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The monotone asymmetric travelling salesman polytope P4 is the convex hull of the
incidence vectors of all hamiltonian circuits and subsets of hamiltonian circuits of the
complete digraph of order a. It is shown in this paper that certain hypotraceable digraphs,
G =(V, E), i.c. digraphs which do not contain a hamiltonian path but G-v does for all v € V,
defines facets x(E)sn -2 for P4 for all k =n, Since hypotraceable digraphs constitute a
very complicated class of digraphs these results show that the asymmetric travelling salesman
polytope P has a large number of highly complex facets.

Key words: Asymmetric Travelling Salesman Problem, Facets, Cutting Planes, Hypotrace-
able Digraphs, Hypohamillonian Digraphs.

1. Introduction and notation

The purpose of this note is to demonstrate that there are not only language
theoretical but also polyhedral reasons for the intractability of the asymmetric
travelling salesman problem (ATSP). This is done by associating a polytope P
with the n-city ATSP in a natural way which has the property that every
asymmetric travelling salesman problem can be solved as a linear program over
Pt We then show that certain hypotraceable digraphs (cf. [4, 6]) induce facets
of P%. Since a good characterization of hypotraceable digraphs seems to be hard
to obtain, these results prove that the polytope P is highly complex and that it
is very unlikely that a complete linear characterization of P% can ever be given
explicitly.

A digraph G=(V, E) consists of a finite set V of nodes and a set E of
ordered pairs of distinct elements of V called arcs.

If e=(u,v)EE then u and v are called endnodes of e, u is said to be the
initial node and v the terminal node of e; u and v are called neighbours. |V| is
the order of G. The set of all arcs in E having both endnodes in a subset W of V
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is denoted by E(W). The set of all nodes which are endnodes of at least one arc
of a subset F of E is denoted by V(F).

If [V| = n, then E, is the set of all ordered pairs (u, v), u* v, of elements of v,
and the digraph K, = (V, E,) is called complete. The set w*(v) resp. w”(v) is the
set of all arcs in E having v as its initial resp. terminal node; w(v)=
w*(v)U o™ (v). d*(v)=|w*(v)| is called outdegree of v;d(v) = lw~(v)] is called
indegree of v, and d(v) = d*(v)+ d~(v) is called degree of v. A node v € V with
w (v)=@ resp. w*(v) =4 is called a source resp. sink.

Nf@w)={weV: (y,w)EE}, N (v)={weEV:(w,v)EE}, N(v)=N @)U
N~(v). Whenever there is an ambiguity about the digraph with respect to which the
above symbols are used, we write a subscript for clarification (wg(v), N a(v),
Eg(W) etc). )

A non-empty set of arcs P ={(v, v)), (v3, v3), ..., (041, %)} C E where v,# Y
for i#}, is called a path of length k—1 and is denoted by [v,, Uy ooy ] If
(v, v)) EE, then C:=P U {(1;, v))} is called a circuit of length k and is denoted
by (vi, va,. .., ). A circuit (path) of length |V| (|V|—1) is called hamiltonian
such a circuit is also called a tour. Given a digraph G = (V, E) then G ~ v is the
digraph with node set V —{v} and all arcs in E which do not contain the node o,

Definition 1.1. Let G = (V, E) be a digraph.
(@) G is called traceable (hamiltonian) if G contains a hamiltonian path
(circuit).
(b) G is called hypotraceable (hypohamiltonian) if
(b1) G is not traceable (hamiltonian) and
(by) G-v is traceable (hamiltonian) for all v € V.,

For u,v€V we define G—(u,v) to be the digraph (V, E —{(, v)}) and
G + (4, v) the digraph (V, E U {(4, v)}).

If a digraph G has a property  then G is called maximal (minimal) with
respect to 7 if G +(u, v)(G — (4, v)) does not have property m for all pairs
(u, v)Z E ((u, v) € E).

Hypohamiltonian and hypotraceable (undirected) graphs are defined analo-
gously. Given a graph G = [V, E] then the digraph & = (V, E) obtained from G
by substituting the two arcs (u, v), (v, u) for every edge {u, v} € E is called the
trivial direction of G.

Given n cities 1,2,...,n and distances ¢y ER between every pair of cities
i# j where the distance ¢y from i to j can be different from ¢;. The asymmetric
travelling salesman problem is to find a tour T such that Duper ¢y is as small as
possible. The ATSP can be described in graphical terminology as follows: Let
K, =(V, E,) be the complete digraph on n nodes and let ¢y €R be ‘““distances”
for all (i, j) € E,. Find the shortest hamiltonian circuit in K,

A polyto_pe having (0, 1)-vertices can be associated with the ATSP in a natural
way. Let T, be the set of arc sets which are hamiltonian circuits or subsets of
hamiltonian circuits in K,. With each arc e = (i, /) € E, we associate a variable
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x, =Xy, and with each T € T, we associate an incidence vector x’ €R™, where
m:=|E,|=n(n—1), by setting x] =1 if e€T and x] =0 if eZ T. The convex
hull B4 of all incidence vectors of tours and subsets of tours is called (mono-
tone) asymmetric travelling salesmun polytope (cf. (1, 5]), i.e.

Py =conv{x" €r™: TeT,}

Clearly, every asymmetric travelling salesman problem can be solved as a linear
maximization problem over Pj.

By definition P% contains the zero vector and all unit vectors, thus it is fully
dimensional, i.e. dim P% = m. We call an inequality ax < a, valid with respect to
Py, if a#0 and P*C{x ER™: ax =< ay}; a valid inequality ax =a, is called
maximal, if the inequality obtained by increasing any component a; of a by any
e >0 is not valid; a valid inequality ax < a, is called a facet of By if

dim(PrN{x ER™: ax=a})=dim Pp~1=m—1.

Clearly, any facet with nonzero right-hand side is a maximal inequality.

As P% is fully dimensional there exists a unique (up to a constant factor) finite
non-redundant system of linear inequalitess Ax=b such that P =
{x €R™: Ax = b}. This system is given by the set of all facets of P%. Thus, in
order to characterize P% completely and non-redundantly we have to charac-
terize all the facets of P4%.

