
1 AIROnews VI, n.2 - Summer 2001

Ulysses, the legendary king of the
Greek island of Ithaca, had made a
long and eventful journey, when after
20 years of erring around he could
finally take his beloved Penelope into
his arms again --a journey eventful
enough to fill an entire epos, the
Odyssey by Homer, the poet of
antiquity. Modern interpreters of the
e p o s h a v e d e t e r m i n e d 1 6
Mediterranean places which Ulysses
has supposedly visited. Undoubtedly,
he could have had a shorter journey if
destiny, the sea's hostility, the gods'
envy and, most importantly, the lack
of elementary geography knowledge
had not been against him. Figure a
Ulysses of modern times: imagine a
top-manager or -- more prosaically --
a sales representative (traveling
salesman). His objective is to pay a
visit to all 16 cities in arbitrary order
but only once: time is money. This is
the famous Traveling Salesman
Problem (TSP): fast to formulate, very
important in practice and seemingly
easy to solve, but in reality, when the
number of cities is large, so difficult
to handle that mathematicians still
break their teeth on it after decades of
hard work. And more: the TSP is just
the most popular example of a large
class of highly relevant practical
problems. These are those problems
where among many possible
combinations one looks for a best or
most favorable combination. Some
examples of these numerous practical
applications are to be found in: Cargo,
truck and air freight loading, Machine
scheduling, Crew scheduling in
transportation, Microchip design,
Capital investment, Layout of
communications networks. For
Ulysses' problem the shortest
roundtrip is 6859 kilometers long. In
this calculation the distance between
any two of the 16 places is their aerial
distance (on a great circle around the
globe) and rounded up on kilometer
integral value; but even with an

airplane, Ulysses would have had to
travel 9913 kilometers along his own
route. Optimization can bring about
enormous savings! How did we find
the shortest tour for Ulysses? To find
some roundtrip is child's play: there
are exactly 653837184000 possible
to ur s . U s i n g a c o mmer c i a l
workstation it took 92 hours (almost
four days, wow!) to generate all tours,
to calculate their lengths, considering
them one by one, and then to pick the
shortest one. This technique is called
enumeration: it is the classical
approach to solve combinatorial
optimization problems (problems
which have finitely many choices).
Enumera t io n i s s imp l y t h e
thoughtless application of brute force.
But this method (a little old-
fashioned) is still alive in some (dusty)
heads. Only it fails for problems
which are insignificantly bigger than
that of Ulysses. This is why, among
other reasons, we have chosen
Ulysses' problem as an illustration: it
can be solved by doing a complete
enumeration on currently available
computers. Already a TSP with 25
cities would hopelessly overwhelm the
most polished enumeration technique
even when run on the biggest
supercomputer around now or in the
future. However, practical problems
are much bigger and in spite of their
difficulty they have to be and have
been solved. In the summer of 1998,
David Applegate, Robert Bixby and
William Cook of Rice University in
Houston (Texas) and Va�ek Chvátal
of Rutgers University in New
Brunswick (New Jersey) have found

the shortest tour through more than
13,000 cities with the methods
described here, leaving their previous
record of 7,397 cities far behind.
Problems of this size and far bigger
ones arise daily in the production of
circuit boards, in the design of very
large integrated circuits (VLSI design),
in X-ray crystallography and in many
other areas. The analysis begins with a
mathematical formulation. One
replaces every city by a point, called a
node, and every direct connection
between two cities by a line
(mathematicians say: edge) between
the corresponding nodes of the TSP.
A collection of nodes connected by
edges is called a graph. When, like in
the case of Ulysses' problem, every
node is connected to every other
node by some edge --we can fly from
every city directly to every other city--,
then experts call the graph complete.
The complete graph with 16 nodes
has exactly 120 edges.

