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We investigate several classes of inequalities for the symmetric travelling salesman problem
with respect to their facet-defining properties for the associated polytope. A new class of
inequalitics called comb inequalities is derived and their number shown to grow much faster
with the number of cities than the exponentially growing number of subtour-elimination
constraints. The dimension of the travelling salesman polytope is calculated and several
inequalities are shown to define facets of the polytope. In part II (**On the travelling salesman
problem II: Lifting theorems and facets’) we prove that all subtour-climination and all comb
inequalities define facets of the symmetric travelling salesman polytope.
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0. Introduction and notation

The symmetric travelling salesman problem is the problem of finding the
shortest hamiltonian cycle or tour in a weighted undirected finite graph without
loops and multiple edges. In the most common interpretation of this problem the
nodes of the graph represent cities, the edges of the graph direct travel routes
between the cities and the weights the distances between pairs of cities. The
problem appears to have been formulated some 45 years ago [24] and has been
the object of intensive investigation during the past 25 years. The problem is of
interest both from a practical and a theoretical point-of-view: Many problems in
scheduling and production management can be formulated this way or by closely
related models. On the other hand, as Karp [21] has shown, the travelling
salesman problem belongs to the class of NP-complete or “hard” combinatorial
optimization problems which to date cannot be solved by polynomially bounded
algorithms. ‘

In this paper and its sequel (“On the symmetric travelling salesman problem
II: Lifting theorems and facets” [16]) we are concerned with the facial structure
of the convex hull of tours of the n-city travelling salesman problem where a
tour is regarded as a point in R™ with m =1n(n—1). The problem has been
formulated as a linear programming problem in zero—one variables this way by
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266 M. Grétschel, M.W. Padberg| On the symmetric travelling salesman problem I

Dantzig et al .[3] in 1954, who introduced the subtour-elimination constraints, a
class of linear inequalities that are satisfied by all tours. A further class of such
valid inequalities for the convex hull of tours are specializations of the matching
constraints due to Edmonds [4] and the comb inequalities due to Chvétal [2]. We
generalize these two types of inequalities to the class of (general) comb con-
straints and show that subtour-elimination and comb inequalities define facets of
the convex hull of tours, i.e. belong to the class of inequalities that are generated
by the tours considered as points in R™. In a way, our work is a continuation of
much earlier work done by Heller [18, 19], Kuhn [22] and Norman [26] along
these same lines ,though this earlier work, to the extent that it is known to us, is
_restricted to studying the facial structure of the convex hull of tours for up to
n =7 cities in the symmetric case, see Gomory [7].

In Section 1 we define the concept of a comb in a graph and its associated
inequality. We show that every comb inequality defines a proper face of the
convex hull of tours and count the number of such inequalities. The number of
comb inequalities is a combinatorial function of the number of cities and in Fig.
2 we have tabulated some of the respective values so as to allow a comparison to
the number of subtour-elimination constraints. In Section 2 we calculate the
dimension of the convex hull of tours for the n-city problem to be m —n=
in(n —3). This result is known [22]; our proof is short and useful later on for
other proofs as well. In Section 3 we prove that the inequalities given by the
nonnegativity and upper bound conditions define “trivial” facets of the travel-
ling salesman polytope, i.e. the convex hull of tours. Furthermore, we show that
a certain comb inequality defines a facet for the travelling salesman polytope.
These results are the necessary ingredients for the sequel [16]: In Sections 4 and
5 [16] we first prove four lifting theorems that permit us to “lift” facets from
lower-dimensional to higher-dimensional travelling salesman polytopes. In par-
ticular, one of these results (Theorem 4.12) includes a related result obtained
earlier by Maurras [23, Chapter 1] as a special case. In Section 6 of [16] we then
prove that all subtour elimination and comb inequalities define facets of the
travelling salesman polytope. :

Our interest in establishing this fact is twofold: Firstly, it is of mathematical
interest to know which ones of the proposed inequalities really matter in defining
this incredibly complex polytope. Secondly, facets are ‘‘strongest cutting planes™
in an integer programming sense (see [6]) and it is thus natural to expect that
such inequalities are of substantial computational value in the numerical solution
of this hard combinatorial optimization problem. These expectations are sub-
stantiated by two accompanying computational studies: In [8] the solution to
optimality of a 120-city problem on a complete graph is reported using only 96
inequalities defining facets. As far as we know this is the largest complete
travelling salesman problem solved to optimality to date. In [27] the results of a
computational study for a total of 74 travelling salesman problems of size
varying from 15 cities to 318 cities on complete graphs are reported. In the case
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of the 318-city problem, 183 inequalities defining facets were generated (by a
computer program) and the best tour that was obtained was proven to be at
worst 3% off the absolute optimum. In [27] also a statistical study is included
which further supports the hypothesis that inequalities defining facets are of
substantial computational value.