It was shown in [1] that the trivial inequalities, the subtour-elimination
constraints, some comb inequalities and various other classes of inequalities are
facets of P. All these facets share the property that they are describable in a
“combinatorially pleasant way", hence one might think that Pt has “nice”
facets only. But here we will show that P14 also has facets which are highly
complex.

To show that a certain inequality ax < aq is a facet of P % we mainly use the
following technique. We take another valid inequality bx < by with the property
P3N {x: ax = ag} S P4 N {x: bx = bo} and show that b = ra where 7 ER -{0};
this proves that P%N{x: ax = ag} is contained in one hyperplane only, and thus
dim(P% N {x: ax = ap})=m — 1, Here, intensive use is made of the structural
properties of the arc sets T € T,, which satisfy ax” = ay, to conclude, that
certain components b, of b have to satisfy certain equations and therefore are
equal to a..

To shorten notation we abbreviate the sum X eg Xy = S eer X by x(E). For a
valid inequality ax =< a, we define its face to be H, ={x € B4 ax = ag}. The face
of a valid inequality x(E) < r is denoted by Hpg.

2. Sufficient conditions

In order to relate a hypotraceable digraph G = (V, E) of order n to the polytope
P%, k =n, we consider G as a subdigraph of Kj, thus VC{1,...,k} and EC Ej.
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Proposition 2.1. Let G =(V, E) be a hypotraceable digraph of order n. T hfn the
hypotraceable inequality x(E) <n —2 is a valid inequality with respect to P% for
all k=n.

Proof. By definition, the longest path in a hypotraceable digraph contains
exactly n —2 arcs. Thus for any T € T, we have [TN E|=<n—2.

Clearly, only those hypotraceable inequalities, which are maximal, are can-
didates for facets of P%. It can be easily checked that a hypotraceable inequality
is maximal with respect to P% if and only if the corresponding hypotraceable
digraph G is maximal, i.e. if G + e is traceable for all eg E.

Although this observation suggests a concentration on maximal digraphs we
shall see that most of the structural properties of such digraphs are largely
determined by the underlying minimal hypotraceable digraphs. Therefore, we are
able to carry out most of the proof load on minimal hypotraceable digraphs,
which in general are rather sparse and easier to handle, and get the desired
results by completion.

To shorten notation we say that a hypotraceable digraph G = (V, E) of order n
has the affine independence property if the following holds

(a) There exist m: = |E| subsets Fy, F,,...,F, of E such that F,€ T, the
incidence vectors xF, i=1,..., m are affinely independent and satisfy x(E)=
n —2 with equality.

For such vectors affine and linear independence are of course identical. It is easy
to prove that the affine independence property (a) is equivalent to

(b) For every inequality dx = d, which is valid with respect to P and satisfies
Hg C H, there is @ >0 such that d,, = « for all (4, v) € E.

Proposition 2.2 (Completion). Let G'=(V, E') be a hypotraceable digraph of
order n with the affine independence property. Then for every maximal hypo-
traceable digraph G = (V, E) with E'C E, the hypotraceable inequality x(E)=
n—2 is a facet of P}

The proof is similar to the proof of Lemma 2.2 in [5] and therefore omitted. It
was shown in [5] that hypohamiltonian facets are not trivially liftable but—as the
following proposition shows—hypotraceable facets are.

Proposition 2.3 (Trivial lifting). Let G =(VLE) be a hypotraceable digraph of
ordc_zr n such that x(E)<n—2 is a facet of P%. Then x(E)<n -2 is also a facet
of P% for all k> n.

Proof. Since x(E)=<n —2 is a facet of P4 there are |E| arc sets T, € T, with
T, C E such that the vectors xTER™ i =1,..., |E|, are linearly independent and
satisfy the hypotraceable inequality with equality. The arc sets T; are paths or
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unions of paths, thus T,€ Ty, i =1,...,|E|, and the incidence vectors x" now
taken with respect to P%, i.e. x™ €ERY, q = k(k — 1), are also linearly independent
and satisfy x(E) = n — 2 with equality,

Let ¢ € E, — E. If ¢ has both endnodes in V, then G + e contains a hamiltonian
path P, containing e. If e has at most one endnode in V, thenlet u be this endnode, if
it exists, otherwise let « be any node in V. G — u contains a hamiltonian path P, thus
P.i=PU{e}€ Ty, |P.N E|=n -2, and therefore x" € Hy.

The set of vectors {x":i=1,...,|E}U{x": e € E,— E} is a set of g linearly
independent vectors in P4 which all satisfy x(E)=n —2 with equality. This
proves that dim(Hy;) = ¢ — 1 = dim P% — 1, thus x(E)=n —2 is a facet of P%.

Proposition 2.3 proves that given a hypotraceable facet ax < a, of P% we can
lift this facet to any higher dimension by just giving zero coefficients to the new
variables. This shows that hypotraceable facets are inherited, i.e., whenever we
have shown that one of these digraphs of order n induces a facet of P this
digraph will keep its facet-inducing property for any travelling salesman poly-
tope of larger dimension.

It was shown in [2] that many hypohamiltonian as well as hypotraceable
graphs induce facets of the symmetric travelling salesman polytope. A certain
technical property which we now translate into ‘‘directed language™ played an
important role in the proofs.

Definition 2.4. Let G =[V, E(D=(V, E)) be a hypotraceable graph (digraph).
The node v € V is said to have property A(A* resp. A™) with respect to G(D) if
for any two neighbours v, v, € N(v)(v(, v; € N*(v) resp. v, v; € N™(v)) at least
one of the following properties is satisfied:

(1) G — v(D - v)) contains a hamiltonian chain (path) which contains the edge
{v, vy} (the arc (v, va) resp. the arc (vq, v)).

(2) G — v4(D — v,) contains a hamiltonian chain (path) which contains {v, v}
((v, v) resp. (v, v)).