Mathematical modeling:
a roundtrip becomes a graph
With every edge of the graph we
associate a distance or "length": more
generally, a number which represents
the "cost" (the time, money, material
or whatever else is dear and expensive
to you) caused by traversing the edge.
Every roundtrip corresponds to a
subset of the edges of the graph. If
such a subset forms a complete
roundtrip passing through all nodes
exactly once, it is called a tour or a
Hamiltonian cycle, after the Irish
mathematician Sir William Rowan
Hamilton (1805 -- 1865). The length
of a tour is the sum of the lengths of
all edges in the tour. The TSP, in
graph theoretical notation, is thus the
problem of finding "the" shortest
cycle in a complete graph, more
precisely "a" shortest cycle, because a
TSP can have different tours with the
same minimum length. So why is the
TSP so difficult? Does it lie in the fact

The Optimized Odyssey
by Martin Grötschel and Manfred Padberg

Martin Grötschel Manfred W. Padberg

The problem of the shortest roundtrip is the prototype of a large class of practically important complex minimization or maximization
tasks. They are so important that usually one has to content oneself with approximate solutions to them. However, new performing methods

have been developed and implemented to find provably optimal solutions for large problems with far greater frequency than before.

EDITORIAL

2 AIROnews VI, n.2 - Summer 2001

that the number of tours is
so tremendously large for
large number of cities?
Amazingly not. The number
of possible solutions does
not measure the difficulty of
a combinatorial problem
adequately. To give you a
reason of why this is true, let
us look at the following
problem. We want to set up
a communication network
on the 16 cities that
connects every city to every
other city, not necessarily
directly, but possibly via a detour
going through some other city or
cities. Again the cost of a direct link
(running on the edge) between any
two cities depends on their distance,
e.g., the cost for an optical fiber cable
between the two. The most expensive
solution to our problem is easy: just
connect every city directly to every
other one, i.e., choose the complete
graph as a solution. There is a very
simple method to reduce the cost of
this solution: we remove from the
graph the most expensive edge that
can be removed under the condition
that the resulting new graph does not
decompose into two disconnected

parts. Then we repeat the same
procedure as long as it is possible.
This method produces for Ulysses'
graph with 16 nodes a network of
total length of 4540 kilometers. This
algorithm chooses at every step the
most favorable among all available
possibilities without regard to its
consequences. Eliminating the edge
with the biggest cost reduction does
not check if a much better solution
could be found. Such a strategy � take
what you can get without regard to
the delayed effects � is called greedy
(or myopic). Usually it is meaningful
to accep t - - t empo rar i l y - - a
disadvantage in the search for the

greatest advantage. But in
this case pure greed is
exactly right! One can
prove that this algorithm is
always optimal, i.e., it
always finds a minimum
cost solution of the
communication problem.
How many possible
solutions are there for this

new problem? With n cities
every possible solution
corresponds to a "unique"
graph with exactly n-1 edges
that link all nodes and that

has no cycle. Such graphs are called
spanning trees or scaffoldings.
Already in 1889, Arthur Cayley has
proven that there are exactly nn-2
different spanning trees for a graph
with n nodes. For 16 cities (nodes)
t h e r e a r e e x a c t l y
72,057,594,037,927,936 possible
spanning trees: this is considerably
more than the number of the possible
tours in Ulysses' problem and this
statement applies generally to an
arbitrary (large) number of cities.
Nevertheless any PC can calculate a
minimum cost spanning tree within a
few milliseconds even when n is large.
If it is not the number of possible

Figure 1 � The legendary Ulysses was almost hopelessly lost on the two-dimensional
sea surface and he didn't choose the shortest way home (picture, after the interpre-
tation of E. Bradley). To not just get back home, but to find the shortest roundtrip
through all 16 spots, you have found your way around in a 120-dimensional space.

Martin Grötschel and Manfred Padberg.

Figure 2 � World record: the shortest tour through all 13,509 cities of the USA (without Alaska and Hawaii) with more than 500 inhabitants.

Ray Sterner et al, John Hopkins University, Applied Physics Lab.

