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Ulysses, the legendary king of the 
Greek island of Ithaca, had made a 
long and eventful journey, when after 
20 years of erring around he could 
finally take his beloved Penelope into 
his arms again --a journey eventful 
enough to fill an entire epos, the 
Odyssey by Homer, the poet of 
antiquity. Modern interpreters of the 
e p o s  h a v e  d e t e r m i n e d  1 6 
Mediterranean places which Ulysses 
has supposedly visited. Undoubtedly, 
he could have had a shorter journey if 
destiny, the sea's hostility, the gods' 
envy and, most importantly, the lack 
of elementary geography knowledge 
had not been against him. Figure a 
Ulysses of modern times: imagine a 
top-manager or -- more prosaically -- 
a sales representative (traveling 
salesman). His objective is to pay a 
visit to all 16 cities in arbitrary order 
but only once: time is money. This is 
the famous Traveling Salesman 
Problem (TSP): fast to formulate, very 
important in practice and seemingly 
easy to solve, but in reality, when the 
number of cities is large, so difficult 
to handle that mathematicians still 
break their teeth on it after decades of 
hard work. And more: the TSP is just 
the most popular example of a large 
class of highly relevant practical 
problems. These are those problems 
where among many possible 
combinations one looks for a best or 
most favorable combination. Some 
examples of these numerous practical 
applications are to be found in: Cargo, 
truck and air freight loading, Machine 
scheduling, Crew scheduling in 
transportation, Microchip design, 
Capital investment, Layout of 
communications networks. For 
Ulysses' problem the shortest 
roundtrip is 6859 kilometers long. In 
this calculation the distance between 
any two of the 16 places is their aerial 
distance (on a great circle around the 
globe) and rounded up on kilometer 
integral value; but even with an 

airplane, Ulysses would have had to 
travel 9913 kilometers along his own 
route. Optimization can bring about 
enormous savings! How did we find 
the shortest tour for Ulysses? To find 
some roundtrip is child's play: there 
are exactly 653837184000 possible 
to ur s .  U s i n g  a  c o mmer c i a l 
workstation it took 92 hours (almost 
four days, wow!) to generate all tours, 
to calculate their lengths, considering 
them one by one, and then to pick the 
shortest one. This technique is called 
enumeration: it is the classical 
approach to solve combinatorial 
optimization problems (problems 
which have finitely many choices). 
Enumera t io n  i s  s imp l y  t h e 
thoughtless application of brute force. 
But this method (a little old-
fashioned) is still alive in some (dusty) 
heads. Only it fails for problems 
which are insignificantly bigger than 
that of Ulysses. This is why, among 
other reasons, we have chosen 
Ulysses' problem as an illustration: it 
can be solved by doing a complete 
enumeration on currently available 
computers. Already a TSP with 25 
cities would hopelessly overwhelm the 
most polished enumeration technique 
even when run on the biggest 
supercomputer around now or in the 
future. However, practical problems 
are much bigger and in spite of their 
difficulty they have to be and have 
been solved. In the summer of 1998, 
David Applegate, Robert Bixby and 
William Cook of Rice University in 
Houston (Texas) and Va�ek Chvátal 
of Rutgers University in New 
Brunswick (New Jersey) have found 

the shortest tour through more than 
13,000 cities with the methods 
described here, leaving their previous 
record of 7,397 cities far behind. 
Problems of this size and far bigger 
ones arise daily in the production of 
circuit boards, in the design of very 
large integrated circuits (VLSI design), 
in X-ray crystallography and in many 
other areas. The analysis begins with a 
mathematical formulation. One 
replaces every city by a point, called a 
node, and every direct connection 
between two cities by a line 
(mathematicians say: edge) between 
the corresponding nodes of the TSP. 
A collection of nodes connected by 
edges is called a graph. When, like in 
the case of Ulysses' problem, every 
node is connected to every other 
node by some edge --we can fly from 
every city directly to every other city--, 
then experts call the graph complete. 
The complete graph with 16 nodes 
has exactly 120 edges. 
 

