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Abstract

In [1] we have introduced the clique partitioning problem and studied the associated
polyhedron, the so-called clique partitioning polytope. In this paper we continue these
polyhedral investigations; in particular, we present new classes of facets and methods
to construct new facet-defining inequalities from given facet-defining inequalities.

0. Introduction and Notation

Let K, = (Vn,Ey) denote the complete graph on n nodes without loops and multiple
edges, i. e., every two different nodes of K, are linked by exactly one edge. An edge
set A C £, is called a clique partitioning of K, if there is a partition {W;,..., Wi}
of V,, (i. e., each W; is nonempty, W; N W; = @ for 7 # j, and ULI W;: = V,) such
that A is the union of all those edges in £, that have both endnodes in W;, for some
t € {1,...,k}. The clique partitioning problem (for short: CPP) is the task to find,
for a given complete graph K,, = (Vy,€,) with edge weights c. € R for all e € £, a
clique partitioning A* C £, such that ¢(A*) := ) ¢ 4. Cc is as small as possible.

The clique partitioning problem is a combinatorial optimization version of a clus-
tering problem in data analysis and has many interesting applications, among others,
in zoology, economics, and the political sciences — see, for instance, [2], [3], [4], [5], [6]-
This problem is A/P-hard. To solve instances coming up in practical applications, we
have proposed in [2] an LP-based cutting plane procedure that utilizes our polyhedral
investigations [1] of the associated “clique partitioning polytope”. This approach works
quite well; in particular, we could solve all practical applications we could get hold of
to optimality. Although — to date — our method is the only one that is able to solve
the larger ones of the problems described in [2], we feel that, to attack really large scale
problem instances, more information about the clique partitioning polytope is necessary.
Thus this paper is a continuation of our polyhedral work [1] on the clique partitioning
Problem and aims at enlarging our reservoir of facet-defining inequalities that can be
used in a cutting plane procedure.

We use standard graph theory terminology. So a graph is denoted by G = (V, E)
where V is the node set and E the edge set of G. For our problems loops and multiple
edges are irrelevant, so we assume throughout that all graphs considered are simple.

fFH = (W, F) and G = (V, E) are graphs with W C V and F C E then H is called
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a subgraph of G. We will perform many operations with subgraphs of K, which we
distinguish by using subscripts. Therefore we use the symbol VY, for the node set and
the symbol &, for the edge set of K, in order to create no confusion. For v € V|
G — v denotes the graph obtained from G by removing v. For W C V, G[W] is the
subgraph of G induced by W. It will be convenient to use the following notation, where
S,T,51,...,5%«CVand FCE:

E(S):={uwe E|u,veS}
k
E(51;--»80) = U E(S:),

[S:T):={uwweé&|uecSveT}
V(F) := {v € V | v is the endnode of some edge in F}.

To denote the set of edges in G = (V, E) with one endnode in S and the other in 7' we
write

E[S:T)=EnN[S:T).

Using this notation, an edge set A C &, is a clique partitioning of K, if and only if
there is a partition {Wy,..., Wy} of V, such that A = En(Wh, ..., Wi); moreover, for
the complete graph K, = (Vn,En) and every two disjoint node subsets S, T of V,
[S : T} = £,[S : T} holds.

A cycle C of length k is an edge set of the form {v1v2, V203, - - . , Vk—1Vk, V1Vk}, Where
v; # v; if 1 # j. For k > 4, the set C := {vivigz | i = 1,..., k — 2} U {v1vk—1, vour }
is called the set of 2-chords of C. A triangle is a cycle of length three. A wheel is
the union of a cycle and the set of edges that link some node not on the cycle with all
nodes of the cycle. A graph G = (V, E) is bipartite if its node set can be partitioned
into two nonempty subsets V3, V; such that all edges of G have one endnode in V; and
the other in V,. Every partition of V with this property is called a bipartition of V.

