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In the simplex algorithm, solving linear systems with the basis matrix and its transpose accounts

for a large part of the total computation time. The most widely used solution technique is sparse
LU factorization, paired with an updating scheme that allows to use the factors over several

iterations. Clearly, small number of fill-in elements in the LU factors is critical for the overall

performance.
Using a wide range of LPs we show numerically that after a simple permutation the non-

triangular part of the basis matrix is so small, that the whole matrix can be factorized with

(relative) fill-in close to the optimum. This permutation has been exploited by simplex practi-
tioners for many years. But to our knowledge no systematic numerical study has been published

that demonstrates the effective reduction to a surprisingly small non-triangular problem, even for

large scale LPs.
For the factorization of the non-triangular part most existing simplex codes use some variant of

dynamic Markowitz pivoting, which originated in the late 1950s. We also show numerically that,

in terms of fill-in and in the simplex context, dynamic Markowitz is quite consistently superior to
other, more recently developed techniques.

Categories and Subject Descriptors: G.1.3 [Numerical Analysis]: Numerical Linear Algebra—

Linear systems (direct and iterative methods)

General Terms: Algorithms, Experimentation

Additional Key Words and Phrases: direct factorization methods, dynamic Markowitz pivoting,

large and sparse linear systems, simplex-based LP solvers
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1. INTRODUCTION

Numerous applications in optimization require solving large-scale linear programs
(LPs). For example, large-scale LPs arise as subproblems in mixed-integer pro-
grams (MIPs). The most widely used LP solution method in this context is the
simplex algorithm, which is considered one of the most important algorithmic de-
velopments of the 20th century [Cipra 2000]. Each step of this algorithm requires
solving (at least) two large, very sparse and nonsymmetric linear systems of equa-
tions, one with the current basis matrix and one with its transpose. In most existing
computer codes, these two solves are performed directly, based on an LU factor-
ization of the basis matrix. For this factorization, dynamic Markowitz pivoting,
originally described in [Markowitz 1957], is used, usually in some variant of the
implementation described by Suhl and Suhl [1990]. Comprehensive information on
computational aspects of the simplex algorithm is given in [Maros 2003; Koberstein
2005; Wunderling 1996].

Interior-point methods offer an alternative to the simplex algorithm for the so-
lution of large-scale LPs. At the core of these methods highly ill-conditioned sym-
metric saddle point matrices due to the Karush-Kuhn-Tucker optimality conditions
have to be solved. In recent years a large amount of work has been devoted to solu-
tion methods for such systems [Gould et al. 2007]. For matrices arising in interior-
point methods fast factorization algorithms have led to significant performance
advances [Duff and Pralet 2005; Schenk and Gärtner 2006; Schenk et al. 2007]. An-
other example where recent developments in sparse factorization techniques result
in improved LP solution algorithms is provided by Davis and Hager [2008], who
focus on computational techniques for the dual active set algorithm.

Motivated by this progress in sparse factorization for interior-point and dual-
active set methods, we investigate in this paper the potential of using modern
sparse direct factorization techniques (for nonsymmetric systems) in the linear al-
gebra kernel of simplex solvers. We focus on the factorization of the so-called basis
matrices. We do not consider updating strategies for the factorization and we do
not consider the sparse triangular solves either. Our extensive experimental study
shows that modern methods do not offer a competitive alternative to the existing
LU factorization based on Markowitz pivoting. This is quite surprising, given that
modern linear algebra techniques have been very successful for other optimization
methods and applications areas.

The paper is organized as follows. After a short summary of our results in the
following section, we give in section 3.1 a “working definition” of the LP problem
and the basis matrix, and a high level description of the simplex algorithm. In
section 3.2 we discuss structural features of LP basis matrices. Then, in section 4,
we present the results of our benchmarks in detail. Further numerical results are
given by [Luce 2007].