Mathematical modeling:  
a roundtrip becomes a graph 
With every edge of the graph we 
associate a distance or "length": more 
generally, a number which represents 
the "cost" (the time, money, material 
or whatever else is dear and expensive 
to you) caused by traversing the edge. 
Every roundtrip corresponds to a 
subset of the edges of the graph. If 
such a subset forms a complete 
roundtrip passing through all nodes 
exactly once, it is called a tour or a 
Hamiltonian cycle, after the Irish 
mathematician Sir William Rowan 
Hamilton (1805 -- 1865). The length 
of a tour is the sum of the lengths of 
all edges in the tour. The TSP, in 
graph theoretical notation, is thus the 
problem of finding "the" shortest 
cycle in a complete graph, more 
precisely "a" shortest cycle, because a 
TSP can have different tours with the 
same minimum length. So why is the 
TSP so difficult? Does it lie in the fact 
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that the number of tours is 
so tremendously large for 
large number of cities? 
Amazingly not. The number 
of possible solutions does 
not measure the difficulty of 
a combinatorial problem 
adequately. To give you a 
reason of why this is true, let 
us look at the following 
problem. We want to set up 
a communication network 
on the 16 cities that 
connects every city to every 
other city, not necessarily 
directly, but possibly via a detour 
going through some other city or 
cities. Again the cost of a direct link 
(running on the edge) between any 
two cities depends on their distance, 
e.g., the cost for an optical fiber cable 
between the two. The most expensive 
solution to our problem is easy: just 
connect every city directly to every 
other one, i.e., choose the complete 
graph as a solution. There is a very 
simple method to reduce the cost of 
this solution: we remove from the 
graph the most expensive edge that 
can be removed under the condition 
that the resulting new graph does not 
decompose into two disconnected 

parts. Then we repeat the same 
procedure as long as it is possible. 
This method produces for Ulysses' 
graph with 16 nodes a network of 
total length of 4540 kilometers. This 
algorithm chooses at every step the 
most favorable among all available 
possibilities without regard to its 
consequences. Eliminating the edge 
with the biggest cost reduction does 
not check if a much better solution 
could be found. Such a strategy � take 
what you can get without regard to 
the delayed effects � is called greedy 
(or myopic). Usually it is meaningful 
to  accep t  - - t empo rar i l y - -  a 
disadvantage in the search for the 

greatest advantage. But in 
this case pure greed is 
exactly right! One can 
prove that this algorithm is 
always optimal, i.e., it 
always finds a minimum 
cost solution of the 
communication problem. 
How many possible 
solutions are there for this 

new problem? With n cities 
every possible solution 
corresponds to a "unique" 
graph with exactly n-1 edges 
that link all nodes and that 

has no cycle. Such graphs are called 
spanning trees or scaffoldings. 
Already in 1889, Arthur Cayley has 
proven that there are exactly nn-2 
different spanning trees for a graph 
with n nodes. For 16 cities (nodes) 
t h e r e  a r e  e x a c t l y 
72,057,594,037,927,936 possible 
spanning trees: this is considerably 
more than the number of the possible 
tours in Ulysses' problem and this 
statement applies generally to an 
arbitrary (large) number of cities. 
Nevertheless any PC can calculate a 
minimum cost spanning tree within a 
few milliseconds even when n is large. 
If it is not the number of possible 

Figure 1 � The legendary Ulysses was almost hopelessly lost on the two-dimensional 
sea surface and he didn't  choose the shortest way home (picture, after the interpre-
tation of E. Bradley). To not just get back home, but to find the shortest roundtrip  
through all 16 spots, you have found your way around in a 120-dimensional space. 

Martin Grötschel and Manfred Padberg. 

Figure 2 � World record: the shortest tour through all 13,509 cities of the USA (without Alaska and Hawaii) with more than 500 inhabitants. 