If Gy = (V1, E1) and G = (Va, E) are two graphs then the graph (ViUVe, E1UE)
is called the union of G; and G, and is denoted by G; U G2. (We assume that the
union operation does not produce multiple edges, so G, U G, is a simple graph.)

1. The Clique Partitioning Polytope

To formulate the clique partitioning problem in polyhedral resp. linear programming
terms we associate with it a polyhedron in the following way. Let R%" denote the real
vector space where every component z. of a vector £ € R%" is indexed by an edge e
of the complete graph K,, = (Vy,&n)- To avoid trivialities, we assume throughout the
paper that n > 3. For every edge set A C £, x2 € R®" denotes its incidence vector,
ie,x2=1ifee A and x2 =0if e ¢ A. The convex hull of all incidence vectors of
clique partitionings of Ky, is called the clique partitioning polytope (of K) and is
denoted by Py, i. €.,

P, = conv{x* € R | A is a clique partitioning of K Sl
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Since the vertices of Py, are in one-to-one correspondence with the clique partitionings
of K, it follows immediately that the CPP can be formulated as the problem

minimize Tz

subject to  z € Pi.

This is a linear program in the sense that a linear objective function is to be minimized
over a polytope. To apply LP-techniques this formulation is of no use unless P, can be
represented by a system of linear inequalities. Since the clique partitioning problem is
AP-hard, it follows from general results of complexity theory that it is very unlikely that
an explicit complete description can ever be obtained; but we were able to determine
large classes of valid and facet-defining inequalities for Py, see [1], and we continue these
investigations in this paper.

Recall at this point that an inequality aTz < a is called valid for P, if P, C {z €
RE- | aTz < a}. A valid inequality e’z < a is said to define a facet of P, if the face
F,:={z € Pn| aTz = a} of P, is a facet, i. e, if F, is a face of dimension one less
than the dimension of P, (the dimension of a set S is the cardinality of the largest set
of affinely independent points in S minus one). If F is a subset of £, then we use the
symbol z(F) as a short-hand notation for the sum YoecF Te-

The following theorem is a summary of some of the results presented in [1].

(1.1) Theorem. Let K, = (Vn,&s) be a complete graph with n > 3 nodes, and let
P, C R®" be the clique partitioning polytope of K.
(2) The dimension of Py, is equal to |E,| = n(n—1)/2.
(b) For every edge e € Ex, the trivial inequalities z, > 0 and z, < 1 are valid for
P,.. Every inequality T, > 0 defines a facet of Pp, but no inequality . < 1 does.
(c) For every three different nodes t,j,k € Vn, each of the three associated triangle
inequalities
zijtTip—za <1
Tij — Tijk+Tik <1
—zij+ T t+Tik <1
defines a facet of Py,.

(d) For every two disjoint nonempty subsets S, T of V,, the 2-partition inequality
induced by S and T (for short: [S, T]-inequality)

2([S : T]) — (Ea(S)) — #(Ex(T)) < min{|S], |T1}

is valid for P,,. It defines a facet of Py, if and only if |S] # |T|.
(¢) For every cycle C C E, of length at least 5 and its set C of 2-chords, the 2-chorded
cycle inequality
= « | €]
— < |24
=(C) -0 < | Z]
is valid for P,,. It defines a facet of Py, if and only if |C] is odd.
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(f) For every even cycle C C E, of length at least 8, for e.very node z € Vy not in the
node set V,(C) of C, and for every bipartition {V,V} of Va(C), the 2-chorded
even wheel inequality

z(CUR) —z(CUR) < l%l
defines a facet of P,,, where C is the set of 2-chords of C and R := {zv | v € V},
R:={w|veV}

The aim of this paper is to construct further inequalities defining facets of P,
We will, in particular, generalize the 2-partition inequalities using some “glueing” and
“Jifting” techniques.

2. G-Induced [S, T]-Inequalities and Construction V

Let G = (V, E) be a subgraph of K» = (Vn,En) and let {S,T} be a partition of V,
where S or T may possibly be empty. Then the inequality

(2-1) 2(E[S : T]) — 2(E(S)) — =(E(T)) < min{|S], [T|}

is called a general 2-partition inequality induced by G, S, and T, or for short,
a G-induced [S, T}-inequality. Note that the order of S and T plays no role, so a
G-induced [S, T]-inequality is also a G-induced [T, S}-inequality.

