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For k =2 and 3, we define several k-sums of binary matroids and of polytopes
arising from cycles of binary matroids. We then establish relationships between
these k-sums, and use these results to give a direct proof that a certain
LP-relaxation of the cycle polytope is the polytope itself if and only if M does not
have certain minors. The latter theorem was proved earlier by Barahona and
Grotschel via Seymour's deep theorem characterizing the matroids with the sum of
circuits property. We also exploit the relationships between matroid and polytope
k-sums 10 construct polynomial time algorithms for the solution of the maximum
weight cycle problem for some classes of binary matroids and for the solution of the
separation problem of the LP-relaxation mentioned above. ' 1989 Academic Press, Inc.

1. INTRODUCTION

Let M be a binary matroid on an m-element ground set E. A cycle of M
is a disjoint union of circuits of M. Let P(M) denote the convex hull of the
incidence vectors of the cycles of M, i.e.,

P(M)=conv{z¢ e Rf|Cisacycle of M}. (1.1)

This polytope has been studied in Barahona and Grotschel [2]. Tts dimen-
sion, several classes of facets, and the vertex adjacency have been deter-
mined. We continue this investigation and also focus on the combinatorial
optimization problem

max{c(C)|Cis acyclein M}, (1.2)
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the Deutsche Forschungsgemeinschaft, which supported a visit at the University of Augsburg
during the summer 1986.

306

0095-8956:89 $3.00

Copyright ¢ 1989 by Academic Press, Inc.
All nights of repraduction in any form reserved.

.




DECOMPOSITION AND OPTIMIZATION 307

where ¢eR* is a given objective function und ¢(C) stands for the sum
2 cec €. We call this problem the maximum weight cycle problem, or just
the cycle problem of binary matroids. Clearly, {1.2) is equivalent to the
linear program

max!cTx|xe P(M)!. (1.3)

since every optimal solution of (1.2) yields an optimal vertex solution of
(1.3) and vice versa. Problem (1.2} includes, among other interesting com-
binatorial optimization problems, the max-cut problem in graphs (if M is
the cographic matroid of a graph G, then the cycles of M are the cuts of G)
and the Eulerian subgraph problem (if M is the graphic matroid of a graph
G, then the cycles of A are the (not necessarily connected) Eulerian
subgraphs of G). Since the max-cut problem is .4 #-hard, the maximum
cycle problem (1.2) is . # ' 2-hard as well.

We use matroidal and polyhedral k-sums, k =2, 3, to obtain a complete
description of P(M), in case M can be k-separated into M, and M, and
complete descriptions of P(M,) and P(M,) are known. We also prove that
particular matroidal k-sums correspond to polyhedral k-sums of a certain
LP-relaxation of P(M). These composition results are then combined with
the characterization of the Euler subgraph polytope by Edmonds and
Johnson [7] and with two decomposition theorems by Seymour [15] and
Wagner [21] to a direct proof that the aforementioned LP-relaxation is
P(M) itself if and only if M does not have certain minors. The latter
theorem was proved earlier by Barahona and Grdtschel [2] via the dif-
ficult characterization of the matroids with the sum of circuits property of
Seymour [16]. Finally we use decomposition and composition techniques
to design polynomial time combinatorial algorithms for the selution of
(1.2) for certain classes of binary matroids. Among these are the just-
mentioned matroids with the sum of circuits property. Finally, we describe
polynomial time separation algorithms for certain LP-relaxations of (1.3).
This way we obtain—via the ellipsoid method—polynomial time
algorithms for (1.3) for further classes of binary matroids.

To begin with, let us quote some of the results of Barahona and
Grotschel [2] which we will use. (These results were first proved for the
cographic case by Barahona and Mahjoub [4].) Since P(M) is contained
in the unit hypercube, the trivial inequalities

0<x, €1, forall eeE (1.4)

are valid for P(M). If e is neither a coloop nor contained in a triad (ie., a
cocircuit with three elements), then the inequalities (1.4) define facets of
P(M).

Note that a coloop is never contained in a cycle, and that for two
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copitrallel elements, any cycle contains both of them or none. These obser-
vations yield that every point in P{M ) satisfies the system of equations

x. =0 for all coloops e€ E

X, —x, =0 for all coparalle! elements ¢, f € E.

In fact. these equations define the affine hull of P(M). so the dimension of
P(A ) is equal to the number of coparallel classes of M.

In a binary matroid the cardinality of the intersection of a cycle and a
cocycle is even. Thus the odd cocircuit inequalities

X(F)—x(C.FI<I|F| -1 for all cocircuits C < E
and all Fc C, |F| odd (1.5)

are valid for P(M). (Observe that the equation system for P(M) given
above is implicitly contained in the inequality system (1.4), (1.5).) An odd
cocircuit inequality defines a facet of P(M) il C has at least three elements
and no chord and Af has no F3* minor, where F;* denotes the dual Fano
matroid. Let us define

Q(M}:= | xeR¥|xsatisfies (1.4) and (1.5)}. (1.6)

Clearly, Q(M) = P{A). When does equality hold? The answer was given in
Barahona and Grotschel [2] using a theorem of Seymour [16]. In the
latter reference Seymour defines a sum of circuits property for matroids by
demanding certain polyhedral integrality properties. Specifically, a matroid
M on a set £ has the sum of circuits property if the cone generated by the
incidence vectors of the circuits (which is equal to cone(P(M))) is given by
the following set of inequalities:

x. 20 forall eekE,

x,—x(C{e})<0 for all cocircuits C< Eand all ee C.

Seymour proved that a binary matroid M has the sum of circuits property
if and only if M has no F3*, M(K,)*, or R, minor, where M(K;)* denotes
the cographic matroid of the complete graph K on five nodes and R, is
the binary matroid associated with the (5, 10)-matrix whose columns are
the ten 0/1-vectors with three I's and two 0's. Exploiting an extraordinary
symmetry of the facial structure of P(M), Barahona and Grétschel [2]
deduced the following theorem from this characterization.

(1.7) THEOREM. For a binary matroid M the following statements are
equiralent:
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(i) P(M)=Q(M).
(ii) M has the sum of circuits property.
(iii) M huas no F3*, M{(KJ)*, or R,, minor.

Two examples of matroids M with P(M)=Q(M) are as follows. The
graphic matroid M(G) of a graph G= (¥, E) has no F*, M(K5)* or R,
minor, so P(M(G)) is the convex hull of the incidence vectors of the
Eulerian subgraphs of G and is given by the trivial inequalities and the
inequalities

X(F)—x(8(W) F)<|F —1 forall WeV
and all F€ (W), |F| odd, (1.8)

where (W)= {ure Elue W, ve I W} is the cut (or coboundary) induced
by W. Though (1.8) is a consequence of Theorem {1.7), we should mention
that it was first proved to be a description of P(M(G)) by Edmonds and
Johnson [7]. For the second example let M be the cographic matroid of a
graph G. Then M has no F* or R\, minor, and Theorem (1.7) implies that
P(M)=Q(M) holds if and only if G is not contractible to K. This result is
due to Barahona and Mahjoub [4].

The presentation proceeds as follows. In Section 2 we investigate binary
matroid k-sums for k=2 and 3. The closely related polyhedral F-sums are
introduced in Section 3. Properties of polyhedral F~sums with components
of type Q(-) or P(-) are developed in Section 4 and lead to a direct proof
of the equivalence of (i) and (iii) of Theorem (1.7). The final two sections
are devoted to optimization aspects. In Section 5 we describe a polynomial
time separation algorithm for certain Q(-) polytopes. Finally in Section 6
we develop a polynomial time optimization algorithm for certain P(-)
polytopes.

