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The monotane asymmetric travelling salesman palytape P4 is defined ta be the convex hull of
the incidence vectors of all hamiltonian circuits and all subsets of these in a complete digraph of
order n. We prove that certain hypohamiltonian digraphs G =(V, E), i.e. digraphs which are
not hamiltonian but such that G —v is hamiltonian for all v e V, indnce facets x(E)<n—1 of
B, This result indicates that P’ has very complicated facets and that it is very unlikely that an
explicit complete characterization of P! can ever be given.

1. Introduction and notation

In this paper we show that the intractability of the asymmetric travelling
salesman problem (ATSP) is closely related with the difficulty of characterizing
hypohamiltonian digraphs. We associate with the n-city ATSP a polytope P%
which has the property that every ATSP can be solved as a linear maximization
problem over P4 Then we show that certain hypohamiltonian digraphs (cf. [8])
induce facets of Px.

These results indicate that the polytope P% is very complex, and that it is most
unlikely that a complete explicit characterization of P% can ever be found.

A digraph G =(V, E) consists of a finite set V of nodes and a set E of ordered
patrs of distinct elements of V called arcs. If e ={u, v)€ E then u and v are called
endnodes of e, u is said to be the initial node and v the terminal node of e; u and
v are called neighbours. |V| is the order of G. The set of all arcs in E having both
endnodes in a subset W of V is denoted by E(W). If |V|=n, then E,, is the set of
all ordered pairs (u, v), u# v, of elements of V, and the digraph K, =(V, E,) is
called complete.

A non-empty set of arcs

P ={(v,, v3), (v, Va),..., (te—1, B )}<E
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where v, #v; for i#}], is called a path of length k—1 and is denoted by
(01,02, ..., 9 ] I (0, v,) € E then C:=PU{(1,, v,)} is called a circuit of length k
and is denoted by (vy, va,. .., 1). A circuit (path) of length |V| (|V]|—1) is called
hamiltonian; such a circuit is also called a tour. Given a digraph G=(V, E) then
G ~v is the digraph with node set V—{v} and all arcs in E which do not contain
the node v.

Definition 1.1. Let G=(V, E) be a digraph.
(a) G is called hamilionian if G contains a hamiltonian circuit,
(b) G is called hypohamiltonian if
(b,) G is not hamiltonjan and
(b,) G—wv is hamiltonian for all ve V.

For u,ve V we define G—(u, v) 1o be the digraph (V, E—{(u,v)} and G+
(u, v) the digraph (V, EU{{u, v)P. If a digraph G has a property m, then G is
called maximal (minimal) with respect to 7 if G +(u,v) (G —{(u,v)) does not
have property o for all pairs (i, V)¢ E ((4, v) € E). w™(v) resp. w (v) is the set of
all arcs having v as its initial resp. terminal node; w(v)= w W)U (). d*(v)=
lw*(v)| is called outdegree of v; d~(v)= |w™(uv)| is called indegree of v, and
d(v)=d*(v)+d(v) is called degree of v.

The asymmetric travelling salesman problem (ATSP) is the problem of finding
the shortest hamiltonian circuit in a weighted complete digraph. The nodes of the
digraph can be interpreted as cities and the weights as the distances between the
cities. We can associate a polytope having (0, 1)-vertices with the ATSP in the
following way:

Let K, =(V, E,) be the complete digraph on n nodes. Let ¢y €R be the weights
associated with the arcs (i,j) and let 'f‘n be the set of arc sets which are
hamiltonian circuits or subsets of hamiltonian circuits in K,. With each arc
e=(i,j}e E, we associate a variable X, = Xy, and with each Te T, we associate an
incidence vector x7, i.e. a vector such that xT=1if ec T and x. =0 otherwise. As
|E,.|= n(n—1)=:m we have xTe R™. The convex hull P2 of the incidence vectors
of all tours and subsets of tours is called (monotone) asymmetric travelling
salesman polytope (cf. [4]), i.e.

Pr=conv{xTeR™: Te T,)}.

It is clear that every ATSP can be solved as a linear maximization problem over
S ﬁ!; contains the zero vector and all unit vectors, it is fully dimensional, i.e.
dim P=m.