Every [S, T}-inequality (introduced in (1.1) (4)) is a K|sur-induced [S, T)-inequali-
ty where K|sur| is the complete subgraph of K, induced by the node set SUT. So
every G-induced [, T]-inequality, S # @ # T, can be obtained from the [S, T]-inequality
by setting some of the positive and negative coefficients to zero. G-induced [S, T}
inequalities are not necessarily valid with respect to P,.. They are, however, obviously
valid if S or T is empty. This case is trivial and only included for technical reasons.

(2.2) Definition. Let S, T be two disjoint subsets of V,, and let G = (V,E) be a
subgraph of K, with V = SUT. G is called [S, T)-valid (with respect to Pp) if the G-
induced [S, T]-inequality is valid for Pn. G is called strongly [S, T]-valid (with respect
to P,,) if for every node set W C V the (G — W)-induced [S \ W, T \ W]-inequality is
valid for P, O
So, for a strongly [S,T]-valid graph G = (V,E),G—Wis [S\W,T\ W]-valid for
all W C V, in fact, G — W is strongly [S\ W, T \ W]-valid.
(2.3) Remark. (a) If G =(V,E) is a subgraph of K, with E = § then G is strongly
[S, T}-valid for every partition {5, T} of V.
(b) It follows immediately from (1.1) (d) that every complete subgraph G = (V,E) of
K, is strongly [S, T}-valid for every partition {S,T}of V (Sor T possibly empty)-
We will now introduce a construction that can be used to combine strongly [S:, Til-

valid graphs Gi (i = 1,2) into new strongly [S, T)-valid graphs. Let us first describe it
in terms of an operation on two graphs.
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Suppose we have two disjoint graphs G = (V1, Ey) and G2 = (Va, E3) and, for
each i € {1,2}, we are given two subsets S}, T} of V; such that S} and T} are disjoint,
|Ti| = |T3], and the induced subgraph G|T!] of G; is complete. Assume furthermore
that a bijection ¢ : T/ — T3 is given. Let G = (V, E) be the graph obtained from G;,
S!, Tt (i =1,2) by identifying each node v of G4 [T}] with the corresponding node o(v)
of G[T?] and adding all edges with one endnode in Sj and the other in 55. We call this
operation Construction V — see Figure 2.1 for a pictorial description.

Figure 2.1 Example of Construction V

In order to avoid the necessity of specifying the bijection ¢ it is more convenient for
us to work on subgraphs G; and G; of the complete graph K, whose intersection is a
complete subgraph. So let us redefine Construction V for that case.

(2.4) Definition. Let G, = (V3, E;) and G; = (Va, Eg) be two subgraphs of K, =
(Vn, &) and let S} C V4, Sy C Vo, and T' C V, be node sets such that

(A1) VvinV,=T%

(A2)  SiCW\T, 55 CV\T'

(A.3)  Gy|T'} is complete for i = 1,2.

Let G = (V, E) be the subgraph of K, obtained from the union Gy U G2 of Gy and G2

by adding all edges with one endnode in S} and the other in S;. We will say that Gis
obtained from Gy and G5 by Construction V(53,S; T') and write G = G1VGa. O

Note that in (2.4) we replace the identification process (which depends on ¢) by
assuming that the two subgraphs overlap in T". This way ¢ is given implicitly. Also ob-
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serve that the cases Sy = 0, S2 = 0, or T' = @ are allowed in Construction V(S7, Sh; T").
It is immediately clear from the above definition that the following holds.

