of the new graphs G,, the graphs G;
are the sons of G, and the G,’s are called brothers. The sons are created in such a
way that a maximum weight cut in G can be read from the maximum weight cuts
in the graphs G.

(6.1) The input to our algorithm is a graph G =[V, E] with n nodes, m edges
and with edge weights ¢, >0 for all e€ E, and a positive integer K. (K =0 is the
bipartite case which is trivial.)
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(6.2) We first use depth-first search to find all components of G and all blocks
of the components of G. (This can be done in O(m) time. We have shown in Section
2 how a maximum weight cut of G can be recovered from the maximum weight
cuts of its components and blocks.)

(6.3) We use the algorithm described by Hsu, Ikrua and Nemhauser (8] to check
whether the blocks of the components of G are members of 4(K). If one of the
blocks is not in 4(K), we stop and report that G has an odd cycle longer than
2K +1. (This procedure requires O(n***?) time, cf. [8].)

(6.4) We now open a list & of unscanned graphs where each graph has a label
{ stating an upper bound on the circumference of the graph. The first members of
the list £ are the blocks of the components of the original graph G with a label
[:=4K. (Note that because of (6.3) every block is in 4(K) and hence, by Theorem
(5.1), is contained in #(4K).)

(6.5) If the list & of unscanned graphs is empty, we go to step (6.12).

(6.6) We pick an unscanned graph, say G =[V, E], from £ with a label ! and
remove it from . (By construction every graph on the list is connected.)

(6.7) First we check whether G is bipartite. If G is bipartite, we put G on a list
&' of scanned graphs recording a set W<V with §(W)=E determining
the maximum weight cut. (This step requires O(m) time.) Then we go to
step (6.5).

(6.8) Now we check whether G is 2-connected. If G is not, we determine the
blocks of G, put the blocks on the list &£ with a label / and go to step (6.5). (This
step has complexity O(m).)

(6.9) We run the O(n') enumeration procedure described in Section 5 to find a
longest cycle C of length p=</in G. We must consider two cases.

(6.10) If C contains no labeled nodes (cf. Section 5), let S be the set of nodes
of C. We partition S in all possible 277! —1 ways into two nonempty subsets S, and
S,, shrink S, into s,, S, into s, and put all the graphs G, ,, produced this way on
the list %, cf. Section 3. All graphs G, ,, receive the label p—1 and we go to step
{6.5). (Note that in this case each longest cycle, say D, of G has at least three nodes
in common with C. Thus in every partition S,, S, of S one of these two sets must
contain two nodes, say u, v, of D. By shrinking S, and S, the nodes u and v are
identified. Hence all longest cycles of G are destroyed by the shrinking procedure
and therefore G, ,, belongs to #(p—1). Since [ (and hence p) is independent of n,
step (6.10) requires only O(m) time.)

(6.11) If C contains two labeled nodes, say u and v, then we construct all the
{u, v}-fragments of G, cf. Section 3, put these on the list Z with a label p—1 and
g0 to step (6.5). (The label p—1 can be given because of corollary (4.4). The
complexity of this step is O(m:).)

(6.12) Using the list &' of scanned graphs, we recover the maximum weight cut
of the original graph G by determining inductively the maximum weight cut of a
father from the maximum weight cuts of its sons. (These methods have been
described in the previous sections.)
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To prove that the algorithm produces a maximum weight cut of the original graph
and to estimate its complexity we may assume that the original graph is connected.
Then there are three ways of creating sons of a father G having label 1.

(6.8) Splitting G into its blocks which obtain label /.

(6.10) Shrinking the node set of a longest cycle in various ways into graphs all
of which obtain the label p—1, where p< 1.

(6.11) Constructing the {u, v}-fragments of G with label p—1, p<1

Note that in steps (6.10) and (6.11) the sons created have a circumference that
is strictly less than the circumference of the father. Only if G is not a block, can
its sons have the same circumference as G. However, since in this case the sons are
blocks, the sons of the sons (the grandsons) of G are either bipartite or have a
smaller circumference than G. This shows that all grandsons of a father G have a
circumference that is strictly smaller than G (or they are bipartite). Since our
original graph G has label / = 4K, we can conclude that after at most 8K generations
all sons will have circumference zero.

The graphs of circumference zero are the forests. These are bipartite and thus
the maximum weight cut can be obtained easily. Hence after at most 8K generations
all sons are bipartite and we can construct a maximum weight cut of the original
graph by backward induction. This shows that our algorithm works.