EDITORIAL

3 AIROnews VI, n.2 - Summer 2001

solutions, what is it that makes the
TSP such a difficult problem? To be
honest, we do not know the answer.
In any case, there is a complexity
theory which helps to distinguish
"easy" problems (those like the
minimum cost spanning tree problem)
from "difficult" ones like the TSP.
But this theory also gives an
unpleasant result: many practically
relevant combinatorial problems are
classified by it as "difficult" ones. In
addition, an insignificant complication
can change an easy problem into a
difficult one. Assume we complicate
the matter by requiring a certain
" f a i l u r e s a f e t y " f o r o u r
communicat ion network. For
instance, it should work even if a fire,
an earthquake or an excavator
mistakenly destroys a line. A spanning
tree just doesn't offer such safety: as
the result of an interruption of any
link of it the net
"decomposes" into two
parts, which can no longer
talk to each other. Such
obvious safety aspects have
not always been taken into
account in reality. When in
the American regional
telephone nets the copper
wires were replaced by
optical fiber cables, a
minimum spanning tree
solution was chosen because it gave a
minimum cost solution of the high
cost project. But afterwards disastrous
failures happened: a single edge cut
led to the complete collapse of
communication networks, just like in
1988 in the Chicago telephone
network (and later also in New Jersey
and elsewhere) which was highly
publicized by the press. Extremely
costly improvements of the network
were necessary as a result of
insufficient planning. The more
additional lines and connections there
are, the safer the communications
network. The complete graph is the
best answer to this problem given the
safety aspect, but it is also much too
expensive. Thus one has to weigh
failure safety against construction cost
and maintenance. In a real network
there are typically vital and less vital
connections or cities with priorities
which can be quantified and give rise
to additional requirements. Such

additional conditions can be brought
with little effort into the mathematical
formulation: this is the beauty of this
approach to combinatorial problem
s o l v i n g . Un fo r t un a t e l y , t h e
incorporation of such additional
considerations changes our "easy"
problem into a difficult one, one that
is as difficult as the TSP. A possible
(and usual) problem reformulation
goes as follows. We allocate weights
to each city: 0 for the insignificant, 1
for the more important, 2 to the large
cities and so on. Then we demand
that a city of weight k shall remain
connected to every city having the
same or bigger weight even if any k
links of the network are cut. Now you
can search for a network of lowest
costs among all networks satisfying
this additional condition. In a similar
way safety demands in the case of
failure of nodes (and/or nodes and

edges) can be taken into account.
Problems in practice frequently
require many other, additional
conditions of this type. For instance, a
line or an internetworking processor
can contemporarily cope with a
certain number of conversations only.
Because of these conditions the
number of feasible solutions becomes
smaller, but --probably contrary to
our intuition-- the problem becomes
even more difficult. So much about
problems. How can we find good or
really optimal solutions? And how can
we judge the "goodness" of a solution
that a computer spits out? Given all
d i f f e rences among d i f f e ren t
c o m b i n a t o r i a l o p t i m i z a t i o n
problems --even important ones--
there are nevertheless some basic
principles that apply across the board.

Upper and lower bounds
First of all let us consider a certain
objective function --tour length, costs

and so on-- that we wish to minimize.
(The maximization problems differ
only by the signs of the objective
function coefficients.) We can now
compute for every feasible solution its
cost which we can mark in principle
on the real line. It is evident that an
optimal solution always exists: we get
finitely many real numbers and thus
the smallest number among all those
corresponds to an optimal solution.
We only do not know where on the
real line that smallest number lies. So
we look for a range into which this
unknown number falls: we try to find
upper and lower bounds for the
minimal cost. Without knowing the
optimal solution, it will then be
possible to say that the objective
function should be better than the
lower and should not be worse than
the upper bound. To find upper
bounds is in general not difficult.

Every feasible solution gives
an upper bound: by
definition the optimal
solution can not be worse
than an arbitrary feasible
solution. Of course the
solutions that are "close" to
the optimum are of greater
interest because they give
better upper bounds.
Algorithms to find "good"
feasible solutions are called

heuristics in technical jargon. The
knowledge that no solution can be
better than a certain value, i.e., a lower
bound, is also helpful. When the
upper and the lower bounds coincide,
then we have proven the optimality of
the solution corresponding to the
upper bound. If this is not the case,
then the knowledge of the upper and
lower bound values still allows us to
estimate how far the solution is from
the optimum. If the deviation is small,
then we may want to stop the search
because further searching, if
successful, would not improve the
solution by much. It is not evident
how to find lower bounds and this
will require a suitable mathematical
formulation. But it is doable and it is
particularly skillful to alternate the
search for upper and lower bounds in
a way that uses the information of the
previous step in the next one. This
combined strategy is responsible for
t h e e n o r m o u s p r o g r e s s i n

Figure 3 � The most economical communications network between Ulysses' 16 cities.