Some of the results reported here have been presented at several professional
meetings in preliminary form [9, 10, 11, 12]. Related work on the asymmetric
travelling salesman problem can be found in [8, 13, 14].

Our notation and terminology follows standard books such as [1, 6, 17, 29]. We
use the following symbols in both this paper and its sequel [16]:

(1) K, =(V, E) is the complete graph on n nodes; V is the node set and the
nodes are labelled 1,..., n; E is the edge set and consists of in(n —1) unordered
pairs of indices i, . We denote any element in E either by e or by [i, j1. The latter
is used to specify the nodes i and j connected by the edge e. Whenever used as
index, the brackets are dropped in [i, j1. If W C V, then E(W) denotes the subset
of edges of E with both endpoints in W. If H C E, then V(H) denotes the subset
of nodes of V defined by the edges in H. w(v) for v € V denotes the star of v
i.e. the subset of edges of E that are incident with vE V. If U, WCV, then
U-W={ueU ] u& W). Instead of writing W — {w} we simply write W —w. If
i, € Vforj=1,...,k, then [i,..., i] denotes the chain connecting nodes iy, ... , ik
(i.e. iy to iy, etc., ix-1 to i).

(2) T C E is a tour if it is a (simple) cycle of length n in K,. A cycle of length
k<n in K, is called a subtour. A tour T E is also denoted as a cyclic
permutation {abc --- uvw -+ s} where a, b, c, etc. are nodes in V. In slight abuse
of notation we use “T = (abc --- uvw -+ 5)” to express the fact that the tour with
edge-set T connects a to b, b to ¢, etc. and s to a. By T, we denote the set of all
tours in K,. :

(3) If T €T, then x” is the incidence vector of T, i.e.

T {1 ifeeT,
xT= )
¢ |0 if not

and has m = in(n — 1) components. m is always used to designate fn(n—1).

(4) The matrix A denotes the incidence matrix of K, of size n X m, i.e. the
rows correspond to the nodes of K,, columns to the edges of K,.

(5) Q% is the travelling salesman polytope, i.e. the convex hull of the incidence
vectors of all tours in K,:

QF=conv{x” ER" | TE T.}.
Q" is the linear programming relaxation of Qf due to Dantzig et al. [3]:
Qi={xeR" |Ax=2,05x51}

where 2 is the vector with n components equal to two and 1 is the vector with m
components equal to one. In particular, QF G Q4.

" ARTIRENTTIRS
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(6) For any x ER™ and H C E we denote x(H)=YenX. If WCV, then
rather than writing x(E(W)), we simply write x(W). If U, WCV satisfy
U N W =@ we denote (U : W)={e€E|e=[i,j]wilh ie U and j € W}, i.e. the
set of edges that connect nodes in U to nodes in W.

(7) An inequality ax <ao is called valid (with respect to Q7)) if Q% C
{xeR" Iax <ao}. A valid inequality ax <a, defines a proper face of Q% if
d#QrN{xeER" | ax = ag} # Q%. A valid inequality ax <aq defines a facet of
Q% if its face is proper and there exist dim Qf affinely independent points
x' € Q% such that ax' =g for i =1,...,dim Q%, where dim Q% is the dimension
of Q%. Valid inequalities defining facets of Q% are called facetial inequalities. A
valid inequality ax =< a, is dominated if there exist valid inequalities b'x < bf and )
nonnegative p, for i =1, ..., k such that 4 is not a multiple of b' for i=1,...,k,
ax =3k, wb'x for all x€ Q} and Tf, wbi=<a, hold. A dominated valid
inequality is called redundant, because it is not needed in a linear description of
Q% by a minimal system of linear inequalities. Two valid inequalities ax = a, and
bx < b, are called equivalent if

QiN{x ER" | ax = ag}= Q3N {x ER™ | bx = ba}.

1. Valid inequalities for Q7

The best-known valid inequalities for the travelling salesman polytope Q% are
the subtour-elimination constraints due to Dantzig et al. [3]. The subtour-
elimination constraint on a node-set W is given by

X(W) < |W|-1 1y

where W C V satisfies 2=<|W/|=n—2. The following proposition summarizes
the known properties of subtour-elimination constraints (see e.g. [7]).