Ray Sterner et al, John Hopkins University, Applied Physics Lab. 
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solutions, what is it that makes the 
TSP such a difficult problem? To be 
honest, we do not know the answer. 
In any case, there is a complexity 
theory which helps to distinguish 
"easy" problems (those like the 
minimum cost spanning tree problem) 
from "difficult" ones like the TSP. 
But this theory also gives an 
unpleasant result: many practically 
relevant combinatorial problems are 
classified by it as "difficult" ones. In 
addition, an insignificant complication 
can change an easy problem into a 
difficult one. Assume we complicate 
the matter by requiring a certain 
" f a i l u r e  s a f e t y "  f o r  o u r 
communicat ion network.  For 
instance, it should work even if a fire, 
an earthquake or an excavator 
mistakenly destroys a line. A spanning 
tree just doesn't offer such safety: as 
the result of an interruption of any 
link of it the net 
"decomposes" into two 
parts, which can no  longer 
talk to each other. Such 
obvious safety aspects have 
not always been taken into 
account in reality. When in 
the American regional 
telephone nets the copper 
wires were replaced by 
optical fiber cables, a 
minimum spanning tree 
solution was chosen because it gave a 
minimum cost solution of the high 
cost project. But afterwards disastrous 
failures happened: a single edge cut 
led to the complete collapse of 
communication networks, just like in 
1988 in the Chicago telephone 
network (and later also in New Jersey 
and elsewhere) which was highly 
publicized by the press. Extremely 
costly improvements of the network 
were necessary as a result of 
insufficient planning. The more 
additional lines and connections there 
are, the safer the communications 
network. The complete graph is the 
best answer to this problem given the 
safety aspect, but it is also much too 
expensive. Thus one has to weigh 
failure safety against construction cost 
and maintenance. In a real network 
there are typically vital and less vital 
connections or cities with priorities 
which can be quantified and give rise 
to additional requirements. Such 

additional conditions can be brought 
with little effort into the mathematical 
formulation: this is the beauty of this 
approach to combinatorial problem 
s o l v i n g .  Un fo r t un a t e l y ,  t h e 
incorporation of such additional 
considerations changes our "easy" 
problem into a difficult one, one that 
is as difficult as the TSP. A possible 
(and usual) problem reformulation 
goes as follows. We allocate weights 
to each city: 0 for the insignificant, 1 
for the more important, 2 to the large 
cities and so on. Then we demand 
that a city of weight k shall remain 
connected to every city having the 
same or bigger weight even if any k 
links of the network are cut. Now you 
can search for a network of lowest 
costs among all networks satisfying 
this additional condition. In a similar 
way safety demands in the case of 
failure of nodes (and/or nodes and 

edges) can be taken into account. 
Problems in practice frequently 
require many other, additional 
conditions of this type. For instance, a 
line or an internetworking processor 
can contemporarily cope with a 
certain number of conversations only. 
Because of these conditions the 
number of feasible solutions becomes 
smaller, but --probably contrary to 
our intuition-- the problem becomes 
even more difficult. So much about 
problems. How can we find good or 
really optimal solutions? And how can 
we judge the "goodness" of a solution 
that a computer spits out? Given all 
d i f f e rences  among  d i f f e ren t 
c o m b i n a t o r i a l  o p t i m i z a t i o n 
problems --even important ones-- 
there are nevertheless some basic 
principles that apply across the board. 
 
Upper and lower bounds 
First of all let us consider a certain 
objective function --tour length, costs 

and so on-- that we wish to minimize. 
(The maximization problems differ 
only by the signs of the objective 
function coefficients.) We can now 
compute for every feasible solution its 
cost which we can mark in principle 
on the real line. It is evident that an 
optimal solution always exists: we get 
finitely many real numbers and thus 
the smallest number among all those 
corresponds to an optimal solution. 
We only do not know where on the 
real line that smallest number lies. So 
we look for a range into which this 
unknown number falls: we try to find 
upper and lower bounds for the 
minimal cost. Without knowing the 
optimal solution, it will then be 
possible to say that the objective 
function should be better than the 
lower and should not be worse than 
the upper bound. To find upper 
bounds is in general not difficult. 

Every feasible solution gives 
an upper bound: by 
definition the optimal 
solution can not be worse 
than an arbitrary feasible 
solution. Of course the 
solutions that are "close" to 
the optimum are of greater 
interest because they give 
better upper bounds. 
Algorithms to find "good" 
feasible solutions are called 

heuristics in technical jargon. The 
knowledge that no solution can be 
better than a certain value, i.e., a lower 
bound, is also helpful. When the 
upper and the lower bounds coincide, 
then we have proven the optimality of 
the solution corresponding to the 
upper bound. If this is not the case, 
then the knowledge of the upper and 
lower bound values still allows us to 
estimate how far the solution is from 
the optimum. If the deviation is small, 
then we may want to stop the search 
because further searching, if 
successful, would not improve the 
solution by much. It is not evident 
how to find lower bounds and this 
will require a suitable mathematical 
formulation. But it is doable and it is 
particularly skillful to alternate the 
search for upper and lower bounds in 
a way that uses the information of the 
previous step in the next one. This 
combined strategy is responsible for 
t h e  e n o r m o u s  p r o g r e s s  i n 

Figure 3 � The most economical communications network between  Ulysses' 16 cities. 