Throughout, we use standard matroid terminology as defined in Welsh
[22]. In particular the prefix “co™ dualizes a term. For the algorithmic part
that follows, we will assume that all given vectors x=(xy,.. x,)7 are
rational and that each component x, = p/g is given by an encoding of the
two integers p and g. A binary matroid M on E is given by a 0/1-matrix
with columns indexed by E with the property that a subset S E is
independent in M if and only if the columns indexed by S are linearly
independent over GF(2). In the theory of matroid algorithms it is also
customary to define a matroid via an independence oracle. It is well known
that in the case of a binary matroid, specification by an independence
oracle is polynomially equivalent to specification by a binary matrix.
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3. BivARY MATROID A-SUMS

In this section we define several sums of binary matroids and describe
some of their elementary properties. The notation and approach closely

follows Truemper [1&].
Throughout. M is a connected binary matroid on a set E. If X is a basis
of M. then M has a 0/1 standard representation matrix B over GF(2) (short:

representation matrix ),

| x ivy!
1|8

A
B =

where £=Xu Y indexes the columns of B, 7 is an identity matrix, and
where a subset of £ is independent in A if and only if the corresponding
column vectors of B are linearly independent. Note that we may index the
rows of # by X. Then we can implicitly specify B (and thus represent M)
by just writing B with its row and column indices, ie.,

I
] Y 1
X| B

Let k=1 be an integer and E,, E, be a partition of E. Then the pair
(E,,E,) is a Tutte k-separation of M if |E|2k, i=1,2, and r(E,)+
r(E.) < r(E)+k — 1, Here r(-) denotes the rank function of M. Fork 22, M
is Tutte k-connected if it has no l-separation with /< k. It is customary to
call a Tutte 2-connected matroid just connected. We will only deal with
Tutte k-separations of M when M is k-connected. Thus for every Tutte
k-separation, we know that r{E,)+r(E,)=r(E)+k — 1 holds. Below, every
k-separation or k-connectivity will be of the Tutte kind, so for simplicity
we omit “Tutte” from now on when specifying any k-separation or
k-connectivity.

Suppose we are given a k-separation (E,, E;) of M, k= 1. Let X, be a
basis of E, and X, be an independent subset of E, such that X:=X, u X,
is a basis of E. Then the submatrix B of the representation matrix B
produced by X can be partitioned as

oY b Y2
X,| A, 0
B = -- ; rank (D) = k-1 (2.1)
X,| D Ag
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where £, =X, U ¥, and E, = X, U Y,. Conversely, any matrix B satisfying
(2.1) specifies a k-separation (X, 0 Y, X,u ¥, if X, uY, =k i=1,2
holds.

In his paper the cases k=2 and 3 are of particular interest. Suppose
k=2. Then D has rank 1 and thus all nonzero rows (resp. columns) of D
are identical. We construct two matrices B} and B4 from B of (2.1) as
follows, In the first case we delete all columns indexed by Y, and all but
one nonzero row, say «, from D. This row receives the new index ¢. In the
second case we delete all rows of B indexed by X, and all but one nonzero
column, say u, from D. This column is also indexed by ¢. Thus we obtain
the foliowing matrices:

_ i Y1 i _ IIe; Yz l
e
el d o

We define M, to be the binary matroid specified by the B¢, i=1,2, and
declare these matroids to be the components of a 2-sum decomposition of
M. The process is clearly reversible since D can be computed as D=u-a,
and we thus call M a 2-sum of M, and A ,.

We use the notation

M=M & .M,

to indicate that M is a 2-sum of M, and M., and that M can be 2-sum
decomposed into M, and M,. The index ¢ of @, refers to the element e
along which the 2-sum is performed. At times we will also use the term
e-sum when we want to explicitly specify that e is the special element of the
2-sum.

Note that each circuit C of M is either a circuit C, of M, without e, i =1
or 2, or can be composed from circuits C, of M,, i=1 and 2, each contain-
ing e, by taking C to be the symmetric difference of C, and C,, ie, C=
(C, uCi)\(C, n C,). The above statements remain valid when C, C,. and
C, are cocircuits instead of circuits.

The case k=3 is a bit more complicated. Indeed, several 3-sums are
possible, but we will see that some of these are not suitable for the
problems studied here. We contemplate a 3-sum decomposition only when
a 3-connected M has a 3-separation (E,, E.) with {E;| 24, i=1, 2. Under
this assumption one easily shows—see Truemper [18]—that X, = E, and
X, € E, exist so that the matrix B of (2.1) is actually of the form
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PoYy 4 Y
X, Ay 0
B = -t (2.3)
Xz 22N A,
D |uly

where (X, U Y, |24, i=12

From B we derive four matrices denoted by B, By, BY and BY. To
obtain B;" we delete from B all columns indexed by Y, and all rows
indexed by X, except for the two rows containing « and b, which receive
new indices ¢ and f: we then adjoin a new column, indexed by g, which
contains only 0's except for two I's in the rows e and f. To obtain By we
delete from B all rows indexed by X, and all columns indexed by Y, except
for the two columns containing « and v, which receive new indices e and f;
we then adjoin a new column, indexed by g, which is the sum of the
columns indexed by e and f. Below we display B{ and B, and also the
two matrices BY and BY which are constructed analogously.

LY gl Y
L XiloAg o X,| A,
By = ' Y
— B, = _
e[ a [1]o[1 ‘ riad
¢ B Jo[111 s [ b |01
t e 14
| (24)
]
e fgi Yo | __ErsI Y, !
1ol “t[ o
BA = X2 A, |5 g, 9
2 2uvw 2 B, X201 Ap
——— ujv

Let M,., M.., My, and M,, denote the binary matroids specified by
the matrices B, By, B}, and BY. One can extend arguments of Seymour
[15] or Truemper [18] to show that the matroids just defined are
isomorphic to proper minors of M. For any choice of M, € {M, ., My}
and of M,e{M,.,M,y}, it is possible to define a reversible 3-sum
operation that decomposes M into M, and M,. Two of these cases, involy-
ing M, . and M, ., and M, - and M,y have been used in Seymour [15]
and Truemper [18], respectively. For our purposes the pairs M, . and
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M, .and My and M,y are of particular interest. For brevity we call them
4i-sum and Y-sum, and denote the two 3-sums by

Af!l o @_'__ M2 e and A'{l‘]' @\; A{ZY‘

[n matrix terms the Z.-sum of M, . and M, is carried out as follows.
From both Bi and B; the column indexed by g is deleted. Then we
overlay the reduced B and B: so that the order 2 identity matrices
explicitly shown in (2.4) are identified. The upper right-hand corner is filled
with zeros and the missing matrix D of (2.3) is calculated by

B=[ulr] [%]

The matrix operations can be translated into matroid operations in several
ways. First we remark that the set e, f, g! forms a triangle in both M, .
and M, - (hence the “/."). Loosely speaking, the composition of M, . and
M,, to M involves identification of the two triangles to a new triangle,
which is then removed. We purposely used the nonspecific terms “iden-
tification” and “removed™ since at least two distinct ways exist to carry out
these operations. In one of the two ways the identification produces the
matroid M represented by

X,/ o | A, | o

1o e [t]0

x,[QI B T 4.
ujviwl D |ujv

LMt Yo g

X,| A, o |o

Ta[1]0

X, 2O A, o
D (ujv

el o [1]0 [

t(plolrl °

From M the matroid M can be obtained by deleting e, f, g, while M is
reduced to M by contracting e, [, and g.
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It is helpful to visualize the composition process in graphs. Suppose M is
the graphic matroid of a graph G. Then the matroids M, . and M., are
also gruphic. say produced by G, and G . . The latter graphs can be con-
structed from G as follows. Let A, and A, be the subgraphs of G induced
by the edge sets E, =X, u Y, and E, =X, v Y, H, and A, have exactly
three nodes in common. For i=1, 2, G, . is obtained from H, by adding a
triangle !e, /. g} on these three nodes. The matroid M is also graphic.
Indeed a graph G for M is produced from G, -, and G, by identifying the
edges e. /. and g of G, . with ¢, /, and g of G, .. Finally, deletion ofe, [, g
from G produces G. It is interesting to note that the second construction of
Af via 3 cannot be realized by graph operations since one can show that
M is never graphic.

We now explain the Y-sum briefly. The matrix operations producing the
representation B of (2.3) for M from B} and BY (representing M,y and
M,y ) should be obvious from the above discussion. Note that the elements
r, s, t form a triad (a cocircuit of cardinality three) in My and M,y (hence
the “Y™). The composition also has at least two matroidal interpretations.
One of the identification processes produces the matroid N represented by

A P A
i 0 0
X4l O A, o]
“Tifo] a Ti]O
>(201t301 A,

ulv| D |ulv

. Y, 5 Yo |
X,| A, 0
“"TalilO

b {O]1
X A
20 5 lulv 2
r{ o {10
s| b 101 0]
_tie {1l

Deletion (contraction) of r, s, ¢ in N (¥) results in M. This time both
procedures can be realized in graph operations when M is graphic. Using
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the previous notation, the graph of N is obtained from G by adding a new
degree 3 node that is linked to the three distinguished nodes of G. The
graph of N is obtained from H, and H, by connecting each of the three
distinguished nodes of H, with the corresponding node in H, with one
edge. The three new edges are r, s, 1, they form a cut in the new graph, and
their contraction produces G.