Proposition 1.1. (i) Every subtour-elimination constraint (1.1) defines a proper
face of Q%. (ii) The subtour-elimination constraints on W and V — W define the
same face of Q%. (iii) The number of subtour-elimination constraints defining
distinct faces of Q7T is equal to

vS(m)=2""-n—1. 1.2)

Since for any pair W, W'C V satisfying W U W' # V one can readily find a tour
in K, satisfying the subtour-elimination constraint on W with equality and the
subtour-elimination constraint on W’ with inequality, it follows that the subtour-
elimination constraints define exactly »%(n) distinct faces of Q%. Furthermore,

for n =S5, the trivial inequalities x,=0, e € E, define distinct faces of QF.

Consequently, we have 2"'+3n(n —3)— 1 inequalities defining distinct faces of
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Q%. We discuss next a class of combinatorial inequalities whose total number
apparently grows much faster with n than O2"™").

Since every vertex of Q% is a forteriori an integer vertex of Q%, the
2-matching constraints due to Edmonds (4] constitute valid inequalities for Q%.
Chvéatal [2] has generalized this class of inequalities to a wider class of in-
equalities which he called comb inequalities. Both classes of valid inequalities
for Q% like the subtour-elimination constraints have coefficients of zeros and
ones only (except for the right-hand side constant) and are special cases of the
following general comb inequality, which has coefficients equal to 0, 1 or 2: Let
W,c Vfori=0,1,..,k satisfy

[Won Wi|=1 fori=1,..,k (1.3)
(Wi— W=1 fori=1,..,k (1.4)
(WiNW|=0 forl=i<j=k (1.5)
k odd. ' (1.6)

Then we call C = {J%o E(W;) a comb in K,; W is called the handle and the W,
for i=1,..., k are called the teeth of the comb C. (See Fig. 1 for the graphical
configuration that defines a comb. Every oval is a complete subgraph of K, and
these complete subgraphs overlap in the way defined by (1.3) through (1.5). The
comb inequality corresponding to a comb C in K, is given by

k k
a‘x:=ax(wi)sonE(le—l)—(%k), (1.7

where as usual (o) denotes the smallest integer greater than or equal to a. The
right-hand side constant of inequality (1.7) is denoted s(C) and referred to as the
size of the comb C.

AWaWL.VA'

DRSS

Fig. 1. Graphical configuration of a comb.

A comb C with k =1 and |Wq| =1 is a subtour-elimination constraint. A comb
inequality is a 2-matching constraint [4] if the inequality in both (1.3) and (1.4)
holds as an equality. A comb inequality is a Chvdtal-comb (2] if the requirement
(1.5) is dropped and the inequality (1.3) is required to hold as an equality.
Chvétal [2] also permits k in (1.6) to be even. The proof of Proposition 1.3 below
shows that (1.7) is valid for even k as well, but then the inequality (1.7) does not
involve any integerization and is trivially seen to be dominated. Before proving
validity of comb inequalities for Q% we show that the requirement (1.5) does not
exclude any Chvital-combs that are essential for Q.
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Proposition 1.2. (i) A Chvdtal-comb C satisfying |Wo|=1 and k=2 is
dominated. (iiy A Chvdtal-comb C satisfying k=1 and |Wol =2 is dominated.
(iiil) A Chvdtal-comb C satisfying Mjex W;# 8 for some K C{l,...,k} with
|K|=2 is dominated.

Proof. To prove (i), let W, ={v} and k = 2. Then one verifies that
k k
Zcx,sx(w(v))+§x(vv,— v) < 1+Z([W,[— 1)~ (k — 1) =< s(C).
(13 - =
To prove (ii), let {v} = WoN W, and |W,| =2. Then one verifies that

;C x, < x(w()) + x(Wo— W) + x(W, — Wy)
<2+|Wy—2+|Wi|-2=s(C).

To prove (iii), suppose that K ={1, ..., p} with 2=<p <k and let {v} = (’=o W}. I
| Wol = 1, the assertion follows from part (i). We can thus assume that |Wo| =2
and due to part (ii), that k = 3. If p = k, then one verifies that

;cx,sx(m(v))+ﬁ;x(ﬂli— 0)52+2f‘ﬁ(|W,|—-2)ss(C).

If 2=<p <k, define a new comb C' by Wi=Wy—v and Wi, =W, for i=
p + 1, ..., k. Then one verifies that

p P—k P
;Cx,Sx(w(v))+§x(VV;—v)+ Z’x(W’,)52+§(|W,|—2)+s(C’)
=3(0).
Suppose finally that v € (f., W, where 2<p=<k and v& %, W, U W

Define a new comb C’ with Wi= |Jfso W, and Wi, =W, for i=p+1,...,k.
Note that |W{| = |W+ X P (W] —2) + 1. Consequently it follows that

k-p
gezc X, < E, x(W) =s(0).

It follows from Proposition 1.2 that our requirement (1.5) excludes only
dominated Chvital-combs.