An inequality ax=<a, is called wvalid with respect to P if Phc
{xeR™: ax=<ag}. A valid inequality ax <ag is called maximal if the inequality
obtained by increasing any component g, of a by any £ >0 is not valid. A valid
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inequality ax <a, is called a facet of Pm if
dim(PiN{xeR™: ax = a}) =dim P}—1=m—1.

Clearly, a facet is a maximal inequality.

A theorem of polyhedral theory states that fully dimensional polytopes have a
unique linear characterization; this implies that there exists a unique (up to a
constant factor) finite non-redundant system of linear inequalities Ax=<b such
that P3={x €R™: Ax<b} and that this system is given by the set of all facets of
~¥. In order to characterize P completely and non-redundantly we have to
characterize all facets of P,

It was shown in [4] that the trivial inequalities, the subtour elimination
constraints, some comb inequalities and other classes of inequalities define facets
of P} But these inequalities are not sufficient to characterize P4 In this paper we
show the existence of a new class of facets which in contrast to the comb- and
subtour-elimination constraints are highly complex.

For an inequality ax=<a, valid with respect to P} we define its face to be
H,:={x e P%:ax = ay}. In order to prove that an inequality ax <a, is a facet of
P% we use the following technique. We consider any other valid inequality bx < b,
which satisfies H, < H,, and show that b = ra where m€R —{0}, which proves that
dim H, = m—1. The sum Y e X; Will be abbreviated by x(E). The face of a
valid inequality x(E)=r is denoted by Hg.

2. ’IYivially directed hypohamiltonian graphs

We consider hypohamiltonian digraphs G =(V, E) of order n as subdigraphs of
the complete digraph K., k =n, thus every node carries a label 1,2,..., k and
every arc e € E is an arc in K. Now, hypohamiltonian digraphs can be related to
the asymmetric travelling salesman problem in the following way.

Proposition 2.1. Let G =(V, E) be a hypohamiltonian digraph of order n. Then the
hypohamiltonian inequality

x(Bysn—-1

is a valid inequality with respect to P for all k=n. x(E)<n-1 is not maximal if
k>n.

Proof. Since G is not hamiltonian, every tour in K, contains at most n— 1 arcs of
E, thus the hypohamiltonian inequality is valid. If k>n then the subtour-
elimination constraint x(E(V))<n—1 is valid with respect to P%, in fact it is a
tacet (cf. [4]), and since E ¢ E(V) the hypohamiltonian inequality is not maximal.

We are going to prove later that certain hypohamiltonian digraphs actually
induce facets, but Proposition 2.1 already suggests an unusua!l property of
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asymmetric travelling salesman polytopes. Since the polytopes P and P4+ look
rather similar—at first sight—it seems reasonable to expect that all facets of P%.
will also be facets of P*! after trivial lifting, i.e. giving zero coefficients to the -
new variables. This anticipation is backed by the fact that all known facets of the
asymmetric travelling salesman polytope have this property, see [4]. Proposition
2.1, however, shows that this is not the case for hypohamiltonian inequalities, i.e.,
if a hypohamiltonian inequality is a facet of P then this facet is a particular
property of the polytope of order n which is not shared by any other polytope P,
k# n.

Lemma 2.2. Let G'=(V, E') be a hypohamiltonian digraph of order n such that
any inequality dx < d, which is valid with respect to P% and satisfies Hg. < H, has
the property that there exists a >0 such that

d,=a forall (u,v)eE'".

Then dy=(n—1)a and the hypohamiltonian inequality induced by any maximal
hypohamiltonian digraph G =(V, E) with E'<E is a facet of Pn.

Proof. Let dx=<d, be an inequality that satisfies the requirements above. By
taking a hamiltonian path in G' and summing up the coefficients we get dg=
(n—1a.

Now let dx < d,, be any valid inequality satisfying He < H,. Since Hg. < Hg, the
conditions of the lemma imply that d,,, = « for all (1, v)e E’. Let (v, w)e E—E’.
G'—v contains a hamiltonian circuit C that contains some arc (u, w). C;:=(C—-
{(ut, w)}) U{(v, w)} is a hamiltonian path in G, and hence dy=(n—1)a=dx" =
(n—2)a+d,,. This implies

d.=c forall (4 v)eE.

Let (i, v)¢ E, then because of maximality G+ (u, v) contains a hamiltonian
circuit C, that necessarily contains (i, v). C,:= C—{{u, v)} is a hamiltonian pathin
G and therefore dx“ =d,. Since dx=d, we have d,, = 0. This implies d,,=0
for all (u,v)e E, ~E.

