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1 INTRODUCTION TO POLYHEDRAL THEORY

This chapter focuses on polyhedral aspects of the TSP from a theoretical
point of view. It lays the foundation for Chapter 9, where algorithmic
implications of the polyhedral results are discussed. In particular, it turns out
that large classes of facet-defining inequalities can be efficiently identified
and can be used as the backbone of computationally successful linear
programming based algorithms for TSPs.

All algerithmic problems arising in connection with cutting plane genera-
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252 8 Polyhedral theory

tion or facet identification are postponed to Chapter 9. We will deal in this
chapter solely with descriptive results concerning the facial structure of
traveling salesman polytopes.

A detailed treatment of the theory of polyhedra is presented in Bachem
& Grdischel [1982], Griinbaum [1967], Rockafellar {1970] and Stoer &
Witzgall [1970], as well as in some books on linear programming. For
completeness, however, we shall summarize here those concepts and results
from linear algebra and polyhedral theory which are necessary for our

exposition.

If x4,...,%€R™ and A4, ..., A €R, then the vector xeR" with x =
Axy+ ...+ A 1s called a linear combination of the vectors xy, ..., x. If
the A, in addition satisfy A +. ..+ A, = 1, then x is called an affine combina-
tion of the vectors xq, ..., . If x = XAx;+. ..+ Ax 1s an affine combination
such that A, =0fori=1,...,k, then x is cailed a convex combination of the
VECLOTS Xq, . . ., Xy

If &+ S<R" then the set of all linear (affine, convex) combinations of
finitely many vectors in S is called the linear (affine, convex) hull of S and is
denoted by %n(S) (affi(S), conv(S)); by convention 1in(7) ={0}, aff()=
conv(Z) = . A set S <R" with S =1in(S) (S = aff(S), § = conv(S))} is called a
linear subspace (affine subspace, convex set).

One can show that a set L =R" is a linear (affine) subspace if and only if
there is an {m, n)-matrix A {an (m, n)-matrix A and a vector b eR™) such
that L ={xeR" | Ax =0} (L ={x| Ax=>5h}). Affine subspaces of particular
interest are hyperplanes, i.e. sets of the form {xe€R"|a"™x = a,} where
a €R™—{0} and g, cR. Clearly, every affine subspace difterent from R" is the
intersection of hyperplanes.

A nonempty set SSR" is called linearly (affinely) independent, if for
every finite set {x,, %, ...,x}<S, the equations Ayx;+...+ A% =0
A1+, ..+ Ax =0 and A +...+A=0) imply A; =0, i=1,..., k; other-
wise S 1s called linearly (affinely) dependent. Every linearly (affinely) inde-
pendent set in R" contains at most n{n+ 1) elements. Moreover, for sets S
with at least two elements, linear (affine) independence means that no x& 8
can be represented as a linear (affine) combination of the vectors in S —{x}.
Al sets {x}, x#0, are affinely and linearly independent, {0} is linearly
dependent but affinely independent. By convention, the empty set is linearly
and affinely independent.

The rank (affine rank) of a set SR" is the cardinality of the largest
linearly (affinely) independent subset of S, and the dimension of S, denoted
by dim(S), is the affine rank of S§ minus one. A set S<R" is called
full-dimensional if dim(S)=n; this is equivalent to saying that there is no
hyperplane containing S.

It is clear from the definition that the affine rank of a set is equal to the
affine rank of its affine hull. Moreover, if 0¢ aff(S}, ie. if S is contained
in a hyperplane {x|a’x=a,} with a¢# 0, then dim(S) is the maximum
cardinality of a linearly independent set in $ minus one.
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The rank of a matrix is the rank of the set of its column vectors (which is
the same as the rank of the set of the row vectors of the matrix). An
(m, n)-matrix is said to have full rank if its rank equals min{m, n}.

If S 1s a subset of R", then Ax =b is called a minimal equation system for
S if aff(S)={xcR"| Ax=5b} and A has full rank.

A set HCR" is called a halfspace if there is a vector a € R" and a scalar
ag€R such that H={xeR" |a"x<a,}. We say that H is the halfspace
defined by the inequality a"x <a,, and we shall also say that (if a# 0) the
hyperplane {x|a"x = a,} is the hyperplane defined by aTx< a,,

An inequality a’x=<b is called valid with respect to SSR" if Sc
{xeR" | aTx<b}, i.c. if Sis contained in the halfspace defined by aTx<b. A
valid inequality a'x<b for S is «called supporting if SN
{xeR" | aTx = b} # . An inequality a”x < b valid with respect to S is called
a proper valid inequality if S is not contained in the hyperplane {xe
R*|a™x=b}. A valid inequality for S which is not proper is sometimes
called an implicit equation for S.

A polyhedron is the intersection of finitely many halfspaces, i.e. every
polyhedron P can be represented in the form P={x eR" | Ax=< b}. Since an
equation system Dx = ¢ can be written as Dx ¢, —Dx < —c, every set of the
form {x eR" | Ax <b, Dx = c} is a polyhedron. A bounded polyhedron (i.c. a
polyhedron P with P< {x«R" ||ix|<B} for some B>0 where |x|| i, for
example, the Euclidean norm of x) is called a polytope. Polytopes are
precisely those sets in R* which are the convex hulls of finitely many points,
i.e. every polytope P can be written as P={xcR" | Ax=<b} (A an (m, n)-
matrix, b €R™), and as P =conv(V} (V<R | V| finite).

A subset F of a polyhedron P is called a face of P if there exists an
inequality a”x<a, valid with respect to P such that F={xeP|a"x = a,}.
We say that the inequality a™x < g, defines F. A face F is called proper if
F#P. Infact, if P={xeR"[alx=<h,i=1,...,k}is a polyhedron and F is
a face of P, then one can show that there exists an index set I<{1,..., k}
such that F={xcP|alx =b, ieI}. Similarly, if P=conv(V) for a finite set
V<R" and if F is a face of the polytope P, then there exists a set WS V
with F=conv(W).

If a™x < ag and bTx < b, are two valid inequalities for a polyhedron P and
if {xePla"™x=ag}={xcP|b"x=bg} (i.e. both inequalities ‘define’ or ‘in-
duce’ the same face), we say that a’x < a, and bTx < b, are equivalent with
respect to P.

A face which contains one element only is called a vertex. If {x} is a vertex
of P we shall simply say that x is a vertex of P. (The word ‘vertex’ is
standard in polyhedral theory as well as in graph theory, so we will use it in
two meanings. We made sure that there will be no confusion.) A facet F of a
polyhedron P is a proper, nonempty face (i.e. a face satisfying & # F# P)
which is maximal with respect to set inclusion.

Clearly, the set of feasible solutions of a linear programming problem
max{c"x | Ax <b} forms a polyhedron P. If ¢, is the optimum value of
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max{c x| xe P}, then ¢ "x =<, is a supporting valid inequality for P, i.e. the
set F={xeP|c"x = ¢y} of optimum solutions is a face of P. If P contains a
vertex, then every face contamns a vertex. This implies in particular that every
linear program over a polytope has at least one optimum veriex solution.

In order to apply linear programming technigues (the simplex method, the
ellipsoid method, Karmarkar’'s method [1985], relaxation methods, etc.)
polyhedra have to be given in the form {xcR" | Ax=<b} In combinatorial
optimization, however, polyhedra are usually given as the convex hulls of
finite sets of points; thus a major problem is to find an inequality system
defining such a polyhedron. Moreover, one wants to find inequality systems
with as few incqualities as possible. For these purposes facets, i.e. facet-
defining inequalities, are of particular importance.

Theorem 1 Let PCR" be a polyhedron and assume thai A is an (m, n)-
matrix, b ¢R™ such that aff(P) ={xeR" | Ax = b}. Let F be a nonempty face
of P, then the following statements are equivalent:
(a) Fis a facet of P.
(b) F is a maximal proper face of P.
(¢) dim(F)=dim(P)—1.
(d) There exisis an inequality ¢ "x < ¢, valid with respect to P with the following
three properties:
(dy) Fei{xeP|c'x=co}
(dy) There exists X ¢ P with ¢'% <c,, Le. the inequality is proper.
(ds) If any other inequality d'x=<d, valid with respect to P satisfies
FcixeP|d"x=d}, then there exists a scalar o =0 and a vector
A eR™ such that

dT =acT+ATA,
do = aC()+ A.Tb_

Conditions (¢} and (d) provide the two basic methods to prove that a given
inequality ¢"x =c, defines a facet of a polyhedron P. In both cases, of
course, one first has to check that c¢*x=tc, is valid and that P is not
contained in {x cR" | ¢Tx = ¢o}. This is usually trivial.

The first method consists of exhibiting a set of k = dim(P) vectors (usually
vertices of P) Xy, X, ..., X, € P satisfying ¢"x; =¢co, i =1, ..., k, and showing
that these vectors are affinely independent. (If ¢4 # 0, this is equivalent to
showing that these k vectors are linearly independent) Let us call this
method the direct method. We shall encounter some cases where the direct
method is easy to apply since the linear (or affine) independence of ‘simply
structured’ vectors like unit vectors and simple modifications of these is easy
to check,

In most (nontrivial) cases the second indirect method, based on condition
(d) of Theorem 1, 1s more suitable, and it 1s as follows. One assumes the
existence of a valid inequality d'x=d, with {xeP|c"x=c5}<
{xeP|d"x=d,}. Using the known equation system Ax =5 for P, one can
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determine a A €R™ such that d:=d + ATA has certain useful properties, i.e.
some of the coefficients of d are equal to the corresponding coefficients of
the given ¢ or the like. Then utilizing known properties of the points x in P
satisfying ¢”x =c,, one determines the still unknown coefficients of d
iteratively. If it turns out that d = ac+ A"y for some o =0 and p eR™, then
condition (d) of Theorem 1 implies that ¢*x < ¢, defines a facet of P.

Facets are of importance since they have to be known in order to obtain a
minimal inequality representation of a polyhedron. Let P#R" be a polyhed-
ron; then a system of equations and inequalities Dx =c¢, Ax b is said to be
complete with respect to P if P={xcR"| Dx =c, Ax<b}. (The equation
system may be vacuous.) Let us call such a system nonredundant if Ax<b
contains no implicit equations and if the deletion of any equation or
inequality of the system results in a polyhedron different from P. Any
equation or inequality which can be deleted without changing the potyhed-
ron i1s called redundant.

Theorem 2 Let P<R" be a polyhedron and Ax<b, Dx =c be a complete
and nonredundant system for P, where D is an (m, n)-matrix and A is a
(k, n)-matrix. Then the following hold:
(a) aff(P)={x eR" | Dx = ¢} and m =rank(D).
(b) aff(P) and P have dimension n—m.
(c) Ewvery inequality al < b, of the system Ax <b defines a facet F; of P, where
F={xeP|alx=b},i=1,...,k
(d) Ifalx<b,i=1,...,k,
dfx=¢,i=1,...,m,
is any other complete and nonredundant system for P, then
(dy) k =k, m=m,
(dy) dT=(AN'D for some M eR™—{0}(i=1,...,m),
(ds) @y =ea] +(AYTD for some «;>0,A'cR™, and je{l,..., k}
(i=1,...,k).

Theorem 2(d) in particular implies that for a full-dimensional polyhedron P
there is a complete and nonredundant inequality system a/x <b,i=
1,..., k, such that every complete and nonredundant inequality system
afx=b,i=1,..., k, satisfies k =k and & =aa; for some « >0 (after
suitable indexing) and i=1,..., k. This justifies the statement that a full-
dimensional polyhedron is defined by a wunique (up to multiplication by
positive scalars) nonredundant and complete inequality system. Moreover,
for every facet F of P there is a unique (up to multiplication by a positive
scalar) inequality defining F.

Suppose a polytope P is given as the convex hull of finitely many points
(we will encounter such polytopes in the following), then Theorem 2(c)
implies that in order to get a complete inequality description of P, for every
facet of P one has to know (at least) one inequality defining it. Moreover, if
we want to find a complete and nonredundant system Ax <b, Dx = ¢ for P,
we have to prove that Dx =c is a minimal equation system for P, that
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Ax=) contains no implicit equations, that every inequality of Ax=b
defines a facet of P and that Ax =<} contains no equivalent inequalities, t.e.
different inequalities defining the same facet of P.

The main purpose of this chapter is to introduce several large classes of
inequalities which are valid for the polytope(s) associated with the TSP and
to prove that these inequalities define nonequivalent facets of the polytopes.
This will show that incredibly large numbers of inequalities are necessary to
give a complete (and nonredundant) description of the traveling salesman

polytopes.

2 POLYTOPES ASSOCIATED WITH THE SYMMETRIC AND
ASYMMETRIC TSP

*.1 The general approach

[he approach that we are going to describe here consists of associating
rolytopes with the TSP and other closely related problems. This approach is
applicable to almost all other combinatorial optimization problems as well;
see e.g. Padberg [1979] for a related survey concerning the facial structure
of pelyhedra related to covering, packing and knapsack problems. The area
of research in which polyhedra related to combinatorial optimization prob-
lems are investigated is often referred to as ‘polyhedral combinatorics’ and
1ts principal ideas are discussed next. (For general surveys of this subject see,
e.g., Grotschel [1984], Pulleyblank [1983] and Schrijver [1983].)

Let E be a fintte ground set and # be a set of subsets of E. With every
element e € E we associate a variable x,, i.e. a component of a vector x ¢RE
indexed by e. (Rather than writing R we simply write RE.) With every
subset Fc E we associate a vector x* eRE, called the incidence or charac-
teristic vector of F, defined as follows:

F_{l ifecF,
*70  ife¢F

Thus, every subset F< E corresponds to a unique 0-1 vector in RF and
vice versa. Now we associate with # = 2F the polytope Py which is the con-
vex hull of all incidence vectors of elements of £, i.e.

P, :=conv{xF eRE | Fe $}. (1)

It is easy to see that every vertex of P, corresponds to a set in ¥ and vice
versa.

Now suppose ‘weights’ or ‘distances’ ¢, R for all ¢ ¢ E are given and we
want to find F*e$ such that ¢(F¥):=Y,.p ¢ is as small {or as large) as
possible. Then we can solve this combinatorial optimization problem via the
linear programming problem

minicTx [ x € P,}, (2)
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since every optimum solution of the combinatorial optimization problem
corresponds to an optimum vertex solution of (2) and vice versa. In order to
apply linear programming techniques we need a complete (and, preferably,
nonredundant) description of the polytope P, by way of linear equations
and inequalities. As we shall indicate later, such a completeness result will
probably prove to be elusive for all AP-complete problems, i.e. there is
little hope that complete and nonredundant systems of linear equations and
inequalities describing Ps; will ever be found explicitly for ‘hard’ com-
bipatorial optimization problems. But we shall also see that partial results
can be of great computational help for the numerical solution of hard
problems when used in conjunction with linear programming and branch
and bound methods.