Furthermore, the only undominated combs satisfying k=1 yield subtour-
elimination constraints and thus, in order to distinguish subtour-elimination
constraints from comb inequalities, we will assume throughout that (1.6) holds
with k= 3.

Proposition 1.3. Every comb inequality (1.7) defines a proper face of Qf%.

Proof. We first show that every comb inequality is a valid inequality for Q%:
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k
20 = ;v x(w(w)) + z {x(W) + x(W, — Wo) + x(W, N Wo)}
wEWq =
k
52|W¢,1+§{|W,|—1+|W,— Wo| — 1+ W, N Wy -1}

sz{|Wﬂ|+g(|W,|— 1)}— k.

Inequality (1.7) follows by dividing by two and by integerization of the right-
hand side. To prove that every comb inequality defines a proper face of Q%, we
construct a tour T satisfying (1.7) with eouality and a tour T’ satisfying (1.7)
with (strict) inequality as follows: Cheuse any hamiltonian chain p} in E(W,—
Wo) (of length |W;— Wi|—1) and any hamiltonian chain q; in E(W;N Wy) (of
length |W; N W,|—1) for each i =1, ..., k. Connect each pand g; by an edge in
E(W) to form a hamiltonian chain p; in E(W,) (of length [Wi|—-Dfori=1,..,k
If W = Wo— % W, is nonempty, choose a hamiltonian chain pys; in Wiy (of
length |Ws| — 1). To construct T, we connect the hamiltonian chain p; to p;;; by
an edge in E(W) for i=1,3,...,k and complete the collection of hamiltonian
chains to a tour T in K,. It follows that

k
acx’=§(IVV:|—l)+;,(IW.'U Wo| = 1) + 3k — 1) + |Wis|
k
=|Wol+g;(|W;|—1)—%(k+1)=s(C).

where H={i€{l,...,k} | |Wiy N Wy =2}. To construct a tour T satisfying (1.7)
with inequality, we proceed as before with the following differences: We
connect the pending node in W;N W, of the chain p; to the pending node in
W,— W, of the chain p,, the pending node in W N W, to the pending node in
W, — W, and complete the resulting collection of hamiltonian chains to a tour 7"
in K,. Necessarily, none of the additional edges in T'is in the edge-set of the
comb C and consequently, x” does not satisfy (1.7) with equality.

Proposition 1.4. (i) The comb inequalities (1.7) given by Ws, Wi, ..., Wi and by
V— W, Wi, ..., W, respectively, define the same face of Q%. (i) The number of
comb inequalities defining distinct faces of Q7% is equal to

n-3

P

-BOECTYVE MO 0

Af= ;:‘b(—l)'(’]f)(k -y,

where

Proof. To prove (i) we note that

x(Wo) +ix(Wo: V=—Wo) = Wi, x(V-— Wo) +1x(V — Wo: Wo)
= n—'IWol
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Imply x(Wo)=2|Wo—n+x(V—-W,), since x(W: V- We) = x(V — Wy: W)
Consequently, a comb inequality (1.7) given by W,, W), ..., W, is satisfied with
equality if and only if the comb-inequality (1.7) given by V ~ Wy, W1, ..., W, is
satisfied with equality. Consequently, (i) follows. To prove (1.8), we note that
every comb has at least three teeth and at least three nodes in its handle. Thus
due to (i), we have %(2) different possibilities for the choice of a handle where
3=q=n-3. For any such g, we can choose any j nodes from among the
remaining n — q nodes of K, to form the part W, — W, of the teeth of the comb,
where i=1,..., k. Thus we have (";%) possibilities to choose j nodes. For any
such j nodes, we want to form an odd number k =3 of teeth. By (1.3) and (1.4)
we have k <min(j, ) and by [25, §180] there are A} possibilities to distribute i
distinct elements into k distinct boxes such that no box is empty. Having made
this choice, we must now select kK nonempty subsets of W, which together with
the already selected subsets of nodes form the teeth W, for i = 1,..., k. To this
end we can choose any p nodes of W, with k <p < gq. Thus for any such p, we
have (j) possibilities. Again, we can distribute the p selected nodes in Af
different ways to k distinct boxes such that no box is empty. Since we have
taken into account already the different permutations of the k boxes (in choosing
the parts W, — W, of the teeth), we must divide this number by the number of
possible permutations k!. Thus (1.8) follows. By an argument closely following
the proof of Proposition 1.3 one proves that any two combs whose teeth differ
define distinct faces of Q%. Then one shows by the same constructive argument
that any two combs with identical teeth and handles Wo and W} satisfying
WU Wi# V define distinct faces of Q%. (These proofs are quite elementary, but
lengthy and therefore omitted.) Consequently, there are exactly vS(n) comb
inequalities defining distinct faces of Q%.