(3) There exists a node v € N(v)(v, € N*(v) resp. v3 € N~(v)) such that both
G—v(D-1v) and G—v,(D—v,) contain a hamiltonian chain (path) which
contains {v, v} ((v, v3) resp. (va, v)).

G(D) has property A(A* resp. A7) if all nodes of G(D) have property A(A*
resp. A7).

If several digraphs are under consideration we use a subscript and write ‘‘v has
property A" to say that v has property A* with respect to the digraph G.

It is not hard to see that the trivial direction of a hypotraceable graph is a
hypotraceable digraph, cf. [4], furthermore, the following statement is easily
verified.

Lemma 2.5. If G =[V, E] is a hypotraceable graph having property A then its
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trivial direction G = (V, E) is a hypotraceable digraph having properties A* and
A,

It was shown in [2] that most of the known classes of hypotraceable graphs
have this property, thus, almost all trivially directed hypotraceable graphs have
properties A* and A~. For general hypotraceable digraphs we easily get:

Lemma 2.6. Let G =(V, E) be a hypotraceable digraph. Then every node v € V
with d*(v) =<3(d~(v)=3) has property A*(47).

This lemma is best possible since there are hypotraceable digraphs with nodes
v satisfying d*(v)=d (v) =4 which neither have property A* nor 4. Un-
fortunately the properties A* and A~ are not sufficient conditions for a hypo-
traceable inequality to be a facet, but nevertheless they allow some helpful
constructions.

Proposition 2.7. Let G =(V, E) be a hypotraceable digraph of order n, and let
x(E)<n—2 be the corresponding inequality. Let bx < b, be any valid inequality
for P%, k= n, which satisfies Hg C H,. Then the following holds.

(a) If v € V has property A% then there exists w§ ER such that b, = «; for all
e € wg(v).

(b) If v € V has property Ag then there exists w, €ER such that b, = m, for all
e E wg(v).

Proof. We prove (a); (b) follows analogously.

Let v € V have property 4§, let e =(v,v)), f =(v, ;) € wg(v). We have to
show that b, = b, holds. By Definition 2.4 one of the following cases must be
satisfied.

(1) G- v, contains a hamiltonian path P which contains the arc (v, v,). In this
case let Q: = (P —{(v, 1)) U{(v, v))}. Q is the union of two disjoint paths and all
its n—2 arcs are contained in E, thus the incidence vectors of P and Q satisfy
x(E)=n—2 with equality, i.e. xf, x9&€ HgC H,. Therefore, 0=by— b=
bx? - bx? = b,,,— b,,, which proves the assertion.

(2) G— v, contains a hamiltonian path P which contains the arc (», v;). The
proof is the same as in case (1).

(3) There is a node v; € Ni(v) such that both G~wv, and G — v, contain a
hamiltonian path P,, resp. P, which contains (v, v;). Using (1) we first show
by, = basy, (2) gives by, = b, which proves our claim.

Corollary 2.8. Let the general assumptions of Proposition 2.7 be satisfied, and let
G have properties A* and A~. Then for all v € V there exist w}, w; ER such that

., =} for all e € w(v) and b, = w; for all e € wgp(v).

The following property will also turn out to be useful in subsequent proofs.
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Definition 2.9. Let G=(V, E) be a digraph and v € V. A sequence of arcs
(v1, v}, (3, va), (03, D4, (Vs, V&), (s, U6)s ...\ (Vpoyy Up2)s (0,1, 1) in G, such that
v=1v =0, is called an alternating v-trail. A node v is said to have the
alternating trail property (with respect to G) if there exists an alternating v-trail
in G.

Note that by definition the number of arcs of an alternating v-trail is always
odd and at least three.

Remark 2.10. If v € V has the alternating trail property then every node in
N~(v) N N*(v) has the alternating trail property.

The next proposition gives an important class of digraphs with the above
property.

Proppsition 2.11. Let G=[V, E] be a connected non-bipartite graph and G=
(V, E) its trivial direction. Then every node v €V has the alternating trail
property with respect to éG.

Proof. By definition G contains a cycle C={{v,, v}, {vs, v3},...,{v, v}} with
r=13 and odd. Then (v, v4), (v3, v2), ..., (Vs U,-1), (v, vy) i5 an alternating v,-trail
in G. Since G is connected we get the assertion by iteratively applying Remark
2.10.

Remark 2.12. No hypotraceable graph of odd order is bipartite.

The proof of 2.12 is obvious. Thus, the trivial directions of hypotraceable
graphs of odd order are hypotraceable digraphs where all nodes have the
alternating trail property. All hypotraceable graphs of even order that are known
in the literature (cf. [7, 8]), are non-bipartite, since they result from constructions
where hypohamiltonian graphs are involved and these always contain odd
cycles. We conjecture that all hypotraceable graphs are non-bipartite but were
not able to prove it for the case of even order.

The alternating trail property is very useful to obtain the following in-
formation.

Proposition 2.13. Let bx < b, be a valid inequality with respect to P Let
D = (W, F) be a subdigraph of K, with the property that for all v € W there exist
mt, w7 ER with b, = n} for all e €E w}h(v) and b, = w, for all e € wp(v). Then the
following holds.

If v € W has the alternating trail property with respect to the digraph D then
wt=my, i.e. there is m, ER with b, = =, for all € € wp(v).
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proof. If there exists an alternating v-trail in D, we have 7} = b, = 7}, = by, =

+ = =g == = =gt = = qr>
Moy = b"m oy T vy b"r-l"r-: T, b"r—l“r Ty,

=Ty,
To make notation easier we introduce a special class of hypotraceable
digraphs.

Definition 2.14. Let G =(V, E) be a hypotraceable digraph.
(1) Let @ WCV, then G is called DT-hypotraceable in W if the following
conditions are satisfied
(a) Each node v € W has properties A and Ag.
(b) Each node v € W either has the alternating trail property with respect to
(W, Eg(W)), or is a source or a sink of G.
(c) (W, Eg(W)) is connected.
(2) G is called DT-hypotraceable if there exists a node set @ W C V such
that G is DT-hypotraceable in W and if V — W is a stable node set in G (no two
nodes in V — W are neighbours).