Altogether we have shown that d = ax(E) and d,,= a(n—1) which proves that
x(E)<n—1 is a facet of f’l},

The simplest way to get a hypohamiltonian digraph is to take a hypohamil-
tonian graph G (cf. [1,2, 11]) and substitute the two arcs (u, v), (v, u) for each
edge {u, v}, cf. [8]. Hypohamiltonian digraphs obtained this way are called trivially
directed hypohamiltonian graphs and are denoted by G. Recall that a graph is

called cubic if all nodes have degree three. For these we can show the following
result

'I_:heorem*2.3. Let G'=[V, E'] be a cubic hypohamilionian graph of order n and
G'=(V, E') its trivial direction. Let G =(V, E) be any maximal hypohamiltonian
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digraph such that E' < E. Then the hypohamiltonian inequality
x(B)<n—1

is a facet of P

Proof. Let bx<b, be a valid inequality with respect to Pt such that Hg < H,.
Since G’ is cubic, every node z € V has exactly three neighbours in G', say u, v, w.
G'—u contains a hamiltonian cycle C which necessarily contains the chain
(v, z, w), thus G'—u contains a hamiltonian circuit C; containing the path
[o,z,w]. The n—1 arecs of the paths P;:=(Ci—{(v, 2)}) U{(y, 2},

P,:=(C;—{(z, w)}) U{(z, u)} are in E’ and therefore x™, x™2e Hg. This implies
0= by— b= bx P — bxP2= by, + by, — byy — b

zu'

By reverting the direction of C, we get a circuit C, containing the path [w, z, v].
Similarly we obtain

0= buz + bzu - bwz - bzu'

By considering the other cases G'—v, G'—w in the same way we get the
following system of six equations in six unknowns

buz - bzu - buz + bzw =0
buz - bzu + bzu - bwz =0
+bzu+buz_bzu—_—bwz =0

- buz + buz - bzu + bzw =0
+b,, —Db., +b,, — b, =0
_buz +bzu+bwz—_bzw=0

The set of all solutions of this system is given by b, =b,, = by, =77, b, =
b, =b,,=7*. Thus we can conclude that for every node ve V there are w5,
a5 €R such that b, ==} for all ec w*(v), and b, =, for all ec w (v).

G’ is hypohamiltonian implies that G’ is not bipartite; i.e. there is a cycle of
odd length k in G’, and thus in G’ there exists an odd length sequence of arcs of
the following type (v, v2), (U1, v2), (V3, V4), (Us, V), - - -, (B V1), (13, v1). Hence
we can conclude from the above result
=b

+ = T == -
Ty, bﬂhl’z_ T, Ty, .,

. - _ -
etuy = Mo = By = Ty

and have shown that there is a node v, e V with b, =, for all e € w(v). This fact
1 and the connectedness of G imply b, = for all ee E'.
f, The theorem now follows from Lemma 2.2.

3. Marguerites

Trivially directed hypohamiltonian graphs are by far not the only hypohamil-
tonian digraphs. It was shown in [3, 8, 10] that hypohamiltonian digraphs of order

i
i
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n exist if and only if n=6, and that for all these n there are hypohamiltonian
digraphs which cannot be derived from trivially directed graphs. The “nicest’
class of hypohamiltonian digraphs obtained in [8] are the odd Marguerites which
we will consider in this section.

Let p=3 be odd, V={a;,a,,...,08, by,....b,} and E= AUBUD, where

A ={(au ai+1):i= 1! LI 1p_1}U{(ap1 al)}=<alr Ay, ..., ap):
B={(by bir):i=1,...,p=1}U{(b,, b)}=(by, bs,..., b,),
D={(a, b), (b.a):i=1,... . D}

Then the digraph M, =(V, E) is called odd Marguerite.
It was shown in [8] that odd Marguerites are hypohamiltonian digraphs, and

that the Marguerite M,, which has six nodes, is the smallest hypohamiltonian
digraph, see also 3, 10].