(2.5) Remark. Let Gy = (Vi, Ey) and G2 = (Va, E3) be subgraphs of K,, = (Vn, £,)
satisfying the assumptions of (2.4), and let G = GV G} be the subgraph of K,, obtained
by Construction V(S], S5; T'). Then, for all W C V,,, the graphs G, — W and G, — W
and the node sets S] \ W, S \ W, and T' \ W satisfy the assumptions of (2.4). So
Construction V(S]\W, S;\W; T'\ W) is well-defined, and G—W = (G, —W)V(G;—W)
holds. 0

(2.6) Theorem. Let G = (V1,E;) and Gy = (V,, E3) be two subgraphs of K,, =
(Vn,€n). Fori=1,2, let {S;, T;} be a partition of V; and let S! C V;, T' CV,, be node
sets such that

(B1) VinVe=T,NT,=T;

(B2) S!CS;;

(B.3)  GT'] is complete;

(B.4) G, is strongly [S;, T;]-valid with respect to Pp;
(B.5)  no node in S; \ S! is adjacent to a node in T".

Let G = (V,E) be the subgraph of K,, obtained from Gy and G, by Construction
V(81,55 T") andset T : =Ty UTy, S := 81 US3. Then G is strongly [S, T)-valid with
respect to P,.

Proof. Note that assumptions (B.1), (B.2), (B.3) imply assumptions (A.1), (A.2),
(A.3). So Construction V(§!,S5%;T") can be performed.

We prove the theorem by induction on v := |V}| + |V,| — |T'| = |[V|. The result is
obvious for v < 3. (Actually, the only interesting case is v = 3 and |S;| = |S!| = |T"| =1
where we obtain a triangle inequality (1.1) (¢) from two trivial inequalities of type
ze < 1. Observe also that, for |S;] = |T'| =1 and S! = @, we have E = @ by (B.5).)

Assume now that the theorem holds for v > 3 and let G, G5, T' be such that
[Vi] +|V2| — |T| = v + 1. We have to prove that G — W is [S\ W, T \ W]-valid with
respect to Py, for all W C V.

Case 1. W # (. By Remark (2.5), G—W = (G, —W)V(G2 — W); by assumption (B.4),
G;—W is strongly [S; \ W, T; \ W]-valid; and thus (since |V; \W|+ [Vo \W|—|T"\W| <
v+ 1) G — W is strongly [S\ W, T \ W]-valid by induction hypothesis.

Case 2. W = 0. To prove that G is [S, T|-valid we use the fact — proved in Case 1 —
that G —vis [S\ {v}, T\ {v}]-valid for all v € V. By adding the sum of the left-hand
sides of the |S| valid inequalities

2(E[S\ {v} : T]) — =(E(S\ {v})) — =(E(T)) £ min{|S| - 1,|T]}, v€ S
to the sum of the left-hand sides of the |T'| valid inequalities

2(B[S : T\ {}]) - 2(E(S)) - o(E(T\ {v})) < min{|S],|T| 1}, ve T
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nd estimating the sum of the | S} + |7] right-hand sides from above we obtain the valid
equality

I; (v ~ 1)(z(E[S : T]) — 2(E(S5)) ~ «(E(T))) £ (v + L)min{|$], |71} - min{|$], |T}}.
7v}ding by v — 1 we get
z(E[S : T]) — 2(E(S)) ~ 2( E(T)) < min{|S],|T{} + o1 min{]S}, |71}

¥

It follows from v > 3 and min{}$),|T]} < [#/2) that min{|S], [TI}/(v — 1) < 1 which
jmplies that 2(E[S : T]) ~ 2(E(S)) — 2(E(T)) < min{|S],|T|} is valid for P,.

We will now prove the main (technical) result of cur paper that will be used later to
- derive interesting classes of facet-defining inequalities for P,.. Recall that a matching
:. # subset M of the edges of a graph such that no two edges in M have a common
A, dnode; an s-matching is a matching with ¢ elements. A node that is in some edge
"of & matching M is said to be covered by M.