The next proposition shows the usefulness of the concepts introduced above.

Proposition 2.15. Let G = (V, E) be a hypotraceable digraph of order n which is
DT-hypotraceable in W C V. Let bx <by be a valid inequality for P%, k=n
satisfying Hg ={x € P%: x(E)=n—2}C H,. Then there exists w>0 such that
b, = for all e € Eq(W).

Proof. Since G is DT-hypotraceable in W every node v € W has properties A"
and A~. By assumption Hg C H,, thus Proposition 2.7 implies that for all vE W
there exist =}, m, ER such that b, =7} for all e € w§(r) and b, = 7, for all
e € wg(v). Therefore D = (W, Eg(W)) is a subdigraph of K, that satisfies the
assumptions of Proposition 2.13. Since G is DT-hypotraceable in W every node
v € W = Vg(Eg(W)) has the alternating trail property with respect to D by
definition. Proposition 2.13 now implies that for all » € W there is m, ER such
that b, =, for all e € wp(v) = Eg(W) N wg(v). As G is DT-hypotraceable in W
we know that (W, Eq(W)) is connected. Thus for any two nodes u, v € W there
is a sequence of arcs e,...,e in Eg(W) connecting u and v, this implies
m, =b,=++-=b, =m, and we have shown that there is = ER such that b, ==
for all e € J ew wp(v) = Eg(W). Since bx = by is valid, 7+ must be positive.

Theorem 2.16. Let G' =(V, E') be a DT-hypotraceable digraph of order n, and
let G =(V, E) be any maximal hypotraceable digraph with E' C E. Then x(E) <
n—2 is a facet of P% for all k =n.

Proof. If we show that G' has the affine independence property, then by
Proposition 2.2 x(E)=<n —2 is a facet of P%. If this is true, then by Proposition
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23, x(E)=<n—2 is a facet of P% for all k= n. Therefore all that remains to
prove is: Let dx =d, be any inequality valid with respect to P4 such that
Hy» C H, then there is & >0 such that d,, = & for all (&, v) € E'.

By assumption there is a node set W C V such that G' is DT-hypotraceable in
W and V-~ W is stable. Under these conditions Propgsition 2.15 implies that
there is & >0 such that d, = & for all ¢ € Eg(W).

Let f=(u, v) € E'— Eg(W). Since V— W is stable exactly one of the nodes
u, v is in W, say v € W. G’ is DT-hypotraceable in W, thus v has property 4z
and by Proposition 2.7(b) there is #; ER such that d, = = for all e € wz(v).
If the node v has the alternating trail property with respect to (W, E&(W)) then
there is an arc g € Eg(W) N wg(v). This implies

d=7,=d, = a,

and we have shown that d, =« holds for all e € E'. If v is a sink, then—as
(W, Eq{W)) is connected and obviously W # {v}—there is an arc g as in the
previous case and the same result follows. In case u € W, the proof is analogous.

We know several generalizations of Theorem 2.16 which however are rather
complicated. We have restricted ourselves to the statement in 2.16 since this is
the formulation we need in subsequent applications.

3. Basic hypotraceable facets

It was shown in [2] that all maximal hypotraceable graphs which contain a
hypotraceable graph having property A induce facets of the monotone sym-
metric travelling salesman polytope. The analogous result for the trivial direction
of these graphs is the following.

Theorem 3.1. Let G =[V, E'] be a non-bipartite hypotraceable graph of order n
having property A, let G = (V, E') be the trivial direction of G, and let D = (V, E)
be any maximal hypotraceable digraph with E' C E. Then x(E)=<n -2 is a facet
of P% forall k=n.

Proof. G is connected and non-bipartite by assumption, thus Proposition 2.11
implies that every node v € V has the alternating trail property with respect to
G; furthermore G has properties A* and 4~ by Lemma 2.5. Therefore G is
DT-hypotraceable (in V), cf. 2.14, and the assertion follows from Theorem 2.16.

The smallest known hypotraceable graph has order 34, cf. [7], is non-bipartite
and has property A. Hence Theorem 3.1 implies:

Corollary 3.2. For all k =34 there exists a hypot_raceable digraph D =(V, E) of
order n < k such that x(E)=<n—2 is a facet of P%.

o]
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Fig. 3.1.
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In general there are many ways to make a hypotraceable digraph maximal,
therefore every hypotraceable graph of order n that satisfies the assumptions of
3.1 (these are almost all known ones) will generate many facets of the polytope
PY%. Since by Proposition 2.3 a polytope B*% inherits all hypotraceable facets of
all lower dimensional polytopes P%, n <k, this shows that the number of
hypotraceable facets of B% will be huge for large k.

Trivially directed hypotraceable graphs are not at all the only hypotraceable
digraphs. It was shown in [4] and [S] that hypotraceable digraphs of order n
exist if and only if n=7. Small hypotraceable digraphs of orders n =
7,8,...,13 were given explicitly in [4] while the others were obtained by means
of various constructions. For ease of reference these small hypotraceable
digraphs of [4] are shown in Figs. 3.1 and 3.2. The digraphs are denoted by T3,
Ty, Ty, Tio, Tiiy Thy, Tias Tiy and Tys. The digraphs T, resp. T4 consist of all
arcs drawn solidly, while the digraphs T, resp. T}, contain the two additional
arcs drawn with dashed lines. The nodes in the digraphs of Figs 3.1 and 3.2
labeled w, and y, shall play a role in a subsequent construction, cf. Theorem 4.4.
It is quite easy to see that all nodes in any of the hypotraceable digraphs T;, Ty,
Ty, Tio, T\; which are not a source or a sink, have the alternating trail property. All
the nodes in the digraphs T, Tgand T, and almost all nodes in the digraphs Ty and
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T; have in- and outdegree less than or equal to three, thus by Lemma 2.6 all these
nodes have properties A* and A~. There is one node in Ty with in- and outdegree
equal to four and in T}, there is one node with indegree equal to four and one with
outdegree equal to four, but it is easily checked that these nodes also have
properties A* and A~. Therefore Ty, Ty, Ts, Tio and T3 are DT-hypotraceable
digraphs (in the full node set V).