Martin Grötschel and Manfred Padberg.

EDITORIAL

4 AIROnews VI, n.2 - Summer 2001

combinatorial problem solving that
has been made in recent years. We
will discuss now the techniques to
find upper and lower bounds for the
case of Ulysses' problem. For other
difficult problems the story sounds
mostly only slightly different; but, of
course, because of such little technical
details the problem can sometimes
become substantially more difficult
again. For the search of upper
bounds, greed --more exactly: myopic
search for a cost minimum-- gives a
first way of doing things. Choose as
the next city the nearest city that you
have not yet visited (nearest-neighbor
heuristic). If no city is available you
go back to the starting point. If you
play with this method using paper
and pencil on arbitrary sets of cities,
then you will find immediately two
things. First, the result of a heuristic
strongly depends on the starting
point. Second, the solution
can in general be easily
improved. If, for instance,
two edges intersect, then in the
rectangle formed by the four cities
the trip along the diagonals is in
general longer than the trip along
the two opposite sides of the
rectangle. Further improvement may
be possible if the two edges of the
rectangle are replaced by the other
two. There are other ways to improve
a nearest-neighbor solution. To make
useable methods from such ideas,
one has to limit the unfavorable
consequences of greed. The
insistence on always finding a better
solution can get you stuck in a bad
"local optimum", which is a solution
that is not particularly good but
which cannot be improved upon by
any of the improvements steps you
utilized. To get around this problem,
you may e.g. permit --with a certain
probability, up to a certain magnitude
or under other restrictions-- that in
the current "improvement step" the
solution actually gets worse. Another
possibility is to randomly select, from
time to time, a completely new
heuristic solution for subsequent
improvement. Such methods go by
most entertaining names such as
Monte-Carlo methods, simulated
anneal ing, genet ic or deluge
algorithms (see Spektrum der
Wissenschaft, July 1987 page 104, and

March 1993 page 42). As a rule these
heuristic methods require a relatively
small programming effort for
medium-size problems. For this
reason they have become a popular
playground for amateurs, which --
unfortunately-- has led to totally
incorrect expectations as to their
quality and implementability. To apply
these techniques to TSPs with
tenthousand or hundredthousand
cities (these orders of magnitude are
not exceptional), complicated data
structures and clever tricks from
computer science are indispensable if

you want to get reasonable solutions
in acceptable time. On the other
hand, heuristic algorithms that have
been adapted to a particular problem
s t ruc ture th rough long- te rm
experimentation have become --due
to present technological limits-- the
workhorse for the solution of
practical problems and they are also
helpful for exact optimization
methods in several ways. How do you
find valid lower bounds? The --
seemingly paradoxical-- basic idea is
to make the problem bigger so as to
make it simpler! This means that --
given our problem-- we construct a

bigger problem, which has more
solutions: every solution to the old
problem is also a solution to the new
one (but not necessarily the other way
round). For example, you could drop
or inactivate side conditions or
constraints of the original problem.
Then the solution set of the original
problem is contained ("embedded") in
the solution set of the new problem.
The experts speak about embedding
techniques. The cost of a minimum
solution to the bigger problem is by
definition lower than (or at best equal
to) the cost of every other solution to
it, hence also lower than the cost of
every solution to the embedded
original problem. And that is exactly
what we were looking for: we know
how to find valid lower bounds for
the original problem. To be useful,

the embedding (bigger) problem
should have two characteristics:
on one hand it should be simple

so that its minimum
solution is easy to find, on
the other hand it should be

as close as possible to the
original problem. Only then we

can hope that the minimum
solution of the original problem is
close to the solution of the
embedding problem. It is no big deal
to "somehow" embed the TSP. Just
allow Ulysses to stay home. Of
course then the lower bound that we
get as starting information is not
particularly effective: every tour is
longer than zero kilometers.