2. SUMMARY OF THE RESULTS OF OUR BENCHMARK

A major slice of the computational time within the simplex algorithm is spent for
the solves with the factors of the basis matrix. The fill-in in these factors is of
major importance for the overall performance of the simplex algorithm. In our
experiments we therefore concentrate on the fill-in in the factors rather than on
ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.
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factorization times, which usually account for less than 5% of the overall simplex
runtime. Our main experimental results have been performed with the LP code
SoPlex1 (sequential object-oriented simplex, v. 1.3.0, see [Wunderling 1996]). We
have chosen SoPlex because it implements the most widely used linear algebra tech-
niques and allows easy source code instrumentation for recording all relevant data.
It would have been interesting to aquire the same data from a commercial simplex
solver, but to our knowledge no such code offers appropriate API (“application pro-
gramming interface”) routines to access the data needed for this benchmark. Our
large set of linear programming problems includes models from NETLIB2, MIPLIB
2003 [Achterberg et al. 2006], the Mittelmann Benchmark LPs3, and some large-
scale LPs provided to us by the Zuse Institute Berlin (ZIB). Our main results can
be summarized as follows:

(1) The LP basis matrices typically admit an LU factorization with a relative fill-
in close to optimal. The reason for this is that an overwhelming part of the basis
matrix can be permuted to triangular form. Only a very small remaining part,
called the nucleus, still needs to be factorized, especially for large scale problems.
The potential fill-in in the basis factorization, since restricted to the nucleus, is very
small.

(2) In the factorization of the small nuclei, the dynamic Markowitz pivoting
strategy as implemented in SoPlex typically produces a fill-in which is as good as or
even better than a selection of state-of-the-art LU codes, namely Pardiso [Schenk
and Gärtner 2004; 2006; Schenk et al. 2000], Umfpack [Davis 2004a; 2004b] and
Wsmp [Gupta 2002a; 2002b].

Concerning our result stated in item (1), it is clear that triangular parts of
the basis matrix have been exploited ever since computational aspects of the sim-
plex algorithm have been explored (see [Orchard-Hays 1968] and references within
or [Tomlin 1972] for a presentation in the context of LU factorizations). Hence,
(1) can be considered as “folklore wisdom” among simplex practitioners. But, to
our knowledge, in recent years no extensive benchmark has been performed that
provides empirical evidence that this property is in fact the reason why LU factor-
izations of large-scale simplex basis matrices can be obtained at very low compu-
tational cost. In this paper we provide such a benchmark which takes into account
many real world large-scale LP instances.

Large parts of the LP basis matrices typically can be triangulated by means
of permutations, and thus the computation of LU factorizations of these matrices
with small and even close to optimal fill-in can be considered a rather simple prob-
lem from the numerical point of view. The simplicity of this task becomes even
clearer when noticing that the permutations that perform the triangulations can be
found simply by successively moving column- and row-singletons to the front (see
section 3.2 for details).

1http://soplex.zib.de/
2http://www.netlib.org/
3http://plato.asu.edu/bench.html
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3. MATHEMATICAL BACKGROUND

3.1 The (revised) simplex algorithm

In this section we give a “working definition” of the LP problem and basis matrices.
We describe the dual simplex algorithm on a conceptual level, focusing only on the
steps relevant for our presentation. Our goal is to expose the structure of the
basis matrices as simply as possible. There is no loss of generality in comparison
with other formulations of the LP problem, or other formulations of the simplex
algorithm.4

Definition 3.1 Linear Program (LP). Let A ∈ Rm×n be the constraint matrix,
b ∈ Rm the right hand side vector, c ∈ Rn the cost vector and s ∈ Rm the vector of
slack variables. The linear programming problem is to find a solution

(
x
s

)
∈ Rn+m

to the following optimization problem:

max cT x
s.t. (A, Im)

(
x
s

)
= b

x, s ≥ 0
(1)

The matrix (A, Im) ∈ Rm×(n+m) is called the extended constraint matrix.