The hypotraceable digraph T;, is not minimal. We can remove the two arcs
drawn with dashed lines in Figure 3.1 to obtain the digraph T, which is also
hypotraceable and in which all nodes have in- and outdegree less than four (thus
have property A* and A~) and the alternating trail property in case they are not a
source or a sink. The hypotraceable digraph T4, is therefore DT-hypotraceable.

The node labeled u in Fig. 3.2 does neither have property A* nor A~ with
respect to the digraph T),. Furthermore, some of the nodes of T); do not have
the alternating trail property with respect to T\,— u. The addition of the two
dashed arcs which results in the hypotraceable digraph T, changes the situation.
Let Ty, =(V, E) and set W: = V—{u}. Then by Lemma 2.6 all nodes in W have
properties A* and A~, moreover, by simple enumeration one can see that all
nodes in W which are not a source or a sink, have the alternating trail property with
respect to (W, E(W)). This implies that T, is DT-hypotraceable in W. As
V — W ={u} is stable, T, is a DT-hypotraceable digraph.

Thus, summing up the above remarks, Theorem 2.16 implies:

Theorem 3.3. Every maximal hypotraceable digraph G = (V, E) of order n con-
taining one of the _digraphs Ty, Tay Ty, Tioy Th, Ty, T3 induces a facet
x(E)=n-2 forall P% k=n.

Using a result of [4] which states that hypotraceable digraphs of order n exist
if and only if n =7 we obtain:

Corollary 3.4. A monotone asymmetric travelling salesman polytope P% has
facets induced by maximal hypotraceable digraphs if and only if k=17.

1

Fig. 3.3
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Example 3.5. A maximal hypotraceable digraph containing T; is as shown in Fig.
3.3. The corresponding hypotraceable inequality (facet) is

X+ Xygt X9+ Xg3 F Xag T+ Xg7 + X3y
+x3(,+x43+x45+x54+x56+x57+x52+x5555

All labellings_ of this digraph induce different facets of P% for all k= 7. This
implies that P, k=7, has (§) - 7! = (%) - 5040 facets of this type.

4. Facets from Constructions HT1, HT2, HT3

In [4] we proved that for all n =7 there are hypotraceable digraphs of order n
which are not trivial directions of hypotraceable graphs by giving three tech-
niques to obtain hypotraceable digraphs of high order. In this section we will
show how the hypotraceable digraphs constructed these ways are related to the
asymmetric travelling salesman polytope.

In Construction HT1, cf. [4], a “supertraceable” digraph and a reverse of a
supertraceable digraph were combined to obtain a hypotraceable digraph. We
reformulate (and slightly specialize) this construction in the following way:

Theorem 4.1 (Construction HTI1). Let G, =(V,, E|) resp. G,=(V,, E;) be two
disjoint hypotraceable digraphs with source s, resp. sink s, Let Ti= N§(s),
T, = Ngls2), and let S, resp. S, be two non-empty subsets of those nodes in V,
resp. V, which are initial resp. terminal nodes of at least one hamiltonian path in
G- s, resp. G,— s, (Note that T\NS,=T,NS,=@.) Let Vi=V,—{s5}, V3=
Va—{ssh, Ei=E —wg(s), Ei=E—wgls), A={(st): s€S, tET}}, B=
{(t,s): sE S, t €ETy). Then G =(W, F) is a hypotraceable digraph where W : =
ViuViand F:=E{UE;UAUB,

See [4] for a proof.

Theorem 4.2. Let G,=(V,, E;) resp. G,=(V,, E;) be disjoint hypotraceable
digraphs of order n, resp. n, with a source s, resp. sink s,. Let S resp. S, be
nonempty subsets of those nodes of V, resp. V, which are initial resp. terminal
nodes of hamiltonian paths in G— s, resp. G,— s,. Furthermore, assume that G,
and G, have the affine independence property. Let G = (W, F) be the hypotrace-
able digraph obtained from G, and G, by construction HT1. Then every
maximal hypotraceable digraph H = (W, E) with F C E induces a facet X(E)=
n+n,—4 of P forall k= n,+n,—2.

Proof. Because of Proposition 2.2 and 2.3 it suffices to show that G has the
affine independence property, i.e. that there exist m :=|F| affinely independent
vectors of P%, n: = n,+n,—2, satisfying x(F) = n — 2 with equality.
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By assumption there are m,: =|E,| resp. m,: = |E,| arc sets Py, P,,..., Pn C
E;resp. Q, Qy, ..., Qu,CEs whose incidence vectors are in P!‘r' resp. 15';1, are
affinely independent and satisfy x(E,) < n;—2 resp. x(E3) = n, —2 with equality.
Choose two nodes s’ € S, and s"&€ S, and let H' resp. H” be a hamiltonian path
in G, — s, resp. G, — s, with initial resp. terminal node s’ resp. s”. Identify the nodes
s’ and s, resp. s” and s,. Then the arc sets H"UP, i=1,...,m; and H'UQ},
j=1,..., m,are by construction elements of T, and their incidence vectors with
respect to P4 satisfy x(F) = n —2 with equality. Obviously, m,+m,— 1 of these
incidence vectors are affinely independent,

Observe that an arc set H” U P, resp. H' U Q, contains an arc of A U B if and
only if P, resp. Q; contains an arc incident from s, resp. incident to s,. This
implies that these arc sets contain at most one arc of AU B and that none of
these arc sets contains an arc of

C:=AUB-((t,s)|te TIU{G" |t e TY.

For every arc (4, v) € C we construct an arc set R,, € T, containing (4, v) with
xR« € Hy. as follows: If (4, v) € AN C, then u € 5, and we can take R,, to be the
union of a hamiltonian path in G,—s; ending in u, the arc (4,v), and a
hamiltonian path in G;—v—s; (such a hamiltonian path clearly exists). If
(u,v)EBNC, then v € §, and we let R,, be the union of a hamiltonian path in
G,— u— s, the arc (4, v), and a hamiltonian path in G,— s, starting in u. The
incidence vectors x® € P% are mutually affinely independent as well as affinely
independent from those constructed previously because each x®« is the only
vector with a nonzero value in component (4, v). Moreover, each arc set R,
contains exactly one arc of AU B.