2.2 The TSP case

With respect to the symmetric TSP, the ‘natural’ polytopes to work with are
the following. Let K, = (V, E) denote the complete graph on n vertices, i.e.
for every two different vertices i and j there is exactly one edge {i, j} linking
i and j. Denote by ¥, the set of all tours (Hamiltonian cycles) in K,, (note
that we view cycles as sets of edges) and let &, be the set of all subsets of
tours, i.e. &, ={S<E |there exists a tour T< E with Sc T). Then the
polytope
Qf:=convixTeRF | Te &}

18 called the (n-city) symmetric traveling salesman polytope and the polytope
Q%= convixS ¢ RE |Sed,)

is called the (n-city) monotone symmetric traveling salesman polytope.

In the asymmetric case, we get two such canonical polytopes in the
following way. Let D, =(V, A) be the complete digraph on n vertices, i.e.
every two different vertices i and j are linked by two antiparallel arcs (i, j)
and (j, i), let 7, denote the set of all (directed) tours (directed Hamiltonian
cycles) in D,,, and let 7, denote the set of all subsets of tours in ,,. Then

Pr:=convix™eR* | TeT,}
is called the (n-city) asymmetric traveling salesman polytope and
Pi:=convixScR* | Sed,)

is called the (n-city) monotone asymmetric traveling salesman polytope.
Every symmetric TSP can be solved - in principle - via the linear pro-
gramming problem

min{c"x [ x € QF, 3)
and every asymmetric TSP via the linear programming problem

min{c”x | x € P}). (4)
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The monotone polytopes Q% and P% can be used for these purposes as well,
in the sense that, if the distance ¢; of every edge {i, j} or arc {7, j) is replaced
by the distance ¢&,:=M—c¢,, where M=max{c,|:{i,jleE i eA,

respectively)} + 1, then the resulting maximization problems over Q% and PY.
provide the same answers as (3) and (4), respectively.

2.3 Basic properties of Q5 and P3

If E is a finite set and $ a nonempty system of subsets of E, then £ is called
monotone {or subclusive, or lower comprehensive, or hereditary system, or
independence system) if Je$ and I<J imply Ie$ If $<2F then $=
{I< E|3Jecd with I<J}is called the monotonization of $. Monotonization
often preserves important propertics of the original system and, at the same
time, makes a problem easier to analyze.

A polyhedron P <R} (1.e. P is contained in the nonnegative orthant) is
called monotone if ye P and 0=sx =<y imply x ¢ P. Clearly, if P; cR" is a
polytope associated with a set of subsets on a finite set E, then the polytope
P3 =®RE associated with the monotonization . of . is a monotone polytope.
This implies that the traveling salesman polytopes Q% and P are monotone.

By going from a polytope to its monotonization, we enlarge the polytope
‘below’. The advantage of this is that, if E =] .%, we get a full-dimensional
polytope which is technically easier to handle. Moreover, a full-dimensional
polytope has a unique complete and nonredundant inequality system de-
scribing it. This implies in particular that the problem of equivalence of
inequalities 15 easy to solve. Thus, if the monotone polytope is still suffi-
ciently closely related to the original problem, it is often preferable to study
the monotone polytope. For the TSP, sufficient closeness is assured by
Exercise 1. In the following we shall study the natural TSP-polytopes QF,

5 as well as their monotone versions, QF, P

Proposition 1 Let E be a finite set, let .$ be an independence system on F,
and let F=E—\J $. Then the dimension of P, is |E|—|F].

Proof Py is contained in {xeR® | x, =0, fe F} and thus dim(P,) <|E|—|F]|
holds. On the other hand, P; contains the zero vector and the unit vector u,
for all e € E~F. Hence, Py contains |E|—|F|+1 affinely independent vec-
tors, and we are done. L]

Corollary 1 )
dim(QP = |E[= n(n—1)/2, for n=3.

dim(PH=A|=n{n-1), for n=2.
Every polytope Py, cf. (1), is contained in the unit hypercube: thus the
hypercube constraints {from now on called trivial inequalities) 0<sx, <1,

e ¢ E, are valid inequalities for Pg. In fact - except for the obvious case - the
nonnegativity constraints always define facets of monotone polytopes.
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Lemma 1 Let # be an independence system on a finite set E and Py be the
corresponding polytope, then x, 20 defines a facet of Py if and only ifec | 9.

Again, since E=[J ¢ holds in the TSP case, we obtain the following.

Corollary 2
(a) For all edges {i,j} in K,, x;=0 defines a facet of Q7 n=3.
(b) For all ares (i,}) in Dn, x; 220 defines a facet of Py n=2 [

Note that, above, a variable corresponding to an edge {i,j} or an arc (i, i
should actually be written as x;;; or x.,. For notational convenience we
drop the brackets and, in most cases, also the comma. We shall keep this
notation in the following as well as in the next cliapter. Thus in the
symmetric case, the variables x; and x; are identica] (but not in the
asymmetric case).

The trivial inequalities x, =<1 do not necessarily define facets, not even for
monotone polytopes, i.e. here every problem has to be checked individually.

Proposition 2  For every edge {i, j} in K, the inequality x; =1 defines a facet
Of Q'D n=3,

Proof  For this proof we use the direct method suggested by Theorem 1{(c).
The |E| edge sets {{i, j}+ and {{i, i}, {p, q}}, where {p, gl E—{i, j}, are obvi-
ously contained in &,. Their incidence vectors satisty x, =<1 with equality
and are linearly independent. Moreover, there is a set in &, whose incidence
vector does not satisfy x; <1 with equality. Thus by Theorem 1, x; =]
defines a facet of Q7. O

In fact, it is easy to see that Q% equals the unit hypercube in R® and P%
equals the unit hypercube in R* (see also Exercise 3}. These are the only
cases where the trivial inequalities are sufficient to describe a traveling

salesman polytope.

2.4 Flementary properties of tours and related inequalities

The feasible solutions of combinatorial optimization problems are usually
‘structured’ in some way. From such structural properties, inequalities which
are valid for the associated polytope can often be derived in a straightfor-
ward manner.

In the symmetric case, a tour has the property that every vertex lies on
exactly two edges, and hence if S is a subset of a tour, then every vertex lics
on at most two edges in S. Let 8(v) be the star (or cut) of v, i.e. the set of
edges in K, having v as one endpoint, then our foregoing observation
implies that

x{(6{v))=2 forallveV (5)

1s a system of n equations satisfied by all incidence vectors of tours. (Note
that above and in the following x(F) is used as an abbreviation of ¥, _r X,
where F is an arc or edge set) This implies that QF< {xeRF | x satisfies
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{5)}. Similarly, we obtain that every incidence vector of a subset of a tour
satisfies the n inequalities

x{8{v)=<2 foraliveV. {6}

Thus we have that Q%c {x e RF | x satisfies (6}}.

In the asymmetric case we observe that every tour has the property that
every vertex in D, is the head of exactly one arc and the tail of exactly one
arc. Let 8(v), §(v), respectively, dencte the set of arcs having head v, and
having tail v, respectively. Then the system

x(§(vh=1 forallveV,

R (7)
x{8(v)=1 forallve V,

of 2n equations is satisfied by every vector in P7, whereas every point in pr
satisfies

x(Se)=1 forallve V,
x(S(v)=1 foralive V.

This implies P} {x eR* | x satisfies (7)} and Prc{x R | x satisfies (8)}.
The equations (5), (7) and the inequalities (6), (8) are called degree con-
straints since they restrict the possible degree (indegree, outdegree) of a
vertex of the graph {(digraph} in a feasible solution.

Note that the fact that a tour contains n edges {n arcs, respectively) gives
no additional polyhedral information since this is implied by (5) {by (7},
respectively).

A further obvious property of a tour is that it is a (directed)} cycle. This
means that a tour or a subset of a tour contains no cycle of length less than
n. From this observation we can derive, for example in the symmetric case,
that

(8)

x(C)=|Cl-1 9)

is a valid inequality for QT and Q% where C is the edge set of a cycle in K,
of length less than n. Such a cycle inequality {9) can be improved by the
following observation. If W< V is a set of vertices with 2=<<|Wj=n—1, then
the set of edges E{W) (i.e. the set of edges in K, with both endpoints in W
intersects cvery tour in at most |W|{—1 edges, because every set of more
than |W|—1 edges contained in the induced subgraph (W, E{W)) contains at
least one cycle. Consequently, the system of inequalities

HEWH<|W|—1  foral WeV, 2<!W|<sn-—1 (10)

is satisfied by all points in Q% and Q% The inequalities (10) arc the
well-known subtour elimination constraints introduced by Dantzig, Fulkerson
& Johnson [1954]. Note that for |W]=2, the inequality x(E(W)) =1 is
nothing but a trivial inequality x; =< 1.

In the asymmetric case, for W< V let A(W) denote the set of arcs in D,
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having head and tail in W. The same observation as above implies that the
subtour elimination constraints

xAW)H=|W[-1 foral We V, 2=|Wlsn-1 (11)

are valid inequalities for P% and P%.

We shall study the equations and inequalities introduced above in more
detail in a later section.

The equations and inequalities {5), (6), (7) and (8) can be used to show the
following.

Lemma 2 )
(a) QF is a face of OF.
(b) P& is a face of P%

This implies the following observation. (Why?)

Corollary 3 Every inequality valid for Q% (resp. P3) is also valid for Q%
{resp. P).

Note that Corollary 3 implies that every complete linear description of Q%
or P% yields a complete description of Q% or Pt

Exercises

1. Givena n-city symmetric (asymmetric) TSP with distance function ¢, prove
that every optimum vertex solution of max{¢Tx | x € Q% (of max{c*x | x ¢ P},
respectively) corresponds to an optimum tour and vice versa (for the
definition of ¢ see the end of Section 2.2).

2. Prove Lemma 1. (Hint: see Hammer, Johnson & Peled [1975].)

3. Prove that for n=3 no inequality x, <1 defines a facet of P} (Hint:
consider subtour elimination constraints (11) when |W|=2.)

4, Prove Lemma 2.

5. Does every inequality which defines a facet of Q% (of P4) also define a
facet of Q% (of PH)? What about the other way around?

3 WELL-SOLVABLE COMBINATORIAL OPTIMIZATION PROBLEMS
RELATED TO THE TSP

Solution methods for N¥P-complete combinatorial optimization problems,
such as branch and bound, are usually based on relaxations of the problem
which are easy to solve. A relaxation in this case is another problem (often
itself a combinatorial optimization problem) which has the property that
every feasible solution of the original problem corresponds (in a unique way)
to a feasible solution of the relaxed problem. As we shall see below,
relaxations can also be used to obtain polyhedral information about the
problem in question. We do not discuss in this section the several known
special cases of the TSP which are well solved. For a discussion of these the
reader 1s referred to Chapter 4.
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3.1 The symmetric case

A forest in a graph G=(V, E) is a set of edges containing no cycle; a
spanning tree is a forest with {V]—1 edges. It is well known that by adding
an edge to a spanning tree, exactly one cycle is created. Thus, a spanning
tree plus an edge 1s an edge set containing n edges and exactly one cycle.
Hence, every tour is a spanning tree plus an edge.

Let us consider a slightly more special construction. Consider the com-
plete graph K, = (V, E} and assume that the vertices are labeled 1,2, ..., n.
Call an edge set S a I-tree (in K} it |SN8(1)|=2and SNE{2,...,nhisa
spanning tree in K, —{1}. That is, a 1-tree is a set of n edges containing
exactly one cycle which contains vertex 1. Thus every tour is a l-tree. By
calculating a minimum spanning tree on the vertices 2, ..., n and choosing
the two shortest edges containing vertex 1, it is easy to find a minimum
weight 1-tree in K. Hence the minimum 1-tree problem is an (often used
and reasonable) relaxation of the symmetric TSP,

The 1-tree polytope Qfr is the convex hull of all incidence vectors of
i-trees in K, i.e.

Qtr=conv{x® cR® | S is a 1-tree in K.},

and clearly we have QF< Q7. Let J denote the set of all subsets of 1-trees
in K,, and

Q7= conv{x® eR® | S §},

then one can easily see that (E, ) is a matroid (i.e. an independence system
satisfying: I, Je 9, |I}<|J] = Je ¢ J—I such that TU{e}e §).

Edmonds [1971] has shown how a complete and nonredundant system
describing a polytope associated with a matroid can be constructed; see also
Giles [1975]. In the case of 1-trees in K,, n >3, such a system describing
Ot is the following:

O0=x,=1 for all e € E, (12}
x(3(1)=2, (13)
x(E(W))<|W|-1 foral We V, |W|=3, 1¢ W (14}

A complete and nonredundant system for Q7+ can be derived easily now
(see Held & Karp [1970], and for general techniques similar to this one
see Giles [1975] and Grotschel [1977a]):

fsx,=1 for all ec E, (15
x(8(1)) =2, (16
x(E{{2,...,n)=n—-2, (17

ME(W)<IWi-1 forall WSV, 3<|W|<|V]|-2, 1¢W. (18

R s T i

In other words, the vertices of the polyhedron given by (15), (16), (17), (18
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are the incidence vectors of 1-trces in K,. Note that the inequalities (14),
(18) respectively, are nothing but subtour elimination constraints (10).
Moreover, we know that the inequalities (12), (13), (14}, ((15), (18}, respec-
tively) define facets of Q' (of Q7T respectively) and that no two of these
inequalities are equivalent.

A second interesting relaxation of the symmetric TSP is the 2-matching
problem. A 2-matching (perfect 2-matching) in a graph is a set of edges
such that every vertex is contained in at most {exactly) two edges. Clearly,
every tour (subset of a tour) is a perfect 2-matching (a 2-matchin g). Denote
by O%yv (by Ohas respectively) the perfect 2-matching polytope (the 2-
march{ng polytope, respectively) of K, where n =3, i.e.

Q3= conv{x™eR® | M is a perfect 2-matching in K},
Q= convix™ eRE [ M is a 2-matching in K, }.

Q% is the monotonization of Q% and OLc OF,, and QLc Q% hold.

Edmonds [1965¢] has given a result which includes a complete linear
description of Qzm_and Q3% From these descriptions, nonredundant
characterizations of Q3,, and Q3,, (for K,, only) were derived by Grotschel
[1977b] and Grotschel [1977a], respectively. In order to show how the
2-matching inequalities of Edmonds can be generalized further, we intro-
duce them in a form different from the usual one.

Let K,,=(V, E) be the complete graph on n =3 vertices and assume that
HT,T,. .., T,V k=1, are vertex sets satisfying

|[HNT|=1, i=1,...,k,
|T1_Hl:1, I::l,...,k,
then the Z-matching inequality

- k
x(E(H)+ 2 x(E(T)<|H]| + EJ (19)

is valid for Q%,, and Q5 It is easy to see that if there is no round-down in
(19), i.e. if k is even, a 2-matching inequality is redundant with respect to
Q% and Q3% Edmonds {1965¢] has proved that the inequalities (19) with

odd k yield a complete linear description. In fact, we have the following
slightly stronger result.

