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Let A : R" - R" be a continuous mapping, let x, ER", and define the sequence
{x;}iex (Where N, ={1,2,3, ...} and N=N. u{0}) as follows:

Xin=A(x), [EN. )]

The question that we wish to consider is the following: if the sequence {x}ien is
unbounded, can it contain convergent subsequences?

This problem arises in the context of attempting to eliminate the compactness
condition in the global convergence theorem of the theory of algorithms as it is
formulated by Luenberger [1, Section 6.5 and Ex. 10, p. 132] or by Zangwill (2.
Section 11.31.

The purpose of this note is to answer the above question in the affirmative by
constructing an example of a continuous mapping A such that for a particular Xq
the sequence {x;}ien defined by (1) is unbounded and contains convergent
subsequences. The example constructed below seems at first sight to be unduly
complicated, but this is due to the fact that every such sequence {x}ien
possesses certain properties which we shall establish in the following three
propositions.

From now on {x:;}iex Will denote a sequence defined by (1), where A R"->R"

is a2 continuous mapping and xo € R".

Lemma 1. If the sequence {x:}ien is unbounded, then o
(a) the terms of the sequence {xi}ien are pairwise distinct, and .
(b) there exists a subsequence {x,}ien of {x;}:en which has no accumulation
points.

Proof. (a) If x; =x; for i#j, then the sequence has onl).' finitely many distinct
terms, hence is bounded, which contradicts the hypothesis.
(b) This.follows directly from the hypothesis.
373
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Definition 2. Let {x,}ex be a subsequence of {x}en. Define the sequence {r}exin
N. as follows:

ri=ki—k, i€N,
ie.

Xy, = A%(x,), iE€N.

i+l
Proposition 3. Assume that

(a) the sequence {x;};en is unbounded, and

(b) {xx}ien is a convergent subsequence of {xi}ien. Then the sequence {ri}ien
associated with {x}iex by Definition 2 is unbounded.

Proof. Suppose that the sequence {r.}ien is bounded, and let r= max{r; | i & N}.
By Lemma 1(b) there exists a subsequence {x,}ien Of {x;};iex Which has no
accumulation points. We can without loss of generality assume that lo= k.
Define mappings j : N-»N and q : N—~{0, 1,2, ..., r— 1} as follows:

ji)y=max{a EN| =k}, ie ko=L<kjpn,
and

q( l) = l,' —k (i) 1e. X = Aq(i)(Xk,-(,-) >
0=q()<rp=r, iEN.

Thus every term of the subsequence {x}ien is contained in one of the r
subsequences {A?(x)}ien, PE{0,1,2,...,r—1}, and these converge by the
continuity of A. Hence at least one of these r convergent subsequences contains
infinitely many terms of {x,};en and therefore the sequence {x,}:en has at least
one accumulation point which contradicts the definition of {x}ien.

Proposition 4. Assume that

(a) the sequence {x;};cx is unbounded, and

(b) {x}iex is a convergent subsequence of {x}ien such that the associated
sequence {ri}ien (cf. Definition 2) has the property r; > i for all i EN.

Then {Ai(x)}i=j, JEN, is a family of countably many pairwise disjoint
convergent subsequences of {x;}iex. Moreover, if {x,}ien is a subsequence of {x;}ien
without accumulation points (such a subsequence exists by Lemma 1(b)), then no
member of the above family contains infinitely many terms of {x,}iex.

Remark 5. If the sequence {x}iexn contains a convergent subsequence, then

clearly it contains one with the property stated in hypothesis (b) of Proposition
4.

Proof. Clearly the subsequences {A’(xy)}:=;, | € N+, converge by the continuity of
A. We now prove that they are pairwise disjoint. Suppose there exist m,n,p, g €
N with m <n, p=m, q =n, such that A™(x,) = A"(xi,). Then by Lemma 1(a)

there €
t=k, 4
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there exists a uniquely determined t €N such that A™(x)= A"(xx,) = X, ie.
t=k,+m=k,+n Hence p>gq,and n —m =k, —k, = Plrzr>qznie.
n>m+n which is a contradiction. The second statement of Proposition 4
follows as in the proof of Proposition 3.