The application of step (6.9) to the original graph (resp. its blocks) gives a time
bound of O(n*"). We claim that for K =2 this time bound is the overall running
time of the whole algorithm. We prove this claim inductively on the label I by
showing that if G is a graph with label / then it takes at most d(!)n’ time to find
a maximum weight cut of G.

Note that the labels 0 and 1 never occur, so suppose G is a graph with label [ =2.
Then we recognize in step (6.7) that G is bipartite. In this case a maximum weight
cut of G can be found in O(n?) time, so that our claim is true for /= 2.

Now assume that the running time of our algorithm for a graph with r nodes and
label 2< k<! is at most d(k)r*. Consider a graph G with n nodes and label I
constructed by the algorithm.

If G is a bipartite graph we are done. So suppose G is nonbipartite and that the
algorithm constructs ¢ sons G; with n, nodes and label ;)< i=1,...,t During the
generation of the sons of G some of the steps (6.6),...,(6.11) are executed.
Checking bipartiteness, finding the blocks and recovering the maximum cut of G
from the maximum cuts of its sons takes at most d'(!)n” time altogether. The most
costly step is (6.9) where at most d”(I)n’ time is needed.

We now use our induction hypothesis to estimate the total amount of work needed
to find the maximum weight cuts of all sons of G. Recall that sons are created in
either step (6.8) or (6.10) or (6.11).

Suppose the sons are created in step (6.10). Here we generate at most 2' ! sons
where each son has fewer than n vertices and a label /; <[ Thus, by the induction
hypothesis, to obtain a maximum cut for one of these sons the time needed is at
most d(/;)n;. Hence to obtain a maximum cut for G, an upper bound on the running
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time is

_I d()nl+d' (Hn2+d"(Hn'<27d(I-1)(n=1)"""+(d'()) +d"())n'

<s(2"7MdU-1D)+d (D +d"(D)n'

Suppose the sons are created in step (6.11). Here we generate at most 2n sons
each on fewer than n nodes and each having a label less than I Thus to obtain a
maximum cut for G, the time needed is at most

2nd(I-1)(n=1)""+d'(D)+d"(D)n'<(d(I-1)+d' (1) + d"(h)n'.

From the above analysis we can conclude that if G is a block with label / then
at most d*(I)n' operations are required to find a max cut of G, where

d*()=2"71d-1D)+d'(D)+d"(]).

Finally we consider the case where G is not a block and step (6.8) 1s applied. In
this case G is split into ¢ blocks G; with n; < n nodes and label /; = 1. We have that
Z:=1 n; < 2n. Thus the work required to find a max cut of G is at most

{ t

t !
T d*()nt+d' (Hn*<=d*(1) ¥ nf+d’(l)n2$d*(l)<z n,) +d'(Hn?
i=1 =1 i=1

i= i=

< d*()2'm'+d'(Hn*< 2'd*()+d'())n',
Setting
d(l)y=2"d*(H+d'(1)

completes the induction.

In addition to counting the number of steps of the algorithm, we also must establish
that the numbers involved in the computations do not grow too large. Recall that
the only part of the algorithm in which the data may be modified is in step (6.11)
where we may at most double the sum over all edge capacities. This does not affect
the complexity bound of the algorithm.

Hence we have proved that the running time of the complete algorithm is O(n
(4K is the largest label) provided that K =2. If K =1, then the membership test
in (6.3) is more costly than the max-cut algorithm and we get a time bound of o(n).

4K)

(6.13) Theorem. There is an O(n*") algorithm which finds a maximum weight cut

fam]

for every graph G € 4(K), K =2, with n nodes. __

7. Conclusions

There are several ways to improve the algorithm described in Section 6. For
instance instead of shrinking and splitting until a bipartite graph is reached, we can
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stop the generation of sons whenever we have found a planar or a weakly bipartite
graph since for these graphs polynomial time algorithms are known.

Moreover, we have also devised a method in which by splitting and shrinking,
sons of a father are created such that the longest odd cycle of every son is shorter
than the longest odd cycle of its father. This algorithm has a time bound of O(n?¥*!),
K =1, not counting the membership test. However, its description is much more
complicated and uses deeper results of graph theory than the ones presented in
Section 4 regarding intersections of longest cycles. (Note that when we consider
longest odd cycles, the theorems of Section 4 are no longer true. In particular, 2
longest odd cycles of length 5 can intersect in exactly one edge uv, and the resulting
edge added {u, v}-fragments will be cycles of length 5.)
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