)
-

{2.7) Theorem. Let G, = (V},E;) and G, = (V,, E;) be two subgraphs of K,, =
S (¥, £). Fori=1,2, let {Si,T,} be a partition of V; and let S! C V;, T* C V,, be node
sets such that

(C1) VinVa=TynT=T, [T'22

(C2) V£S.CS, |SI<IT\TY;

{C.3) GiS'UT" is complete;

(C4) G, is strongly [S;, T;)-valid with respect to P, and the associated [8:,Ti)-
inequality defines a facet of P,,;

{C.5) nonodein S;\ $! is adjacent to a node in T";

{C.6)  for every pair of nodes w, z withw € T\T' and z € T", G, has an |S;|-matching
M{w,z) contained in E;{S, : (T; \ T') U {z}] that does not cover w;

(C.7) G has an [S;|-matching N; contained in E[S, : T;\ T].

Let G = (V,E) be the subgraph of K, obtained from G; and G, by Construction
V(S),55:T") and Jet S := §, U S;, T := Ty UT3. Then G is strongly [S, T}-valid and
' the G-induced [S, T)-inequality defines a facet of P,,.

. Proof. The assumptions {C.1),...,{C.5) obviously imply the assumptions (B.1),....
{B.5) of Theorem (2.6). So, Construction V(51,55 T} is well-defined and the graph
G = G, VG, is strongly [S, T)-valid with respect to Ph.

Let a”z < o be the G-induced [S, T}-inequality, i. e., a7z = ={E[S : T]) — =(E(8))
= 2{E(T)) < min{[S|.{T]} = o, and let F, == {z € P, | a"z = a}. Assume that
" &%z = 8 defines a hyperplane such that Fy := {z € Po | bz = 3} is a facet of P, with
2 C Fy. We will show that there exists a real number % # 0 such that b = wa. This
* Will prove the theorem.
© Let us, for i = 1,2, denote the Gi-induced [S;, TjJ-inequality by (a')Tz < a;. So

e'z = (672 + (6*)T2 + 2(E(T")) ~ z([S] : S3]). 1t follows from (C.2) that o; = |5}
li=1,2) and o = |5] = {51 + |S2)-
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We prove that b, = wa, for all e € €, and some 7 € R.

Case 1. e € £,(V1) U &, (V).

Since (a')Tz < oy defines a facet of P, there are m := |£,| clique partitionings
Aj,..., A, whose incidence vectors are linearly independent and satisfy (a)Tz < oy
with equality. By (C.7) there exists an |Sz|-matching Nz C [S2 : T2 \ 7']. Hence the
edge sets B; := (A; N&E,(V1))U N3 are clique partitionings of K, such that aTyBi =a
for 3 = 1,...,m; and therefore

bT(xB —xB)=0 forj=1,....m—1

holds. Let X be the (m — 1) x |€,| matrix whose rows are the vectors xBi — xBm,
j=1,...,m—1. All columns of X corresponding to edges e € £, \ £,(V}) are zero,
and it follows from the fact that the vectors x1,..., x4 are linearly independent that
the (m — 1) X |En(V4)| submatrix ¥ of X corresponding to the edges e € €x(V1) has
rank |£,(V;)| — 1. So the kernel {y € R%M) | Yy = 0} of ¥ has dimension 1. Since
the vector &' € R obtained from a! by deleting all components corresponding to
edges in £, \ £.(V1) and the vector b € R»M) gbtained from b in the same way satisfy
Ya! = Yb = 0 and since &' # 0 we know that there exists a real number 7 such that
b= rna'. This implies b, = wal for all e € £,(V;).

By symmetry we obtain that there exists a real number #' such that b, = w'a? for
all e € E,(V2). By (C.1), T' = V; NV, and |T’| > 2, and by (C.3) G[T"] is complete.
So there is an edge f € E(T') = Ey(T") = Eo(T"). Since ay = a; = azf = —1 we can
conclude that 7 = 7', and thus there exists a real number 7 such that

(1) b, = ma, for all e € £,(V1) UE,(V2).

Case 2. e = uv with v € S} and v € 5.