Essential for the theorems of the next section is the fact that circuits and
cocircuits of M can be nicely expressed in terms of circuits and cocircuits of
M., M., My, and M., of the A-sum and Y-sum. For a convenicnt
presentation of this circuit/cocircuit result let us call the elements ¢, f, g. r.
s, and ¢ the connecting elements of the latter matroids.

If a circuit C (cocircuit C*) of M is contained in X, u Y,, fori=1 or 2,
then C (C*) is a circuit (cocircuitj in both M,. and M,,. Thus we only
need to consider the situation where C or C* intersects both £, =X, u Y|
and E, =X, U Y., say in E, and E, in the circuit case. and in E, and £, in
the cocircuit case.

We first consider the circuit case. Let D be the submatrix of B of (2.3)
whose rows and columns are indexed by X, and ¥,, respectively. Define d
to be the sum of the columns of D indexed by E, nY,. Suppose d=0.
Then from B of (2.3) it is obvious that both E, and E, index dependent
column submatrices of {/|B], i.e.,, C is not a circuit, a contradiction. Thus
d is equal to the column of D containing u, or v, or to (1, 1, w”}”. We may
suppose the first case since the other two cases are handled in essentially
the same manner. One readily confirms that the column submatrix of
[7|8i 1 indexed by C,. =E, U {e} is minimally dependent, so C,. is a
circuit of M, .. Similarly C,. = E, u {e! is a circuit of M, ., so C is the
symmetric difference of C, . and C, .. Note that ¢, the selected connecting
element, is unique for the given d, i.e.,, we could not have chosen for g to
draw the same conclusions. Still assuming that 4 is equal to the column of
D containing u, one can similarly show that £, u {r, ¢! is a circuit Cy in
M, for i=1 and 2, and that no other pair of connecting elements will do.
We conclude that C is the symmetric difference of C,y and C,y as well.

Entirely analogous results follow from duality for the cocircuit case.
Thus there exist unique connecting elements x, y€ {e, f, g} and =€ {r, 5, t}
such that E, u {x, y} is a cocircuit (C*),., and E,u {:} is a cocircuit
(C*)y of My, for i=1 and 2. The cocircuit C* is then the symmetric
difference of (C*), . and (C*). ., and also of {C*},y and (C*),y.

The composition of circuits and cocircuits of the components of a A- or
Y-sum is slightly more complicated. We briefly indicate the circuit
relationships and leave their verification and filling in of the cocircuit
results to the reader.

If C, and C, are circuits of M, . and M, . that contain e but not f or g,
then (C, u C,)\{e!} is the disjoint union of at most two circuits of M. If




316 GROTSCHEL AND TRUEMPER

instead €, contains f and g but not ¢, then (C, {e})u(Cy 1 f gl)isa
circuit of M. If €, and C, are circuits of My and M,y that contain r and ¢
but not s, then (C'; u C.} {r, t} is the disjoint union of at most two circuits
of M.

These results imply that for every cycle C of M there are cycles C, . and
C.. of M, and M, ., respectively and also cycles Cy and C,y of M,y
and M.y respectively, such that € is the symmetric difference of C, . and
C, and also of C;y and C,y. The last observation, or equivalently two
pivots on the 1I's of the explicitly shown 2x 2 identity submatrix of B of
(2.3). prove that the ~-sum and Y-sum operations are commutative, i.e.,

1"!1_-_ 6‘)_-_ A‘I:_:_ = A{:_-_ @ .lwl_.-_,.

and
My @y -M:\' =M,y @y Mw-

Furthermore, dualization changes a /A -sum to a Y-sum, and vice versa, i.e.,
fM=M, @ M, ,then M*=(M,_)*®y(M,.)* where the triangles

4 of M, . and M, . have become the triads for the Y-sum.

We now deal with the problem of locating 2- and 3-sums for certain
matroid classes. But before we proceed, we simplify the notation for 3-sums
to unclutter the exposition. So far we have used the notation
M,.®. M,. and M,y ®y M., for the A-sum and Y-sum, but actuaily
M, ®. M,and M, ®y M, suffices once one agrees that in the former case
the set .. is assumed to be a triangle in both M, and M,, while in the
latter case the set Y is assumed to be a triad of M, and M.

Profound decomposition theorems of Seymour [15] and Wagner [21]}
give necessary and sufficient conditions for 2- and 3-sum decomposition of
certain matroids. The following theorem is based on these results. It will be
repeatedly invoked in the subsequent sections. Below, K , is the complete
bipartite graph with three nodes on each side.

(2.5) THEOREM. (a) Let .4} be the class consisting of the following
matroids:
(i) all graphic matroids of 2-connected series-parallel graphs,
(ii) all 3-connected graphic matroids,
(ii) all 3-connected cographic matroids, and
{iv) F,, F¥, and R,,.

Then there exists a polynomial-time algorithm that, for any connected
binary matroid M without and F, or F3* minor, either

(1) declares M e .4 or
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(2)  finds a 2-sum or [.-sum decomposition of M inta M, and M.
such that
— M, isin . {] and 3-connected,
— M, is connected, and
— M, and M, are both isomoarphic to minors of M.
Moreover, graphs are found representing the graphic matroids among M,
M* M, M¥ M,, and M¥.
(b) Ler .43 be the class consisting of the following graphic matroids
arising from
(i) all 2-connected series-parallel graphs,
(i) all 3-connected planar graphs, and
(ii) K; 3 and Vg (shown in Fig. 1).
Then there exists a polynomial-time algorithm that, Jor any connected
graphic binary matroid M without an M(K) minor, and for any edge set L
that is the edge set of a triangle of M or is empty, either
(1) declares Me .13, or

(2) finds a 2-sum or f.-sum decomposition of M into M, and M,
such that

- M| €. 1‘_;_,
— M, is connected and contains L, and
— M, and M, are bath isomorphic to minors of M.

Moreover, graphs are found representing the matroids M, M|, and M.

Proof. (a) Assume M to be 2-separable. With a slight modification, the
polynomial time algorithm of Truemper [17] finds a 2-sum decomposition
M=M,®, M, , where M, is 3-connected or determines a 2-connected
series-parallel graph G such that M is the graphic matroid of G. In the lat-
ter case we are done. In the former case we can stop as well if M, .47,
except possibly for the determination of the graphs. (We will cover this
later.) Otherwise M is regular and has a 3-sum decomposition by Seymour
[15]. Indeed, an algorithmic implementation of the proofs of Seymour

FIGURE |
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[15] or anyone of several algorithms [23, 14, 20] can be adapted to
locate a c.-sum M, =M,@., M), where eclement e, the connecting
element of the 2-sum, is in M., and where M, is 3-connected. One easily
confirms that M =M, @ -, M., where My=M, ® M, . If M,e.d], we
are done. Otherwise. we find in polynomial time, with one of the just-cited
algorithms, a /.-sum decomposition M, =M,®_., M, . where A, occurs
in M,, and where A, is 3-connected. That such a A-sum indeed exists, is
not immediately obvious, but can be readily deduced from special proper-
ties of the crucial binary matroid R,, of Seymour [15] and 3-connectivity
results of Truemper [18]. A check of the matrix operations of Section 2
then validates the claim that M =M, @, My with My, =My, @, M,,.
Continuing in this fashion we eventually get an M e.4] and M=
M,@_ #,,, for some connected #7,,. Reexamining the preceding steps one
also establishes that M, and M, are isomorphic to minors of M. A shor-
tened version of the procedure handles the case where M is 3-connected
and not in .¥;. Finally the graphs are produced by any one of several
polynomial algorithms, see, e.g., Fujishige [8], Bixby and Wagner [5].

(b) This part is handled in an analogous fashion, except that the
3-sum result of Wagner [21] is invoked instead of Seymour [15]. It seems
that the result is a bit easier to derive if one uses Truemper [19], which
contains a strengthened and more detailed version of the decomposition
theorem of Wagner [217. |

Note that part (b) with the optional triangle L condition allows
concatenation of parts (a) and (b) as is evident from the proof of
Theorem (2.5). We should also point out that M, of part (a) or (b) is
strictly smaller than the original M since M, has at least 2 (4} elements in
case of a 2-sum (A-sum). Thus, if one applies Theorem (2.5) recursively,
ie., first to M, then to M., etc, then after at most |E| applications a
matroid in .4 or .43 is obtained.