Theorem 3 The following system of inequalities is a_complete and non-
redundant characterization of the 2Z-matching polytope Qb n=4:

O=x, =1 forall ec E, (20)

x(8(x))=2 forallveV, (21)
- k-1

x(E(H))+ ). X(E(T}))EWHT foral H Ty, ..., T, €V,

=1

(22)
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satisfying

(@ [HNT|=1, i=1,...,k
M | T.-H|=1, i=1,...,k,
(¢ TNT,=0, 1=i<jsk,

(d) k=3 and odd, ork =1 and |H|=4.

The polytope Q3 is the unit hypercube in R
In the case of perfect 2-matchings the inequalities (21) must be stated as
equations. Then one can show the following result.

Lemma 3 let HT,,... , T, cVand H',Ti,..., T be two different sys-
tems of vertex sets satisfying (22)(a),...,(d). Then the 2-maiching in-
equalities (22) correspondingto H, Ty, ..., Tpand H', T, ..., T} are equival-
ent with respect o Q5 if and only if

(a) k=4,

(b) for every ie{l,...,k} there is a je{l,..., k't with T,=Tj},
(c) H=V—-H.

The degree equations x(8(v)) =2, v € V, form a minimal equation system for
Q%nm and the rank of the matrix corresponding to these equations is n. In
fact, one can prove that the degree equations determine the affine hull of
Q% [Grotschel 1977a]. Combining this observation with Theorem 3 and
Lemma 3, one can show the following result.

Theorem 4 Let Qf,, be the perfect 2-matching polytope for K, =(V, E),
n=5. Then
dim Q3%,,= |E|—n.

Let V' be anvy set of subsets of V with We Vif and only if V—W¢ V. Then the
following system of equations and inequdalities is a complete and nonredundant
description of Q5.

O=x,=1 forallec E, (23)

x(8(v))=2 forallveV, (24)

X(EE) + T (BT <lH+ 25)
ie1

for all H, Ty, ..., T, &V satisfying (a), (b}, (c} of (22) and
(d) (k=3 and k odd) or (k=1 and 4=<|H|<n—4),
(e) HeV.

A consequence of the results of this section is that
Q% Qi+N Qs
Ot QirN O3y
hold, and thus, every incidence vector of a tour satisfies (15), (16}, (17}, (18)
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and (23), (24), (25); and every incidence vector of a subset of a tour satisfies
(12), (13), (14) and (20), {21), (22). We will sce in Chapter 9 that it is
possible to optimize over Q7+M Q5,4 in polynomial time and that excellent
lower bounds for the length of the shortest tour can be obtained this way.

A {0, 2}-matching is an assignment of the integers 0,2 to the edges of a
graph G such that for every vertex the sum of the integers on the inci-
dent edges is at most 2. The paper by Cornuéjols & Pulleyblank [1982]
contains a study of the polytope P(G) which is the convex hull of the
{0, 2}-matchings and tours in G and its relation to Q% In fact, they show
among other things that for n odd, Q% is a face of P(K,) and for any facet F
of Qf there 1s a unique facet of P(K,} whose intersection with Q% is exactly
F. Recently, Hartvigsen [1984] investigated perfect 2-matchings without
triangles and {0, 2}-matching without pentagons, but complete characteriza-
tions of the associated polytopes could not be obtained.

3.2 The asymmetric case

The most common relaxation of the asymmetric TSP is the assignment
problem. An assignment B in a complete digraph D, =(V, A) is a set of arcs
such that every vertex of D, is the head and the tail of exactly one arc of B.
In other words, B is a set of disjoint directed cycles in D, such that every
vertex is on a cycle. The assignment polytope P% (on D,) is the convex hull
of all incidence vectors of assignments in D,. There is of course a monotone
version P,’; which is the convex hull of all incidence vectors of subsets of
assignments in D, and clearly we have P3< P4 and Py< P, The following
result has been proved (in different contexts) by various people and usually
15 associated with the names of Birkhoff and Von Neumann.

Theorem 5 Let nz=2 and D, =(V, A) be the complete digraph on n vertices.
Then

P% ={xeR* | x satisfies (7) and x =0},

P ={x eR* | x satisfies (8) and x=0}.

Note that in the assignment problem usually 1oops (i, i), i=1,..., n, are
ailowed. In other words, the set of assignments corresponds to the set of all
permutations of the numbers 1,.. . n. Since loops are of no interest for the
TSP, we consider a shightly different definition; our assignments correspond
to the set of permutations of {1, ..., n} leaving no element fixed.

Theorem 5 is implied by the fact that the matrix corresponding to the
equation system (7) is totally unimodular, i.e. every square submatrix has
determinant +1, 0 or —1. Tt is nice to know that all vertices of the polyhedra
defined by (7) (respectively (8)) and the nmonnegativity conditions are in-
tegral, but we do not get any new polyhedral information for the asymmetric
traveling salesman polytope from this fact.

It is easy to see that the rank of the (2n, n®— n)-matrix given by (7) is
2n—1 and that each row can be written as a linear combination of the
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2n— 1 other rows, for n=3. This implics that dim(P4)=<|A|—2n+1, and
one can show the following.

Proposition 3 dim(P3)=]A|-2|V|+1=r*-3n+1,n=3.

We now want to consider a different approach which resembles the 1-tree
relaxation in the symmetric case. To get a convement description we have to
reformulate the asymmetric TSP slightly.

Let D,=(V, A) be the complete digraph on the vertices {1,...,n}
Denote by D, =(V’, A"} the digraph on the vertices {1, ..., n, n+1} defined
in the following way

A={E DL ief2 ol iF UL Dl e )
UG, n+1)]ief2, ..., n}h

D! can be viewed as follows. We take D,, add a new vertex n+ 1, take all
those arcs in D, going into vertex 1 and let them go into vertex n+ 1. Thus
D! has the same number of arcs as D,, and every tour in D, corresponds to
a directed Hamiltonian path in D from 1 to n+ 1, and vice versa.

Let #, be the set of all directed Hamiltonian paths from 1 to n+1 in D
and 4, be its monotonization. Then it is easy to see that %, = I, and
. =9, (with the obvious reinterpretation of arcs) and hence that P2 (P} is
the convex hull of all incidence vectors of (subsets of) directed Hamiltonian
paths from 1 to n+1 in D,

Let us define the following independence systems on A"

3. :={B€;A’||Bﬂ§(v)]£l forall ve{l, ..., n},
F,={BcA'||BNSw)<lforall vel2, ..., n+1}},

={B < A" | B contains no cycle (in the undirected sense)}.

It is well known and an easy exercise to show that (A", 4.), (A, £,) and
(A', #F) are matroids on A’. Moreover, we have the following result.

Lemma 4 ¢, =9 03 U35 and 9, is the intersection of the bases (of A’)
of 3., 9, and 3%

Proof Left as an exercise for the reader.

Lemma 4 justifies the statement that the asymmetric can be viewed as the
intersection of three matroids.

We know from a result of Edmonds [1970] how a linear description of the
polytope associated with the intersection of two matroids can be obtamed.
(This result does not extend to the intersection of three or more matroids!)
Thus we are able to give complete and nonredundant characterizations of
the polytopes corresponding to the independence systems %, N &, F, NFE,
35" N $L (respectively their bases). The last two have been investigated in
detail [Giles, 19735; Grotschel, 1977al.

As a matter of fact, the polytope associated with Fu ﬁn is the polytope
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P the polytope associated with the bases (of A’) of J,NJZ, is the
assignment polytope P7.

An arc set in A’ containing no cycle (in the undirected sense) and in which
every vertex is the head (tail) of at most one arc is called a branching
(antibranching). A branching (antibranching) in D] with n arcs is called
arborescence (antiarborescence). Thus 4, N FF (F, N FE) is the set of branch-
ings (antibranchings) in D/, and the bases (of A"} of &, NFE(F, NIFE) are
exactly the arborescences (antiarborescences) in D). Let P§ (P2) denote the
convex hull of the incidence vectors of the arborescences (antiarborescences)
in D!, and P§ (P%) the convex hull of the incidence vectors of branchings
(antibranchings) in D). We clearly have Ph< PANPSs and PiLc PANPL
These polytopes can be described as follows.

Theorem 6
Py ={xeR* | x,=0 forall (i, fle A, (26)
x(5(v) =1 forallve{2,...,n+1} 27)
x(A(WH=|W|-1 forall We V', |Wi=2,
1,n+1¢ W}, (28)

Pi={xeR™|[x(BN=<1 forallvell,.. . n)
and x satisfies (26) and (28)}, {29)
{xeRY | x(B) =1 for all vel2, ..., n+1}
and x satisfies (26} and (28)}, (30)
Pg={xeR*|x(@ N =1 for al ve{l,. .., n}
and x satisfies (26) and (28)). (31)

P3

Moreoter, all these linear descriptions are nonredundant.

Note that (28) are just subtour elimination constraints, so we did not really
get any new polyhedral information about the TSP. But on the other hand,
it s interesting to see that certain degree constraints plus certain subtour
elimination constraints define integral polyhedra. (The reinterpretation of
the polyhedra Ps, Py, etc., with respect to the complete digraph D, 1s
obvious.}

Since the assignment, branching and antibranching problem are solvable
in polynomial time, we can optimize over P4 N P& and P3N PJ in polvno-
mia] time; cf. Chapter 9.

Exercises
6. Prove Lemma 3. (Hint: see Grotschel & Pullevblank [1985] for the ‘only
if’ part.}
7. Find complete and nonredundant systems of equations and inequalities
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describing Q3. and Q5. (Note that for n =3, 4 the system (23), (24), (25)
is complete for Q3%,,, but redundant.)
8. It is also quite easy to describe the vertices of the polytope

O%v:={x e RF | x satisfies (23) and (24)}.

Prove that the vertices of Q3 are either incidence vectors of perfect
2-matchings or fractional vertices whose components are 0, 1 or 3.
Moreover, show that the edges corresponding to 3-components of fractional
vertices of Q4 form an even number of disjoint cycles of odd length. (Hint:
see Grotschel [1977al.)

9. Prove Lemma 4.

10. Find a representation of the symmetric TSP (i.e. of &) as the intersec-
tion of matroids. (As a research problem, try to find the minimal number of
matroids that is sufficient.)

4 THE SYMMETRIC TRAVELING SALESMAN POLYTOPES

We shall now study those properties of the traveling salesman polytopes Qx
and Q% which cannot be derived from general results about combinatorial
polyhedra or from the relaxations introduced in Section 3.1. In particular,
we shall introduce all classes of facets of Q% and Q% which are known at
present (to our knowledge).

The results are not presented in chronological order, rather in an order
that minimizes space. The presentation is based on several papers [Grot-
schel, 1977a, 1980a; Grotschel & Padberg, 1974, 1975a, 1978, 1979a,
1979b; Grotschel & Pulleyblank, 1985; Maurras, 1975, 1976; Papadimitriou
& Yannakakis, 1984, from which most of the results are taken. Research on
Q7T (and P7) was also very active in the mid-1950s. A summary of these
developments is given by Gomory [ 1966] and Grotschel [1977a].

4.1 Some properties of Q3, relations to Q7

We shall first investigate the dimension of Q% and the trivial inequalities.
Then we shall study some interesting relations between Q5 and Q- and state
a general procedure by which, from each inequality defining a facet of Q%
an inequality defining a facet of Q% can be obtained.

From Theorem 4 we know that dim(Q%,,} = |E| — n, hence dim(Q) <|E|—n
since Q< Q2 We shall now prove that the dimensions of Q3,, and Q%
are equal. To give applications .of the two proof techniques introduced in
Section 1 (cf. the discussion after Theorem 1), we outline two proofs, each
based on a different technique.

Theorem 7 The dimension of Q% equals

dn;-_—[Ei—lV|=%n(n*—3) forall n=3.
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First proof {Grotschel & Padberg, 1975a, 1979a] We first have to state a
well known graph-theoretical lemma.

Lemma 5 LetK, =(V, E) be the complete graph on n vertices, and let k denote

any integer.

(1) If \V{=2k+1, then there exist k edge-disjoint tours T, such that E =
Ul T

(it} If \V|=2k, then there exist k —1 edge-disjoint tours T, and a perfect
1-matching M edge-disjoint from any T, such that E= MU Jto T.

We now show that Q% contains d, + 1 linearly independent tours. For n =3
the claim is trivially true.

{a) Assume that n =2k +?2 with k=1 and integer. The subgraph K, _, =
(V’, E" of K,, induced by the n —1 first vertices is again complete and by the
lemma, its edge set is the unton of k edge-disjoint tours 1; of length n—1.
From ecach (n—1)-tour 7, we construct n—1 tours 7; of length n by
replacing, one at a time, each edge {u, vyeT by the path [u, n,v]. The
incidence matrix of the tours «, for j=1,...,n—1 (rows) versus the edges
of K, (columns) contains the submatrix E — I, where E is the (n — 1) X (n — 1)
matrix of all ones and I is the (n—1)x{n—1) identity matrix. Furthermore,
we obtain a total of k{n—1)=d, +1 tours. Since the tours r; of length n—1
are edge-disjoint, the incidence matrix of all 4, +1 tours 7; contains a
(d, +1)x(d, + 1) submatrix N which is block-diagonal and whose diagonal
blocks are all equal to E —1I after a suitable arrangement of the rows and
columns. Since E—1 1s nonstngular, it follows that N is nonsingular and
consequently, Theorem 7 holds if n =2k +2.

(b) Assume that n=2k+1 with k=2 and integer. We proceed as in the
case (a) and construct (k —1)(n—1) linearly independent tours from the
k—1 tours of length n—1. The perfect matching in K, ; is completed
arbitrarily to an (n—1)-tour in K,_, and subsequently used to construct k
tours of length n by replacing, one at a time, each edge {u, v}e M by the
path [u, n, v]. In this way we obtain a total of d,+1 tours whose incidence
matrix contains a (d,+ 1)x(d,+1) block-triangular matrix N with k—1
blocks E—1I of size (n—1)x(rn—1) and an additional block E'—I' of size
kxk O

Second proof [Maurras, 1975] We know that Q%c{xcRF | x(8(i) =
2,i=1,...,n} and that the matrix corresponding to these n equations has
rank n. To prove our claim, we have to show that for every hyperplane
H={x|a%x = a,} containing Q%, the normal vector a is a linear combina-
tion of the normal vectors of the known equation system. So suppose
that aTx=a,, a# 0, 1s an equation satisfied by all x € Q% We have to
prove that there are A, i=1,..., n with a"x =3 ; A:x(8(1)).