Definition 3.1. Let G =(V, E) be a hypohamiltonian digraph. We say that two
nodes u, v;€ V satisfy structure 1 (cf. Fig. 1) if the following properties are

. . u,
ui-? ul"l ul i+l
O— L, ()
Vi-2 Yi-1 Vi Vil
Fig, 1.

satisfied:
(1) (w, vy), (v, u;)eE.
(2) There exist different nodes 1, Wi—1> Uity Yi_p, Vg, U4 € V such that
(2.1) there is a hamiltonian circuit C in G — u; which contains the path [u,_,,
U1y Vimgy Ui Vinq, Uiy
(2.2) there is a hamiltonian circuit K in G —v; which contains the path [,

—2s
Vioyy Uigs Uy Upeq, Dipql.

Lemma 32. Let G=(V, E) be a hypohamiltonian digraph of order n with nodes u,,
v; satisfying structure 1. Let u;_p, w,_,, U4, B9, Uiy, U €V oand C K be as in
Definition 3.1. Let dx<d, be a valid inequality with respect to P2 such that
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Hg < H,. Then there exist o, B, v, 8 €R such that

(a) d =d, ., =0
B dypm ™ Qo = Bs
(c) d

d

Ui-14— l_d“nlui 1 =7

(d) M—1.5%-1 = dunx- Yier = 8’
(e) dy o =BTy—38,
) dy =0 T8
(g) dﬂ.lq_ o +B Y,
(h) Ay =0tB—8,

Proof. We construct several hamiltonian paths T}, §; in G the incidence vectors of

which are contained in Hg and hence satisfy dx <d, with equality. For simpler
index calculations weset 1=1_2, 2=%_1, 3=0;_1, 4 =0, S = Vi1, 6= U1, 1= Uy,
8 = ,_,, thus—by assumption—the nodes 4, 7 satisfy structure 1, and the path in
C is [1,2,3,4,5, 6], the path in K is [8,3,2,7, 6, 5]. (See Fig. 2.)
Define:
T;:=(C-[2,3)U[2,7], T5:=(C-[1,2,3,4DU[3,2,7,4],
T,:=(C—[3,4))U[7,4], T.,:=(C-[4,5)U[4.7]
Si:=(K-[3,2DU[3,4],  S,:=(K-[8,3,2,7)U[2,3,4,7],
Sy:=(K—-[2,7DU[4,7],  S.:=(K-[7,6)U[7,4]

C contains an arc (8, v) where v is some node v € V, while K contains some arc
(1, u) ue V. We define

Ts:=(C—(8, vJU[2, 3]U[5, 6])U([8, 3]U[2,7, 6]),
Ts:=(C—([8, v]U[2, 3,4 U([8,3]U[2,7,4)),
So:=(K—([1,u]U[3,2]U[6, 5HU([1, 2]U[3, 4, 5]),
Se:=(K—([1,u]U[3,2, 7MU([1,2]U[3,4, 7).

The matrix corresponding to the following 8 equations
dxTi—dxTi=dxTi—dxT=dxT —dxTe=dx™—dx™=0
dxS — dxS1 = dxS — dxS = dx S — dx S = dxSs— dxSe =

7 6

2

O —) >
ﬂ;

3

Fig. 2.
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has by construction the following form:

12 23 27 32 34 45 47 56 65 74 76 83

1 -1 1 -1
-1 1 1 -1
-1 1 1-1
1 -1 -1 1
-1 1 -1 1
1-11 -1
-1 1 -1 1
1 1-1 -1

This matrix contains an (8, 8) upper triangular matrix with +1 on the main
diagonal, hence it is of rank 8. It is easy to calculate that the null-space of this
matrix can be represented in the way stated in the lemma.

Proposition 3.3. Let M, =(V, E) be an odd Marguerite with p=5, E= A UB UD,

and let dx=<d, be a valid inequality with respect to Py such that Hez € H,. Then
there exist o, BeR with

dyw=a Y(u v)eA,

don=8 Y(uv)eB,

by =3{a+B) VY(u,v)eD,
do=3(n—-1)(a+4).

Proof. Clearly every pair a;, b, of nodes i=1, ..., p satisfies structure 1. By
applying Lemma 3.2 to a,, b; we first get from 3.2(a) that Qg 0= gy, = @ and
from 3.2(b) that d,,,=d,,, = 8. Now we apply Lemma 3.2 consecutively to the
node pairs as, bs; a;, by ... Up bys G2, b3 a4, b5 .5 @,y b,_. obtaining

a= usfh:dﬂs%z = daurzfl[n—lzdanﬂ].:duiﬂ]: v .=d

10"
This proves that d, =« for all (4, v)e A, and similarly we get d =g for all
(u, v)e B.