The next two sections introduce and develop results for polyhedral
F-sums, which are the polyhedral counterparts to the matroidal k-sums.
The reader mainly interested in applications of Theorem (2.5), may skip
ahead to Sections 5 and 6 without loss of continuity.

3. POLYHEDRAL F-SUMS

We now define compositions of polyhedra. For certain polytopes
associated with binary matroids, these compositions will be closely related
to the k-sums defined in the preceding section.

Let P, € R® and P, =R* be polyhedra such that F:=E, nE, # .
For notational convenience let us write each vector xe R® in the form x=
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(x', v), i=1, 2, where y is the vector of the components indexed by F. The
F-sum of P, and P, is the polyhedron

Pl ®F PZ ‘= {(-,".l1 -\.2’ € M'E! [ A1) I-'l a-‘,
such that (x, y)eP, i=1,2}. (3.1}

Geometrically, the F-sum of P; and P, is obtained in two steps. First the
polyhedron P;,:={{x!, x? yvieRu~#|(x y)e P, i=1,2} is formed,
and then it is projected into (x', x*)-space. Suppose P, and P, are given in
the form

Pi={(x, y)|AX'+Dy<d'}, i=12
Then
Py ={(x', X} p)lAX' + D'y <d i=1, 2}, (3.2)

and the F-sum P, @, P, can be obtained from this description of P, by
Fourier-Motzkin elimination of y.

4. F-SuMs OF THE PoLYTOPES P(-} AND Q(-}

For given P, P., and F it generally seems difficult to describe structural
properties of the F-sum in terms of structural properties of P, and P,. Here
we are interested in Fsums of polytopes of type P(-) and O(-) defined in
(1.1) and (1.6). Specifically, the sets E, are ground sets of binary matroids
and F is either a singleton or a triangle or triad. Indeed the F-sums are
motivated directly by the matroid 2-, A-, and Y-sums in the following way.
Suppose a binary matroid M on E is the e-sum M, &, M,. Then we
will compare the e-sums (short for {e}-sums) P(M,)®, P(M.) and
O(M,)®, O(M,) with P(M) and Q(M). Similarly, if M is the L-sum
M, ®. M,, then we will relate P(M )@ . P(M.) and Q(M,)® . Q(M;)
to P(M) and Q(M). In this notation, the /. denotes the triangle used for
the composition. Analogously, the Y-sum case is of interest as well.

The first result is easy, and its proof is left to the reader.

(4.1) THEOREM. Let M, @, M, be the e-sum of two binary matroids M,
and M. Then the following holds.

(a) P(M,®. M;)=PM)®, P(M:).
(b) QM ®,. My)=0(M,)®. O(M>).

The situation becomes much more complicated in the case of 3-sums.
Later we shall prove that the analogue of Theorem (4.1) does hold for
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Y-sums. However, this is generally not so for /.-sums, as we now
demonstrate by two counterexamples.

Let M, be the cographic matroid of the graph G,, i=1, 2, shown in
Fig. 2. So P(M,) is the cut polytope of G,. The cut 2o ={r, 5, ¢} forms a
toangle in A, and A,. Obviously, M=M, @ . M, is the cographic
matroid of a graph G=(V, E) which is K; with one edge subdivided.
Neither & nor G, are contractible to K, thus by Theorem (1.7), P(M,) =
Q(M,), i=1, 2, holds. It is easily checked that the vector (x?, y) =21 e R,
where 1 = (1, I, .., 1} is contained in P(AM,). Similarly the following vector
(x', ¥)eR  isin P(M,): component # {see Fig. 2) has value 0, and all other
components have value 3. Thus the vector = ={x', x’}e R"' has value 2 in
each component except for component /. By definition (3.1), - is contained
in PIM,)®. P(M,). The inequality a’x=3,., ,x. —X, <6 is clearly
valid for the cut polytope P(M) of G (in fact, it defines a facet). But
a’z=%, and so z is not contained in P(A ). This shows P(M)# P(M,)@® -
P(M,). The same matroids can be used to show that Q(M) need not be
equal to Q(M,) @ - Q(M,). For M|, let (x', y) be the vector in R7 that has
value { in each component except for a | as entry of the component
corresponding to edge g of G,. For M., let (x% y) be the vector in R'© that
contains only 1's except for two 1's in the components corresponding to the
edges / and j of G,. Then z={x', x*)is in Q(M,)@® .Q(M,), but z cannot
be in Q(M ) since - has three 1's as entries for a triad of M.

The remainder of this section is devoted to Y-sums. First we prove the
analogue of Theorem (4.1} for Y-sums, and then use this result to estabiish
equivalence of (i) and (iii) of Theorem (1.7).

(4.2) THEOREM. Let M =M, @y M, be the Y-sum of two binary
matraids M| and M,. Then

P(M] @yM:)=P(M1)®Y P(MZ)

Proof. We use a proof technique due to Cornuéjols, Naddef, and

FIGURE 2
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Pulleyblank {6]. The proof closely follows the arguments of Barahona [1].
Fori=1, 2, let E, be the ground set of M,, and suppose |r, s, ¢} is the triad
Y of M, and M,. Thus the ground set of M is E=(E, UE,} Y.

Recall that for every cycle C of M, there are cycles C, of M, i= 1.2,
such that C is the symmetric difference of C, and C,. This immediately
implies that for every vertex 7 of P(M) there are vertices y*' = (x', y) and
77 =(x% y) of P(M,) and P(M,), respectively, such that (x', x?)=y".
Here y=(y,, J,, »,) denotes the 3-vector corresponding to the triad Y.
Hence by (3.1), P(M)<S PIM,)@®, P(M.).

To show the converse we prove that every point xe P(M,) @y P(M,) 15
a convex combination of points in P(M). So suppose x={x', x"} with
x'eRE Y and x*eRE Y is an element of P(M, )@y P(M,). By definition
(3.1) there is a vector veRY such that #'=(x! 1y)e P(M,) and ¥ =
(x?, y)e P(M,). The vectors ' and % are convex combinations of
incidence vectors of cycles of M, and M,, respectively; i.e., there exist ver-
tices p!, p°, ... p* of P(M,) and g, 4% ...q" of P(M,) and 4,,... 4, 20,
Bpvoo 20 wWith 4, + -+ 4, =1, g, + --- + 4, =1 such that

k / _
(xh¥=Y 4p,  (¥Ly)=Y wq.

i=1 i=1

Set

x,,:= 9 A;  where Kirs):=lie{l . kj|pi=pi=1]

i€ Kir. sl

B.:= Y Ai;  where Lirs):={ie{l,. . I}|gi=4i=1]

ie Lir, 5)

Define «,,, 2,,, B,,» B, analogously. Note that a cycle in M, or M, meets
the triad Y either in two elements or in none. So by the above construction
we have

%+ 2y =y,=f,.+8.
1" + :.ﬂ = .V.r =ﬁrs + ﬁ.\'l
1" + a.u = ."'r = ﬁrl + ﬂ.ﬂ'

These two systems of equations determine z,,, ..., f,, uniquely; so z,, = §,,,
o, = f,,, and z,, = f,. This allows us to match incidence vectors of cycles
in M, containing r and s with incidence vectors of cycles in M, containing
r and s, and to perform analogous matchings for the index pairs r, ¢ and s,
t. We can also match incidence vectors of cycles in M, containing no
element of Y with incidence vectors of cycles of M, containing no element
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of Y to obtain incidence vectors z¢, i=1, .., k" of cycles of M and scalars
Py e Pr 20 such that

X
x=3 pz% X pi=1
i=]
This finishes the proof. |

(4.3) THEOREM. Let M=M, ®y M, be the Y-sum of twe binary
matroids M, and M. Then

oM, Dy M:)=Q(M1}@Y Q(M.z)

Proof. For convenient reference we first list the inequality systems
defining Q(Af) and Q(M;), i=1, 2, where we employ the same conventions
as in the proof of Theorem (4.2). We also rewrite any inequality of the
form x(F)—x(C"F)< |F|—1 of (1.5) as X(F)+ x{C\F}= [, where %(F)=
Y.er(l—x.). We deduce from (1.4) and (1.5) for @(M) the inequalities

0<(x, xY) <, (44.1)