The incidence vectors x®© have a very special structure which we will
utilize. By adding appropriate multiples of the incidence vectors of 8(1),
8(2) and §(3) to twice the negative of a, we get a vector which is 0 on the
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triangle {1, 2}, {2, 3}, {1, 3}. Namely, setting
A1I= AT Ay das,
Ari=d T Aoz~ Ay3,

A3i= A3t drs— Ay

and

a’:= A x3 4 ),x8P 4\ xFP - 2q,
we obtain aj, = a3 =ass=0. Now we set A;:~—a,, i =4, ..., n, and define
bi=a'+ 374 Ax®?. The definition clearly implies that b, =0,i=2,...,n,

and that by3;=0. The construction above works because of the following
reason. One can show that the (i, n)}-matrix M having the n vectors x*® as
rows and consisting of the columns corresponding to the edges
S:={1,i}i=2,...,nYU{{2, 3}} is nonsingular. The A, constructed above
are the unique solutions of MTx =24, where @ arises from a by deleting all
components except for those belonging to 8. (For further details, see the
remarks after Theorem 9, and for another application of this technique, see
the proof of Theorem 11.})

We have now used up our degrees of freedom. If we can show that the
vector b constructed above equals O then we are done, since in this case,

H

a=13Y Ax®®
i=1
But as we shall see, this is quite easy.

Let ic{4,...,n} be any vertex and P,; be any path from i to 3 going
through all vertices in {3,..., n}. Define the following tours: 7,:= P, U
H1, 85,41, 24,42, 3 and == PsU{{2,i},{1,2},{1,3}}. If x" denotes the
incidence vector of 7, then we have (x>} x" =72 and a™x" = a,. Since b is a

linear combination of the vectors x®° and a, 6Tx™ = b, for some constant b,.
Therefore, 0=bTx"'—b x™=b,;+ by3— by, —by3=—b,. This proves that
by, =0,i=1,3,4,..., n.

Similarly, we obtain by; = O for all {# 3, and by iterating this procedure we
get b; =0 for all i+# j, which proves our claim. U]

The proof that the trivial inequalities O=<<x;=1 define facets of the
monotone traveling salesman polytope Q% is trivial. The proof that these
inequalities define facets of QF requires about the same amount of technical
detail as the proof of Theorem 7. This illustrates also that lower-dimensional
polyhedra are not as easy to handle as full-dimensional ones and why it is
preferable (from a technical point of view) to deal with full-dimensional
polyhedra.

Theorem 8 Let K, =(V, E) be the complete graph on n vertices.
(a) The inequalities x; < 1,{i, j}€ E, define facets of Q% for all n=4.
(b} The inequalities x;=0,{i, jt€ E, define facets of Q% for all n=5.

Since it is somewhat easier to deal with Q% than with Q7% it would be nice to



4 The symmetric traveling salesman polytopes 271

n

have a theorem which characterizes those facet-defining inequalities of Q%
which also define facets of OF. Clearly, not all of the inegualities defining
tacets of QO have this property. We shall see later that the degree con-
straints (6) define facets of QF, but they are satisfied with equality for all
x € Q% By comparing Corollary 2(a) and Proposition 2 with Theorem 8(b)
and (a), one can sce that there are even slight differences with respect to the
trivial inequalities. This could be explained as an uirregularity of low dimen-
sions, but it has to be taken into account. Anyway, a reasonabie resuit of the
desired type is not known. Let us formulate the problem in a somewhat
more modest form.

Research problem Find (reasonable) sufficient conditions which imply that
an inequality defining a facet for Q7 also defines a facet for QT.

Since Q7T 1s a face of Q%, we know that for every facet of Q% there is at least
one inequality defining it which also defines a facet of Q% But since we can
add degree equations (5) to every facet-defining inequality of QF there are
many inequalities defining a facet of QF which are not even valid with
respect to Q% However, Grotschel & Pulleyblank [1985] describe a proce-
dure by means of which every facet-defining inequality a"x < a, of QF can
be turned into an inequality which is equivalent to a’x = a, with respect to
Q% and which defines a facet of Of. We shall briefly describe this method
here.
For notational convenience, let us write

Ax=2 (32)

for the degree equations x(8(i))=2,i=1,..., n, and suppose that a"x < a,
defines a facet of Qf. )

If a=0 holds, then a™x<a, is valid for Q% (Why?) If a has negative
coefficients, then we choose a A eR™ with sufficiently large coefficients (it
should be clear how these have to be selected) such that a*:=a” + X TA =0.
Let Gy:=ao+ AT2, then a"x <dg is equivalent to a™x < a, with respect 1o OF
and valid for O%.

Let us assume therefore that the initial inequality a'x < q, satisfies a =0,
and let E% a) be the set of edges in K, corresponding to a zero coeflicient of
a, i.e. E%a)=4{{i, jte E| a; = 0}. Denote by Agoy, the submatrix of A (cf.
(32)) consisting of all rows of A and the columns corresponding to the edges
in E°a). We then carry out the following computations in sequence.

Step 1. If the rows of Agey, are linearly independent, go to Step 2. If not,
find a A €R" such that ATA#0 and A TA go,, = 0 (clearly, such a A
eXISts).

Step 2. Set a’:=a’ —uATA, a5:=ap— uA T2 where v is an appropriately
chosen mumber such that a=0 and E%a)c E%a). Set a:=a,
ty:=dg and go to Step 1.

Let us call the above procedure reducing the inequality a’x<a,. It is
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clear that after at most |E| iterations we obtain an inequality, say ax < a,,
such that A go, has rank n, and a 0. To normalize our procedure we add a

final step.

Step 3. Scale a"x=a, such that the smallest nonzero coefficient of a has
value 1, and stop.

We call an mequality obtained by applying the above algorithm support
reduced. One could also say that it is a normalized inequality with minimal
support. Before stating the main result about the algorithm, we have to
exclude a trivial case,

Lemma 6 Let a’x<a, be a support-reduced facet-inducing inequality for

Q%. Then a”x < ag induces a trivial facet of Q% if and only if

(a) E—E%a)=28(v)—{k} for some ve Vand k € 8(v), and in this case a; = 1
for all {i, jYed(v)—{k} and a,=2; or

(b) E%a)=25(v)U{k} for some veV and ke E(V—{v}), and in this case
ay =1 for all {i, e E—E%a) and ag=n—2.

The following result was proved by Grotschel & Pulleyblank [1985].

Theorem 9 Let a™x < a, be a suppori-reduced facet-inducing inequality for
QT not of the form (a) or (b) of Lemma 6. Then a'x < ay is facet-inducing for

QT

As we shall see later, Theorem 9 will be quite helpful for obtaining
facet-defining inequalities for Q.

A very important point 1S that the linear independence of the rows of
A o) can be checked easily using graph-theoretical {or matroidal) methods.
More precisely, the rows of Ago,, are linearly mndependent if and only if the
edge set E%a) is a basis of the real (matric) matroid #(K,) of K, n>3; and
E®(a) is a basis of M{K,,) if and only if it is a maximal subset of E such that
each component of E%a) contains exactly one cycle of odd length and no
cycle of even length; for details, see Grotschel & Pulleyblank [1985].

4.2 Clique iree inequalities

In this section we investigate a class of inequalities introduced by Grtschel
& Pulleyblank {1985} that subsumes all the nontrivial inequalities valid for
Q% introduced so far, and also subsumes the classes of inequalities studied by
Chvatal [1973a] and Grotschel & Padberg [1979a, 1979b].

A clique in a graph G=(V, E) is a set C of vertices such that any two
vertices in C are adjacent and such that C is maximal with respect to this
property. A set A of vertices in a connected graph G is called an ariculation
set if the graph obtained from G by removing A is disconnected.

A clique tree 1s a connected graph C composed of cliques which satisfy the

following properties (in the following we shall always consider clique trees as
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subgraphs of K, ):

{1) The cliques are partitioned into two sets, the set of handles and the set
of teeth.

(2) No two teeth intersect.

{3) No two handles intersect.

{4} Each tooth contains at least two and at most n—2 vertices and at least
one vertex not belonging to any handle.

{5) The number of teeth that each handle intersects 18 odd and at least
three.

{6) If a tooth T and a handle H have a nonempty intersection, then HMN'T
is an articulation set of the clique tree.

Figure 8.1 shows an example of a clique tree, where cliques are indicated
by ellipse-shaped figures. Each ellipse containing a ‘¢’ is a tooth. The *
indicates that there must be a vertex in the respective tooth which does not
belong to any handle.

We call a clique tree simple if any handle and any tooth have at most one
vertex in common.

Suppose we have a clique tree C with handles Hy, H,, ..., H, and teeth
T, Ty, ..., T,. We show below that the following clique tree inequality is
valid for Q% and Q% (in fact it defines a facet):

Y x(e@y+ T EG)= L I+ (11— =0, 63)
i=1 7= i= j=
where for every tooth T; the integer t; denotes the number of handles which
intersect T, j=1, ..., s. The right-hand side s(C) of (33) is called the size of
C.

Note that in the case where there is a tooth T and a handle H with
|H N T|==2, the coefficients on the left-hand side of (33) are 0, 1 and 2. The
inequality (33) is a 0-1 inequality only if the clique tree is simple. If W is the
set of all vertices of a clique tree, then, for simple clique trees, inequality

Figure 8.1
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{33} can be written as

s+1
5

Y x(EEH)+ Y x(B(T) <|W|-
i=1 i=1

We shall now consider various special cases of (33). A clique tree with
only one handle H is called a comb, and the corresponding inequality

HEE)+ Y xET)<|H+ Y (5]~ 1= (34

i=1 f=1
is called a comb inequality. These inequalities were introduced and studied
by Grotschel & Padberg [1979a, 1979b].

Comb inequalities in turn are generalizations of tnequalities introduced by
Chvatal [1973a]. A comb is a Chvatal comb if every tooth has exactly one
vertex in common with the handle, i.e. Chvital combs are simple combs.
The Chvital comb ineguality is the same as (34). Actually, Chvatal intro-
duced a slightly larger class of inequalities (cf. Chapter 11), but all those not
contained in our definition can be shown to be redundant.

The class of Chvatal combs generalizes Edmonds’ 2-matching inequalities
(22). Namely, the 2-matching inequalities (29) (except for those with k = 1)
are exactly those Chvatal comb inequalities where every tooth contains
exactly two vertices.

In addition, the class of clique tree inequalities also contains the subtour
elimination constraints (10}, except for |W|=rn~—1. They are exactly those
clique tree incqualities having a clique tree consisting of one tooth and no
handle. Thus, in particular, the trivial inequalities x; <1 are special clique
tree inequalities.

We now want to prove that the clique tree inequalities (33) are valid for
Q% (and thus for Q%). For this we introduce the following two splitting
operations.

(a) Splitting a clique tree at a tooth and a handle. Let C be a clique tree and
T a tooth of C. Let H be a handle of C intersecting T. Delete the vertices H— T
from C and let C” be the component of C—(H —T) containing T. Delete all
vertices from C which are in handles meeting T but not in T or H. Let C’ be
the component of this graph containing T. Then C' and C” are clique trees
called the clique trees obtained from C by splitting at T and H.

(b) Splitting a clique tree at a handle. Let C be a clique tree and H a handle
of C. Let T\,..., T, be the teeth of C which intersect H. For every tooth
T,ie{l,..., k}, let C be the clique tree not containing H obtained from C by
splitting at T; and H. Then the clique trees C,, ..., C, are called the clique
trees obtained from C by splitting at H.

Figures 8.2(a} and (b) show the operations (a) and (b), respectively, applied
to the clique tree given in Figure 8.1, where H and T indicate the relevant
tooth and handle,
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Figure 8.2

The following observation is immediate.

Lemma 7
(a) Let C" and C" be the clique trees obtained from C by splitting at tooth T
and handle H (as in (a) above). Then

S(C)+s(C™=s(C) +|T| - 1.

(b) Let C be a clique tree and H a handle of C intersecting k teeth. Let
Cy, ..., C be the clique trees obtained from C by splitting at handle H (as
in (b) above). Then

5 s(ci):s(C)-|H|+k—;i.

i=1
The proof of the validity of (33) is given by Grétschel & Pulleyblank
[1985]. Tt is inductive and uses the fact that the subtour elimination
constraints (10) are valid.
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Theorem 10 Let C be a clique tree in K, with handles H|, ..., H, and teeth
Ty, ..., T,. Then the clique tree inequality

i (E(H)) + z x(E(Tj))éi lHeHi (IT;-I—I;)-E=S(C)
= - 2

t=1 i=1
is valid with respect to Q% (and hence with respect to Q%).

Proof We prove the theorem by induction on the number of handles. It C
has no handle, then the clique tree consists of just one tooth, and the clique
free inequality is a subtour climination constraint. Thus there is nothing to
prove.

Suppose the claim is true for all clique trees with r handles, and assume C
is a clique tree with r+1 handles. Pick any handle H of C. Let T|,..., T,

be the teeth of C intersecting H, and let C,, ..., C, be the clique trees
obtained from C by splitting at H. Every such clique tree has at most r
handles. By construction C; contains T;,i=1,..., k. Let alx<s(C) be the

corresponding clique tree inequalities.

For every clique tree C, ie{l, ..., k}, let C, be the clique tree obtained
from C, after replacing T; by T; —H, and let a;x <s(C,) be the correspond-
ing clique tree inequatity. (If a tooth T} contains only two vertices, then C; is
not a clique tree, but the counting arguments used below remain valid.)

By Lemma 7 we have

< k+1
2 s(G)=s(0)-|H|+ =
which implies
Tk

5 @)= mi- LT+t

=1 =1

1

Trom this we obtain

2( % (B + 3 (BT )< X akx+afx+ xEENT) + X x(6(0)

i—1 =1 i—1 veH

[
< Y (S(C)+s(C)+|HNT|-1)+2 |H]|
i=1
=2s5(C)+1.
For every incidence vector of a subset of a tour, the left-hand side above is
an even integer. So, dividing by 2 and rounding down the right-hand side
we get the desired result. [

4.3 ‘Nice facets of Q% and OF

The clique tree inequalities (33) and all their special cases are in a certain
intuitive sense ‘nice’, since they can be described easily by formulas, we have
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easy-to-state inductive definitions; for some special cases, good separation
algorithms are known (cf. Chapter 9), and there is some hope that they may
be handled efficiently in cutting plane procedures. (For some other ‘bad’
inequalities to be discussed in the next section no such hope exists at
present.}

In this section we prove that subtour elimination constraints define facets
of QF, and we indicate how to show that clique tree inequalities define
facets.

Theorem 11 Let n=4 and W be a vertex set in K, =(V, E) with 2<|W|=<
n—2. Then the subtour elimination constraint x(E(W))<<|W|—1 defines a
facet of QT

Proof Let us first assume that n=6 and that W={1,2,...,k} 3=sk=<
n — 3. For notational convenience we denote x(E(W))=|W|— 1 by a "x = a,.

Suppose now that bTx=b, is a valid inequality for Q% satisfying {xe
Q%la™x =agtS{xe Q%] b™x = by}. If we can show that, for some « =0 and
reR", bT=aa™+ATA then we are done by Theorem 1(d) (matrix A is
defined in (32)).