Martin Grötschel and Manfred Padberg. 
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combinatorial problem solving that 
has been made in recent years. We 
will discuss now the techniques to 
find upper and lower bounds for the 
case of Ulysses' problem. For other 
difficult problems the story sounds 
mostly only slightly different; but, of 
course, because of such little technical 
details the problem can sometimes 
become substantially more difficult 
again. For the search of upper 
bounds, greed --more exactly: myopic 
search for a cost minimum-- gives a 
first way of doing things. Choose as 
the next city the nearest city that you 
have not yet visited (nearest-neighbor 
heuristic). If no city is available you 
go back to the starting point. If you 
play with this method using paper 
and pencil on arbitrary sets of cities, 
then you will find immediately two 
things. First, the result of a heuristic 
strongly depends on the starting 
point. Second, the solution 
can in general be easily 
improved. If, for instance, 
two edges intersect, then in the 
rectangle formed by the four cities 
the trip along the diagonals is in 
general longer than the trip along 
the two opposite sides of the 
rectangle. Further improvement may 
be possible if the two edges of the 
rectangle are replaced by the other 
two. There are other ways to improve 
a nearest-neighbor solution. To make 
useable methods from such ideas, 
one has to limit the unfavorable 
consequences of greed.  The 
insistence on always finding a better 
solution can get you stuck in a bad 
"local optimum", which is a solution 
that is not particularly good but 
which cannot be improved upon by 
any of the improvements steps you 
utilized. To get around this problem, 
you may e.g. permit --with a certain 
probability, up to a certain magnitude 
or under other restrictions-- that in 
the current "improvement step" the 
solution actually gets worse. Another 
possibility is to randomly select, from 
time to time, a completely new 
heuristic solution for subsequent 
improvement. Such methods go by 
most entertaining names such as 
Monte-Carlo methods, simulated 
anneal ing, genet ic or deluge 
algorithms (see Spektrum der 
Wissenschaft, July 1987 page 104, and 

March 1993 page 42). As a rule these 
heuristic methods require a relatively 
small programming effort for 
medium-size problems. For this 
reason they have become a popular 
playground for amateurs, which --
unfortunately-- has led to totally 
incorrect expectations as to their 
quality and implementability. To apply 
these techniques to TSPs with 
tenthousand or hundredthousand 
cities (these orders of magnitude are 
not exceptional), complicated data 
structures and clever tricks from 
computer science are indispensable if 

you want to get reasonable solutions 
in acceptable time. On the other 
hand, heuristic algorithms that have 
been adapted to a particular problem 
s t ruc ture  th rough  long- te rm 
experimentation have become --due 
to present technological limits-- the 
workhorse for the solution of 
practical problems and they are also 
helpful for exact optimization 
methods in several ways. How do you 
find valid lower bounds? The --
seemingly paradoxical-- basic idea is 
to make the problem bigger so as to 
make it simpler! This means that --
given our problem-- we construct a 

bigger problem, which has more 
solutions: every solution to the old 
problem is also a solution to the new 
one (but not necessarily the other way 
round). For example, you could drop 
or inactivate side conditions or 
constraints of the original problem. 
Then the solution set of the original 
problem is contained ("embedded") in 
the solution set of the new problem. 
The experts speak about embedding 
techniques. The cost of a minimum 
solution to the bigger problem is by 
definition lower than (or at best equal 
to) the cost of every other solution to 
it, hence also lower than the cost of 
every solution to the embedded 
original problem. And that is exactly 
what we were looking for: we know 
how to find valid lower bounds for 
the original problem. To be useful, 

the embedding (bigger) problem 
should have two characteristics: 
on one hand it should be simple 

so that its minimum 
solution is easy to find, on 
the other hand it should be 

as close as possible to the 
original problem. Only then we 

can hope that the minimum 
solution of the original problem is 
close to the solution of the 
embedding problem. It is no big deal 
to "somehow" embed the TSP. Just 
allow Ulysses to stay home. Of 
course then the lower bound that we 
get as starting information is not 
particularly effective: every tour is 
longer than zero kilometers. 
 