The application of Lemma 3.2 as described above also gives the following
identities via (b) and (e): B=8+vy— 8 i.e. ¥ =45, and via (c) and (g y=a+B—v
i.e. 2y = a+ B. Therefore we have d,, =3(«+8) for all (u, v)eD.

The incidence vector of the hamiltonian path P =[b,, a,, a,, by, b, . . ., b, a,]
in M, satisfies dx® =d,. By the results above

dx” =3(p-Dea+ip—- DB +ipla+B)=3(n—1)a+p)

which proves the assertion.
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Proposition 3.3 shows that odd Marguerites almost induce facets since any face
containing the face generated by Marguerites can be parameterized by two
parameters only.

Theorem 3.4. Let n=2p where p=5 and odd. Let M!,=(V,E') be an odd
Marguerite where two arcs of the form (a1, &), (@, a;-y) or (bisy, ), (by biy) are
added. Let G =(V, E) be any maximal hypohamiltonian digraph of order n with
E'<cE. Then

x(E)sn—1

is a facet of P~

Proof. It should be clear that M4 is also a hypohamiltonian digraph.

Let dx=<d, be a valid inequality with respect to P2 such that Hg < H,. The
coefficients d,,, for (u, v) in M, are given by Proposition 3.3.

W.l.o.g. we may assume that the arcs added are (as, a,) (ay, ay). M, —a;
contains a hamiltonian circuit C containing the arcs (a,, a,) and (b, by). Then
C,:=(C—[by, bz U[ay b;] and Cy:=(C—[a, a,])U[a,, a;] are hamiltonian
paths in M, resp. M. We obtain

do=dx® =3(p(a+B)+(p— (a+pB) =xn—1){a+p)
and
0=do—do=dx—dx=d,, +d, 4 — daya,— i,
=%(a+ﬁ)+a_dﬂ1ﬂ|._8

and thus d, . =3(3a—B). Similarly, we can show dg,o, =2(3— B).
On the other hand M, —a, contains a hamiltonian circuit K which contains the
path [ag, b,, by, ba, a3, Ga, b;], thus the path

K,:=(K—([b,, b1]1U[ba, az, as, bs])) U((as, az, ay, by]U[bs, b3])
is hamiltonian in M} and therefore
Yn—1)a+pB) = dx™
=3a-B+H(p-2(a+B)+(p+1)B+(p—3)a)
=(p—1(a+p)+z(3a—p), '
which shows « =3, and hence
d.=a forall (u,v)eE"
Now Lemma 2.2 implies that x(E)<n—1 is a facet of Py,
Remark 3.5. By similar arguments as in the proofs of 3.2 and 3.3 one can show

that the statement of Proposition 3.3 also holds for the smailest Marguerite
M;=(V,E),ie. that any valid inequality dx < d,, such that He < H, © PS satisfies
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Fig. 3.

dp=a Y(u,v)€A, d, =B Y(u,0)€B, d,,=4a+p) Y(u v)eD. However, the
digraph obtained from M; by adding two arcs (a,,, 4), (a;, a,_,) or (b, b;),
(b, b;~y) is not hypohamiltonian, thus Theorem 3.4 is not applicable.

The maximal hypohamiltonian digraphs containing M, are those digraphs
where two arcs of the form (a;,,, a,), (b1, b)) are added. Unfortunately these
digraphs do not induce facets since one can show that s, 0 =3¢ —38 and
dy,..», =3B —za holds. The inequalities induced by these digraphs are subfacets,
i.e. are the intersection of two facets. Since P% is a monotone palytope all
coefficients of d have to be nonnegative and the right hand side positive. Thus, by
taking the extremal values for o and B we get the two desired facets by setting

@ =38 or 8 =3a. Therefore, the facets that are generated by the Marguerites M5
are of the form

x(B)+2x(D) +3x(A) +4x, <10
or
x(A)+2x(D)+3x(B)+4x, _, <10.

where we fixed the parameter B to be 1 in the first and 3 in the second case.

The digraph induced by the positive coefficients of the first inequality is also a
hypohamiltonian digraph, cf. Fig. 3. Therefore we have an example of a
hypohamiltonian digraph which induces a facet of P%in an unexpectedly compli-
cated way in that the arcs have to be weighted and are not just summed up in the
usual manner, cf. Proposition 2.1.