The edge set F:={{1,i},i=2,..., n}U{{2, 3}} contains a spanning tree
and one odd cycle but no even cycle, thus it is a basis of #M#(K, ), which
means that the matrix Ag consisting of all rows of A and the columns corre-
sponding to edges in F is nonsingular. Thus there exists a vector A €R™ such

that bT:=bT+ATA satisfies by =ay, i=2,...,k and by;=a,. Recalling
that a is the incidence vector of E({1, .. ., k}), we may therefore assume that
our initial vector b satisfies

biy=1(=ay), i=2,...,k,

bi; =0(=ay), i=k+1,...,n,

bos=1(= az3).
Let ie{4,...,k}, for convenience say i =k, and consider the tours 7,=

(L,k,k—1,...,4,2. 3, k+1,...,n) and m=(1,2,4,...,k—1,k 3, k+1,
..., 1y, then the incidence vectors x™ and x™ of t; and 1, satisfy a 'x =
aq and hence bx = b, with equality. This implies 0 = by — bg=bTx™ = bTx™ =
by +baz— b1z by =1—bs,. Thus by =1. By iterating this argument
we obtaln

b; =1, l=si<j=k.
Letielk+1,...,n};say i=n, and consider the tours 7, =1(1,2, ..., n) and
7,={(2,1,3,4,...,n) whose incidence vectors satisfy a "x = a, and conse-

quently b¥x = b, as well. We obtain 0 =b"x"—bTx™ =bya+ by, —b1a— by, =
—b,,. Applying this construction repeatedly we obtain

b,=0, ie{l,....k}, jelk+1,... n}

Using a similar construction one can also show that there exists a number 3
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such that
by =B, k+l=si<j=n.

This implies that b x=x(E(W))+Bx(E(V-W)) and that b,=
[ W|-1+8(|V-W{-1). The incidence vector of the tour =,=
,n2,...,kk+1,...,n—1) satisfies »bTx™=|W|-2+8(V—WI[-2).
Since bTx < by is valid for Q% we also have bTxTs<|W|—-1+8(V—-W|-1):
hence B = —1 has to hold. From this we obtain the desired representation of
b as

bT=aa’ +ATA

where a =1+ 8, A, =—-g/2fori=1,...,kand \;,=82fori=k+1,...,n

The case |W|= 2 follows from Theorem 3(a). The case |W|=n -2 follows
from Theorem 3(a) combined with Lemma 8(a). The cases n=4,5 are
easy. [

The proof given above implicitly contains part (a) of the following lemma.

Lemma 8 Let n=4.

(a) Suppose W and W' are different veriex seis in K,, with at least two and at
most n—2 vertices. Then the corresponding subtour elimination constraints are
equivalent with respect to Qt if and only if W=V —-W.

(b) Let (W), Wc V, denote the set of edges in K, with one endpoint in W
and the other in V—W. For every W< V, 2<|W|<n -2, the so-called loop
constraint

x(3(W))=2

is equivalent to x(E(W))<s|W|—1 with respect to QF (and therefore defines a
facet of Q).

The only existing proof that clique trec inequalities define facets of Q%
is quite involved. We give here an outline only of the basic proof technique.
Grétschel & Padberg [1979a] have shown (by brute force) that the 2-
matching inequality derived from the smallest comb (a comb with a handle
of cardinality 3 and three teeth of cardinality 2) defines a facet of QF for
all n=6. Such a smallest comb is shown in Figure 8.3. The comb (or

O (®)

® ®

Figurc 5.3
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2-matching) inequality for the comb of Figure 8.3 is
Xiz2F Xia T Xia+ Xoa H X+ Xa5 =4

Grotschel & Padberg [1979b] have established various lifting theorems
which show how one can blow up a comb by adding new teeth, or enlarging
a handle or a tooth such that the new comb inequality is a facet in case the
original one was a facet. {(In fact, the lifting theorems are more general.)
Using the result that the smallest comb induces a facet, one can then derive
that all comb inequalities define facets of Q. For completeness we state two
examples of such lifting theorems. In these theorems K, =(V, E) is the
complete graph on n vertices.

Theorem 12 Let a”x < a, define a facet of Q% satisfying a 0. Les C be a
clique in the graph G(a) induced by the edges E{a):={{i, j}€ E | a; > 0} with
|Clz= 3. Suppose that every vertex v € C is contained in one additional clique
C, of cardinality 2 in G{a), say C, ={v, v}, and assume that for every ve C,
a,=0 for all ie V-C, and that a; =« for every edge {i, j}c E(a) with
{iL, fNC# .

(@) Now add four vertices n+1,...,n+4 (two new teeth of size 2 each)
and define a new inequality in the following way:

ay 1= gy for all {i, } e E—-E(C),

i
af:=a  forall i JeE(CU{n+1,n+2}),
a#n+l,n+3:: aﬁ+2,n+4: «,

ag =0 otherwise,

ay:=agt+3a.

Then a*"x<<a} defines a facet of Q3.
(b) Add one vertex n+1 (to C) and set agi=ao+ o, ¢ 1= gy for all {i, [} E,
af i=aforallie Cand of :=0 otherwise. Then, a™"x < af defines a facet

of QF L.

Theorem 13 Let a"x < g, define a facet of Q% satisfying a =0, and let C be
a clique in the graph G(o). Let Z:={veCla, =0 for all ic V—-C} and let
Y:={veV—-C|IweC-Z such that a,, =0} (if C=2Z, then Y:=V—C).
Suppose one of the following conditions is satisfied:
() |Z!=2, ay=«a for all {i,j}cE with {I, }NZ# T and a; =« for all
{i, [Ye E(C—-2); or

i) {Z|=1,1Y=2 and a; =« for all {i,j}c E with {i, 1N C+.
Set af:=ao+a, a:=q; for all {i,j}cE, a}, =« forall ieCand ¢f:=0
otherwise, then a*"x < a defines a facet of Q%+,
By employing some additional lifting theorems of the above type, it was
shown by Grodtschel & Padberg [1979b] that all comb inequalities define
facets of Q%

Grotschel & Pulleyblank [1985] use this result to show by means of
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a technically involved double induction that all clique tree inequalities define
facets of QT

By combining the result of Exercise 15 and the fact that clique tree
inequalities define facets of Q% Theorem 9 implies that all clique tree
inequalities also define facets of the monotone polytope Q% Moreover, it
was shown by Grotschel & Pulleyblank [1985] that among a well-defined
large class of valid inequalities for Q% (resp. Q%), the clique tree inequalities
are the only ones defining facets of Q% (resp. Q).

Furthermore, except for some obvious cases, no two clique tree in-
equalities are equivalent with respect to QF. (In considering the exceptions,
see Lemma 8(a) and also compare this to Lemma 3.)

Let us now summarize all the results discussed so far.

Theorem 14 1et K =(V, E) be the complete graph on n =6 vertices and let
W be a set of vertex sets in K, such that for all We W, 3<|W|=<n-3, and
We W if and only if V— W¢EW. Then the following is a system of facei-
defining inequalities for Q%, no two of which are equivalent:

(a) x;=0 for all {i, j}e E,

(b) x; =1 for all {i,j}<E,

{c) subtour elimination constrainis:

x(E(W)) <|W}|—1 forall We W,
(d) comb inequalities:

KDY+ T, (B =IH+ X (T-0-15
1= i=
for all H, Ty, . .., T, < V satisfying
d) l[HNT|=1, j=1,...,s,
dy) IT,-H|=1, j=1...,s
o) TTNT, =0, 1si<j<s,
(dy) s=3 and odd,
(ds) He W,
(e) clique tree inequalities (with at least two handles):

r g r = S + 1
X x(EH)+ L x(ET)= X [Hl+ X (T -
i=1 i=1 i=1 i=t
for all handies Hy,...,H,r=2, and teeth T,, ..., T, saiisfying the
definition in Section 4.2.
Moreover, the degree equations

x(8(N =2, i=1,....n

form a minimal equation system for QT

Theorem 15 The following is a nonredundant system of facet-defining
inequalities for O}, n=6:
(@) x; 20 forall {i, j}cE,
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(b) degree constraints:
x(8(i))=2 forallieV,
(¢c) subtour elimination constraints:
x(B(W)=|Wi-1 foral WeV,2<|W|<sn—1,

(d) clique tree inequalities (with at least one handle):

S+l
2

L rEH) + L «(ET)< Y H] L (1)

i=1
for all clique trees with at least one handle defined in Section 4.2.

By comparing the inequalities listed in Theorems ‘14 and 15 with those
defining Q%p, Q% (cf. (12),. , (18)), and Q%,,, Q% (cf. Theorems 4 and
3), one can easily see which of the facet-defining inequalities for the 1-tree
(resp. 2-matching) polytopes define facets of the symmetric traveling sales-
man polytopes. More precisely (cf. Grotschel [1977a)), the inequalities from
(12},...,(18) and Theorems 3 and 4 which are missing in Theorem 14 (in
Theorem 15, respectively) are redundant with respect to Q% (to Q%
respectively). In particular, we can make the following remarks.

Remark 1

(a) Every nonredundant system of facet-defining subtour elimination con-
straints (18) for Qir is a nonredundant system of facet-defining subtour
elimination conswraints for Q4.

(b) Every facet-defining inequality for Q% is also facet defining for Q.

(c) All facet-defining 2-matching constraints for Q% except for those with
k =1 (one tooth) are facet-defining for Q%

(d) QF and Q% have the same affine hull and for every nonredundant
complete system of inequalities and equations for Q3 the corresponding
system without the 2-matching inequalities having k=1 (one tooth) is a
nontedundant facet-defining system for Q%

4.4 ‘Bad’ facets of Q% and Q3

We shall now discuss several classes of inequalities, termed ‘bad’, which
define facets for Q% or Q% and which are thus, by definition, requu:ed in any
complete linear description of the respective polytopes. We do, however,
have reason to believe that they are of little practical use in cutting plane
algorithms for the TSP.

These inequalities are usually defined by certain properties which — unless
P = NP - cannot be checked in polynomial time. Some of these properties
are not even known to be in /P or co-AP. In some (intuitive) sense these
inequalities provide a polyhedral explanation for the ‘intractability’ of the
TSP (see Chapter 3 for a precise version of this statement).
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Let & be the set of subsets of tours in K, =(V, E). As mentioned in
Section 2, &, is an independence system on the edge set E of K,. With
every subset F< FE we can associate a number r(F) called rank of F as
foltows:

r(F):=max{S|:ScFand SeZ,
A moment’s thought shows that for every subset F< E the inequality
x(F)=r(F)

is valid and supporting with respect to Q4. This way of defining valid and
supporting 0-1 inequalities is applicable to any other combinatorial optimi-
zation problem in an analogous manner. The inequalities of the type
x(F)=<r(F) are usually called rank inequalities. As a matter of fact, all
inequalities for the TSP encountered so far are rank inequalities except for
those clique tree inequalities which contain a tooth and a handle meeting in
more than one vertex.

It is of course not apparent how to compute the rank of a set F; in fact
this is as hard as the TSP itself, and assuming the rank is known, it is not
easy to decide whether or not a rank inequality defines a facet of the TSP.
There are two obvious necessary conditions (valid for general independence
systems and not only for the TSP) which we would like to mention.

Aset F< FE is closed if r(F)<r(G) for all G which strictly contain F, and
F is called inseparable if there are no two disjoint nonempty subsets F;, F,
of Fwith F=F,UF, and r(F) =¢(F))+r(F>).

Lemma 9 If the inequality x(F)<r(F) defines a facet of O%, then Fis closed
and inseparable.

We next study some graphs whose edge sets give rise to rank inequalities
defining facets of Q% If v is a vertex of a graph G, then G —v denotes the
graph obtained by removing v.

Let G=(W, F) be a graph.

(a) G is called Hamiltonian if it contains a Hamiltonian cycle.

(b) G is called semi-Hamilionian if it contains a Hamiltonian path.

(c) G is called maximal non-Hamiltonian (maximal non-semi-
Hamiltonian) if G is non-Hamiltonian (not semi-Hamiltonian) but if the
addition of any edge (not in G) to G makes the new graph Hamiltonian
(semi-Hamiltonian).

(d) G is called hypo-Hamiltonian (hypo-semi-Hamiltonian) if G is non-
Hamiltonian (non-semi-Hamiltonian) and G ~v is Hamiltonian (semi-
Hamiltonian) for all ve W.

(e) G is called maximal hypo-Hamilionian (maximal hypo-semi-
Hamiltonian) if G is hypo-Hamiltonian (hypo-semi-Hamiltonian) and
maximal non-Hamiltonian (maximal non-semi-Hamiltoman).

For the history of hypo-Hamiltonian and hypo-semi-Hamiltonian graphs
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Figure 8.4

see Thomassen [1974, 1978] and Grétschel [1977a]. To mention some
results, it is known that the smallest hypo-Hamiltonian graph has 10 vertices
and is unique. This graph is the famous Petersen graph which is given in
Figure 8.4. There are hypo-Hamiltonian graphs with n vertices for n =
16,13,...,16, 18 and larger. There are no hypo-Hamiltonian graphs with
11 or 12 vertices and no such graph with 9 or fewer vertices. The only open
case 1S n=17.

Hypo-semi-Hamiltonian graphs of order n are known for n =34, 37 and
for each n#39. One can show that there are no hypo-semi-Hamiltonian
graphs with fewer than 12 vertices. All other cases are open.

It is obvious that for any non-Hamiltonian graph G=(W, F) with &
vertices, the inequality

x(Fy=|W|-1 (35)

is valid for QF, n=>k, and that in case G is maximal non-Hamiltonian the
inequality is supporting. However, if n>>k, then the subtour elimination
constraint for W implies (35), ie. x(F)<=x(E(W))<|W|—-1. So, (35) is a
candidate for a facet only in the case k=n. Clearly, if G=(W,F) is
maximal non-Hamiltonian then F is closed, but F may be separable.
(Consider the graph K,_; plus an edge, say {n—1, n}.)

Research problem Characterize those maximal non-Hamiltonian graphs of
order n for which (35) defines a facet of Q3.

By definition, all maximal hypo-Hamiltonian graphs are maximal non-
Hamiltonian graphs. It is not even known whether all maximal hypo-
Hamiltonian graphs define facets of QF, but there is a useful sufficient
condition known.

Definition let G=(W,F) be a hypo-Hamiltonian (or hypo-semi-
Hamiltonian) graph. A vertex v e W is said to have property A if for any two
neighbors vy, v, of v, one of the following conditions is satisfied:

(a) G—wv; contains a Hamiltonian cycle (path) containing edge {v, v,}.

(b} G — v, contains a Hamiltonian cycle (path) containing edge {v, v,}.
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(c) There exists a neighbor v, of v such that both G —v,; and G —v; contain
a Hamiltonian cycle (path) containing edge {v, vs}.
G has property A if every vertex in W has property A.

It was shown by Grotschel [1980a] that almost all known hypo-Hamiltonian
and hypo-semi-Hamiltonian graphs have property A. Moreover, the follow-
ing result was proved.

Theorem 16 Lei G=(W,F) be a hypo-Hamiltonian graph of order n
having property A. Let G' = (W, F') be any maximal hypo-Hamiltonian graph
with F< F', then

x(Fiysn—1

defines a facet of O3 (but not a facet of 0%, k>n).