Lower bounds from linear 
programming 
From among the various embedding 
techniques for the TSP we will discuss 
here only the most successful one. It 
is based on linear programming, one 
of the most remarkable methods that 
applied mathematics has produced 
since the Second World War Two (see 
" W i r t s c h a f t s f a c t o r  l i n e a r e 
Programmierung " by Robert G. 
Bland, Spektrum der Wissenschaft , 
August 1981 page 118). The --
traditional-- name is misleading: 
"programming" here just does not 
refer to the act of programming a 
computer. A better name would be 
"optimization of linear problems" or 
"linear optimization". It is most 
frequently interpreted as the art to 

Figure 4 - Short-term profitable alternatives are inca-
pable to produce long-term benefits. So are Greedy 
algorithm advantages. Beware this fault and avoid 
the sirens songs enchanting that fascinated Odys-
seus of his companions.  
Attic jug painting, 450 B.C.  

Bildarchiv Preußischer Kulturbesitz, Berlin 
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assign scarce resources in an optimal 
manner to economic activities. Today 
linear programming is a standard tool 
for the solution of planning problems 
in airline companies, oil refineries, 
banks ,  au tomob i l e  indus t ry , 
telecommunication and in many other 
industries. To embed Ulysses' 
problem into a linear programming 
problem we start by indexing --in 
some fixed, but arbitrary order-- the 
120 edges connecting the 16 cities and 
write next to a edge the number one if 
Ulysses uses the edge on his 
roundtrip, a zero otherwise. Every 
tour is thus described by 
120 numbers. We call this 
sequence of numbers a 
vector of 120 dimensions, 
because we can represent every 
ordered collection of 120 
numbers as a point in a space of 
120 dimensions; just like every 
sequence (x, y, z) of three 
numbers describes a point in the 
ordinary three-dimensional space 
in which we live. Every tour 
corresponds to a point in this 120-
dimensional space, but not the other 
way around! For a point to 
correspond to a tour it has to have 
exactly 16 components equal to 1 and 
the other 104 ones equal to 0. But 
that's not enough: further conditions 
have to be satisfied. Remember that 
there are exactly 653,837,184,000 
possible tours for Ulysses. From 
among these many points in the 120-
dimensional space we have to select 
one such that the sum of the 
kilometers of the components having 
value one is as small as possible. We 
thus multiply every component of 
our vector (1 or 0) by the 
corresponding kilometer value, sum 
the products and obtain the tour's 
length. Now comes the decisive step. 
We just simply interpret the vector 
components as variables, which may 
assume arbitrary values between 0 and 
1. This may seem rather silly 
considering the original problem: 
what does it mean that Ulysses takes 
half a flight from Ithaca to Troy or 
0.17 of a flight from Messina to 
Gibraltar? However it is meaningful 
for our purposes because --while we 
enlarge the set of the feasible 
solutions tremendously-- we allow the 
problem to be represented by linear 

p rogramming.  The ob jec t i ve 
function --the total tour length-- is a 
linear function of these 120 variables. 
Every change in one of the variables 
affects the value of the objective 
function with a proportionality factor, 
n a m e l y  t h e  l e n g t h  o f  t h e 
corresponding edge or inter-city link 
in kilometers. The side conditions are 
also linear. To search for the 
minimum of a linear function within 
linear side conditions (equations or 
inequalities) we have an efficient 
method, the Simplex algorithm. (The 

interior-point methods, intensively 
investigated for about ten years now, 
still do not bring about in any 
advantage for our purposes). A little 
geometry is helpful even if our 
powers of imagination are limited to 
only three instead of 120 dimensions. 
If we take all points (vectors) with 
coordinates between 0 and 1, we form 
a cube with edge length 1 having a 
corner in the point zero (the origin of 
the coordinate system). The corners 
of this unit cube are the vectors 
whose components are 0 or 1. This is 
valid also in 120 dimensions, with the 

only difference being that now the 
unit cube has 2120 corners, which to 
enumerate and inspect one by one 
would be stupid. A linear inequality 
constraint acts like a knife that cuts 
off a piece of the cube (just think of a 
piece of cheese). You get some form 
of a body that is bordered by some 
planes. In the 120-dimensional space 
the set of the feasible points (those 
that satisfy the linear side conditions) 
generate a more general body of the 
same shape: it is called a (convex) 
polytope. The minimum of a linear 