Lower bounds from linear
programming
From among the various embedding
techniques for the TSP we will discuss
here only the most successful one. It
is based on linear programming, one
of the most remarkable methods that
applied mathematics has produced
since the Second World War Two (see
" W i r t s c h a f t s f a c t o r l i n e a r e
Programmierung " by Robert G.
Bland, Spektrum der Wissenschaft ,
August 1981 page 118). The --
traditional-- name is misleading:
"programming" here just does not
refer to the act of programming a
computer. A better name would be
"optimization of linear problems" or
"linear optimization". It is most
frequently interpreted as the art to

Figure 4 - Short-term profitable alternatives are inca-
pable to produce long-term benefits. So are Greedy
algorithm advantages. Beware this fault and avoid
the sirens songs enchanting that fascinated Odys-
seus of his companions.
Attic jug painting, 450 B.C.

Bildarchiv Preußischer Kulturbesitz, Berlin

EDITORIAL

5 AIROnews VI, n.2 - Summer 2001

assign scarce resources in an optimal
manner to economic activities. Today
linear programming is a standard tool
for the solution of planning problems
in airline companies, oil refineries,
banks , au tomob i l e indus t ry ,
telecommunication and in many other
industries. To embed Ulysses'
problem into a linear programming
problem we start by indexing --in
some fixed, but arbitrary order-- the
120 edges connecting the 16 cities and
write next to a edge the number one if
Ulysses uses the edge on his
roundtrip, a zero otherwise. Every
tour is thus described by
120 numbers. We call this
sequence of numbers a
vector of 120 dimensions,
because we can represent every
ordered collection of 120
numbers as a point in a space of
120 dimensions; just like every
sequence (x, y, z) of three
numbers describes a point in the
ordinary three-dimensional space
in which we live. Every tour
corresponds to a point in this 120-
dimensional space, but not the other
way around! For a point to
correspond to a tour it has to have
exactly 16 components equal to 1 and
the other 104 ones equal to 0. But
that's not enough: further conditions
have to be satisfied. Remember that
there are exactly 653,837,184,000
possible tours for Ulysses. From
among these many points in the 120-
dimensional space we have to select
one such that the sum of the
kilometers of the components having
value one is as small as possible. We
thus multiply every component of
our vector (1 or 0) by the
corresponding kilometer value, sum
the products and obtain the tour's
length. Now comes the decisive step.
We just simply interpret the vector
components as variables, which may
assume arbitrary values between 0 and
1. This may seem rather silly
considering the original problem:
what does it mean that Ulysses takes
half a flight from Ithaca to Troy or
0.17 of a flight from Messina to
Gibraltar? However it is meaningful
for our purposes because --while we
enlarge the set of the feasible
solutions tremendously-- we allow the
problem to be represented by linear

p rogramming. The ob jec t i ve
function --the total tour length-- is a
linear function of these 120 variables.
Every change in one of the variables
affects the value of the objective
function with a proportionality factor,
n a m e l y t h e l e n g t h o f t h e
corresponding edge or inter-city link
in kilometers. The side conditions are
also linear. To search for the
minimum of a linear function within
linear side conditions (equations or
inequalities) we have an efficient
method, the Simplex algorithm. (The

interior-point methods, intensively
investigated for about ten years now,
still do not bring about in any
advantage for our purposes). A little
geometry is helpful even if our
powers of imagination are limited to
only three instead of 120 dimensions.
If we take all points (vectors) with
coordinates between 0 and 1, we form
a cube with edge length 1 having a
corner in the point zero (the origin of
the coordinate system). The corners
of this unit cube are the vectors
whose components are 0 or 1. This is
valid also in 120 dimensions, with the

only difference being that now the
unit cube has 2120 corners, which to
enumerate and inspect one by one
would be stupid. A linear inequality
constraint acts like a knife that cuts
off a piece of the cube (just think of a
piece of cheese). You get some form
of a body that is bordered by some
planes. In the 120-dimensional space
the set of the feasible points (those
that satisfy the linear side conditions)
generate a more general body of the
same shape: it is called a (convex)
polytope. The minimum of a linear