TUF+ XMCF )+ B3(F) + X Co\F,y) 2 1,
for all cocircuits C=C, u C, of M with C, € E,
and C,<E,, and for all F=F, uF, with
F,eC,, F, £C,, and |F,} + |F,]| odd. (44.2)

For Q(M,), i=1, 2, we obtain

0<x'<l, (4.5.1)

H(F)+x(C\F)=1
for all cocircuits CS E; of M; with Cn Y=,
and for all F= C with |F| odd, (45.2)

FF)+ X (C\F) + p, 21
for all cocircuits Cu {h} of M, with Cn Y=
and he Y, and for all F< C with |F| odd, (4.5.3)

MR+ X(C\F)+(l—y)=1
for all cocircuits Cuw {h} of M, with Cn Y=g

and he Y, and for all F< C with |F| even, (4.54)
(I1=3)+0=p)+{1—p)21, (4.5.5)
I~y )+y,+ry. 21, (4.5.6)
e+ (l=3)+p 21, (4.5.7)
ety +(l—yp)=1. (4.5.8)
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We have chosen the above elaborate descriptions of (M) and Q(M,)
since they simplify the subsequent explanations. The reader may have
noticed that we have omitted cocircuit inequalitics from (4.5) that involve a
cocircuit of the form Cu e, [}, where ¢, feY and CnY = . But any
such inequality is implied by those of (4.5.3}-(4.5.8), and thus can be
eliminated.

In the discussion below we frequently rely on the cocircuit resuits for
Y-sums of Section 2, without explicitly referencing them. We also make
repeated use of the fact that the symmetric difference of two cocircuits of a
binary matroid is a cocycle.

First we show that Q{M)2 Q(M, )@, Q(A,). Let C; u C, be a cocircuit
of M specified in (4.4.2). If C,, say, is empty, then C, is a cocircuit of M,,
and the inequalities of (4.4.2) involving C, are also listed in (4.5.2) for M,.
If both C, and C, are nonempty, then there is a unique element £ € ¥ such
that C, u {h} is a cocircuit of M, i=1,2 Thus all constraints {4.4.1)
and (4.42) can be produced by Fourier-Motzkin elimination from
(4.5.1)-(4.5.4) with i=1 and 2, and hence Q(M )2 Q(M,) By QIM,).

The proof of the reverse containment is more difficult. We will extend an
arbitrary (x!, x?)e Q(M) to {x', vye Q(M,;), for i=1, 2. Derivation and
justification of such a y is accomplished in several steps. First we calculate
for each he Y from the given (x', x*) e Q(M),

a, =min{ 1, min{%(F,} + x(C,"F)} },

b, :=max {0, max{1 — [2(F)+x(C AF)]} ]
where the inner minimization for @, (inner maximization for b,) is over
i=1 and 2, over all C,cE, that form a cocircuit together with A in
M,—note that by our definition of 3-sums at least one such cocircuit
C;u {h} must exist—and over all F, €, of even (odd) cardinality. For
heY and a, <! (b, >0), let C*" and F** (C"* and F™*) be a cocircuit
C,;u {h} and a set F, producing the minimum (maximum). Define i(a, h)
(i(b, h)) to be the index i of the matroid M, containing C*" (C™*). Thus we
have for j=i(a, h) and k=i(h, h),

a, =1 or a,, = ¥/ (F**) + xI(C*" F**) with even |[F**|,
b,=0o0rb,=1- [R5 (F™*) 4 x*(C** F*")] with odd | F**|.

We next list and then prove several useful inequalities about the a, and b,
heY.

(4.6)

(4.7)

12a,2b,20 forall AheY; (4.8.1)
a, b, —b,l,
a,z|b, — b, (4.8.2)

al?' Ibr—bsl;
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a,+h,+h, <2,
h,+a,+b, <2, (4.8.3)
b, +b,+a, <2

Proof of (48.1). 0<aq,, b, <1 obviously holds, so we may assume
a,<1 and b, >0. Then by (4.7) a, = b, if and only if for j=i(a, h) and
k=i(b, h),

FUFL) o+ HCOMNFR) + RHFPR) £ XHCMINFM ) 2 1 (49)

Now (4.9) holds trivially if an element of C*" n C"* occurs in just one
of F* and F™" since then the left-hand side is at least 1. Otherwise
|[F“" |+ |F*"| =1 (mod 2). This fact plus symmetric differences and
Section 2 results confirm that (4.9) is implied by one of the inequalities
(4.4.2) for Q(M).

Proof of (4.8.2). By symmetry we only need to show a, + b, 25, or
equivalently a, +{t —5,)=(1—5,). In the nontnvial case a4, <1 and
b, >0, so by (4.7) we need to show that

BIFT) 4 XH(CHN\F0) 4 () + xF (O A\ FP)

~l N e hon ¥ H

?{_\'(F"' )+ X (O F) Tf b, >0, (4.10)
| if b, =0,
where j=i(a, r), k= i(b, s), and I =1i(b, 1). The inequality clearly holds if an
element ke C*" ~ C** occurs only in one of F** and F** since then the
left-hand side is at least 1. Otherwise the symmetric difference of C*" and
C** on one hand and of F** and F™* on the other hand contain a cocircuit
Ciuft} of M, i=1 or 2, and a set F,=C, such that (C;, F;) is a can-
didate pair for the maximization problem for 4,; or an inequality of (4.4.2)
for (M) implies that the left-hand side of (4.10) is at least 1. In either
situation (4.10) holds.

Proof of (48.3). By symmetry we only need to consider a, + b, +
b, €2, or equivalently

In the nontrivial case b,, b, >0 and with & =i(b, s) and /=i(h, 1) we have
by (4.7),

(1= b,}+ (1= b,) = F5(F**) + x(Ch\F*)
+ R(FP) + X/ CPOF), (4.12)
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which is at least | (and hence (4.11) holds) if ¢** and "' contain an
element that occurs in just one of F** and F*'. Otherwise the symmetric
difference of C** and €™’ on one hand and of * and F' on the other
hand give a cocircuit C; u {r} of M,, i=1 or 2, and a set F, = C, such that
(C,, F;) is a candidate for the minimization problem for 4, ; or an inequality
of (4.4.2) for Q(M) implies that the right-hund side of (4.12) is at least 1.
We are done in either case.

With (4.8.1}-(4.8.3) established, we now proceed with the derivation of y
such that (x', y)e @(M,), i=1, 2. Without loss of generality we may sup-
pose b, <b, <bh,. Define

y,=minla,. b},
(4.13)
Y= h.n

Ye =h1-

We claim that y=(y,, v,, v,) so specified will do. Clearly (4.5.2) holds by
(4.4.2). By the definition of a, and b, and the fact that @, 2 y, 2 h,. he Y,
(4.5.1), (4.5.3), and (4.5.4) are satisfied as well. Note that the latter con-
clusion is nothing but the statement that Fourier- Motzkin elimination
works. Thus (4.5.5)-(4.5.8) remain.

(4.55). (I1-yv)+(1—-y)+(1—1y,)=1 becomes minla, b, ;+b, +
b, <2, which holds by (4.8.3).

(4.56). (1 —y,)+ y, + y, =1 holds since min{a,, h,} <h, +h, trivially.

(45.7). ¥, 4+ (1 —y,)+y, =1 also holds trivially since y, =h, 2h, = y,.

(4.58). v, + v,+ (1 — y,) =1 translates to min{a,, b,} = b, — b, which is
satisfied by (4.8.2).

Thus (x/, v)e@(M,), i=1,2, and QIM)=0Q(M )P, Q(M,). 1

Theorems (4.2) and (4.3) can be combined with Theorem (2.5) (which is
an algorithmic version of two decomposition theorems of Seymour [15]
and Wagner [21]) and with the Edmonds and Johnson [7] charac-
terization of the Euler subgraph polytope, to a direct proof of the
equivalence of (i) and (iii) of Theorem (1.7). We first restate this
equivalence for convenient reference.

(4.14) THEOREM. Let M be a connected binary matroid. Then
Q(M)=P(M) if and only if M has no F$*, M(Ks)*, or Ry, minor.

Proof. First we show that the listed minors cannot be present.
Fourier-Motzkin elimination applied to one variable x, of (1.4) and (1.5)
reduces that defining system for Q( M) to one for Q(M/e). Setting x, =0 in
(1.4) and (1.5) produces a system for Q(M'e). Analogous statements
obviously hold for P(M). Thus P(M)=Q(M} implies P(N)=(0(N) for
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every minor of M, and our first claim follows once we prove that P(N)
#Q(N), for N=FF, M(Ks)*, or R,,.