Let z; and zz be two different nodes in 7'. Let Ny, N2 be the two matchings
existing by (C.7) and let v’ € Ty \ T", v’ € T2\ T' be the nodes such that uw' € N; and
vv' € Na. Set

A= N;UDN; and

B := (A\ {uv',vv'}) U {uv,uzy, uzs, vz, v22, 2122}

Then A and B are clique partitionings; x4 obviously satisfies x4 € F, C Fj, while (C3)
yields that x? € F, C F;. Thus (1) implies 0 = BTy A — bTxP + byw + bow — buw—

buz, — buzy — byzy — byzy — bzy 2y = —buy — 7. From this we obtain

(2) b, = —7 for all e € [S] : S}

Case 3. e mwv withu € ) \T' and v € T\ T".

Let 2,22 be any two nodes in T’ and let My(u,z,) C Ei[S) : (T \T")U {z1}];
Mz(v, z3) C E2[Sz : (T2 \ T") U {22}] be | Si|-matchings (i = 1,2) not covering u and ¢,
respectively. Such matchings exist by (C.6). Set

A= M](U,ZI) U Mz(‘v, 22), B:=AU {6}
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hen A and B are clique partitionings with x4, x2 € F, C F;, and we can conclude
om 0= — B =bTxP —bTx” = b, that

3) b =0 forallee [H\T' : T\ T].

ase 4. e = uv withu € T; \ T’ and v € S; for 7,5 € {1,2}, 7 # 5.

Let N; C E;[S; : T;\ T'] be the |S;|-matching existing by (C.7) and let v' € T;\ T"
e the node with vv’ € N;. Let z be any node in T' and M(u, z) be the |S;|-matching
xisting by (C.6). Set

A:= M;(u,z) UN; and B := AU {uv,uv'}.

Then A and B are clique partitionings with A, xBeF,CFy. So0= BTy B — Ty =
byy + by, and (3) implies

(4) be=0 foralle e [T;\T':5;] withi,57 € {1,2}.7 # j.

Case 5. ¢ = uv with v € S;\ S} and v € S for 7,5 € {1,2}, 1 # j.
Let N; and N; be the matchings existing by (C.7) and let v’ € T;\T", v' € T;\ T"
be the nodes with uu’ € N; and vv' € N;. Set

A:=N;UN;, B:=AU {uv,u'v',uw’,u'v}.

Then A and B arc clique partitionings with x4, x? € F, C F,. Thercfore, 0 = by, +
byt + buyr + by and (3) and (4) imply

(5) b =0 forallee€[S;\ S :5;] withi,j € {1,2},i#;.

Case 6. ¢ =uv withu e V,,\ V.

This case is trivial and we obtain
b, =0 for all e & £,(V).

Altogether we have now shown that b = ma, and clearly 7 # 0. Thus aTz < a defines

a facet of P,,. O

We would like to remark that the statement of Theorem (2.7) holds under slightly
more general conditions. These are, however, rather complicated and technical. We have
decided to present here the systems (C.1),...,(C.7). These assumptions are relatively
easy to understand and are sufficient for the derivation of our main classes of facet-
defining inequalities. An immediate consequence of Theorem (2.7) is the following.
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(2.8) Theorem. Let G, = (V1,Ey) and G, = (Va, E;) be two complete subgraphs of
Kn = (Vn,&r). Fori = 1,2, let {S;,T;} be a partition of V: and let T" C V,. be node
sets such that

(Dl) %nVQ =T1r1T2 :T', lT'l 22,
(D.2) 1<[SI<|T\T|
Let G = (V,E) be the subgraph of K, obtained from Gy and G, by Construction

V(51,82;T") and let S := S; U Sy, T := Ty UTy. Then G is strongly (S, T]-valid and
the G-induced (S, T)-inequality defines a facet of P,,.

Proof. For: = 1,2, set S} = S; then the assumptions (C.1), (C.2), (C.3), (C.5), (C.6),
(C.7) are obviously satisfied; (C.4) is satisfied by Remark (2.3) (b). Thus (2.8) follows
from (2.7).