objective function on a polytope
is always assumed at some
corner (or if there are
several minimal corners

the minimum is attained on
all of them and everything

between them). The Simplex
algorithm (following also some
greedy principle) searches
systematically the corners of
polytopes until it stops. When it

does, the minimum corner is
reached (or one of several

candidates). Unfortunately that
gives the minimum of the

embedding problem only, but not of
the original problem. In fact the
coordinates of the solution vector
found by the Simplex algorithm
usually are not all integer. Therefore
you must use again the cheese knife
to ob ta in f rom the l inear
programming polytope the "true"
polytope of the original problem.
This is the smallest polytope that
contains all zero-one vectors
corresponding to the tours. However
one single cut will in general not
suffice. Even worse: we do not even
know exactly how to cut. Explicit
linear programs for the TSP are
known for problems with only up to 9
cities. More precisely: the polytope
associated with the TSP on 9 cities
has 9 equations and 42,104,442
inequalities in 36 variables according
to the possible 36 direct connections
between the 9 nodes of the 9-city
TSP. For TSPs with 8 (7 and 6) cities
the polytope has 8 (7 and 6) equations
and 194,187 (3,437 or 100)
inequalities in 28 (21 or 15) variables.
For 10 cities there are probably
51,043,900,866 inequalities, certainly
not less, but the proof for the exact
number is still due. For tour problems

Figure 5 - Polyphem and the Polytop: the searching
algorithm has a blind man behavior. To quickly move
on he has no general vision but short sight percep-
tion. For time reasons he doesn't analyze every side
condition. Then he must accept violations. So Odys-
seus gets out clutched at the ram belly of the glut-
tonous Cyclop: an impossible mission!
Sapphic painter portrayal on a vessel, 510 B.C.

Bildarchiv Preußischer Kulturbesitz, Berlin

EDITORIAL

6 AIROnews VI, n.2 - Summer 2001

on graphs with more than 10 nodes, a
complete set of inequalities for the
TSP polytope is not yet known even
theoretically. And even if it would be
known, it would certainly be too big
to be of any help. It is possible that,
for big numbers of cities, it will never
be found, and this would be an
additional proof of the enormous
difficulty of the traveling salesman
problem. For the 16-city problem of
Ulysses we have 16 equations in 120
variables and the number of
inequa l i t i e s i s in any cas e
astronomically big. We do not know
all of them; however a partial subset
of them is known. We can indeed
almost always find some or
s e v e r a l l i n e a r
inequalities or cuts,
which separate the
minimum found from the
true TSP polytope. These
inequalities are added to the
present system of the equations
and inequalities, we optimize the
new linear program and find a
minimum point which is closer to
the TSP polytope. If you are lucky it
even lies on the true polytope; then
we have reached the minimum
solution of the original problem.
Otherwise it has some coordinates
that are not integer, and we have to
repeat the whole procedure. A further
complication arises. Generally, we
cannot even start with polytope of the
embedding linear optimization
problem. To do so, we would have to
start with its complete set of
inequalities which for a large number
of cities is also astronomically large!
Nevertheless we can solve big
problems using linear programming
to optimality. How is this possible?
Once again we replace the embedding
problem by a bigger and simpler one.
We use only a very small subset of the
astronomically many side conditions
(we cut the cheese cube only slightly),
we find a solution vector that is an
optimal corner of this big polytope --
which is too big-- and then we
improve it. We then look for a side
condition which cuts off not only the
optimal corner just found, but also as
big a slice of the cheese as possible.
Back to Ulysses' problem: as an initial
embedding we can first consider the
16 side conditions (equations)
modeling the fact every city may

participate in the roundtrip with
exactly two edges: an edge going into
the city and an edge going out of it. In
terms of the edge variables this means
that the sum over all edges meeting a
city must equal 2. (Different from an
inequality, an equation reduces the
dimension of the polytope, and,
unfortunately, that we can no longer
illustrate on a cube of cheese.) The
solution of the corresponding linear
program gives a minimum objective
function value of 6,113 kilometers.
This is after all already a useable lower
b o u n d . U n f o r t u n a t e l y t h e
corresponding solution vector
consists of several subtours. Since this