Proposition 6. Assume that

(a) the sequence {xi}iex is unbounded, and

(b) {x,}ien is a subsequence of {x:}ien without accumulation points and such
that its associated sequence {s;}ien (i.€., si=lin—1li i €N, cf. Definition 2) has
the property s;,> i+ for all iEN.

Then {x,_}i=j, jEN, is a family of countably many pairwise disjoint
subsequences of {x;}iexn without accumulation points.

Remark 7. By hypothesis (a) of Proposition 6 and Lemma 1(b) there exists a
subsequence of {x}ien Wwithout accumulation points. Clearly we can assume
without loss of generality that it has the property stated in hypothesis (b) of
Proposition 6.

Proof. Each of the subsequences {xy-j}i=j» | € N4, has no accumulation points by
the continuity of A, because Al(xy-) = xi, i €N. We now prove that they are
pairwise disjoint. Suppose there exist m,n,p,g EN with m<n, p=m. q =n,
such that Xy,-m = Xi-n- Then by Lemma i(a) there exists a uniquely determined
t € N such that x;,-m = Xi-n = Xo e t=L,-m=Il-n Hencep <g.andn-—-m =
L—L=3si=se>q=n, ie.,n>m+n, whichisa contradiction.

Example 8. The unbounded sequence {x:}ien is given in Table | in the form of a
triangular array in which the jth column, jEN, represents the convergent
subsequence {A!(x)}i=j, and the upper diagonal represents the subseqflen'ce
{x;}iex without accumulation points. We note that the columns are pa'lr}w‘se
disjoint, and that the parallel diagonals represent the pairwise disjoint
subsequences {X-j}izi» j EN, without accumulation points. An explicit formula
for x, i €N, is: x;= (i-in(n+ D)+ 1Un+2) where n €N is such that n(n+

N=2i<(n+1)n +2).

The function A: [0, ) - (0, ), which gives rise to this sequence when one

Table 1

The sequence {xi}ien

Xo i .

X1 X2 & 1)

X3 X¢ X 1od A

X X1 Xg % } ‘l* 2} 3} .

X0  Xn X2 X13 Xi4 Lol 26 3% 4

{ R Y I U S A

X A(x) Alx) AX) A%(x) ® o 1 2 3 4 ®
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(o] 1 2 3 4" 5

Fig. 1. Graph of the function A.

sets xo =13, has the graph depicted in Fig. 1. An explicit formula for A is:

x+1 Jce[m,n-+-—1 :,,
> n+3
1 1 1
={ - 3, —_ P
A(x) (n+1)(n+2)(n+3)x+(n+l)(n+3)+n+3, xe[n+n+3,n+n+2],
n+2( 1 2 2 } [ 1 ]
n+3{n+1(" +5n+5)x —(n*+4n +2)p, xE€|n+t—=n+l|,

where n €EN. The straight line y =x+1 joins the points (n,n +1) and (n +
1/(n +3), n+ 1+ 1/(n + 3)), n €N. The local minima are the points (n + 1/(n + 2),
1/(n+3)), nEN.

Clearly the function A is continuous. To verify that A gives rise to the above
sequence {x;};ex When one sets x, =3, we need to show:

(@ A(n+1/(n+2)=1/(n+3) forall n EN,

(b) A(n+1/r)=(m+1)+1/rforall n,rENwithr=3andn+3=<r

Proof. (a) A(n+ 1/(n+2))= A((n+ 1)*/(n +2)) = 1/(n + 3) by the definition of A.
(b) We have n <n+1/r<n+1/(n+3),hence A(n+1/r) = (n + 1)+ 1/r by the
definition of A.

Remark 9. The function A can be made C* by “smoothing the corners”. Hence
the above results hold for C*-algorithms.
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