Note that the hypo-Hamiltonian graphs of grder n in Theorem 16 induce
a kind of inequality which are peculiar to QF. All inequalities of the type
x(P)< r(F) encountered so far have the property that if they define a facet
of QT they also define a facet of QT, zn. This is not the case for
hypo-Hamiltonian inequalities.

To give an example, the Petersen graph is known to be a maximal
hypo-Hamiltonian graph having property A. Thus, if F is the edge set of a
Petersen graph in Ko, then x(F) <9 defines a facet of Q}°. Maurras {1976]
showed that this Petersen inequality also defines a facet of Q7°. Moreover,
he proved that if the two vertices of an edge in the Petersen graph are
replaced by a clique of size k=2, then the corresponding inequality x(F)=
n+k—3 defines a facet of Q%2 n=10. This is the only known case of
such ‘bad’ inequalities which also define facets of Q7.

Research problem Which inequalities induced by maximal non-
Hamilionian graphs define facets of QF?

Statements similar to the ones made about maximal non-Hamiltonian
graphs can be made with respect to hypo-semi-Hamiltonian and maximal
non-semi-Hamiltonian graphs. The main result of Grotschel {1980a] about
this type of graphs is the following.

Theorem 17 Let G = (W, F) be a hypo-semi-Hamiltonian graph of order n
having property A, and let G'=(W,F’) be a maximal hypo-semi-
Hamiltonian graph with FC F'; then

x(Fysn—2
defines a facet of Q% for all k=n.

It should be noted that the number of nonisomorphic hypo-Hamiltonian
(hypo-semi-Hamiltonian, respectively) graphs with property A is not at all
small, i.e. that every possible maximal graph containing it and labeled to
give a different subgraph of K, defines a different facet of Q% Thus the
number of such facet-defining inequalities is large in general.
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On the other hand, for some smal! cases we have computed the number of
tours whose incidence vectors satisfy the hypo-Hamiltonian (hypo-semi-
Hamiltonian, respectively) inequalities with equality, and it turned out that
these numbers are rather small compared to the number of tours whose
incidence vectors satisfy the subtour elimination constraints, say, with equal-
ity. This is a more or less intultive explanation of the fact that such
inequalities were not needed to prove optimality in cutiing plane proce-
dures, cf. Chapter 9.

Papadimitrion & Yannakakis [1984] define a further class of bad facets.
Call a vertex v of a graph a supernode if v is adjacent to every other vertex.
Let G =(W, F) be a graph of order n without a supernode. Construct a
graph G'= (W', F') with 3n vertices as follows. Replace every vertex v € W
by three mutually adjacent vertices vy, U5, vs. G' has the following edges: all
edges {us, v3}, two edges {us, v}, {vs, uy} if {u, v} e F and an edge {us, vo} i
all neighbors of v in G are also neighbors of u. Papadimitrion & Yannakakis
[1984] prove the following results.

Theorem 18 Let G =(W, F) be a graph of order n without a supernode. If G
is maximal non-Hamiltonian then G'=(W',F) is maximal non-
Hamiltonian. Moreover C(F)<3n -1

is a facet of Q31 if and only if G is maximal non-Hamiltonian.

So Theorem 18 shows how to modify a maximal non-Hamiltonian graph to
make the corresponding inequality facet-inducing. In addition to Theorems
16 and 17, Theorem 18 gives a further class of bad facets of On.

It is easy to see that none of the inequalities introduced in this section is
equivalent to any of the inequalities described in Theorems 14 and 15. By
adding all the facet-inducing hypo-Hamiltonian, hypo-semi-Hamiltonian
inequalities, etc., to the systems in Theorems 14 and 15, we obtain better
linear descriptions of Q% (of Qn, respectively) even though we have no claim
{nor conjecture) as to the completeness of the linear system thus obtained.

4.5 Further remarks

We have already mentioned some open problems about Q% and Q%, which
might be solvable with some effort. There are many more interesting
questions which one could ask but most of them seem to be hopelessly
difficult. Let us mention one of those.

Research problem Characterizeﬂall {or some interesting) 0-1 inequalities
which define facets of Q% (resp. Q%F).

The 0-1 inequalities are simply the rank inequalities with respect to the
independence system ¥, (cf. the beginning of Section 4.4).

The usual way to exhibit new classes of facet-inducing inequalities is to
consider small examples, i.e. Q% for small n, and to try to find a complete
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inequality system. If the system one has at hand is not complete, then this
system must have some fractional solutions. By investigating the fractional
solutions one may be able to obtain new valid inequalities which cut off
fractional solutions and which might be the basic examples of a new class of
interesting inequalities.

Let us therefore mention the values of n for which complete systems for
Q% and OF are known, and compare these results to Theorems 14 and 15.

For n=3, 4 and 5, it is trivial to see that Q%= Q3 and hence complete
and nonredundant systems for Qf, n =3, 4, 5, are known from Theorem 4
and Exercise 7.

The case n = 6 is the first where Q% # Q5 and where subtour ehmmauon
constraints have to be used. It is not too hard to prove that the inequality
system given in Theorem 14, i.e. trivial constraints, 2-matching inequalitics
and subtour elimination constraints, is complete and nonredundant for QT

However, the three types of inequalities are not sufficient for Q7 Here
comb inequalities with teeth of size 3 have to be used. This follows from a
result of Norman [1955] which is discussed in detail by Grotschel [1977a,
pp. 144-145]. But still, the system of Theorem 14 is complete and non-
redundant for Q7

No further completeness results about Q7% are known. We believe that the
system of Theorem 14 is complete and nonredundant for Q% and QF, but
we have no proof.

For n =10, the Petersen graph inequalities (cf. Section 4.4) define facets,
so the system of Theorem 14 is not complete for QY.

The first time where clique tree inequalities, which are not comb in-
equalities, enter is the case n = 11. To give an example, consider the polytope
P <R (n=11) defined by the degree equations (35), the trivial inequalities
in Theorem 8, the subtour elimination constraints (10) and the 2-matching
inequalities (25); then P has the fractional vertex shown in Figure 8.5(a). If
P'<R% s the polytope obtained from P by adding the comb inequalities
(34) then P’ has the fractional vertex shown in Figure 8.5(b). We leave it as
an exercise to the reader to find the comb and clique tree inequalities that
are violated by the vertices depicted in Figures 8.5(a) and (b), respectively.

Another way to look at Q% is from the subtour elimination point of view.
Namely, for n =3, 4, 5, Q% is given by the degree equations and trivial
inequalities (2-matching constraints are not needed, and for n =5, subtour

elimination constraints for |W| =3 are equivalent to trivial inequalities.) So
one may ask up to which n do the subtour elimination constraints of Theorem
11 (and trivial inequalities and degree equations) determine Q% Im fact,
subtour elimination constraints are not sufficient for Q% This has already
been observed by Held & Karp [1970], but no polyhedral interpretation was
given there. Held & Karp [1970] have shown that a I.agrangean
relaxation method finds the optimum value of any minimization problem
over the 1-tree polytope Qf intersected with the affine space defined by the
degree equations (5). (Recall the complete description of Qfr and Q% given
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in (15), (16), (17) and also recall the close relationship between Q% and Q%
as was observed in Remark 1(a).) Held and Karp observed that if the
objective function shown in Figure 8.6 is minimized, the optimal tour length
is 4 while the relaxed problem mentioned above has an optimum value 3.
(We are in the case n=16.)

The edges in Figure 8.6 have the weight assigned to them as shown; all
other edges of K4 have a large positive weight. In fact, we may assume that
all other edges have weight 2. Let us denote the {0, 1, 2}-valued objective
function defined this way by ¢7x.

We claim that —¢"x <—4 defines a facet of Q% which is equivalent to a
2-matching constraint. This can be seen as follows.

Figure 8.6
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Denote by aTx<qy=4 (resp. b"x<<by=4) the two facet-defining 2-
matching constraints determined by the handle H=1{1, 2, 3} and the teeth
Ti ={19 6}> T2={2: 5}: T3 :{3: 4}3 by H’: {43 Sa 6} and T; = Tla Té: TZ:
T4 =T, respectively. Then we get

6
—cTx=a"x+bTx— 3, x(8(i),
i=1
and
—4= ag+ bo_ 12.

By Lemma 3, a"x<4 and bTx <4 are equivalent with respect to Q3 and
since aff( Q3a,) = aff( Q) these inequalities are also equivalent with respect to
Q% Thus ¢"x=4 is a further equivalent version of the two 2-matching
constraints with respect to Q%.

So from the polyhedral point of view it is clear that the objective function
shown in Figure 8.6 leads to a fractional solation of the relaxed problem,
since an objective function is minimized which induces a facet of Q7 but no
equivalent version of the facet-defining inequality is contained in the system
defining the polytope corresponding to the relaxed problem.

With respect to Q% almost no investigations have been made about the
completeness of the system of inequalities given in Theorem 15. It is trivial
to see that Q3= Q3,, is the unit hypercube in R®. In case n=4, we do
already have Q%+ Q% since the incidence vectors of 3-cycles are in Oy
but not in Q% It is shown by Grotschel [1977b] that Q% is given by the
trivial inequalities, the degree incqualities and the four subtour elimination
constraints (on vertex sets of cardinality 3), i.e. the system in Theorem 15 is
complete and nonredundant for n = 4. We state our conjecture about ‘small

T in the following problem.

Research problema Prove that the system of linear inequalities in Theorem
15 is complete (it is known to be nonredundant!) for Qt for n=5,...,9.

In this chapter we have discussed only the TSP defined on the complete
graph K,. One may as well study the polytope Or(G):=conv{xT e RF | T is
a Hamiltonian cycle in G} where G = (V, E) is an arbitrary graph. (Simi-
larly, Or(G) can be defined.) Since the Hamiltonian graph problem is
NP-complete, it is NP-complete to decide whether Qr(G) is nonempty.
Therefore it scems quite hard to say anything reasonable about the facet
structure of Qp(G).

However, for special classes of graphs, complete inequality systems for
Qr(G) might be easy to describe. For instance, Barahona & Grotschel were
able to characterize Qp(G) completely for all graphs G not contractible to
the complete graph K¢ minus an edge. Cornuéjols, Naddef & Pulleyblank
[1983] have recently studied the class of graphs G such that Q_(G) is given
by the trivial inequalities, the degree equations, and one equation for each
3-edge cut-set. This class contains K53, wheels, Halin graphs and some
other graphs. More generally, we may ask the following question.
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Research problem What is the class of graphs G such that Qp(G) is
determined by the system described in Theorem 14 or a subsysiem thereof?

Cornuéjols, Naddef & Pulleyblank [1983] moreover proved the following
very Interesting 3-cut set composition theorem for traveling salesman
polytopes.

Theorem 19 Let G, = (V, Ey), resp. Go=(V.,, E,) be graphs each having a
vertex of degree 3; say i€V, lies on the edges {i, i1}, {i, i_}, {i, is}e E, and
j€V, on the edges {j, 1}, 4, jab, U, jst€ Ea. Let G=G%G,=(V, E) be the
graph defined as follows: V=(V,UV,)~{i,j}, E=(E,UE)—{{i i,
Uik =1,2, 3D Uiy, f1, {iz, oh iz, ja)h. Then a complete system of equa-
tions and inequalities for Qr(G) is obtained by juxtaposing the inequalities
and equations which define Qr(Gy) and Or(G») and identifying x,;, = x;, =
Kijir Kbty = Xpjp = Xigjpy AN 2y = X5, = X 5.
Such investigations may lead to new classes of graphs for which the TSP is
solvable in polynomial time. For instance, we shall show in Chapter 9 that
we c¢an optimize in polynomial time over the trivial inequalities, the subtour
elimination constraints, the 2-matching constraints and the degree equa-
tions. Thus, the TSP is solvable in polynomial time for all graphs G for
which Qp(G) is completely determined by these equations and inequalities.
But which are these graphs? More modestly put, the problem is to find
(large) classes of graphs for which Q(G) can be described this way!
Another way to use the facet-inducing inequalities is the following.
Clearly, if G=(V, E) has n vertices, then every inequality valid for Q% is
also valid for Q{G) (the variables corresponding to edges in K, which are
not in G have to be deleted, of course). Using Farkas’ lemma (or equivalent
theorems of the alternative) it is sometimes easy to show that a system of
inequalities valid for Qr(G) (e.g. all known ones for Q%) has no solution.
This in turn implies that Qr(G) is empty and hence that G is not Hamilto-
nian. (This proof technique is for instance described by Chvatal [1973a]). We
think that these remarks are quite important, since there are only few other
(and not very powerful) methods known to show that a given graph is
non-Hamiltonian. (For a sampling of other techniques, see Chapter 11.)

Exercises

11. (a) Prove that none of the inequalities x,;> 0 defines a facet for Q% and
Q%

(b) Prove that no two inequalities x,=<1 and <1, {i, i} #{p, q}, are
equivalent for QT n=5, but that when n=4, x; =<1 and x,, <1 are
equivalent if all vertices i, j, p, q are different.

(¢) Prove that Q%= Q% for n=3,4,5.

12. Prove Lemma 7.

13. Prove Lemma 8.
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14. (a) Show that the 2-matching inequalities (22) with k =1 are implied by
the subtour elimination constraints.

(b) Use the fact that the smallest comb (cf. Figure 8.3) defines a facet of
QT n=6, and Theorems 12 and 13 to show that all 2-matching inequalities
(22) with k=3 define facets of Q% (Hint: The handle of the comb
corresponding to a 2-matching constraint should be used as the clique C in
Theorems 12 and 13; see Grétschel & Padberg [1979a, 19796 ].)

15. Prove that all clique tree inequalities (33) are support reduced (cf. the
procedure preceding Lemma 6).

16. Prove Lemma 9.

17. (a) Find a comb inequality which is violated by the point x ¢R*® shown
in Figure 8.5(a).

(b) Find a clique tree inequality which is violated by the point x e R*° shown
in Figure 8.5(b).

18. Let G =(V, E) be the graph consisting of the vertices V=1{1,2,..., 8}
and the edges E={{1,2}, {2,3}, {3,4}, {1, 4}, {1,5}, {5,6}, {6,7} {7,8},
{5, 8}, {4, 8}}. Clearly, Qr(G) is contained in the polyhedron Q given by

x(8())=2, i=1,..

E 3.4n<
iEEg’ é’ 7 83{ g} (two subtour elimination constraints),

x; <1 for all {i, j}e E,
x; 20 for all {i, j}e E.

‘)87

Prove that Qp(G) is empty (i.e. G is not Hamiltonian) by showing that Q is
empty. (Hint: Use Farkas’ Lemma and exhibit a solution of the system dual
to the system defining Q. Recall that Farkas’ lemma states that either the
primal system Dx=d, Ax<b, x=0 or the dual system u"D+0vTA =0,
v=0, uTd+v7h <0 has a solution, but never both.)