This example also shows that even the small polytope P$% has facets which are
quite complex and far away from having (0, 1)-coefficients only.

4. Other hypohamiltonian facets

In addition to trivially directed hypohamiltonian graphs and Marguerites sev—
eral other digraphs obtained by means of three constructions were shown to be
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hypohamiltonian in [8]. In this section we will consider those hypohamiltonian
digraphs which are produced by using Marguerites in these constructions. By
describing the constructions we restrict ourselves to Marguerites, the general
techniques are described in [8]. Until the end of this paragraph the nodes of an
odd Marguerite M, are labeled ay, 4, .. ., ay, by, ba, .- ., b, &nd the nodes of M,
are labeled a{, a4,..., a}, b, b4, ..., by

Coustruction HH2. Let M,, M,, p, ¢ =5, be two odd Marguerites. Let G’ be the
digraph obtained by adding M, and M,, identifying one node of M, and one node
of M,, say a, and a/, into a node x and by adding the arcs N ={(b,, a3), (b4, a,),
(a,. B%), (al, b,)}, cf. Fig. 4. Then G’ is a hypohamiltonian digraph.

Remark 4.1. (a) It is easily seen that all pairs of nodes a;, b;, i =3,...,p—1, and
al, bi, j=3,..., g1, satisfy structure 1, cf. Definition 3.1.

(b) Furthermore, it is not hard to check that the pair of nodes a,, b, satisfies
structure 1 with respect to the nodes af, x, a; (for a,} and by, b, b, (for by), i.e.
there is a hamiltonian circuit C in G'— a, containing the path [a}, x, by, by, b3, 3],
and in G’'—b, there is a hamiltonian circuit containing the path
[b,, b1, X, Ga, aa, bs]. Similarly, the nodes a,, b, satisfy structure 1 since there is a
hamiltonian circuit Cp in G'—a, containing the path [ay_2, Gy—ys bp—1, by by, X1,
and there is a hamiltonian circuit K, in G’—b, containing
Lbp—2, Bp—1; Gp_15 G X, b,].

Theorem 4.2. Let G' =(V, E') be a hypohamiltonian digraph of order n obtained
from two odd Marguerites M,, M, be Construction HH2. Then the inequality
x(E)<n—1 is a facet of P% for all maximal hypohamiltonian digraphs G = (V,E)
with E' < E.

Fig. 4.
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Proof. Let dx < d, be a valid inequatlity such that Hy < H,. We apply Lemma 3.2.
By Remark 4.1 a,, b, and the node pairs ay, by; ag, bs; . . . : (-1, b, satisfy
structure 1, thus we get :

Qoix = dora, = oo, =" "= dy_ 0 =0, (1}
A, b, = by, = i, = 1" = du, b, = B (2)
dp,ix = doya, = dyya, =+ = dy o, =y, (3)
ey, =dop,= Aogp,="""= d, p =8, _ . (4)
dy,a, =+ —, (5)
doyp, =+ B35, (6)
deg, =+ 8-, (7
dy b, =B+y—8. (8)

By applying Lemma 3.2 to the pairs of nodes a3, by; as, bs;. .. ; a, b, which
satisfy structure 1 according to Remark 4.1 we obtain

B+‘Y_5=dh1.b1= db,.b,|= e =db,.b1=ﬁ by (2) and (8),

at+B—y=dyo=dyo="""=d,,=v by(3)and(5),
atd-—vy=d, ., =dy,="""=d,, by (7),
i.e. we have y =8 and v =6 =4(a+ B). Thus we have shown
Qo = oy =g, =@ i=2,...,p—1, 9
dy_p, = dyp,, =B, i=1,...,p-1, (10)
Ao, = dp0 =3(a+8), i=2,....p (11)
e, = b, . =3+ B), (12)
do:x=a. (13)
By symmetry we obtain for the other Marguerite M, using (13):
Aoy =0y =dpro =0, j=2,...,q-1, (14)
Ay b, =y = &, i=1L...,q-1, (15)
dyyor = dog p = 3(0t + €), i=2,...,q (16)
depr=dy- =3a+e) 17)