N=F} The vector x=2-1eR’ is in Q(F) but not in P(F}) since
it violates the facet defining inequality 3°7_ | x, <4 of P(F}).

N=M(Ks)*. The vector x=3-1eR* is in Q(M(K,)*) but not in
P(M(Ks)*) as it violates the facet defining inequality 1% x, <6 of
P(M(Ks)*).

N=R,,. Let 4 be the (5, 10) binary (nonstandard) representation
matrix of R, where each column has exactly three I's. Suppose the
columns are ordered lexicographically, i.e., for any two columns 4 ;and 4,
with j <k, we have 4, lexicolarger than 4 ,. Declare {1, 2, .., 10}, the set
of column indices of 4, to be the ground set of R,,. Then straightforward
checking shows that x, +xg3+X,0—Y,42410% <0 defines a facet of
P(Ryp). Now the point xe R'" defined by x, =x;=x,,=% and x, =1,
J#2, 8, 10, violates the above inequality, but is clearly in Q{(R,,) since
every cocircuit of R, has cardinality of at least 4. Hence P(R o) # Q(R o).

Now we prove that exclusion of F*, M(K;)*, and R, assures P(M)=
Q(M). Straightforward checking (with lengthy and tedious details though)
establishes P(M)=Q(M) for Me |F,, M(K;;)*, M(Vg)*}. The same
conclusion holds for any graphic M, say M = M{(G), since then Q(M) is
specified by the trivial inequalities and the inequalities of (1.8), and these
also define P(AM) according to Edmonds and Johnson [7]. Concatenation
of parts (a) and (b) of Theorem (2.5), followed by dualization, produces a
statement which implies that any connected binary matroid M without the
excluded minors F*, M(K;)*, and R,, can be constructed by 2- and
Y-sums from graphic matroids and copies of F;, M{V;)*, and M(K,;)*.
We know P(N)= Q(N) for each matroid N used as a building block, and
due to Theorems (4.1}, (4.2), and (4.3), we conclude P(M}=Q(M). |

The remaining two sections cover optimization and separation aspects of
the polytopes P(-) and Q(-). In the next section we show that the
separation problem for Q(M) is solvable in polynomial time if by repeated
Y-sum decomposition M can be reduced to a collection of matroids for
which a special shortest cocircuit problem can be solved in polynomial
time.

5. SEPARATION FOR O(-)
In the separation problem for Q(A) we are given a binary matroid M on

a set E and a vector ye Q% We want to decide whether or not y is in
Q{M). In the case of a negative answer we also want to find an inequality
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from those defining Q(AM) violated by 1. For convenience. we dualize this
problem by defining Q*(M) := Q(M*), i.c.,

C*(M):={xeR*0Kx<; x(F)—x(C FIK|F]~ 1
for all circuits C of M and all F< C with [F| odd .

Since Q*(M*)=(Q(M), from now on we only examine the separation
problem for Q*(M) without loss of generality. Clearly y & Q*( M) if and
only if 0 ygtand Y, (1 — v, )+ 3 4ce # Vs 21, for all circuits C of M
and for all F< C with odd cardinality. The nontrivial part of the separation
problem is thus subsumed by either one of the following two problems.

(5.1) SHORT OpD CIRCUIT PROBLEM S(AM, a, b). Given M and s pair
(a,. b,) for each element 4 of M, where a,, b, 20 and a, + b, =1, find a
circuit C and an odd cardinality subset F< C such that the length of
(C, F), defined as 3, » a, + Y.pc £ 04, 15 less than 1, or conclude that the
length of every pair (C, F) is at least I.

(5.2) RESTRICTED SHORTEST ODD CIRCUIT PROBLEM RS(M, a, b). With
M, a, b, C, and F as in (5.1), find a pair (C, F) of minimal length, or
conclude that the length of every pair {C, F) is at least 1.

Before we go on, we introduce a few conventions to simplify the dis-
cussion. First, we will always implicitly assume that any given vector pair
{a, b) satisfies a,,, b, 20 and a, + b, 2 1, for all he E. The F-set of a circuit
C is the set F in the pair (C, F). Frequently the F-set is implicitly specified;
the circuit C is then odd if | F| is odd, and the length of C is the previously
defined length of the pair (C, F), i.e., Y per s + Xnec ¢ Pa-

At times we take the symmetric difference of two circuits, say of C; and
C, with F-sets F, and F,. We invoke this operation only when each
element ire C, N C, is either in both sets F, and F, or in none of them.
Thus, we may say that the cycle given by the symmetric difference of C,
and C,, has as F-set the symmetric difference of F, and F,.

We now show that S(M, a, b) may be solved if M is decomposable and if
certain versions of S{-) and RS(-) can be solved for the components of M.

(5.3) THEOREM. Let M be a binary matroid. If M is a 2-sum M, ®, M,
(@ A-sum M, ®. M,), then the short odd circuit problem S(M, a, b) can be
solved by calling an algorithm for the restricted shortest odd circuit problem
in M, three times (seven times) and by solving a short odd circuit problem
S(M,, a% b?) for M, once. In each of the cases the encoding lengths of the
weight vectors a', b' for M;, i=1,2, are bounded by a polynomial in the
encoding length of the vectors a and b of S(M, a, b).

582b46/3-6
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Proof. We only prove the /.-sum case since the easter 2-sum case
follows by analogous arguments. Thus suppose that M=M, ®, M,,
where . =!e, f, ¢}, and that with the given vectors @ and b we are to
solve the short odd circuit problem S(A, a, b). First we assign to M, and
M, the given a- and h-values except for ¢, f, and g of the triangle A in M,
and M,. Next we solve a problem RS(M,, a', b') seven times, where each
time we use different values for a} and b;, he /.. We label the cases 0, el,
e, f1, f2, gl, and g2, and let the solution triples (shortest odd circuit,
F-set, length) be (C°, FO9, "), (C*', P!, IY, (C*?, F*2, I'?), etc.

Cuse 0. aj=h)=1,forall he /. If [Y< 1, declare (C°, F°, I1°) to be the
output for M and stop. If /"> 1, continue.

Case hl. h=e, f, or g: a} =0, all other a'- and b'-values for the A of
M, are 1. If "' <1, assign /"' as b7 value to # of M,. Otherwise assign
hi=11to h of M.

Case h2. h=e, f, or g: b} =0, all other a'- and b'-values for the A of
M, are |. If " <1, assign *? as ¢} value to 4 of M,. Otherwise assign
a;=1to h of M,.

With these assignments all a*- and b”-values for M, are specified. Before
we go to the next step of the proof, we want to establish a few inequalities
involving the just computed a; and b of he A in M., where in each case
we assume /"> 1:

12a;,b;20 forall he A,

(5.4.1)

az+b;=1 forall he 4,
a;+a;+a;zl, (5.4.2)
a;+b} +bl21, (54.3)
af_éa} +b:, (5.4.4)
bl<a} +al, (5.4.5)
b2 < b2 + b2, (5.4.6)

There are more inequalities due to symmetry, but the listed ones will
suffice. We now validate these inequalities.

(54.1). The lower and upper bounds on a7 and b2 obviously hold. If
ai+bi<1, then "+ <1, he C*" A C™, he F", and h¢ F*2. No other
element re C*' n C" can be in the symmetric difference of F*' and F*?
since then /' + /% > a! + b! > 1. But then there exists a short odd circuit in
the symmetric difference of C*' and C'?, so /° <1, a contradiction,

(54.2) and (5.4.3). This is proved similarly to (54.1), ie., the con-
tradicting /° < 1 is deduced if (5.4.2) or (5.4.3) is violated.
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(54.4). In the nontrivial case aj +h; < 1. Then (¢, plus the symmetric
difference of /2 and C*! contains a candidate circuit for case #2, and thus
a:<a;+b.

(5.4.5) and (5.4.6). Are proved similarly to (5.4.4).

We now continue with the proof. By the original assumptions on the vec-
tors a and 4 and by (5.4.1) we know that «?, 520 and ¢+ A7 > 1, for all
elements r of M,. Now solve the short odd circuit problem S(M., a®, b*).
Five outcomes are possible, to be discussed in detail below. In cach case
the arguments make extensive use of the circuit results for the L-sum of
Section 2.