To get an idea about the comparative growth of the number »5(n) of
subtour-elimination constraints and of the number v%(n) of comb constraints we
have computed the respective numbers and tabulated them in Fig. 2. (For n =20
we give only the order of magnitude.) As n gets large, »°(n) becomes marginal
by comparison to »(n).

While subtour-elimination constraints are intuitively readily understood, the
logical implication of a comb inequality is more complicated. To illustrate the
point, consider e.g. a comb inequality for n =8 with Wo={1,2,3,4), W,=
{1,2,5,6}, W,=1{3,7} and W:=1{4, 8}, i.e.

2xp+ X3+ X+ x5+ X6+ X3+ Xoq+ Xas+ Xog + Xag + X37+ Xag + X< 7.
(1.9)

Using the relations 3., x,; = 2 and xj2+ 3 %3 x5; = 2 to eliminate the variable X1
from (1.9) we obtain the equivalent constraint

x34+x,7+x“+x5553+x|7+x1.+x27+xu. (1.10)

This constraint now expresses quite clearly the logical implication of the comb
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n ) ¥Em)

6 25 60
7 . 56 2100
8 19’ 41420
9 246 667800
10 501 8841970 -

15 16368 1993711339620
20 0.5-10°  15-10"
30 05-10° 15-10"
40 0.5-107 1.5.10%
50 0.5-10" - 108
59 03-10%. 10"
120 06-10% - 2.10'"

Fig. 2. Comparative giowth of
vS(n) and vC(n).

inequality (1. 9) If X=Xy = Xa= Xss= 1, i.e. if the travelling salesman travels
on the chain (7,3, 4, 8] and includes the link [5, 6] as well, then x,1+ x4+ x5+
x4 2= 1 must hold, i.e. then the travel]mg salesman must choose one of the links
(1,71, 11, 8], [2,7] or [2, 8], since otherwise there exists no round trip for the eight
cities. (See also Fig. 3; solid lines correspand. to the variables on the lefthand
side of the inequality (1:10), dashed lines to those on the right-hand side.) A
similar mterpretatlon of comb mequalmes can be gwen in more general cases as
well,

—_———
N /
N e
3 \/ I5
- N
4 4 N 6
/
e
8 2

Fig. 3. Comb inequalities (1:9) and (1.10).

2. The dimension of Q%

Since the node- edge irrcidence matrix A of the complete graph K, has full row
rank and -since. Q% satlsﬁes 1. C Q%, it follows that the dimension of Q%
satisfies - LT

dim Q% = dim QASm—n n'(n—3).' _ (2.1

. Furthermore since the: vector % with all positive components X = 2/(n —1) for
1<i< j =n is contained in Q%, the polytope Q7 is not contained in any one of
the subspaces {xER" |xu =0} or {x€E€ R™ Ix,, 1} and hence, dim Qi =m —n.
The proof that equality holds in the first inequality as well makes use of the
following result from graph theory which can be found e.g. in [17, p. 89].
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Lemma 2.1. Let K,(V, E) be the complete graph on n nodes and k denote any
integer.

(i) If |V|=2k+1, then there exist k edge-disjoint tours T, such that E =
Uk T

(i) If |V|=2k, then there exist k—1 edge-disjoint tours T, and a perfect
matching M edge-disjoint from any T, such that E= M U !} T.

Theorem 2.2. The dimension of Q% equals d, = in(n—3) for all n = 3.

Proof. We show that Q% contains d, + 1 linearly independent tours. For n =3
the claim is trivially true.

(a) Assume the n=2k+2 with k=1 and integer. The subgraph K,_ =
(V', E') of K, induced by the n — 1 first nodes is again complete and by Lemma
2.1, its edge-set is the union of k edge-disjoint tours 7; of length n —1. From
each (n — 1)-tour T; we construct n — 1 tours Ty of length n by replacing, one at
a time, each edge [u, v] € T; by the chain [u, n, v]. The incidence matrix of the
tours T for j=1,..., n— 1 (rows) versus the edges of K, (columns) contains the
submatrix E — I, where E is the (n — 1) X (n — 1) matrix of all ones and I is the
(n —1)x(n —1) identity matrix. Furthermore, we obtain a total of k(n—1)=
d, +1 tours. Since the tours T; of length n—1 are edge-disjoint, the incidence
matrix of all d, + 1 tours Ty contains a (d, + 1) X (d, + 1) submatrix N which is
block-diagonal and whose diagonal blocks all equal to E—I after a suitable
arrangement of the rows and columns. Since E — I is nonsingular, it follows that
N is nonsingular and consequently, Theorem 2.2 holds if n = 2k + 2.