Now, M,—a, contains a hamiltonian circuit C, containing the path
(@, by, by, by, @, a;] and M, —a} contains a hamiltonian circuit C, containing
[ag-1, al, by, b4, b3, a]. The paths

c = (Cl _{(b2| a2)}) U (CZ _{(bjlla aé)} U{(x, al): (b‘b a’2)}):
C’ = (C‘l _{(b2= al)}) U (CZ_{(biv aé)} U{(xa a’2)= (bii az)}):
K:=(C—{(by, b)) U(C—{(b1, bRYU{(BY, x), (x, b)Y)
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are hamiltonian paths in G'. Since Hg = H; and K does not contain any arc of N
we can calculate from (9)-(17)

do=dx® =ip(a+B)+ip—Da+i(p—1)8
+ig(a+e)+3(g—Da+i(g—1e
=32p— e+ B)+3(29 -1 a +&) ' (18)
Furthermore
0=dy—dy=dx —dx =dy o, o0y oy~ Fbyaa

=a+t db-z,ﬂ-:' —a~ dbz’-ﬂ-z

1e.

Ay, 0y = Ooy'.ars (19)
and similarly we get by symmetry

Ao by = Qupby- (20)
Using (18) and

dy=dx =}(p-2a+B)+(p—Da+{@+1B+(p—2)(a+e)

+(g—Da+(g+1)e)ta+dy,q:

we obtain d,, . = . Now (19) implies

b0y = iyt = O (21)
and similarly (20) gives

Aoy =dapr=0 (22)

We define two new hamiltonian paths in G":
S = (Cl_{(bZi a?.)}) U (C2_[b5.1 b,Z: alZ]) U{(b’b x), (b’21 aZ)} U[bh b2! af’l]a
T:=(C, _[bh b, az)u (Cz_'{(b'z. as)h) U{(b,, x), (ba, a'z)} U[b1, b4, az]-

By taking the difference of the incidence vectors we get from (17), (10), (12),
(15)

0 = dxs - de = db".x + db].b;— dbi.x - dbl'-bll

Therefore 8 =¢&.
Considering one more hamiltonian path in G’ we will get the desired result
a=p=ce. Let
P:= (Cl—_[apa bp: blt b2) as, aS]) U (CZ_[aé-la a’éa b«;s ;a bél aé])
U[ap: bc,]: a:;: bpl bb X, b,la bé) as, b2: alz]s
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then
do=(p+q—1)(e+B)=dx
=3(p—1)(e+B}+i(p-3a+ip-1)8
+3(g—1)(a+p)+3(q~3)a+iq-1)B+4a
=(p+qla+(p+q—2)B

and this implies o = .
Altogether we have shown now that

d,,=a for all (u,v)eE’

Lemma 2.2 completes the proof of the theorem.

By using odd Marguerites in Construction HH1 of [8] we get the following
digraphs.

Construction HH1. Let M,, M,, p, =5, be two odd Marguerites. Let M/, be the
hypohamiltonian digraph obtained from M, by adding two arcs (a’,,,a’),
(af, ai_,). Take any node of M, say a,, and any node of M, different from
ai-1.af, ajy1, say aj. Let N, =M, —-a,, N,=M!—aj. We add the digraphs N,
and N, and identify the nodes b, and b into one node z, Furthermore, we add
the arcs (bf, ay), (af, by), (b,, ay), (a,, bb) and call this digraph G'. Then G'is a
hypohamiltonian digraph.

Theorem 4.3. Let G'=(V,E") be a hypohamiltonian digraph of order n obtained
from two odd Marguerites M,, M, as described in Construction HH1. Let G =

(V, E) be a maximal hypohamiltonian digraph with E' c E. Then the hypohamil-
tonian inequality

x(E)sn—1.

is a facet of B

The proof of Theorem 4.3 is technically a little more complicated than that of
Theorem 4.2, but does not require any new ideas, therefore it is only outlined.
Obviously, most of the node pairs a;, b, satisfy structure 1, thus we can apply
Lemma 3.2 like in the proof of 4.2. The only difficulty arises with the node pairs
Qz, ba; a4, by; a, b, al, b, But here similar arguments like in Lemma 3.2 allow
the conclusion that certain arcs will carry the same weight . Putting these
observations together, making use of the newly added arcs, and of Lemma 2.2
one can show that any valid inequality dx = d, with Hg < H, is a multiple of the
hypohamiltonian inequality x(E)=< »n— 1 which proves the theorem.