Figure 2.2 shows two graphs that are obtained by Construction V from two com-
plete subgraphs of K,,. The associated general S, T]-inequalities define facets of P,, for
n 2 6 and n > 9, respectively, by Theorem (2.8).

S 5,

Figure 2.2 Graphs inducing general 2-partition inequalities.

Theorem (2.8) has been cast in a way that Theorem ( 2.7) is directly applicable. The
following version of it is probably easier to remember.

(2.9) Corollary. Let Sy, S, Ty, To, T be five mutually disjoint subsets of the node
set Vy, of K, such that |T| > 2 and 1 < |S;| < |T| for i = 1,2. Then the (general
2-partition) inequality

2([S1: Ty U T)) +a([S2 : Ty UT]) — 2([Sh : Sa)) — 2(En(S1)) — 2(En(S2))—
2([T1 : T]) — a([T2 : T1) — 2(Ea(Th)) — 2(En(T2)) — 2(En(T)) < |S1] + |Sa|

defines a facet of P,. J

3. Two Further Compositions

We will now describe two ways of applying Construction V iteratively that can be used
to produce new facet-defining inequalities for P,,.
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1) Definition. Let G; = (Vi,E1),....Gp = (Vp, Ep), p = 2, be complete sub-
phs of K, let {S;,T;} be a partition of V;,i=1,...,p, and let Tj,: = 1,...,p—1,
disjoint subsets of V,, such that

1) V,-ﬂV,-+1=T,-ﬂT,-+1=T,-' fori=1,...,p—1;

2) ViNViy,=0 fori=1,...,p—2andk=2,...,p—1.

Gy = Gy, and fori = 2,...,p, let G; be the graph obtained from G:_1 and G; by
mstruction V(S;_1,Si; T!_;). Let us denote the graph G, constructed this way by
(V,E). We say that G is the graph obtained from complete graphs Gy,...,G, by
nstruction V(Si,..., 5 T},.--,T5 1), or (not specifying details) by a repeated
noverlapping V-construction.

Figure 3.1 shows the scheme of a repeated nonoverlapping V-construction.

el
A

Figure 3.1

2) Theorem. Let G; = (Vi, Ei),...,Gp = (Vy, Ep), p > 2, be complete subgraphs
Ky = (Va, &), let {Si,Ti} be a partition of V; fori = 1,...,p; and let T], + =
..,p ~ 1, be disjoint subsets of V,, such that

“n‘/H.l =T§nTi+1 =T: and |T:|22 fori:l,...,p—l;
ViV, =0 fori=1,...,.p—2andk=2,...,p—1,

1< I8 < T4 — max{|T!_, L IT}} fori=2,...,p—1,
1< [$1] < [Tl = |Ti], 1< 1Sl < [Tl = 1Tl

G = (V, E) be the subgraph of K, obtained from G, ..., G, by Construction V(S},
S5 T4, .-, Ty ) and let S := i, Si, T := U?_, Ti. ThenG is strongly S, T|-valid
the G-induced [S, T)]-inequality defines a facet of Py,.

of. The assumptions imply that the repeated nonoverlapping V-construction (3.1)
be performed. Let us denote the graphs constructed in this process by G; = (V, E))
set 5‘.‘ = U;:l S,', T,' = U;-___l T.', g: = S,‘, = 1, -, D

By Theorem (1.1) (d) all Gi-induced [S;, T;]-inequalities define facets of Py, and
ying Theorem (2.8) to G; = G; and G, we get that, for the graph G, = (‘72, Eg) ob-
ed by Construction V(S'i , So; T7) from G; and G4, the G,-induced [5'2, T,)-inequality
ongly valid for P,, and defines a facet of P,. It is easy to see that G, = (Va, F2) and
(V3, E3) with the partitions {gz,Tz} of V, and {S3,T3} of V3 and additional sets
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S =81, S5 := 53, T' := T} satisfy all assumptions of Theorem (2.7). So, for the graph
Gz = (Vs,Es) obtained from G2 and G3 by Construction V(S!,85;T) = V(S), Ss3; 13),
the G3-induced [Ss3, T;]-inequality is strongly valid for P,, and defines a facet of P,..