objective function on a polytope 
is always assumed at some 
corner (or if there are 
several minimal corners 

the minimum is attained on 
all of them and everything 

between them). The Simplex 
algorithm (following also some 
greedy principle) searches 
systematically the corners of 
polytopes until it stops. When it 

does, the minimum corner is 
reached (or one of several 

candidates). Unfortunately that 
gives the minimum of the 

embedding problem only, but not of 
the original problem. In fact the 
coordinates of the solution vector 
found by the Simplex algorithm 
usually are not all integer. Therefore 
you must use again the cheese knife 
to  ob ta in  f rom the  l inear 
programming polytope the "true" 
polytope of the original problem. 
This is the smallest polytope that 
contains all zero-one vectors 
corresponding to the tours. However 
one single cut will in general not 
suffice. Even worse: we do not even 
know exactly how to cut. Explicit 
linear programs for the TSP are 
known for problems with only up to 9 
cities. More precisely: the polytope 
associated with the TSP on 9 cities 
has 9 equations and 42,104,442 
inequalities in 36 variables according 
to the possible 36 direct connections 
between the 9 nodes of the 9-city 
TSP. For TSPs with 8 (7 and 6) cities 
the polytope has 8 (7 and 6) equations 
and 194,187 (3,437 or 100) 
inequalities in 28 (21 or 15) variables. 
For 10 cities there are probably 
51,043,900,866 inequalities, certainly 
not less, but the proof for the exact 
number is still due. For tour problems 

Figure 5 - Polyphem and the Polytop: the searching 
algorithm has a blind man behavior. To quickly move 
on he has no general vision but short sight percep-
tion. For time reasons he doesn't analyze every side 
condition. Then he must accept violations. So Odys-
seus gets out clutched at the ram belly of the glut-
tonous Cyclop: an impossible mission!  
Sapphic painter portrayal on a vessel, 510 B.C. 

Bildarchiv Preußischer Kulturbesitz, Berlin 
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on graphs with more than 10 nodes, a 
complete set of inequalities for the 
TSP polytope is not yet known even 
theoretically. And even if it would be 
known, it would certainly be too big 
to be of any help. It is possible that, 
for big numbers of cities, it will never 
be found, and this would be an 
additional proof of the enormous 
difficulty of the traveling salesman 
problem. For the 16-city problem of 
Ulysses we have 16 equations in 120 
variables and the number of 
inequa l i t i e s  i s  in  any  cas e 
astronomically big. We do not know 
all of them; however a partial subset 
of them is known. We can indeed 
almost always find some or 
s e v e r a l  l i n e a r 
inequalities or cuts, 
which separate the 
minimum found from the 
true TSP polytope. These 
inequalities are added to the 
present system of the equations 
and inequalities, we optimize the 
new linear program and find a 
minimum point which is closer to 
the TSP polytope. If you are lucky it 
even lies on the true polytope; then 
we have reached the minimum 
solution of the original problem. 
Otherwise it has some coordinates 
that are not integer, and we have to 
repeat the whole procedure. A further 
complication arises. Generally, we 
cannot even start with polytope of the 
embedding linear optimization 
problem. To do so, we would have to 
start with its complete set of 
inequalities which for a large number 
of cities is also astronomically large! 
Nevertheless we can solve big 
problems using linear programming 
to optimality. How is this possible? 
Once again we replace the embedding 
problem by a bigger and simpler one. 
We use only a very small subset of the 
astronomically many side conditions 
(we cut the cheese cube only slightly), 
we find a solution vector that is an 
optimal corner of this big polytope --
which is too big-- and then we 
improve it. We then look for a side 
condition which cuts off not only the 
optimal corner just found, but also as 
big a slice of the cheese as possible. 
Back to Ulysses' problem: as an initial 
embedding we can first consider the 
16 side conditions (equations) 
modeling the fact every city may 

participate in the roundtrip with 
exactly two edges: an edge going into 
the city and an edge going out of it. In 
terms of the edge variables this means 
that the sum over all edges meeting a 
city must equal 2. (Different from an 
inequality, an equation reduces the 
dimension of the polytope, and, 
unfortunately, that we can no longer 
illustrate on a cube of cheese.) The 
solution of the corresponding linear 
program gives a minimum objective 
function value of 6,113 kilometers. 
This is after all already a useable lower 
b o u n d .  U n f o r t u n a t e l y  t h e 
corresponding solution vector 
consists of several subtours. Since this 