The third way to obtain hypohamiltonian digraphs presented in [8] is the
following
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Construction HH3. Let M,, M,,p.q=5 be two odd Marguerites. Take one
arbitrary node from each digraph M, and M,, say a, and af. Let N,:=M, —a,,
N, :=M,—aj. Add N, and N, identifying the nodes a, and 4} into one node 2;,
the nodes b, and b/ into z,, and the nodes a,, a into the node z,, and call this
digraph G'. Then G’ is a hypohamiltonian digraph.

Theorem 4.4. Let G'=(V, E") be a hypohamiltonian digraph obtained from two
odd Marguerites as defined in Construction HH3. Then for any maximal
hypohamiltonian digraph G =(V, E)} with E' < E the inequality

x(E)<n—1

is a facet of P%.

The proof of Theorem 4.4 is also similar to the proof of Theorem 4.2 and
therefore omitted. Again, use is made of structure 1, Lemma 3.2 and Lemma 2.2
nearly in the same fashion. Complication only arises in considering the new nodes
24, Z5. 25 and their neighbours. But here use can be made of the fact that we are
able to describe the hamiltonian circuits in a vertex-deleted Marguerite exactly.

5. Conclusions

It is known, cf. [1,2, 11], that cubic hypohamiltonian graphs of order n =10
and of every even order n =18 exist (except possibly for 24 and 32). Since the
trivial direction of these graphs gives rise to hypohamiltonian facets of P: by
Theorem 2.3, we know that for all these n the asymmetric travelling salesman
polytopes have complicated facets of this type. Furthermore, by considering
Marguerites and the Constructions HH1, HH2, HH3 using Marguerites, cf.
Theorems 4.2, 4.3, 4.4, we obtained hypohamiltonian digraphs of orders 10, 14,
15 and 4k+1, 4k+2, 4k+3, k=4, which induce facets of the asymmetric
travelling salesman polytope, thus altogether we have hypchamiltonian facets of
P% for all n=14 (except 16, 24, 32).

We actually know more hypohamiltonian digraphs that induce facets of asym-
metric travelling salesman polytopes, but unfortunately the proofs of these results
are rather involved and we did not succeed in finding a common theory for all of
them like e.g. the sufficient condition in [5] for a hypohamiltonian or hypotrace-
able graph to induce a facet of the monotone symmetric travelling salesman
polytape.

As Remark 3.5 shows, not all (maximal) hypohamiltonian digraphs induce
facets in the straightforward way. Maybe this case is just an irregularity of the
small dimension 6, since for instance for the next larger order any completion of
the hypohamiltonian digraph of order 7 shown in Fig. 4.7 in [8] defines a facet of
PJ.
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We have also tried to check whether hypohamiltonian digraphs induce facets of
the polytope PF=conv{x” € R™: T hamiltonian circuit in K}, m =n(n—1), con-
sidered in [7]. Since the dimension of this polytope is n(n—3)+1, cf. [7], proofs
of the type given above become quite awkward. By numerical calculation we have
shown that the facets of P5 given in Remark 3.5 are also facets of P$, and that all
completions of the hypohamiltonian digraph of order 7, see above, induce facets
of P7, thus it seems likely that most of the hypohamiltonian facets of P carry
over ta P}

It was shown in [6] that a combinatorial optimization problem is solvable in
polynomial time if and only if the separation problem for the associated polytope
is solvable in polynomial time; in our case, the ATSP is solvable in polynomial
time if and only if we can solve the following problem in polynomial time: given
y eR""~1 conclude with one of the following (a) asserting that ye P} or (b)
finding a vector ceR"™ " such that cx<cy for all ce P; We believe that the
hypohamiltonian facets of P% and the hypotraceable facets given in [9] constitute
an obstacle for designing a polynomial separation algorithm. The reason is that to
date no nearly satisfactory characterization of hypohamiltonian or hypotraceable
digraphs has been found and that it appears to be difficult to recognize whether a
digraph is hypohamiltonian or not (the complexity status of this problem is
unknown, in the straightforward method one NP-complete problem and n NP-
complete problems have to be solved). Any separation algorithm must handle
some maximal hypohamiltonian and hypotraceable digraphs either implicitly or
explicitly, and we have no idea how this could be done. Furthermore, in our
opinion the results above indicate that a complete linear characterization of the

travelling salesman polytope can never be given explicitly, but this is of course just
speculation.
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