Finally, we construct an additional arc set R as follows: Choose any ¢, € T}
and t, € Ty, then H' contains a unique arc ¢, € wg (¢;) and H” contains a unique
arc e; € wg, (). Define

R:=(H'—{ehUH"-{e;)}) U{(s", t)), (t2, sO}.

Clearly, x® € Hr and R is the only among the arc sets H'"UP, i=1,...,my,
H'UQ,j=1,...,my Ry, (u,v) € C,and R with two elements from A U B. Thus,
xR is affinely independent from the other vectors. This shows that G contains
|F|=|E\|+|Es|— 1+ (S)| = 1)] T3] + (|S3] — 1)|T\|+ 1 arc sets of T, whose incidence
vectors are in Hy and are affinely independent, hence the theorem is proved.

If the digraphs G and G, used in construction HT1 both have a source and a
sink, then the resulting hypotraceable digraph also has a source and a sink. Since
the basic hypotraceable digraphs T, ..., Tj; have a source and sink we can get
for any order n =12 hypotraceable digraphs having a source and a sink by
iteratively applying construction HT1. We have shown that the digraphs
Ty, ..., Tio, T'1, T2, Tya are DT-hypotraceable. Hence by Proposition 2.15 all
these digraphs (and all maximal hypotraceable digraphs containing these) have

[EOTIINEN



M. Grétschel and Y. Wakabayashi| Hypotraceable facets 91

the affine independence property. Therefore, we can use these digraphs in
construction HT1 to generate via Theorem 4.2 new facet inducing hypotraceable
digraphs which obviously also have the affine independence property (and a
source and a sink). By iteratively applying construction HT!, Theorem 4.2
yields:

Corollary 4.3. For every n =77 there exist hypotraceable digraphs G =(V, E) of
order n which induce facets x(E)Y=n -2 of P% forall k 2n.

Theorem 4.4 (Construction HT2). Let G, and G, be two disjoint hypotraceable
digraphs both with source and sink. Let u,, v, be the source resp. sink of G, and
y1 the terminal node of a hamiltonian path in G,—v,. Let u,, v, be the source
resp. sink of G, and x, the initial node of a hamiltonian path in G,— u,.

Furthermore, assume that G, has a node w,, w, & {u,, vy, y\}, such that the
following conditions are satisfied:

(¢))G, does not contain two node-disjoint paths Q =[w,,...,y,] and Q' =
{uy, ..., vyl which contain all nodes of G, and

(¢2)G, does not contain two node-disjoint paths R ={u,...,y] and R' =
[wy, ..., v] which contain all nodes of G,.

Let G be the digraph obtained by adding the digraphs G, and G, identifying the
nodes v, and x, into a node z and by adding the arcs A=
{(vy, 13), (y1, U), (v3, w)}. Then G is hypotraceable.

A proof of Theorem 4.5 can be found in [4].

Theorem 4.5. Let G, =(V,, E\) resp. Gy=(V3y, E,) be hypotraceable digraphs of
order n, resp. n, satisfying the assumptions of construction HT2 and assume
that G, and G, have the affine independence property. Let G=(V,E) be the
digraph obtained from G, and G, by construction HT2. Choose any node
t € Ng(v) and let G'=(V,E') where E':=E U({{t,v;)}. Then every maximal
hypotraceable digraph H = (V, F) with E' C F induces a facet x(F)=n,+n,—3
of P forall k=n,+n,—1.

Proof. The digraph G is hypotraceable by Theorem 4.4; it is easy to verify that
G' is also hypotraceable because G, satisfies the condition (c).

Because of Propositions 2.2 and 2.3 it is sufficient to prove that for any
inequality bx <b, valid with respect to P%, n:=n;+n,—1, with Hg:=
{xE P} x(E")=n~-2C{x €P%: bx=bg}=:H, there exists a>0 such that
b,=« forall e E'.

Define vectors c, d, r €R%l in the following way ¢, =b, if e € E,, d, =b, if
eE€E, r.=b, if e € E,~(E,U E,) set all other components of ¢, d, r to zero,
thus b =c+d+r. Let R, be a hamiltonian path in G,— 4, starting in x, and
Ry = Ry U {(vs, up)} i.e. |[Ry| = ny—1, let R} be a hamiltonian path in G, — v; ending
in i and R, = R'l u {(y,, uz)}, ie. IR|I =n - 1.
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Now let T be any subset of E, containing n,—2 arcs such that T, € T‘,.[ (ie. T,
is a path of length n,—2, or consists of two disjoint paths that contain all nodes
of V). Since wg,(v;) =@ the node v, is either not in T} or an endpoint of T;. Thus
T\URET,, [T\URy|=n~2and x"R € Hp. Let cy: = by~ bx™ then cx < ¢, is
clearly a valid inequality with respect to P% and

H£[1={XE}5";‘: x(E)=n-2C{xEP% ecx=co)=:H,

holds.
The affine independence property of G, now implies the existence of an & >0
such that ¢g=« for all e € E,.

With the same line of reasoning using arc sets T,C E, with n,—2 arcs and
T, € T",,z, combining them with R,, and setting dy= bo— bx® we obtain Hy, C H,
and d, = B for all ¢ € E, and some B > 0.

By definition R;UR), R,UR{E€T, and xRYRi xRURic g, hence 0=
bx®URi— px®iRi=p, , —b,,. If P is a hamiltonian path in G,— w, then P ends
in v, therefore Q;:=P UR; and Q;: =P UR}U{(v,, w))} are in T, and x?,
x% € Hp. Since Hy C H, we obtain 0= bx?— hx&% = By, — buyw,. Thus there is
v €R such that b,,, = b,,,, = by, = 7.