is not a feasible solution to the
original problem, you must add some
inequalities that cut off this point
from the current polytope, i.e., we
have to improve the original
embedding by adding some cuts.
There is a lot of choice among a large
number of such cuts. Among those
are "best possible" cuts, that is those
that have as much as possible in
common with the facets of the true
polytope. (In large dimensions, facets
are the generalization of the boundary
surfaces of a three-dimensional
polytope). A large part of the
theoretical work of the last 20 years
has concentrated on identifying such
facet cuts. In Ulysses' case we add the
side conditions which exclude the

four subtours of the solution just
obtained. Now we have to solve the
linear program augmented by these
linear inequalities. Modern software
packages take care of this quickly and
efficiently because they make clever
use of the information contained in
the previous solution. The objective
function value rises to 6,228
kilometers, but the corresponding
solution vector does not give a
suitable roundtrip for Ulysses.
However the algorithmic idea now is
clear: we go on this way, i.e., we
iterate. We activate a further small
subset of the astronomically large set
of inequalities which we have ignored

until now. Doing so and solving
the third linear program
we get an optimal

objective function value of
6,813.5 kilometers and a solution

vector that still does not give a
valid tour for Ulysses. Namely in it
several of the 120 variables have a

value equal to 0.5 which is a feasible
solution for the embedding problem

only. One further iteration gives an
objective function value of 6,859

kilometers and a solution with all
values equal to 0 or 1. This solution

corresponds to the optimal tour. We
are home. The iterative method
explained above is called a cutting
plane algorithm. If the set of
inequalities, which describe the true
polytope, is complete, then the cutting
plane algorithm terminates after a
finite number of steps. In our case
four steps sufficed, but that does of
course not apply in general. At
present we know, however, all of
these inequalities neither for the
traveling salesman problem nor for
m o s t o t h e r c o m b i n a t o r i a l
optimization problems of practical
importance. A large part of today's
research work concentrates on
augmenting this knowledge for more
and more combinatorial problems. As
a result of this work, the limits of
mathematical computability have been
driven far beyond levels that, only few
years ago, scientists could not imagine
overcoming. On the other hand it is
possible that the difficulty of the TSP
o r o f o t h e r c o m b i n a t o r i a l
optimization problems excludes
forever a complete knowledge of the
required inequalities. We simply do
not know this, and at present we

Figure 6 - Integer optimization achieved by arrow
and bends. When after twenty year wandering Odys-
seus got in his court again, many unfulfilled side
conditions still separate him from the his objectives,
namely the Penelope suitors. By fixing one side con-
dition after the other if he eliminates all inadmissible
points and finally reaches the optimum.
 Red paint on Attic bowl

Bildarchiv Preußischer Kulturbesitz, Berlin

EDITORIAL

7 AIROnews VI, n.2 - Summer 2001

know for sure that we do not know all
required inequalities. Differently from
Ulysses' problem, the iterative cutting
plane method can thus terminate
before an optimal tour is found. What
are our choices in such a case? We
could stop and be content with the
knowledge of a good lower bound.
We also could use an enumeration
method as follows: if the cutting plane
algorithm ends undecidedly (without a
feasible solution for our true
problem), then there are edges, which
are assigned values different from 0
and 1. We pick out such an edge,
arbitrarily put the value 1 (meaning
"we use this link") on it and try solve
the more restricted and therefore
simpler problem. We try the same
with the edge specification of 0
instead of 1 (meaning "we do not use
this link"). We take the better solution
of the two possibilities. For one of the
two possibilities --take that edge or do
not take it-- applies to any optimal
tour. Of course the solution attempt
can end undecidedly for these
subproblems once again. Again the
solution process branches into two
alternatives (branching) and we get a
whole tree of solution possibilities.
We must search through this tree as
skillful as possible. The corresponding
tree search method is known as
Branch and Cut. This method builds
on the method known as Branch and
Bound of the 1960's, but it is
fundamentally more efficient. At
present the most successful
algorithms for big combinatorial
optimization problems are all based
on Branch and Cut and so are all
algorithms with the best quality
guarantees. Various heuristic and
enumerative techniques have been
added. To implement a successful
method you need thorough
mathematical analysis, interdiscipli-
nary knowledge in optimization and
computer sc i ence , inc lud ing