is not a feasible solution to the 
original problem, you must add some 
inequalities that cut off this point 
from the current polytope, i.e., we 
have to improve the original 
embedding by adding some cuts. 
There is a lot of choice among a large 
number of such cuts. Among those 
are "best possible" cuts, that is those 
that have as much as possible in 
common with the facets of the true 
polytope. (In large dimensions, facets 
are the generalization of the boundary 
surfaces of a three-dimensional 
polytope). A large part of the 
theoretical work of the last 20 years 
has concentrated on identifying such 
facet cuts. In Ulysses' case we add the 
side conditions which exclude the 

four subtours of the solution just 
obtained. Now we have to solve the 
linear program augmented by these 
linear inequalities. Modern software 
packages take care of this quickly and 
efficiently because they make clever 
use of the information contained in 
the previous solution. The objective 
function value rises to 6,228 
kilometers, but the corresponding 
solution vector does not give a 
suitable roundtrip for Ulysses. 
However the algorithmic idea now is 
clear: we go on this way, i.e., we 
iterate. We activate a further small 
subset of the astronomically large set 
of inequalities which we have ignored 

until now. Doing so and solving 
the third linear program 
we get an optimal 

objective function value of 
6,813.5 kilometers and a solution 

vector that still does not give a 
valid tour for Ulysses. Namely in it 
several of the 120 variables have a 

value equal to 0.5 which is a feasible 
solution for the embedding problem 

only. One further iteration gives an 
objective function value of 6,859 

kilometers and a solution with all 
values equal to 0 or 1. This solution 

corresponds to the optimal tour. We 
are home. The iterative method 
explained above is called a cutting 
plane algorithm. If the set of 
inequalities, which describe the true 
polytope, is complete, then the cutting 
plane algorithm terminates after a 
finite number of steps. In our case 
four steps sufficed, but that does of 
course not apply in general. At 
present we know, however, all of 
these inequalities neither for the 
traveling salesman problem nor for 
m o s t  o t h e r  c o m b i n a t o r i a l 
optimization problems of practical 
importance. A large part of today's 
research work concentrates on 
augmenting this knowledge for more 
and more combinatorial problems. As 
a result of this work, the limits of 
mathematical computability have been 
driven far beyond levels that, only few 
years ago, scientists could not imagine 
overcoming. On the other hand it is 
possible that the difficulty of the TSP 
o r  o f  o t h e r  c o m b i n a t o r i a l 
optimization problems excludes 
forever a complete knowledge of the 
required inequalities. We simply do 
not know this, and at present we 

Figure 6 - Integer optimization achieved by arrow 
and bends. When after twenty year wandering Odys-
seus got in his court again, many unfulfilled side 
conditions still separate him from the his objectives, 
namely the Penelope suitors. By fixing one side con-
dition after the other if he eliminates all inadmissible 
points and finally reaches the optimum. 
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know for sure that we do not know all 
required inequalities. Differently from 
Ulysses' problem, the iterative cutting 
plane method can thus terminate 
before an optimal tour is found. What 
are our choices in such a case? We 
could stop and be content with the 
knowledge of a good lower bound. 
We also could use an enumeration 
method as follows: if the cutting plane 
algorithm ends undecidedly (without a 
feasible solution for our true 
problem), then there are edges, which 
are assigned values different from 0 
and 1. We pick out such an edge, 
arbitrarily put the value 1 (meaning 
"we use this link") on it and try solve 
the more restricted and therefore 
simpler problem. We try the same 
with the edge specification of 0 
instead of 1 (meaning "we do not use 
this link"). We take the better solution 
of the two possibilities. For one of the 
two possibilities --take that edge or do 
not take it-- applies to any optimal 
tour. Of course the solution attempt 
can end undecidedly for these 
subproblems once again. Again the 
solution process branches into two 
alternatives (branching) and we get a 
whole tree of solution possibilities. 
We must search through this tree as 
skillful as possible. The corresponding 
tree search method is known as 
Branch and Cut. This method builds 
on the method known as Branch and 
Bound of the 1960's, but it is 
fundamentally more efficient. At 
present the most  successful 
algorithms for big combinatorial 
optimization problems are all based 
on Branch and Cut and so are all 
algorithms with the best quality 
guarantees. Various heuristic and 
enumerative techniques have been 
added. To implement a successful 
method you need thorough 
mathematical analysis, interdiscipli-
nary knowledge in optimization and 
computer  sc i ence ,  inc lud ing 