The hamiltonian path P in G,— w, contains an arc (y;, w) for some w &€ V.
Let Q;:= (P —{(y;, WD U{(31, u} U Ry U{(vq, w))} then Q;€ T, and x* € Hp,
therefore 0 = bx%—bx® =b,,, — by,=a—vyie. a=1.

It remains to show that « = 8 holds. Let t € Ng,(v)) be the node such that
(t, ) EE'. G,—t contains a hamiltonian path S ending in v,. Thus Q,:=
SUR,e T, and x%€ Hg. R, contains an arc (w, v,) for some w € Ng,(v,). Let
Qs:=SUR,—{(w, 1P U{(t,vy)}, clearly Qs€T, and x&€ Hp. Thus 0=
bx%—px% = by, = by, i.€. by, = B. On the other hand, since G is hypotraceable,
there is a hamiltonian path U in G—u,; U cannot end in t because of the
structure  of G, therefore U contains an arc (t,¢)EE Let U =
(U—-{t, HHU{(t, v}, then U, U,€T,; xY, x““€Hy and therefore 0=
bxV - bxVi= by —b,, = a —B.

Altogether we have shown that b, = @ >0 for all ¢ € E' and are done.

Remark 4.6. Let J be the set of hypotraceable digraphs Ty, Ts, Ty, Tho, T4, and
T; and & be the set of facet inducing maximal hypotraceable digraphs which are
completions of hypotraceable digraphs obtained by construction HTI, cf.
Theorem 4.2. Since the digraphs in & induce facets, they have the affine
independence property. The digraphs in T are DT-hypotraceable and therefore
have the affine independence property by Theorem 2.16. All digraphs in PU I
have a source and a sink. Furthermore, the digraphs in I satisfy the conditions
required for G, in construction HT2, the special nodes w, and y, are indicated in
Figs. 3.1 and 3.2. Thus, using in construction HT? any of the digraphs of 7 as G,
and any of the digraphs of ¥ U 7 as G, we can generate hypotraceable digraphs



M. Gritschel and Y. Wakabayashi| Hypotraceable facets 93

of all orders n = 13 such that each of their completions induces a facet of B for
all k= n.

Example 4.7. The digraph G' shown in Fig. 4.1 is a hypotraceable digraph
obtained by construction HT2 using Ty as Gy, T; as G, and by adding an arc
(t, v2) as required in Theorem 4.5. Every different labeling of every maximal
hypotraceable digraph containing G' induces a facet of P% for all k = 14.

In [4] we gave a further construction called HT3 to obtain hypotraceable
digraphs. This method is derived from one defined by Thomassen {7] for the case
of undirected graphs and uses four hypohamiltonian digraphs with special
properties to obtain a new strongly connected hypotraceable digraph. The
hypohamiltonian digraphs Ys, Y; and the odd Marguerites M,, p =5, cf. [3] and
[4], have the properties required by HT3, thus this method produces hypotrace-
able digraphs of all orders n = 26, cf. [4].

With methods similar to the ones used in the previous proofs we can show:

Theorem 4.8. Let G'=(V, E') be any hypotraceable digraph of order n =26
constructed from any four of the hypohamiltonian digraphs Y,, Yy and M,, p =5
and odd, with Construction HT3, and let G=(V,E) be any maximal hypo-
traceable digraph with E' C E, then x(E)<=n —2 is a facet of P% for all k= n.

To prove Theorem 4.8 it suffices to show that G’ has the affine independence
property. We shortly outline the proof: If we use odd Marguerites M, in HT3
only, then all nodes v in G’ satisfy d§(v) =<3 and dg(v) =3 thus have properties
A} and Ag by Lemma 2.6. If the digraphs Y and Y, are used, some nodes have
higher in- and outdegrees, however, the proof of Theorem 4.11 of [4] shows how
to construct the hamiltonian paths that are needed to satisfy one of the
conditions of Definition 2.4. Therefore, the properties A% and Ay are quite
easily established for all nodes v € V.

Fig. 4.1

’%
k]
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To obtain a hypotraceable digraph with Construction HT3 a so called dis-
tinguished node has to be deleted in any of the digraphs used. Any of the nodes
x of a Marguerite is distinguished, while the distinguished nodes of Yy and Y,
are labeled x in Fig. 3.2 of [3]. The digraph M, —x, Y3—x and Y;—x are by
construction subdigraphs of G’. It is obvious that any node in M, —x has the
alternating trail property with respect to M, —x, similarly one can show by
enumeration that any node of Y;—x (Y,—x) has the alternating trail property
with respect to Y;—x (Y;— x).

Knowing these facts we can apply Proposition 2.7 and Proposition 2.13 to
show that any valid inequality bx = b, for P% satisfies b, = a for all ¢ € E' and
some a > 0. This shows that G' has the affine independence property, and by
using Propositions 2.2 and 2.3 (completion and lifting) we can complete the
proof.

5. Lifting hypohamiltonian facets

In [6] a very simple way was found to construct a hypotraceable digraph from
a hypohamiltonian one. This method works as follows:

Theorem 5.1 (Construction 5.1). Take a hypohamiltonian digraph G =(V, E) of
order n and let v be any node in V. Split v into a source s and a sink t and call the
new digraph G, =(V,, E,), i.e.

Vu = (V"“{U}) U {sl t}:
E,=(E~w@)U{(s, w): wE N§0)}U{(w, 1): w € Ng(v)}.
Then G, is a hypotraceable digraph of order n + 1.

We have shown in [5] that hypohamiltonian facets cannot be lifted trivially to
higher dimensions, i.e. if x(E)=<n — 1 is a hypohamiltonian facet of P} then the
same inequality is not a facet of P% for k> n. Compared with Proposition 2.3
this shows that hypohamiltonian and hypotraceable facets behave differently.

In the following, however, we will prove that Construction 5.1 makes a special
way of lifting of hypohamiltonian facets possible.