Outcome 1. M, has no short odd circuit. We claim that A then has no
short odd circuit either. If A does, then any such circuit must contain
elements of M, and of M,, ie, without loss of generality C=
(C, uC,)\{e}, where for i=1 and 2, C, is a circuit of M, that contains e
and no other element of /.. Now the length of C, . {e} as subset of C is at
least a2==1? or b> =1, depending on whether C, -{¢| contains an odd or
even number, respectively, of F-elements of C. Then C. is a short odd
circuit of M., provided we declare ¢ to be an F-element, if and only if
C,*/e} has an odd number of F-elements of C.

Qutcome 2. e, f, g} is a short odd circuit of M,. This is not possible
by (5.4.2) and (5.4.3).

Outcome 3. M, has a short odd circuit C that contains e but not for g
of 4. If e is (is not) an F-element of C, then (C2 U C). e} ((CTUC).le})
is a disjoint union of at most two circuits of A with an odd number of
F-elements in total. The length of this disjoint union is that of C, so one
readily extracts a short odd circuit for M.

Outcome 4. M has a short odd circuit € that contains f and g but not
e. If exactly one (none or both) of f, g is (are) F-elements of C, then C=
(CH\{eHu(C\{S g}) (C=(Clelyu(Cr\ /. gh))is a circuit of M with
odd number of F-elements. By (5.4.4 }-(5.4.6) the length of C cannot exceed
that of C, so C is a short odd circuit for M.

Outcome 5. M, has a short odd circuit C that does not involve e, f,
or g. Then C is also a short odd circuit for M.

Thus for each outcome we either produce a short odd circuit for M, or
conclude that none exists. |}

For Theorem (5.3) to be useful, one must be able to solve the restricted
shortest odd circuit problem for interesting classes of binary matroids. The
following lemmas demonstrate that this is indeed so. The first result is due
to Barahona and Mahjoub [4]. For completeness we sketch the proof.

T AR
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(5.5) LEMMA. The restricted shortest odd circuit problem can he solved
for graphic matroids in polynomial time.

Proof. Find a graph G=(V/, E) for the given graphic matroid M in
polynomial time using any one of several algorithms (see, e.g., Fujishige
[8] or Bixby and Wagner {5]). With G and the given vectors a and b at
hand, create an (undirected ) graph H from two copies of G, say G, and G;,
as follows. If edge i occurs in G, then add an edge from node i of G, to
node j of G,, and an edge from node j of G, to node i of G,. To the edges
of H assign the following weights. If the edge has both endpoints within G,
or within G,, then assign b, of the corresponding edge ol G. If the edge
connects a node i of G, with a node j of G, then assign value a,, where &
is the edge connecting nodes i and j in G.

Clearly a shortest odd circuit C of G, say including node v, has the same
length as a shortest path in H from v of G, to v of G,. Conversely, let W,
be a shortest path in H from v in G, to v in G,, say with length /. I
min, [, =1.. <1, then W.. immediately yields a shortest odd circuit
for G. |}

The next result for cographic matroids follows from Padberg and Rao
[13]. Again we sketch a proof for completeness.

(5.6) LEMMA. The restricted shortest odd circuit problem can be solved
for cographic matroids in polynomial time.

Proof. First we determine a graph G for the dual matroid of M. We
then replace each edge i of G by a series class of two edges, say i1, and /i,
and assign weight a, to s, and weight b, to h,. Let H=(V, E) be the
resulting graph, and define T to be the set of nodes 7 of H which have an
odd number of edges of type h, (i.e., with weight a,) incident. Clearly, |T|
is even. Then solve the T-cut problem for H, ie., find a cut 3( W) E of
minimum total weight such that |W n T| is odd. The algorithm of Padberg
and Rao [13] produces such a cut D=4§(W) in polynomial time. If the
total weight of D is at least 1, then M has no short odd circuit. Otherwise
C=1{heE(G)|h, or heD} and F={heClh, e D} define a pair (C, F)
with minimal length and odd |F|. Note that for any given & at most one of
h, and h. can be in D if the total weight of D is less than 1, due to the
essential conditions a,, b, 20 and a, + b, > 1, for all A. Thus the length of
C is simply the sum of the weights of the edges in D. |

Theorem (5.3) and Lemmas (5.5) and (5.6) permit the following
conclusion,

(5.7) THEOREM. Let 4" be a class consisting of graphic matroids, of
cographic matroids, and of a finite number of matroids that are neither
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graphic nor cographic. Let .# be a class of binary matroids such that for
each Me. f/".1" one can determine in polynomial time a 2-sum M=
M@ Morali-sumM=M,® - M,, where My e .V and M, €. #. Then
the separation problem for Q*(M) can be solved in polynomial time for each
Me (.

Proof. By Lemmas (5.5) and (5.6) the restricted shortest odd circuit
problems can be soived for each graphic and cographic Me.t in
polynomial time, For the finite set of additional matroids in .4", problem
(5.2) can be solved in constant time. Thus by Theorem (5.3} and induction,
the short odd circuit problem can be solved in polynomial time for each
Me #.4". This implies the polynomial time solvability of the separation
problem for Q*(M). |

(5.8) COROLLARY. Ler.# he the class of connected hinary matroids each
of which does not have at least one of F,, F¥ as a minor. The for all M e . #
the separation problem for Q(M) and Q*(M) can be solved in polynomial
tine.

Proof. To prove the Q*(M) case, we apply Theorem (5.7} with
.+ = {graphic matroids, cographic matroids, R,,, F,} if M does not con-
tain F*. Exchange the roles of F, and F;* if M does not contain F,. By
Theorem (2.5) the decomposition condition of Theorem (5.7) can be
satisfied, and hence the separation problem for Q*{M) can be solved in
polynomial time for all M e.#. Since .# is closed under dualization the
above proof also settles the Q(M) case. ||

Note that the polynomial time algorithm given in the proof of
Corollary (5.8) is combinatorial since this is so for each subroutine and
that a suitable implementation produces a practically usable method.

In the final section we describe algorithms to solve optimization
problems over P(-).

6. OPTIMIZATION OVER P{-)

There are a number of interesting applications that can be viewed as
optimization problems of type (1.2). Two examples are the ground-state
problem of spin glasses (a problem in the theory of magnetism) and the via
minimization problem in VLSI and printed circuit board design. These
problems can be phrased as max-cut problems in graphs—see, for instance,
the paper Barahona, Grotschel, Jiinger, and Reinelt [3], where both
applications are outlined. Problem (1.2) contains .4"#-hard special cases
such as the max-cut problem, so there is little hope for a good algorithm in
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the general case. Two ways of algorithmic attacks on (1.2} are of special
interest. In the first approach one restricts the class of binary matroids to a
smaller class for which a combinatorial, special purpose polynomial time
algorithm can be designed. In the second scheme one solves (1.2) via the
problem max ¢'x, xe P(M) of {1.3) using linear programming techniques.
In the latter method, an LP-relaxation of (1.3) is chosen and solved with a
cutting plane procedurc with the hope (and in some cases the guarantee)
that each optimum vertex solution of this LP is integral and thus a
solution of (1.2).

For the max-cut problem both approaches have been successful. For the
class of planar graphs, Orlova and Dorfmann [12] and Hadlock [11]
have found a reduction of the max-cut problem to at most |V|? shortest
path problems and one perfect matching problem. For the (more general)
class of graphs not contractible to K, Barahona [1] has designed a com-
binatorial decomposition algorithm that runs in polynomial time. For a
class of toroidal graphs with a universal node (the max-cut problem is
.4"#-hard for this class) Barahona, Grotschel, Jinger, and Reinelt [3]
have implemented a cutting plane algorithm that shows very good com-
putational results empirically. In this paper we generalize both approaches,
and also unify some of the known algorithms for (1.2).

Let us start with the LP-approach. We consider the LP-relaxation

max{cTx|xe (M)} (6.1)

of problem (1.3). It follows from Barahona and Grotschel [2] that the
number of facets of Q(M) may grow exponentially with the number of
elements of M. Thus there is no way to encode the constraints defining
Q(M) in polynomial space. Grétschel, Lovasz, and Schojver [10],
however, have shown that the number of constraints is not important: (6.1)
can be solved in polynomial time if and only if the separation problem for
Q(M) can be solved in polynomial time. We do not know whether the
separation problem for Q(M) can be solved in polynomial time for all
binary matroids M, but we have shown in Section 5 that for a number of
interesting classes of binary matroids such algorithms exist. Among them
are

~— graphic matroids (see Lemma (5.5)),
— cographic matroids (see Lemma (5.6)),
— matroids without F, or F3* minor (see Corollary (5.8)).
Indeed, by Theorem (5.7) a polynomial time separation algorithm for
Q(M) exists for all matroids M that belong to a class of binary matroids

that is built up by taking 2-sums and A-sums recursively, where in each
step one component matroid is graphic, cographic, or belongs to a finite
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set of binary matroids--provided such 2- and .. -decompositions can be
detected in polynomial time. By the result of Grotschel, Lovisz, and
Schrijver [10], any lincar function can then be optimized over QM) in
polynomial time, so Theorem (5.7) has the following corollary.