5 THE ASYMMETRIC TRAVELING SALESMAN POLYTOPES

The asymmetric traveling salesman polytopes P and P% have not received
as much attention in the literature as the corresponding symmetric ones.
Perhaps as a result, most computational studies of the asymmetric TSP
utilize no more polyhedral information than is provided by the subtour
elimimation constraints. While asymmetric TSPs appear to be easier to solve
than their symmetric counterparts of equal size, it is to be expected that the
exploitation of other classes of facet-defining inequalities as well as of
several other interesting properties of P%and P} known to date, should push
the problem-solving capabilities for the TSP beyond its current limits.

The results reported in this section are mainly due to Grotschel [1977a],
Grotschel & Padberg [1974, 1975b, 1977], Grétschel & Wakabayashi
[1981a, 1981b] and Padberg & Rao [1974]. In the following, I, = (V, A)
denotes the complete digraph on n vertices.
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5.1 Basic properties of Py and P, seqnential lifting

The asymmetric traveling salesman polytope P% is contained in the assign-
ment polytope P (cf. Theorem 5), and we know from Proposition 3 that
dim(P3) = {A|~2]|V]+ 1. Thus we have an upper bound for the dimension
of P7. In fact we have the following theorem.

Theorem 20 dim(Pp =|Al-2|V|+1=(n—1)2~n, for n=3.

The result above has been stated in two abstracts [Heller, 1953; Kuhn,
1955a). A direct proof of Theorem 20 analogous to the first proof of
Theorem 7 has been given by Grétschel & Padberg [1977]. Tt is not too
difficult to give a proof of Theorem 20 paraileling the second proof of
Theorem 7. From the |E|—|V|+ 1 undirected tours constructed in the first
proof of Theorem 7 we can obtain [A|~2|V|+2 directed tours by taking
the two possible orientations of each undirected tour. In order to complete
this approach we must show that the incidence vectors of these directed
tours are linearly independent, and this is left as an exercise.

Since the subtour elimination constraints for |[W|=2, i.e. x;+x; <1, are
valid with respect to P (cf. (11)), it is obvious that the upper bounds x; =1
do not define facets of Pf. However, the nonnegativity constraints do.

Proposition 4 Let n=5, then x; =0 defines a facet of Py for all (i,j) € A.

In Section 4.1 we discussed the relations berween the symmetric traveling
salesman polytopes (% and (j’—} and in particular stated Theorem 9, which
shows how a facet-defining inequality for Q% can be derived from a
facet-defining inequality for Qf. S. Boyd [1984] has generalized Theorem 9
to polyhedra of independence systems arising from monotonization. And thus,
by making a valid inequality for P nonmegative (by adding appropriate
multiples of the equation system (7) of Section 2.4) and reducing its support,
one can obtain facet-inducing inequalities for P7 from facet-inducing
inequalities for P7, just as in the symmetric case.

We shall now introduce a technique, called sequential lifting, which leads
to new facei-defining inequalities for Py and P%. This technique is also
applicable to the symmetric TSP but does not produce anything interesting
there. The sequential lifting method will be described in a general
framework.

Let # be an independence system (or monotone set system) on a set E,
(cf. Section 2.3), and let Py be the polytope associated with % (cf. (1. For
every subset F < E, P, (F) denotes the polytope {x € Py | x, =0 for all ee F?}.

Theorem 21 (Sequential lifting theorem) Let . be an independence system
on E, let F< E and let e € F. Suppose Y, . ax;, < ay defines a facet of Py(F)
with a,> 0. Set

G, := ao—max{ Y axl|ICE-F, {e}UIeﬁ}.

(333

Then a.x, +Y..r ax, < do defines a facet of Py(F—{e)).
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Theorem 21 was proved by Padberg {1975], who has found various gener-
alizations which we do not discuss here.

The interesting feature of Theorem 21 is the following. Sometimes it is
casy to find a set I and an inequality )., ¢ ai%, < g, such that this inequality
defines a facet of Py(F). Now Theorem 21 tells us what the missing
coefficients of a (i.e. the coefficients a, for all e e F) have to look like such
that the extended inequality ¥, _g a.X. <a, defines a facet of P;. Since the
coefficient calculation i1s done sequentially, we may end up with different
facets of P, depending on the order in which the coefficients are lifted.
However, it should be observed that the calculation of the new coefficients is
a hard problem in general. Only in rare cases the lifted coefficients can be
obtained easily.

Let us go back to the asymmetric TSP and let us consider the indepen-
dence system J, of subsets of tours contained in the complete digraph
D,=(V,A),n=3.

Proposition 5 Let C be the arc set of a directed cycle in D,, n=3, of length
k=n—1, and let F:= A — C. Then the cycle inequality x(C) <|C]—1 defines
a facet of PHF).

Proof let Ci,..., (. be the paths of length k—1 obtained from C by
deleting one arc. Then the incidence vectors of these paths are contained in
PHF) and satisfy x(C)=<|C|-1 with equality. Let M be the (k, k)-matrix
whose columns correspond to the arcs of C and whose rows correspond to
the incidence vectors x i=1,..., k. By permuting rows and columns, M
can be transformed into the matrix E, — I, where E, is the (k, k)-matrix
whose components are all 1, and where I, is the (k, k)-identity matrix.
E, — I, is obviously nomsingular, and thus the k incidence vectors are
linearly independent, which proves that x(C)<<|C|—1 defines a facet of
PyF). O '

Now Theorem 21 tells us that every such facet of P'{(F) can be lifted to a
facet of P7. In the analogous case for the symmetric TSP, the inequalities
obtained from cycle inequalities by lifting are the subtour elimipation
constraints. This is not so in the asymmetric case.

It is clear that at every stage of the sequential lifting procedure, the lifting
coefficients are 0 for arcs which are not diagonals of C. In Exercise 21, the
reader is asked to show that the first time we Jift a diagonal arc of a cycle we
obtain a coefficient 2. Afterwards we may get a 2, 1 or 0 depending on the
order of lifting. But note that in any case we obtain a facet of P} by
sequential lifting.

Corollary 4 All inequalities obtained by lifting cycle inequalities x(C)<
|Cl—1, 2={Cl=n—1, sequentially in any order define facets of P

The sequential lifting technique with respect to P is discussed in detail by
Grotschel [1977al. There is no formula known which describes all the
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inequalities that can be obtained by this procedure. Figure 8.7 gives some
examples.

The arcs in Figure 8.7 drawn as a double line receive a lifting coefficient 2.
The numbers on the arcs indicate the order in which the arcs were lifted. Up
to isomorphism, the five inequalities defining facets of P}, n =3, resp. n =4,
shown in Figure 8.7 are the only ones that can be obtained from 3-cycles
and 4-cycles by sequential lifting. It should be clear that the number of
different inequalities obtained from lifting a k-cycle inequality grows quite
fast with k.

Grotschel [1977a] and Grétschel & Padberg [1977] explicitly determined
various general classes of inequalities valid for P4 which can be obtained by
lifting k-cycles; we mention two of these.

Theorem 22 Let {i}, i,,...,4}tcV, 3sk=sn—1, then

k=1 k=1 j-1
Z xi,ifﬂ Ik:1+2 Z xul+ Z Z x%ihgk_]‘
=1 i=2 j=3 h=2
is called a f)k-inequality and
k=1
“H—l Ikl +2 Z xl 1,+ Z Z xllh
i=1 i=4 h=3

is called a D, -inequality. All D,- and D,- inequalities are valid with respect
to P% and PT.

5.2 Relations to the symmetric TSP, new valid inequalities

The symmetric TSP is of course a special case of the asymmetric TSP. We
shall now study the relations between the symmetric and asymmetric travel-
ing salesman polytopes. Q4 and QF are not subpolytopes or faces of P4 and
2 respectively, but they are certain projections of the latter polytopes. If
we define the mapping f:R* — R (A is the arc set of the complete digraph
D, and E the edge set of K} as follows:

flx)=y, where Vi =X+ X;; for all i# j,
then we have
(Pr)=Qf, and f(Pp=0Q%
(Note that the order of the indices ij is important for the (directed) variables

x; but not for the (undirected) variables y;..)
It is easy to see how valid inequalities can be transformed.

Remark 2 Ler Y h.r ayy; <a, be a face-defining inequality for Q7 (for Qx,
respectively), then Y;«<; a;(x;+x;)=<a, defines a face of Pt (of P4, respec-
tively).

It is clear that any valid inequality aTx < a, for P% with &; = ay gives rise
to a valid inequality for Q4. It is not obvious, however, how to treat valid
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inequalities a’x<a, for P} with a,#a; for some i#j. A method to
symmetrize such inequalities has been investigated by Helier [1956].
Remark 2, however, is important, since we know now that all the valid
and facet-defining inequalities for Q% and Q% give rise to valid inequalities
for P} and P%. Thus we have that the followin g inequalities are valid for P

—Subtour elimination constraints; cf. (10), (11).

—2-matching inequalities; cf. (19).

- Comb inequalities; cf. (34).

- Clique tree inequalities; cf. {(33).

— Hypo-Hamiltonian, hypo-semi-Hamiltonian, etc., inequalities; cf. Section
4.4,

An Important question now is whether or not the directed versions of
inequalities defining facets of Q% (of Q%) also define facets of P% (of P
This seems plausible and has been verified — as we shall see - for subtour
climination constraints and some comb inequalities. Tt is, however, not true
for the degree constraints (6) whose directed versions are the sums of two
facet-defining directed degree constraints (8).

Moreover, certain directed comb inequalities induce facets of P but not
of Py for small n (cf. the results reported in Section 5.3).

If a”y <ay, ag>0, defines a facet of QZ, say, then there are snin—1)—n
Iinearly independent incidence vectors of undirected tours satisfying the
inequality with equality. By directing each of these tours in the two possible
ways we obtain n(n —~1)—2n directed tours whose incidence vectors satisfy
the directed version of a™y =<a, with equality. It is not known under what
conditions these incidence vectors are Iinearly mdependent. If they are, then
these are not enough to prove that the directed version of the inequality
defines a facet of P, since dim(P}) = n(n—1)—2n+1. We have to find one
more tour whose incidence vector satisfies the inequality with equality and is
linearly independent from the others.

Research problem Find reasonable sufficient (and necessary) conditions
which imply that the directed version of an inequality defining a facet of Q%
(of Q%) also defines a facet of P} (of PL).

There are, of course, valid inequalities for P} which are not symmetric.
Interesting classes of such inequalities have been discussed by Grétschel
[1977a] and Grétschel & Padberg {1977]. We shall now describe some of
these.

Proposition 6 Let W be a vertex set in D, = (V, A) with 2<|W|=k<n-2,
let we Wand pge V—W, then

(AW X, F Xpq + X K

is called a Ty -inequality and is valid with respect to 15%.
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A Ts-inequality with W={u, v, w} and the corresponding digraph are shown
in Figure 8.8.

T, -inequalities can be generalized by attaching a source p and a sink g to
a comb as follows.

Proposition 7 Let H be a handle and Ty,..., T, be teeth satisfying: (a)
HNT|=1, 0 |T,-H|=1,i=1...,s © [TNTI=0, 1si<j<s; and
(d) s=3 and sodd. Letp,qc V- (HU i, T), then

5

(A + L (A(TD+ L (%) + X

i=1 vel

slHH—_i (lTH—l)—S—;—l+1 (=:s{CYy+ 1)

is called a C2-inequality and is valid with respect to P
Proposition 8 Let iy, i, iy be three different vertices and let Wy, W, be

subsets of V such that (a) W, ,NWo=, (b} W N{,, i, iz} ={i1}, (c)
Won iy, in, ist={ia}, () |Wj|22, j=1,2. Then

(AW + 2 (AW + 2 XX+ x, + X

jeW;

<|Wyi+{W,l -1

alz

is called a C3-inequality and is valid with respect to Py

The arcs having positive coefficients in a C3-inequality are shown in Figure
8.9.

{:’1 ,f’z,f'3} ={1,2‘3}

wy, ={1,4}

w, ={2,5,6}

Figure 8.9
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Replacing ‘cycle’, ‘path’, ‘edge’ and ‘graph’ by ‘directed cycle’, ‘directed
path’, ‘ar¢’ and ‘digraph’, we obtain the notions of maximal non-
Hamiltonian, hypo-Hamiltonian and hypo-semi-Hamiltonian, etc., digraphs.
Clearly, it D =(V, B) is a maximal non-Hamiltonian subdigraph of D,, then

x(B)s|V|-
is valid with respect to P%; and sitnilarly
x(B)={V]-

is valid with respect to PLif D = (V, B) 1s a maximal non-semi-Hamiltonian
subdigraph of D,. The remarks made about such kinds of inequalities in
Section 4.4 with respect to the symmetric TSP apply - mutatis mutandis —
also to the asymmetric TSP. In the asymmetric case there is an example of a
maximal hypo-Hamiitonian digraph such that the corresponding inequality
does not define a facet of Py, cf. Grotschel & Wakabayashi [1981a], and see
Exercise 22.

5.3 Facets of P" and P7

We now report which of the inequalities introduced in the foregoing sections
are known to define facets of P or P} The results are not as complete as
for the symmetric TSP, and many cases are still open. Unless otherwise
mentioned, all results are from Grétschel [1977a] and Grotschel &
Padberg [1977]. As usual, D, =(V, A) is the complete digraph on n ver-
Lices.

Theorem 23

(@) aff(PP=afi(Py) ={xeR* |x(8(i)=1,i=2,...,n x(5(i)=1,
i=1,...,n}, and dim{Pp=|A|-2|V]+ 1.

{b) The nonnegativity constraints x,; =0 define facets of Py for all {i,])<
A, n=5 (cf. Proposition 4 and Exercise 20).

(c) Let n=5. (Exercise: How about the case n =3, 47?)
{cy) The subtour elimination constraints

H{A(W) <|W|-

define facets of Py if 2<|W|<sn—2.

{¢z) Two different subtour elimination constraints x{A{W))<|W|—-1 and
x{A(W)) =|W'|~1 are equivalent with respect to P4 if and only if
W=V-W.

{c3) For We V, 2<{Wisn—2, the loop constrainis

(E(WY) =x(5(V-W) =1
are equivalent to the subtour elimination constraints with respect to
P
{(d) The directed versions of the comb inequalities (34) are not known to define
facets of PT. In fact, the directed versions of the 2-matching inequalities
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(22) with three teeth have been shown not to define facets of P4 and Py by
means of a computer program (cf. Grotschel [1977a]). Nothing is known
about general (directed) clique tree inequalities.

(¢} It is not known which of the C2-inequalities (cf. Proposition 7} define
facets of Py.

(f) Let n=4, then a T ~inequality (cf. Proposition 6) defines a facet of Py if
and only if 2<k=n—2 and k¥n—-3. If n25, k¥n—1, then two
different facet-defining T\ -inequalities define different facets of Py In case
n =4, the 24 different T,-inequalities define six different facets only.

(o) C3-inequalities (Proposition 8} define facets of Py if |Wi|+{Wol=n—1.
All other cases are open.

(h) For k<n-—1 the D, - and D, -inequalities (cf. Theorem 22) define facets
of P in case k=3 or k =4. All other cases are open.