Theorem 5.2. Let G =(V, E) be a hypohamiltonian digraph of order n such that
x(E)=n—1 defines a facet of P%. Let vEV and let G,=(V,, E,) be the
hypotraceable digraph of order n + 1 obtained by Construction 5.1. Let s resp. t
be the source resp. sink of G, and let F = E, U{(s,t)}. Then x(F)sn—-1isa
facet of P% forallk=n+1.
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Proof. Since dim P} =n(n—1)=:m and since x(E)<n~—1 is a facet of P%
there exist m sets of arcs Ti,...,T, €T, such that the incidence vectors
xh, ..., x™ € R™ satisfy x(E) < n — 1 with equality and are affinely independent;
as 0Z H,, these vectors are even linearly independent. To satisfy the hypo-
hamiltonian inequality with equality, necessarily |T;N E|=n —1 has to hold.

Thus the arc sets P, = T,NE,i=1,..., m, are hamiltonian paths in G. Therefore
G contains r hamiltonian paths P,,..., P,, where |E| = r, such that the vectors
xP ..., x" are linearly independent. The (r, m)-matrix B’ containing these

incidence vectors as rows, thus, is of full row rank and can be partitioned into
B'=(A,0) where A is a nonsingular (7, r)-matrix.

Every path P, in G can be associated with an arc set Q, in G, inthe following
way. If v is neither the initial nor the terminal node of P, and u(w) is the
predecessor (successor) of v in P, then set Q :=(P —{(u,v), (v, w)HU
{(u, ), (s, w)}. Q; is a set of n — 1 arcs in G, consisting of two disjoint paths,
thus Q, € T,.,. If v is the initial node of P, then Q;:=(P; —{(v, w)H U {(s, w)};
if v is the terminal node, then Q;:=(P—{(u, V)DU{(u,t)}; in both cases
Q@ is a path in G, of length n—1. Now consider the incidence vectors of
the arc sets Q,, i =1,...,r with respect to the polytope P}, i.e. x% €RY, q =
(n+1)n. Let B be the (r,g)-matrix containing these incidence vectors
as rows. Then B can be partitioned in the form B =(A,0) where A
is the nonsingular submatrix of the matrix B’ above. Although the sets P,
and @, are graph-theoretically not the same, their incidence vectors considered
as subsets of R™ are identical if we interpret the components of x”t indexed by
(4, v) or (v, w) as the components of x& indexed by (u, t) or (s, w). Thus
the vectors x@,...,x% satisfy x(F)=<n—1 with equality and are linearly
independent. B

Next we prove that for all arcs e € E, ., — E, there is an arc set C, € T, such
that e € C. and |C. N F|=n—1.

First take any e=(u, w)EE,.,—F with u,we€V,—{s,t}=V—{v}. The
digraph G =(V, E) is maximally hypohamiltonian, since x(E)<n—1is a facet
of P (c.f. [5]), thus G+ (u, w) contains a hamiltonian circuit C which contains
two arcs containing v, say (v, v), (v,v3). Then C.:=(C—{(vi, v),(v, 30U
{(vy, 1), (s, v)} has the desired properties.

If e = (4, w) € E,,; — F and one of the nodes u, w is equal to s or ¢, then an arc
set C, with the properties above can be constructed similarly.

Let e = (s, t). G- v contains a hamiltonian circuit C, take any arc f € C and
define C, =(C —{fhU{(s, 1)}.

Altogether we have shown that.there exists a set of g vectors {x%,...,x%} U
{xC:e € E,sy— E,} in P4 which satisfy x(F)=<n—1 with equality and which
are obviously linearly independent. This proves that x(F)=n — 1 defines a facet
of P4, since dim P%*' = g. By Proposition 2.3 this hypotraceable inequality is
also a facet of P& forall k=n+1.

=
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Lifting theorems usually have the following form with respect to P, cf. (1]

Let ax < aq be a facet of P%, and let a'x' < aj be a valid inequality with respect to
Pk k> n such that a.= a, for all e € E,. If a,, has “certain properties™ for all
e € E, — E,, then a'x' < a}, is a facet of P%.

Theorem 5.2 is a nice variant of these: we have an inequality D,.es X = ax <
n—1 and we lift it by keeping all the coefficients a, of e & E— w(v); the
coefficients a,, e € w(v), are kept, but reassociated with the new arcs @™(f) and
w*(s) which replace the arcs w™(v) and w*(v); the coefficient of x,, is set to 1
and all other variables receive a zero coefficient.

In [5] we have shown that for all n (except for some small numbers) there are
(many) hypohamiltonian digraphs G = (V, E) of order n such that x(E) <n—1is
a facet of P%. We have also shown that these facets are not trivially liftable by
adding zero coefficients to the new variables. Theorem 5.1 now proves that all
these rather complicated facets can be lifted upwards, thus, the higher dimen-
sional polytopes P% also inherit the bad hypohamiltonian facets of P%, n<k,
however in a peculiar way.

6. Conclusions

We have shown that very large classes of (maximal) hypotraceable digraphs
induce facets of the monotone asymmetric travelling salesman polytope. We
have accomplished this by proving that these digraphs satisfy certain sufficient
conditions (DT-hypotraceable, 4*-, A™-, alternating trail-, affine independence
property). These conditions were introduced to make particular proof methods
work, but it is not clear to what extent these conditions are essential. We believe
that all maximal hypotraceable digraphs induce facets of PB4, there may however
be some exceptions for small dimensions like in the hypohamiltonian case, cf. [5,
Remark 3.5].

The relations to the monotone symmetric travelling salesman polytope have
also not been completely revealed. In Theorem 3.1 we have shown that the
trivial directions of some facet inducing hypotraceable graphs are facet inducing
hypotraceable digraphs. Is this true in general?

The usual polytope studied in connection with the ATSP is

P%:=conv{xT ER™ ] T hamiltonian circuit in K,}, m = n(n—1).

This polytope P% is a face of P} and has dimension m —(2n — 1) = n(n -3)+1,
cf. [1]. Due to this fact proofs of the type given above become rather massy. By
numerical calculation we have verified for several small hypotraceable digraphs,
e.g. the one in Example 3.5, that these also induce facets of P%. Therefore it
seems rather likely that most of the hypotraceable facets of P% are also facets of
P4,
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