knowledge of efficient data structures, 
data processing and computer 
programming. And only development 
and testing on real computers will 
prove the goodness of a method. The 
TSP illustrations for this article have 
been computed with a computer code 
that was developed by Manfred 
Padberg and Giovanni Rinaldi of the 
Italian research center IASI-CNR 
(Istituto di Analisi dei Sistemi ed 
Informatica) in Rome. There are 
other successful applications of 
Branch and Cut by us and other 
researchers, far more than we can 
possibly describe in this article. A 
Branch and Cut solver on a modern 
workstation takes only a few 
milliseconds to solve the various 
problems that we have discussed here 
for the 16 cities of Ulysses: a very 
short time compared with the 92 
hours needed to solve the problem by 
mindless enumeration! Add to this the 
rapid performance-growth of 
computer hardware, solid applied 
mathematics and intelligent software 
development. Through all of that, the 
exact solution of far bigger problems 
than we can imagine today may very 
well become soon a reality. In 
conclusion, once again the question: 
why is the traveling salesman problem 
so difficult? For the solution method 
described here the biggest hurdle is 
undoubtedly the astronomically high 
number of inequalities, which we 
must take into account. Does this 
cause the difficulty of the problem? 
Surely it is part of the reason. 
Amazingly, however, this not a 
complete explanation either. There 
are problems in combinatorial 
optimization which can be solved 
easily both in theory and practice, the 
polytopes of which, however, 
necessitate far more inequalities (in 
the same dimensions) than the TSP 
polytope. If it is neither the number 
of possible solutions nor the number 

of the required inequalities, then what 
makes the problem "difficult"? At 
present nobody  has an answer to this 
question, yet the algorithms discussed 
here  y i e ld  exce l l en t  r e su l t s 
nevertheless. 
 

Martin Grötschel  
groetschel@zib.de 

 

Manfred W. Padberg  
manfred@padberg.com 

 
From  
4/1999 (pages 76 -- 85).  
 

Acknowledgments 
The AIROnews Editors are deeply 
indebted with Dr. Christoph Pöppe for 
his support to obtain the permission to 
publish the English translation of the 
"Spektrum der Wissenschaft" paper. 
They also thank Ms. Alice Krüßmann 
for her fruitful information of 
illustrations' license references. 

· D.Applegate et al., �On the solution of traveling salesman prob-
lems�, in: Documenta Mathematica Extra Volume, Proceedings 
of the ICM 98, 1998 (645-656); http://www.
mathematikuni-bielefeld.deldocumentaI xvol-icm/ICM.html 
· E.Bradford, Ulysses Found, Harcourt, Brace & World, New York, 
1963.  
· R.E.Burkard et al., �Well-solvable special cases of the travelling 
salesman problem: A survey�, SIAM Review, 40, 1998 
(496-546). 
· M.Jünger, G.Reinelt and G.Rinaldi, �The travelling salesman 

problem�, in: Annotated bibliographies in combinatorial optimi-
zation, M.Dell'Amico et al. (Eds.). Wiley, Chichester, 1997 (199-
221). 
· E.L.Lawler et al. (Eds.), The traveling salesman problem. A 
guided tour of combinatorial optimization, Wiley, Chichester, 
1985. 
· M.Padberg, Linear Optimization and Extensions, Springer, Ber-
lin 1995.  
· M.Stoer, �Design of Survivable Networks�, Lecture Notes in 
Mathematics, 1531, Springer, Berlin 1992. 

 References 

Authors:  
 and  

started their common work on combinatorial 
optimization problems in 1974 at the Uni-
versity of Bonn where Padberg was guest 
professor and Grötschel a PhD student. At 
present Grötschel is professor for mathe-
matics at the technological University of Ber-
lin and vice-president of the Konrad-Zuse 
center for information technology. Padberg 
has been a visiting professor at many pres-
tigious universities in Europe and the United 
States of America and is a professor at New 
York University's Stern School of Business, 
but lives now in Marseille, France. 

EDITORIAL 

(c) 2001 The New Yorker Collection from cartoonbank.com 