In a typical LP we may expect m ≤ n. The matrix A is usually very sparse,
meaning that only a few entries in each row and column are nonzero. For simplicity,
we assume that (1) is neither infeasible nor unbounded. Note that the treatment
of these cases is an algorithmic aspect of the simplex algorithm and has no impact
on our discussion of the solution of linear systems.

Definition 3.2 Basis. Consider any partitioning of the set {1, 2, . . . , n + m} into
two disjoint subsets B and N , i.e., B ∩ N = ∅ and B ∪ N = {1, . . . ,m + n}, with
|B| = m. If the matrix B = (A, Im)•B ∈ Rm×m is nonsingular, we call B the basis
matrix corresponding to the set of basic column indices B. The set N is called the
set of non-basic column indices.

(For a matrix Z and a set of its column indices I, the notation Z•I refers to the
submatrix of A induced by all the rows of A and by all the columns subscripted by
I.)

The dual simplex algorithm is an iterative procedure for solving (1). It computes
a sequence of bases which all meet a certain optimality condition, but whose induced
solution B−1b may not be feasible for (1). In the course of the iteration, bases which
improve feasibility while maintaining optimality are sought until a basis is found,
which is both optimal and feasible. An outline focusing solely on the steps relevant
for our context is as follows:

Algorithm 3.3 Dual simplex algorithm. The following steps are performed until
some termination criterion is fulfilled:

4We will omit the word “revised” throughout. It should be clear that we are not considering a

tableaux-based simplex method.

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.
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Pricing: Based on the solution of the previous FTRAN, select a
leaving index p ∈ B. Depending on the pricing strategy,
it may be necessary to solve a linear system with B.

BTRAN: Solve BT h = (Im)• p.
Ratio test: Based on the previous solution, select an entering index

q ∈ N .
FTRAN: Solve Bf = (A, Im)• q.
Update: B = (B \ {p}) ∪ {q}, N = (N \ {q}) ∪ {p}.

In each step of this algorithm, two indices p ∈ B and q ∈ N are exchanged in
order to improve the solution that is defined by the current basis. In terms of the
basis matrix B, this means that one column of B is replaced by one column of the
matrix (A, Im)•N , and this exchange requires solving (at least) two linear systems,
one with BT (BTRAN) and one with B (FTRAN). Note that these solves cannot
be performed simultaneously, since the FTRAN depends on the ratio test, which
in turn depends on the outcome of the BTRAN.

Often, the dual simplex algorithm is started with the so-called slack basis, which
means that initially B = {n + 1, . . . ,m + n} and so B = Im. Then in every iteration
one column of the basis matrix is exchanged with one non-basic column of the
matrix (A, Im).

Since the constraint matrix A usually is very sparse, the basis matrix B will
remain very sparse throughout the execution of the simplex algorithm. We remark
that the right hand sides of all linear systems to be solved during the run of the
simplex algorithm are very sparse as well, since each of these is either a column of
the sparse matrix A, or a column of Im (the exploitation of the sparsity of the right
hand side is very important for an efficient implementation; see [Hall and McKinnon
2005; Wunderling 1996]). As a typical example, see Figure 1, which shows the
nonzero pattern of the basis matrix B in step 4,835 of our run of SoPlex applied
to the LP relaxation of the problem momentum1 from MIPLIB. The matrix is of
order 11,633 and has 43,451 nonzero entries, meaning that it has approximately 3.7
nonzeros in each column.

The most widely employed algorithmic kernel for the solution of the systems in
BTRAN and FTRAN is an LU decomposition of B. Since B is sparse, one seeks tri-
angular matrices L and U as sparse as possible, and permutation matrices P and Q
such that LU = PBQT . The problem of computing factors with a minimal number
of nonzero elements is NP-complete [Yannakakis 1981]. Consequently, numerous
heuristics have been developed and many different codes for computing sparse LU
factorizations exist; see the exhaustive list from the University of Florida5.