knowledge of efficient data structures,
data processing and computer
programming. And only development
and testing on real computers will
prove the goodness of a method. The
TSP illustrations for this article have
been computed with a computer code
that was developed by Manfred
Padberg and Giovanni Rinaldi of the
Italian research center IASI-CNR
(Istituto di Analisi dei Sistemi ed
Informatica) in Rome. There are
other successful applications of
Branch and Cut by us and other
researchers, far more than we can
possibly describe in this article. A
Branch and Cut solver on a modern
workstation takes only a few
milliseconds to solve the various
problems that we have discussed here
for the 16 cities of Ulysses: a very
short time compared with the 92
hours needed to solve the problem by
mindless enumeration! Add to this the
rapid performance-growth of
computer hardware, solid applied
mathematics and intelligent software
development. Through all of that, the
exact solution of far bigger problems
than we can imagine today may very
well become soon a reality. In
conclusion, once again the question:
why is the traveling salesman problem
so difficult? For the solution method
described here the biggest hurdle is
undoubtedly the astronomically high
number of inequalities, which we
must take into account. Does this
cause the difficulty of the problem?
Surely it is part of the reason.
Amazingly, however, this not a
complete explanation either. There
are problems in combinatorial
optimization which can be solved
easily both in theory and practice, the
polytopes of which, however,
necessitate far more inequalities (in
the same dimensions) than the TSP
polytope. If it is neither the number
of possible solutions nor the number

of the required inequalities, then what
makes the problem "difficult"? At
present nobody has an answer to this
question, yet the algorithms discussed
here y i e ld exce l l en t r e su l t s
nevertheless.

Martin Grötschel
groetschel@zib.de

Manfred W. Padberg
manfred@padberg.com

From
4/1999 (pages 76 -- 85).

Acknowledgments
The AIROnews Editors are deeply
indebted with Dr. Christoph Pöppe for
his support to obtain the permission to
publish the English translation of the
"Spektrum der Wissenschaft" paper.
They also thank Ms. Alice Krüßmann
for her fruitful information of
illustrations' license references.

· D.Applegate et al., �On the solution of traveling salesman prob-
lems�, in: Documenta Mathematica Extra Volume, Proceedings
of the ICM 98, 1998 (645-656); http://www.
mathematikuni-bielefeld.deldocumentaI xvol-icm/ICM.html
· E.Bradford, Ulysses Found, Harcourt, Brace & World, New York,
1963.
· R.E.Burkard et al., �Well-solvable special cases of the travelling
salesman problem: A survey�, SIAM Review, 40, 1998
(496-546).
· M.Jünger, G.Reinelt and G.Rinaldi, �The travelling salesman

problem�, in: Annotated bibliographies in combinatorial optimi-
zation, M.Dell'Amico et al. (Eds.). Wiley, Chichester, 1997 (199-
221).
· E.L.Lawler et al. (Eds.), The traveling salesman problem. A
guided tour of combinatorial optimization, Wiley, Chichester,
1985.
· M.Padberg, Linear Optimization and Extensions, Springer, Ber-
lin 1995.
· M.Stoer, �Design of Survivable Networks�, Lecture Notes in
Mathematics, 1531, Springer, Berlin 1992.

 References

Authors:
 and

started their common work on combinatorial
optimization problems in 1974 at the Uni-
versity of Bonn where Padberg was guest
professor and Grötschel a PhD student. At
present Grötschel is professor for mathe-
matics at the technological University of Ber-
lin and vice-president of the Konrad-Zuse
center for information technology. Padberg
has been a visiting professor at many pres-
tigious universities in Europe and the United
States of America and is a professor at New
York University's Stern School of Business,
but lives now in Marseille, France.

EDITORIAL

(c) 2001 The New Yorker Collection from cartoonbank.com