(6.2) COROLLARY. For any ohjective function ¢, the lincar program
max{c x| xe Q(M}! can be solved in polynomial time if

(a} M is a matroid without F, or F¥ minor or
(b) M has the sum of circuits property or

(c) M is cographic or

(d) M is graphic.

By Theorem (1.7}, P{AM)= Q(M) if and only if M has the sum of circuits
property. So in this case, the polynomial time solvability of (6.1) implies
the polynomial time solvability of {1.3). Thus we have

{6.3) CorOLLARY. The cyele problem (1.2) can be solved in polynomial
time for the matroids with the sum of circuits property.

Since a cographic matroid has the sum of circuits property if and only if
its associated graph is not contractible to K¢, Corollary (6.3) implies
Barahona's result that the max-cut problem for graphs not contractible to
K is solvable in polynomial time. It also implies that the Eulerian sub-
graph problem can be solved in polynomial time for any graph. In case M
does not contain an F;* minor, the facets of Q(Af) are also facets of P(M)
(this follows from Barahona and Groétschel [2]). Moreover, by
Corollary {5.8) the separation problem for Q(Af} is polynomially solvable.
So for binary matroids without F* minor, the LP ({6.1) should furnish a
tight and computationally tractable LP-relaxation of {1.3) and should
provide a good starting basis for cutting plane algorithms.

The algorithmic results for optimization over Q(AM) (resp. P(M))
described above have one drawback. They are all based on the ellipsoid
method and thus are—in a straightforward implementation—of doubtful
practical relevance. However, we can also use decomposition techniques to
produce polynomial time combinatorial algorithms for the solution of (1.2)
(resp. (1.3)), as shown in the next theorem. Its proof is an adaption of the
proof given in Bahahona [1] for the max-cut case.

(6.4) THEOREM. Let M be a binary matroid that is a 2-sum or Y-sum of
two binary matroids M, and M,. If M=M , ® M, (M =M, &y M;), then
the cycle problem for M can be solved by calling an algorithm for the
maximum weight cvcle problem in M, two times (four times) and by calling
once such an algorithm for M,.
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In huth cases, the encoding lengths of objective functions for the maximum
weight cvele problems to be solved for M, and M, are bounded by a
polynomial in the encoding length of the objective function of the original
problem.

Proof. Let ¢, €Q, [ € E, be the weights of the elements of M and define
B:={(|E{+1)max{|c,|+ 1| feE}|. Suppose M =M, ®,. M,. Define objec-
tive functions ¢' and ¢* for M, and M, by setting ¢} :=¢, for all fin M,
different from e and ¢; :=c, for all f in M, different from e. Solve the
maximum weight cycle problem for M, once with ¢! := B and once with
cl:= ~B. Let v, (resp. #,) be the optimum values and C, (resp. C,) be
optimum solutions of these problems. Clearly, in the first case the optimum
solution must contain e, while it does not in the second one. Now set
¢:=v, — B— 7, and solve the maximum weight cycle problem for M, with
objective function ¢2. Let ¢, be the optimum value and C, be an optimum
solution. Obviously, the optimum value of the maximum weight cycle
problem for M is equal to v, +7,. If eeC,, then (C, uC,)\{e} is an
optimum solution, and if e¢ C,, then C, u C, is an optimum solution.

Now suppose Y=Ir, 5.t} and M=M, ®y M,. Define objective
functions ¢' and ¢* for M, and M, as before using the weights in M, except
for the elements of ¥. For M, we consider the following cases:

l. ¢l:=¢':=8, ¢ :=-B,
2. ¢li=¢} =8, ¢l:=—B,
3. ¢li=c!:=8, cl:=-B8,
4. ¢li=cl:=¢l:=—8

Run the algorithm for M, four times with the weights as specified above
and denote by v,,, r,,, v,,, and T, respectively, the objective function values.
Let C,,, C,,. C,,, and C be optimum solutions of these problems. By the
choice of the weights we have x, ye C,,, z¢ C,, for all choices x, y, z€
'r,s,t},and r, 5, t ¢ C. To solve the maximum weight cycle problem for M,
set

¢ = (v, +v,,—v, —0—2B)/2,
"f = (v,, + Uy —0p — 5_28)/21
¢ = (v, +v,—1v, —0—2B)/2

Let v, be the optimum value and C, be an optimum solution for M,. It is
straightforward to verify that the maximum weight of a cycle in M is equal
to vy -+ ¥ and that an optimum solution for M is given by (C,, u C.)\{r, 5}
if r, se Cy, by (C,, wC N[, 1} il 1, 1€Cy, by (C,,uCy)\{s, t} if 5, 1€ C,
and finally by Cu G, if Y C, =@,
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The statement in the theorem about the encoding lengths of the objective
functions follows from the above construction. J

Theorem (6.4) plus decomposition and the matching algorithm give
combinatorial optimization algorithms for several interesting classes of
binary matroids as follows.

(6.5) THEOREM. Ler . 4" he a cluss consisting of graphic matroids and of a
finite number of matroids that are non-graphic. Let .# be u class of binary
matroids such that for each M e #*.1" one can determine in polynumial time
a 2-sum M, ® M, or a Y-sum M, @Dy M, for M, where M, 6.4 and
Mie /. Then there is a combinatorial algorithm that solves the maximum
weight cycle problem for all matroids in . in polynomial time.

Praof. The matching algorithm handles the case of graphic M, while all
other situations are processed by Theorem (6.4) and induction. |}

(6.6) COROLLARY. For any ohjective function ¢, the maximum weight
cycle problem can be solved by a combinatorial polynomial time algorithm if

(a) M is a matroid without F, and M(Ks)* minor or
(b) M is a matroid without F¥ and M(K)* minor or
(¢} M has the sum of circuits property, or

(d) M is cagraphic and has no M(K:)* minor, or

(e} M is graphic.

Proof. By the dualized version of Theorem (2.5) any M of (a}-(e} is
graphic or a 2-sum or Y-sum where M, is graphic or equal to F,;, FF,
M(K,;)*, M(Vg)*, or Ry, and where M, is isomorphic to a minor of M.
The decomposition can be detected by combinatorial polynomial time
algorithms, so the conclusion follows from Theorem (6.6). |

We remark that Truemper [19] contains several 2-sum and 3-sum
decomposition theorems for graphs, and thus for cographic matroids.
These results may be used to prove a number of additional corollaries of
Theorem (6.5).

7. CONCLUSIONS AND EXTENSIONS

As shown in Barahona and Grotschel [2] and in this paper,
the notion of cycles in binary matroids provides a general conceptual
framework for a number of different combinatorial optimization problems.
Both structural results (e.g., composition and decomposition, polyhedral
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descriptions) and algorithmic approaches {combinatorial decomposition
techniques, cutting plane methods via separation algorithms) carry over
from the known special cases and have been unified under one roof.

There are some extensions of this approach possible. For instance,
suppose B is any (m, n)-matrix with O/l entries and he {0, 1} Let M be
the binary matroid associated with B, and define

P(M, b):=convixe {0,1}"| Bx=hmod2}.

Thus P(M, 0} is the cycle polytope P(M) considered before. It was shown
in Barahona and Grotschel [2] that any optimization problem
max{c'x|xe P(M,h)} can be transformed into an optimization problem
max{éTx|xe P(M,0)} using an arbitrary 0/1-vector y € P(M, b). One can
always find such a vector y easily or prove that no such vector exists. So
for all classes of matroids for which the optimization problem for P(M, 0)
can be solved in polynomial time, the optimization problem for P(M, b)
can also be solved in polynomial time. This latter class of problems con-
tains such interesting special cases as the T-join problem in graphs: Given
a graph G, an even cardinality subset T of nodes of G, and weights ¢, on
the edges f of G, find a subgraph of G of minimal total weight that has odd
node degree exactly for the nodes in T.
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