Repeating this process iteratively we can conclude that for G = ép = é,,_l VG,
the G-induced [S, T]-inequality is strongly valid and defines a facet of P,,.

An easier to read version of the above theorem — which includes Corollary (2.9)
as a special case — is the following.

(3.3) Corollary. Let Si,...,8,,T1,...,Tp,1,...,T,_,, p 2 2, be mutually disjoint
subsets of the node set V,, of K,. Set (for notational convenience) T := T;v := 0 and

assume that
IT]|>2 for i=1,...,p—1;

1< 18] < |Til+ min{|T}|,|T;_,|} fori=1,...,p
is satisfied. Then the (general 2-partition) inequality

P p—1 P

Y (S TUTIUT ) = ) a((S:: Sial) = ) «((T: : TTUTL,)

- Z(w((‘?n(Si)) + 2(En(T3)) + 2(Ex(T))) < Z |Sil

defines a facet of P,,.

0
Figure 3.2 shows a graph obtained by a repeated nonoverlapping V-construction of
complete graphs.

Figure 3.2 Nonoverlapping V-composition of complete graphs.

Another way of making iterative use of Construction V is the following.

(3.4) Definition. Let G; = (W, Ey),...,G, = (V,, E,), p > 2, be complete sub-
graphs of K,,, let {S;,T;} be a partition of V; fori =1,...,p and let T' be a subset of
V.. such that

(G.1) VinV;=T;NT; =T for1<:<j<p.

Set Gy :== G4, and fori = 2,...,p, let G; be the subgraph of K, obtained_from Gi_,
and G; by Construction V(S5,U...USi.1,Si;T'). Let us denote the graph Gp obtained
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this way by G = (V,E). We say that G is the graph obtained from complete graphs
Gy,...,Gp by Construction V(S,... ySp; T'), or (without specifying details) by a
repeated totally overlapping V-construction.

The basic schemme of a repeated totally overlapping V-construction is displayed in
Figure 3.3.

Figure 3.3

Facet-defining inequalities can be obtained with the repeated totally overlapping V-con-
struction as follows.

(3.5) Theorem. Let G, = (Vy,E,),... ,Gp = (Vy, Ep), p > 2, be complete subgraphs
of Ky, let {S;,T;} be a partition of V; fori = 1,...,p and let T' C V,, such that

(HI1) VinV,;=TinT;=T for1<i<j<p, 7' > 2

(H2) 1<|S|<|Ti|—|T'| fori=1,...,p.

Let G = (V, E) be the subgraph of K, obtained from Gy, ...,G p by Construction V(5,

3 Sp;T') and let S :=J_ | S, T := |2, Ti. Then G is strongly [S, T]-valid and the
G-induced [S, T|-inequality defines a facet of P,,.

Proof. The result follows — as in the proof of (3.2) — by induction from Theorem
(2.7). The proof is straightforward and is left to the reader. O

A more digestible form of Theorem (3.5) is the following.
(3.6) Corollary. Let S,,..., Sp, Tiy..., Ty, T', p > 2, be mutually disjoint subsets of
the node set V,, of K,. Set S:=|J'_, S; and assume that
17| > 2;
1< S < T = |T'] fori=1,...,p
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holds. Then the (general 2-partition) inequality

4

3 " a([Si : TiUT) — 2(£a(S)) — 2(Ea(T")) — D ((Ea(Ty)) + ([T : T'D)) < S|

i=1 i=1
defines a facet of P,,. 0
A graph obtained by a repeated totally overlapping V-construction from 3 complete

graphs is shown in Figure 3.4. Here |T"| = 2 and the edge forming £,(T") is drawn by
a thick line. The sets S;, S2, and S3 have cardinality 1, 1, and 2 respectively.

Figure 3.4 Totally overlapping V-composition of complete graphs.
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