Within the simplex algorithm, the factors L and U are typically used in combina-
tion with an updating scheme that allows re-use over several iterations. Examples
are given by the Forrest and Tomlin [1972], whose procedure focusses on maintain-
ing sparsity in the factors, and the procedure by Bartels and Golub [1970], which
emphasises numerical stability. Most commonly, a variant of the Forrest-Tomlin
update is employed [Suhl and Suhl 1993]. Another popular updating scheme de-

5http://www.cise.ufl.edu/research/sparse/codes/

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.
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Fig. 1. Nonzero pattern of a typical basis matrix
B in the simplex algorithm.

Fig. 2. Nonzero pattern of the matrix in Figure 1
after permuting singletons to the front.

rives from the “product form of the basis inverse” (PFI). A recent presentation
of the PFI update under consideration of computational aspects can be found in
[Maros 2003].

3.2 Structure of basis matrices

At first sight, the nonzero pattern of LP basis matrices seems to lack any structure
(cf. Figure 1). In particular, it was observed that LP basis matrices are particularly
nonsymmetric, see [Duff et al. 1986, p. 123]. This is not surprising, since B can be
regarded as a random selection (by the pricing step) of unit vectors and columns
of A, which itself usually has no special structure besides maybe some visually
identifiable pattern stemming from the model the LP represents. Consequently,
during the run of the simplex algorithm, the nonzero pattern of B is completely
unpredictable.

However, as indicated in the preceding section, a well known distinguishing prop-
erty of LP basis matrices in comparison with matrices arising in other application
areas is that often a large part can be triangulated by means of permutations (again,
see [Orchard-Hays 1968; Tomlin 1972]). This is trivially true when initially B = Im,
and it remains true for many simplex steps, often throughout until termination, as
we will demonstrate numerically for a wide range of different LPs in section 4.2.
Mathematically, this means that by successively moving column- or row singletons
to the front, we obtain permutation matrices P,Q such that the permuted basis
matrix PBQ is of the form  U0 ∗ ∗

0 L0 0
0 ∗ N

 , (2)

with a lower triangular matrix L0, an upper triangular matrix U0 and a matrix
N , called the nucleus (or kernel), which contains no column- or row singleton.
ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.
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Fig. 3. Nonzero pattern of the nucleus N of the

matrix in Figure 2.

Fig. 4. Spectrum of the nucleus N from Fig-

ure 3.

Of course, the matrix U0 comprises all unit columns of B which may, or may
not, account for a large part of U0. Thus with appropriate permutations, LP basis
matrices exhibit a very pronounced structure which is crucial for efficient solution of
the linear systems. As an example, see Figure 2, which shows the nonzero structure
of the permuted basis matrix B from Figure 1. The matrix contains 3,063 non-unit
columns, the nucleus N is of order 1,211, which is about 10% of the order of B,
and has 3,923 nonzero entries.

Figure 3 shows the nonzero pattern of N . This matrix cannot be triangulated
by means of permutations, and we are unable to determine any special feature,
except for the fact that N is sparse. In general, the nuclei appear to be sparse,
nonsymmetric, and indefinite (with eigenvalues on both sides of the imaginary axis).
As an example, see Figure 4, where we show the spectrum of N from Figure 3.

3.3 Remark on iterative solvers

Since L0 and U0 are both triangular, the only non-trivial part for solving the
systems in the FTRAN and BTRAN are solves with the nucleus N . We will show
in section 4.2 below that the dimension of N typically is significantly smaller than
the dimension of B. When the dimension of N is too small (less than 104, say), it
is unlikely that any iterative solver will outperform a direct solver. Moreover, the
favorable property of modern iterative solvers that they can operate matrix-free,
i.e., without requiring the matrix to be stored in memory, does not apply in the
LP context, where already the constraint matrix A is explicitly stored. Finally,
the spectra of the nuclei N we looked at indicate rather unfavorable convergence
behavior of iterative methods (cf. Figure 4), unless a very good preconditioner
is used. But even in the case where such preconditioner is obtained “for free”,
our results in section 4.3, which show that the fill-in in the LU factorization of N
obtained by dynamic Markowitz pivoting is very low, imply that in order to be
competitive with a direct solver, a preconditioned iterative solver would have to

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.