(b) Assume that n =2k + 1 with k =2 and integer. We proceed as in the case
(a) and construct (k — 1)(n — 1) linearly independent tours from the k — 1 tours of
length n— 1. The perfect matching in K,_, is completed abritrarily to a (n — 1)-
tour in K,., and subsequently, used to construct k tours of length n by
replacing, one at a time, each edge [u, v] € M by the chain [u, n, v]. This way we
obtain a total of d, + 1 tours whose incidence matrix contains a (d,+1)x(d, +1)
block-triangular matrix N' with k — 1 blocks E — I of size (n — 1) X (n — 1) and an
additional block E’'~— I’ of size k X k.

Remark 2.3. Since every tour of the symmetric travelling salesman problem
defines exactly two edge-disjoint tours for the asymmetric travelling salesman
problem, the proof of Theorem 2.2 can be used to prove the dimensionality
result for the asymmetric travelling salesman problem, see [13] for a different
argument,

Remark 2.4. A further implication of Theorem 2.2 is that for complete graphs
the hamiltonian cycles form a cycle-basis, see [1, p. 15], which, however, is not
true for arbitrary finite graphs,
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3. Trivial facets of Q7 and special combs

Since the dimension d, of Q% satisfies d, <in(n — 1), it is to be expected that
it is rather difficult to prove that a particular inequality is a facet of Q%. The
proof that the inequalities x, =0 and x, <1 for all e € E constitute the “trivial”
facets of Q% is by no means obvious. Also included in this section is the proof
that a very special sublcass of the comb inequalities (1.7) define facets of Q%.
The results of this section are used in Section 6 [16] in connection with the lifting
theorems to prove that subtour-elimination constraints as well as comb in-
equalities define facets of Q7. The general proof-procedure used in this section
consists in showing that the incidence matrix of all n-tours satisfying a given
inequality with equality versus the edges of K, contains a d, X d, nonsingular
submatrix. We leave it to the reader to verify that each inequality is satisfied
with inequality by at least one tour as well as to verify the assertions for *“small”
n by enumeration.

We start by proving some general properties of facets ax < a, of Q%. Note
that Q% C Q% implies that for every (valid or facetial) inequality ax < a, there
exists an equivalent (valid or facetial) inequality dx < d, satisfying @ = 0. This
follows because x € Q% implies Y.cz X, =n and thus d,=a.+ 4 for all e€ E
and dy = ao+ nb has the required property for § = —min{a, | a,<0,¢e€E}

Proposition 3.0. If ax < a, is a facet of Q% satisfying a =0, then either (a, ac)
can be written as a = b + ¢ and ao= by+ co where b# 0 # ¢ are not multiples of a
and ax < ag, bx < by and ¢x < ¢, are all equivalent with respect to Q% or else, the
graph G, = (N.,, E,) is connected, where E, ={e € E | a, >0} and N, = V(E,).

Proof. Suppose G, is not connected. Let V,;C N, be the node-set of any
connected component of G,. Clearly, |Vi|=2 holds, and we define b by b.= a,
for all e € E,, where E, = E(V)), b. = 0 otherwise. Define b, = max{bx |x € Q%)
Since b =0 and b# 0 hold, b, is some finite number. Let V,= V — V; and define
¢ by c. = a, for all e € E;, where E, = E(V)), ¢, = 0 otherwise. Clearly ¢ =0 and
¢ = a—b. Define ¢, analogously to b,. Then both bx =< by and cx < ¢, are valid
inequalities for Q% and the respective constants satisfy ao= bg+ co. By con-
struction, there exists tours T1 and T2 such that bx™'=by and cx™=¢,
hold respectively. Due to the nonnegativity of b and ¢ we can assume without
loss of generality that T'1 and T2, respectively induce hamiltonian chains in the
graphs (V,, E;) and (V,, E,), respectively. We can connect the respective
hamiltonian chains to form a tour T3 satisfying bx™ = b, and cx™ = ¢, Con-
sequently, bo+ co = ax™ = a, and thus ao = bo+ ¢, follows. Suppose now that for
some tour T ax” = a,, but bxT <bo or cxT <cq Then ap=ax” =bx" +¢x" <
bo+ o= aq is a contradiction and the proposition follows.
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. In fact, as we have not invoked any property of the nonnegative valid
inequality ax = a, other than the existence of a tour satisfying ax < a, with
equality, the proposition is true for any nonnegative valid inequality defining a
nonempty face of Q%.

Theorem 3.1. The inequalities x; <1 for 1 <i < j=<n define facets of Q% for all
n=4.