There are a few other inequalities known which define facets of Py, e.g. the
inequality corresponding to the digraph shown in Figure 8.7(b,) for n =3
(this is an E,-inequality considered by Grotschel & Padberg [1977]) or some
hypo-Hamiltonian inequalities for small n; cf. Grotschel & Wakabayashi
[1981a]. But there are no further large classes of facet-defining inequalities
known.

By comparing Theorem 23 with the ‘nice’ relatives of P} described in
Theorem 7, we can conclude the following.

Corollary 5 Let n=5, then except for the subtour elimination constraint
x(A(W)=sn-2, W={2,...,n}, each inequality of the complete and non-
redundant system of inequalities (26) and (28) defining the facets of the
arborescence polytope PE and of the antiarborescence polytope P§ on D,
respectively, also defines a facet of P%. Moreover, this system of inequalities is
nonredundant with respect to P-.

The relation of the assignment polytope P!, to P7T is obvious.

Not much is known about the completeness of the system defined above
for P%, n small. Clearly P3=P3, i.c. the case n =3 is trivial.

The case n=4 seems to be an odd case. Neither the nonnegativity
constraints nor the subtour elimination constraints define facets of P7. P%
obviously has six vertices, and is of dimension 5 by Theorem 20. Thus the
six incidence vectors of tours form a set of linearly independent points. This
implies that every five-element subset of the vertices spans a facet of P4, and
hence that P% has six facets. Recall that the T,-inequalities (Proposition 6)
have the form X;;, +X;; + X, +x,;, <2, Thus there are 24 inequalities of
this type. It was shown by Grétschel {1977a] that these inequalities define
facets of P% but only six different ones. Hence a system of six T-inequalities
plus degree equations suffices for a complete and nonredundant description
of P%. Such a system describing P5 completely and nonredundantly 1s given
in Table 8.1.
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Table 8.1
12 13 14 21 23 24 31 32 34 41 42 43

1 1 1 =1

In an abstract, Heller gives a system of 224 equations and inequalities and
claims that this completely describes P3 [Heller, 1953]. In another abstract,
Kuhn proves that this is wrong and gives a much larger system of 390
equations and inequalities which is claimed to be complete for P} [Kuhn,
1955a; Gomory, 1966].

Let us now turn to the monotone asymmetric traveling salesman polytope
P17 and review the tesults known about facet-defining inequalities. The
results mentioned in the next theorem are from Grotschel [1977a].

‘Theorem 24

(a) For all n 3 all nonnegativity constraints x; 20, (i, j) € A, define facets of
P%.

(b) For all n=3 the degree consiraints x(g(v))él and () <1, veV,
define facets of P

(c) For all n=3 the subtour elimination constraints x(A(W))<|W|—1 define
facets of Py if and only if 2<|W|<n-1.

(d) All inequalities obtained from lifting cycle constraints x(C)=|C|—
2=|C|= n— 1, sequentially (in any order) define facets of Pr. In pamcu-
lar, all Dy~ and D, - inequalities, 3<k<n—1, define facets of P%.

(e) All directed versions of Chvaral comb mequalzrtes (cf. (34)), such that the
corresponding comb has three teeth, define facets of P} for n=6. All
other cases are open.

() All T,-inequalities, 2<k <n—2, define facets of P3, n=4. No other
C2-inequalities are known to define facets.

(g) The C3-inequalities from Proposition 8 define facets if |Wol=2 and
2=|Wyl=n—3, n=5. All other cases are open.
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Again we can compare Theorem 24 with the nice relatives of P% described
in Theorem 6 (identifying vertex n+1 of D] with vertex 1 in D,).

Corollary 6 Let n=3, then each of the inequalities (26), (27), (28), (29
(providing a complete and nonredundant system for P34 and P, respectively)
defines a facet of P} Moreover, the system of these inequalities is nonredun-
dant with respect to P2

Thus P% inherits all facets of PR and P4, while P% inherits all facets of P3
and Pj but one.

The proofs of the above results are quite complicated and use a rather
involved technical machinery.

To close this section we would like to mention some ‘bad’ facets (cf.
Section 4.4) of P4 which were found by Grotschel & Wakabayashi [1981a,
1981b].

Clearly, replacing an edge {i,j} of a hypo-Hamiltonian or hypo-semi-
Hamiltonian graph by two arcs (i,j) and (j, i), one obtains a hypo-
Hamiltonian or hypo-semi-Hamiltonian digraph. In fact, there are many
more constructtons of such digraphs. Hypo-Hamiltontan (hypo-semi-
Hamiltonian) digraphs, for example, are known to exist for any order n =6
(n=17).

We already know that there are maximal hypo-Hamiltonian digraphs
which do not define facets of P} cf. Exercise 22. However, it was shown
by Grotschel & Wakabayashi [1981a, 1981b] that almost all known maximal
hypo-Hamiltonian and hypo-semi-Hamiltonian digraphs {and these are
quite a Iot) define facets of P%. In particular, every polytope ﬁ%, n =7, has
some hypo-Hamiltonian and hypo-semi-Hamiltonian facets. We give two
examples.

The digraph D =(V, B) shown in Figure 8.10 is maximal hypo-semi-

Figure 8.10
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Figure 8.11

Hamiltonian and the inequality x(B)=<5 defines a facet of P% for all n=7.
In fact, P} has 5040 (;1) facets of this type.

The digraph D'=(V, B’} shown in Figure 8.11 is hypo-Hamiltonian, but
not maximal. D' has the property that every maximal hypo-Hamiltonian
digraph D = (V, B) with B'< B defines a facet x(B)<9 of P1°, but not of
Pz, n# 10,

Finally, we would like to mention a peculiar case. Consider the digraph D
on the vertices V={1,2,...,6} with arc set BUC,UC,U{(1, 3)}, where
B={G,i+3), (i+3,i)]i=1,2,3}, C;={(1,2), (2,3), 3, 1)}, C,=1{(4,5),
(5, 6), (6, 4)}. This digraph D is the digraph shown in Figure 8.12 without
arc (4,6). D is hypo-Hamiltonian but not maximal. It was shown by

Figure 8.12
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Grotschel & Wakabayashi [1981a] that the inequality
x(C)+2x(B)+3x(Cy)+4x,5 <10

defines a facet of PS. By sequential tifting, it is easy to see that the inequality
also defines a facet of P?,n.26. This is a strange case where a hypo-
Hamiltonian digraph induces a facet, but where the arcs in the correspond-
ing Inequality have to be weighted. So, even for n =6 there are facets such
that the corresponding inequalities have coefficients not just 0, 1 or 2.

5.4 Neighbor relations

Up to now we have looked at the traveling salesman polyhedra from a facet
point of view, i.e., we have tried to find inequalities which define maximal
faces, which are necessary in any complete description, and which can be
used in linear programming based cutting plane procedures for the TSP.

There is another more combinatorial aspect, related to minimal faces,
which could also be useful in linear programuming approaches. Namely, the
simplex method has the property that it starts at a vertex of a polytope P
and (except for degenerate pivot steps) moves to vertices vy, v, . .., v, of P
such that two successive vertices v, and v,,4, i=1,..., k—1, are adjacent
on P. Here adjacency means that v, and v,,, belong to a common face of
dimension one of P, which is usually called an edge of P. If one could get
handy descriptions of adjacency, one might be able to specialize the simplex
method for certain polytopes in a combinatorial fashion and derive efficient
algorithms this way.

There are quite a few interesting theoretical results known about adja-
cency of vertices on polytopes associated with combinatorial optimization
problems (see Hausmann [1980] for an extensive survey), but up to now
these results have not found algorithmic applications. Nevertheless, there is
some hope that studies concerning adjacency may lead to new types of
algorithms, or to improvements of existing ones. This area remains to be
explored.

Almost all studies of neighbor relations made so far have been concerned
with the asymmetric traveling salesman polytope P%. To make the approach
clear, we will introduce the necessary concepts in full generality.

Suppose P 1s a polytope with vertex set V. Let G=(V,E) be the
undirected graph whose vertices are the vertices of P. Two vertices of G are
adjacent if and only if (considered as vertices of P) they are adjacent on P,
ie. {v, w}is an edge of G if and only if there is an edge of P which contains
v and w. (As one can see from the terminology, graphs associated with
polyhedra are one of the sources of graph theory.) Let us call G = (V, E) the
skeleton of P.

There is a large body of literature about the skeletons of polytopes, in
particular about the skeletons of 3-dimensional polytopes; see for example,
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Griinbaum [1967] for related references. One may ask the following ques-
ttons: Is the skeleton of a certain polytope Hamiltonian; what is its connec-
tivity, etc.? Of particular importance are mutual characterizations of the
following type. Is there a ‘nice’ graphical characterization of adjacency on P,
or is there a ‘nice’ polyhedra! characterization of adjacency in the skeleton
G?

One important linear programming related parameter is the diameter of
(G and P. Let us define the distance of two vertices © and w of G, denoted
by dist(v, w), as the length of the shortest path from v to w in G. For
instance, adjacent vertices have distance 1. The diameter of G, diam(G),
is the maxmmum distance of any pair of vertices of G, i.e.

diam(G}:= max {dist(v, w)}.
uus v
If G is the skeleton of a polytope P, then diam(G) is also catled the diameter
of P.

The polytope whose skeleton has probably been studied most intensively
is the assignment polytope (see for instance Balinski & Russakoff [1974]:
Hausmann [1980], Heller [1955, 1956} and Padberg & Rao [1974]). The
polytope considered in these papers is not exactly our polytope P73 (cf.
Theorem 5), but a slightly larger one which we will denote by P’ for
convenience:

pr{xeﬂ“zlxﬁ?—& Li=1,...,n

In other words, in the assignment polytope P7, loops (i.e. assignments
(i,1)) are allowed; which is not the case in P%. The polytope P can be
obtained from P7 by setting x; =0, i=1, ..., n. Each vertex of the assign-
ment polytope P corresponds to a permutation of {1, ..., n}; or in graphi-
cal terms, each vertex corresponds to an arc set which is the union of
directed cycles such that no two cycles have a vertex in common (here loops
are considered as directed cycles of length 1).

Now let G7 denote the skeleton of P%. The following adjacency charac-
terization for G’ and P7 is due to Balinski & Russakoff [1974].

A directed trail 1s a sequence (v,, vy), (U5, Ua), - . ., (Vr_1, U} Of distinct
arcs, and is called closed if v, =1,.

Theorem 25 Let v, w be two different vertices of P%, n=3, and let A, and
A,, denote the arc sets (unions of directed cycles) corresponding to v and w.
Then v and w are adjacent on P7, if and only if A, U A, is a closed directed
trail.

Another example of such an adjacency characterization — now permutation



304 8 Polyhedral theory

oriented —is due to Padberg & Rao [1974]. If v is a vertex of P, then ,
denotes the permutation of {1,..., rn} corresponding to v, and by ‘' we
denote the usual composition of permutations.

Theorem 26 Let v, w be two different vertices of P%, n =3, then v and w are
adjacent on P% if and only if there exists a permutation T such that
T, = M, 07 holds and m consists of a single cyclic permutation of length greater
than 1 and possibly some cycles of length 1.

In algebra it is well known that given any permutation , one can
generate a sequence wg=m, @y, ..., T, =7 of permutations such that all
permutations ay, ..., w,, are distinct and m;,, = m; o7, where 7 is a transpos-
ition. By Theorem 26, m,, and =, are adiacent; thus we can conclude the
following result.

Theorem 27 The skeleton G% of P% is Hamiltonian, n=3.
An interesting result of Heller [1955] is the following.

Theorem 28 If v is the vertex of P corresponding to the identity permuta-
tion, then the set of neighbors of v on P7, is precisely the set of incidence vectors
of tours.

With respect to P, no good necessary and sufficient criteria for adjacency
are known. The following sufficient condition was given by Murty [1969].

Theorem 29 Iet S and T be two different tours in D,. Then the incidence
vectors x° and x7 are adjacent on P} if there is no other tour R such that
SNTSRcSUT.

Murty claimed that this condition is alsc necessary, but this was shown to be
wrong; see Rao [1976], who also gave sufficient conditions for adjacency on
P other than Theorem 29. Coloring criteria for general 0-1-polytopes and
their relationship to the adjacency of tours of the traveling salesman are
extensively discussed by Hausmann [1980]; see also Balas & Padberg
[1979]. These latter conditions are often helpful to prove adjacency in
practice.

On the other hand, it is quite unlikely that a ‘good’ characterization of
adjacency on Pror Qf can ever be found. Papadimitriou [1978] has proved
that the question ‘Are two given vertices of P%, of Q% respectively, nonadja-
cent?” is NP -complete.

The following theorem - based on a further adjacency criterion — is one of
the deepest adjacency results for Pt and quite surprising. It is due to
Padberg & Rao {1974].

Theorem 30  The diameter of PT is equal to 2 for n=6, and equal to 1 for
Jsn=ss,

Geometrically interpreted, Theorem 30 states the following. Suppose two
persons A and B are sitting on vertices of P Person A wants to walk to
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person B, where walking is done by making a step from one vertex to an
adjacent vertex (along an edge of the polytope). Then it is possible for A to
reach B in at most two steps.

This does not mean, however, that the simplex method could get from a
given basic sclution to an optimal basic solution in two pivot steps by some
proper column-and-row selection rule. Indeed, quite a large number of
degenerate pivots (corresponding to one and the same vertex) may be
required to get from one vertex to an optimal one. But Padberg & Rao
[1974] have also shown that - if columns and rows are chosen properly — the
number of necessary pivot steps is not too large.

Theorem 31 Let vy, v, be two vertices of P} and let B, denote a basis
corresponding to v,. Then there is a sequence of pivot operations such that
starting from B., a basis corresponding to v, is reached after at most 2n--1
steps.

So if we knew how to select rows and columns properly we could solve TSPs
in a few simplex steps. A direct consequence of Theorem 31 is that the
famous Hirsch conjecture [Dantzig, 1963] holds for Pr.

To our knowledge, nothing similar is known with respect to Q% Thus we
can close this section with a few research problems.

Research problems

(a) Determine the diameter of Q% (Conjecture: diam(Q7F) =2.)
(b) Is the skeleton of QF Hamiltonian?

(c) What are the diameters of Q% and P37

Exercises

19. Prove that the incidence vectors of the |A|—2|V|+2 directed tours
obtained as cutlined in the text following Theorem 20 are linearly indepen-
dent.

20. (a) Prove that the nonnegativity constraints define facets of P, but only
two different ones.

(b) Prove that every nonnegativity constraint defines a face of P37 which is
the intersection of two unique facets of P%-.

21. Let C be a cycle of length 3tk <=n-11in D,. Let (i, j) be a diagonal of
C. Prove that the coefficient a;; obtained for (j, j) by the formula of Theorem
21 is 2.

22. (a) Prove that the digraph D = (V, B) shown in Figure 8.12 is a maximal
hypo-Hamiltonian digraph.

(b) Prove that the hypo-Hamiltonian inequality #{B) <5 corresponding tc D
does not define a facet of PS. (In fact, the face defined by this inequality has
dimension 28. To be a facet it should have dimension 29.)