Proof. Without restriction of generality we prove the assertion for the inequality
Xn-1n =1,

.(a) For n =4 and n = 5 one verifies the assertion by enumerating all tours that
satisfy x,_1,=1 and proving that there are d;=2 and ds=35, respectively,
linearly independent tours among them.

(b) Let n =6 and n = 2k +2 with k =2 and integer. By Lemma 2.1 we know
that the complete graph K,_, on the n—2 first nodes is the union of i(n —4)
edge-disjoint (n—2)-tours and one perfect matching. Using a similar con-
struction as in Theorem 2.2 we construct n-tours from these (n —2)-tours and
the perfect matching.

(bl) We start by choosing a particular (n —2)-tour (1+-n—2), say, and
construct n —3 n-tours by replacing the edge [j, j + 1] alternatingly by the chain
[i»n,n—1,j+1] or by the chain [j, n — 1, n, j + 1] starting with the first chain. We
" remember for later reference the n—3 edges [n —1,2], [n,3], [n — 1,4],..,[n-

1, n — 2] that are-contained in the n —3 n-tours obtained this way.

(b2) From the same (n — 2)-tour used in (b1) we obtain n — 3 different n-tours
by interchanging n and n —1. Furthermore, we add the tour (1,...,n—~2,n,n—
1). Note that the edges marked under (b1) do not occur in these n — 2 tours.

(b3) From the remaining 3(n —4) —1 tours of length n —2 and the one match-

- ing that has been completed arbitrarily to a (n — 2)-tour we construct n-tours by
replacing each edge [, j] by the chain [i, n — 1, n, j] like in the proof of Theorem

2.2. (In case ‘of the tour obtained from the perfect matching, we use only the

edges-of the perfect matching.)

This way we have obtained n-3+n—-2+G(n-4)-1)(n-2)+in—-2)=
in(n —3) tours in K, which all contain the edge [n—1,n]. Let D be the d, xm
matrix whose rows correspond to these n-tours in the order as listed. We order
the columns of D as follows: The n — 3 first columns are those corresponding to
the edges listed under (bl). All other columns are ordered like in the proof of
Theorem 2.2. We next delete all columns of D given by the edges

[1,n] and [r-—1,n], -
[k, n], 2<k=n-2 forevenk, 3.1
[k,m—1], 1=k=n-2 foroddk
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The matrix D' that results is of size d, X d, and has the form

vz 9 ,

where S is the square, block-triangular matrix of the same general form of the
matrix N that was found in the proof of Theorem 2.2 and P is given by

P =({) EIi’I)' G-3)

Here the matrix E — I is of size (n —2) X (n —2) and I' is the band-matrix of size
(n —3)x(n—3) given by

1
11 o\ : . _
r={. . . o : | (3.4)

11
Consequently, since both P and S are nonsingular, the matrix D has full row
rank. . ’
(c) The case n=2k+1 for k =3 and integer is entirely analogous to part (b)
except that its proof does not require separate consideration of a perfect
matching in K,_. ) . '

Theorem 3.2. The inequalities x; =0 for 1 i <j=<n define facets of Q% for all
n=5. : : : :

Proof. We show without restriction of generality that x, 5,1 =0 defines a facet
of Q% for all n=7. For n=5 and n =6, the assertion follows by enumeration.

(a) Using Theorem 3.1 with n replaced by n—1 we know that in K,_, there
exist d,_,=}(n —1)(n —4) linearly independent (r —1)-tours which atl contain
the edge [n —2, n —1]. In every omne of these d.-; tours we replace this edge by
the chain [n — 2, n, n — 1]. Labelling the nodes n — 1 and n of the proof of Theorem
3.1 by n—2 and n —1, respectively, it follows from (3.1) that these n-tours are
linearly independent. Furthermore, it follows that the columns corresponding to
the edges [1,n—1], [1,n —2] and [2, n — 1] are not contained in the nonsingular
square matrix D' denoted by (3.2).

(b) We choose now an arbitrary (n — 1)-tour containing the chain [n —2, 1,n-—
1,2} and replace this chain by [n—-2,1,n—1,1n,2),[n—2,1,n,n~1,2] and [n -
2, n,1, n — 1, 2], respectively. From the matrix D' given by (3.2) we construct the
following (da—: +3) X (ds—1 +3)-matrix N by adjoining the three columns cor-
responding to the edges [2, n], [n — 1, n] and [1, n] and the corresponding part of
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the incidence vectors of the three tours as rows:

i i+ 1| /D R (3.5)
N=l, 110 "(Q p)

q 011

q 0 0 1

Due to the last sentence under (a) the three last rows of N are identical in their
d,_, first components. We note that

IN|=[P||D'~RP™'Q|= D, (3.6)

since |P|=1, R consists of two zero vectors and a vector of all ones and the
matrix Q consists of three identical rows. We have now d, —(n —5) linearly
independent n-tours satisfying x, 3, = 0.

(c) We choose any n —5 n-tours which contain exactly one of the edges [i, n]
where 3 <i=<n—3. This can be done in K, such that none of the n —$ n-tours
contains the edge [n —2, n — 1]. Consequently, the matrix N given by (3.5) can
be completed to a nonsingular matrix of size d, X d, by adjoining these n—S$
tours and the columns corresponding to the edges [i, n] for i =3,...,n—3.

Remark 3.3. For n = 4, none of the inequalities xy =0 defines a facet and for a
complete, irredundant description of Q% only e.g. the three inequalities x;; <1,
x3=1 and x4=<1 of Q) are needed, ie. the other inequalities of Q% are
superfluous. If n =5, all trivial facets are needed and Q% = Q5, see also [26].

Theorem 3.4. Let n=6 and {u, v, w,u;, v, w}C V. Let Wo={u,v,w}, W;=
{u, w1}, Wa={v, vi}, and Wy ={w, wy}. Then the comb inequality

Xuw + Xuw + Xow + Xy F Xon, + Xy <4

defines a facet of Q™.

Proof. Without restriction of generality let u= n v=n—1, w=n-2, uy=
n—4, vy=n-3 and w,; = 1. We will prove that this comb defines a facet of Qr
for all n=9. For n =6, n=7 and n =8 the assertion follows by enumeration.

(a) Using Theorem 3.1 with n replaced by n—3 we know that in K, _3 there
exist d,_; = d, —3(n — 3) linearly independent (n —3)-tours which all contain the
edge [n —4, n—3]. In every one of these d,_; tours we replace this edge by the
chain [n—4,n,n-2,n—1,n-3]. Labelling the nodes n — 1 and n of the proof
of Theorem 3.1 by n—4 and n -3, respectively, it follows from (3.1) that these
n-tours are linearly independent. Furthermore, it follows from (3.1) that the
columns corresponding to the edges [1, n —3] and [1, n — 4] are not contained in
the nonsingular square submatrix D' denoted by (3.2).
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(b) We choose now any (n — 3)-tour containing the chain [n —4, 1, n — 3] and
replace this chain by [n—4,1,n—2,n,n—1,n-3] and [n—4,n,n—1,n—
2,1, n —3], respectively. From the matrix D' given by (3.2) we construct the
following (d,-3+2) X (ds-3+2)-matrix N' by adjoining the two columns cor-
responding to the edges [n —4, n] and [1, n — 2] and the corresponding part of the
incidence vectors of the two tours as rows:

D' 10

N'= HEEE B 3.7
q 11 '
q 01

Due to the last sentence under (a) the two last rows of N’ are identical in their
d,3 first components. From the nonsingularity of D' it follows readily that N' is
nonsingular. Note that the column corresponding to the edge [n — 4, n — 3] is not
contained in the matrix N'.

(c) We choose now any (n—3)-tour containing the chain [n—4,n~-3,1],
replace it by [n —4,n—3,n~1,n,n—2, 1] and adjoin the corresponding part of
the incidence vector of this tour as row and the column corresponding to the
edge [n —4, n — 3] as column to N'. The resulting matrix is denoted N. N is of
size (d,—3+ 3) X (d,-3+ 3) and nonsingular.

(d) We construct next 3(n —3)—3 n-tours containing all three edges contained
in E'={{n—4,n), [n—3,n-1], [1,n — 2]}, exactly one of the edges [n—1,n],
[n—2,n—1] or [n—2,n] and exactly one of the edges [i, j] not already counted
with i €{1,...,n—3}and jE{n—2,n—1,n}. We append the corresponding part
of the incidence vectors of these tours to the matrix N as rows and the new
columns corresponding to the edges [i,j1€ E", where E"=
{[i, i1 | ie{l,...,n-3}, jE{n—2,n—-1,n}}— E'. The resulting matrix is of size
d, X d,, nonsingular and a submatrix of all incidence vectors of tours satisfying
the comb-inequality with equality.

Remark 3.5. For a complete and irredundant description of Q% one has to
intersect Q% with the 10 subtour-elimination constraints on all node-sets of
cardinality 3 and the 60 comb-inequalities that are possible in Kj. This is stated
in [26] as well as the following: Q% is defined by a total of 2177 inequalities in
addition to the seven equations. Among these there are 840 comb-inequalities as
defined in Theorem 3.4 as well as all remaining 1260 comb-inequalities that are
possible in Kj;. For n =8 the number of inequalities that we know already is
astronomical and no explicit characterization of Q% is known to date.
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