8 · R. Luce et.al.

compute a good approximate solution within very few iterations.

4. NUMERICAL EXPERIMENTS

4.1 The set of LPs used in our experiments

For our numerical experiments, we used LPs from four different sources:

(1) The NETLIB set of real-world LPs (94 LPs). Although this publicly available
test set dates back many years and most of the problems are solved within a
fraction of a second, we consider the ones of larger size to be interesting for our
purpose of comparing fill-in in the factors.

(2) The MIPLIB 2003 test set of mixed-integer linear programs (60 LPs). In order
to mimic a typical root relaxation for branch-and-bound based MIP algorithms,
we solve the resulting LP after applying CPLEX6 MIP-presolve and relaxing
integrality constraints.

(3) The LPs from the Mittelmann benchmark of free LP solvers that do not come
from source 1 or 2 (35 LPs).

(4) Large-scale LPs, mostly with the LP basis dimension exceeding 5·105, provided
to us by ZIB (11 LPs).

From these sets, we selected all instances of basis dimension (i.e., the number of
rows) greater than or equal to 103 for our numerical experiments. Of course, this
number can be regarded to be chosen quite arbitrarily, but it provides means to
filter out LPs that are nowadays of limited computational relevance while a broad
range of real world LPs is maintained in the test set.

Table I gives an overview of the 88 LPs. An LP name containing a “*” indicates
that the full name has been shortened to save table space. In addition to the number
of rows, columns and non-zeros, it shows the density of the LP constraint matrix,
the average number of non-zeros per column (column “∅nzpc”) and in which set
the LP can be found (numbers refer to the list above). It should be noted that all
numbers refer to the LP after SoPlex has performed its presolve procedure, so that
the number of rows shown matches the basis dimension for the computational steps
in the simplex algorithm.

name nrows ncols nnz %dens ∅nzpc source
80bau3b 1990 8778 19157 0.110 2.18 1
a1c1s1 2283 2619 8156 0.136 3.11 2
aflow40b 1405 2691 6709 0.177 2.49 2
aflo*0 50 500998 998000 2494495 0.000 2.50 4
aflo*0 50 2001998 3996000 9988972 0.000 2.50 4
atla*a-ip 19446 17343 179287 0.053 10.34 2
BER *od10 1425456 558174 4941366 0.001 8.85 4
bnl2 1559 2702 11177 0.265 4.14 1
cap6000 1891 4689 14044 0.158 3.00 2
classify 21398 22805 5852594 1.199 256.64 4
continued on next page

6http://www.ilog.com/products/cplex

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.
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continued from previous page

name nrows ncols nnz %dens nzpc source
cont1 120395 40398 359593 0.007 8.90 3
cont11 120395 80396 359593 0.004 4.47 3
cont11 l 1468599 981396 4403001 0.000 4.49 3
cont1 l 1918399 641598 5752001 0.000 8.97 3
cont4 106866 39602 331739 0.008 8.38 3
cycle 1277 2132 13969 0.513 6.55 1
d2q06c 2021 4759 30947 0.322 6.50 1
dano3mip 3151 13837 79001 0.181 5.71 2
dbic1 33688 140320 781909 0.017 5.57 3
degen3 1502 1817 24644 0.903 13.56 1
dfl001 5927 11165 34085 0.052 3.05 1
fit2p 3000 10525 47284 0.150 4.49 1
fome12 23708 44660 136340 0.013 3.05 3
fome13 47416 89320 272680 0.006 3.05 3
ganges 1097 1360 6290 0.422 4.62 1
gen4 1537 4297 107102 1.622 24.92 3
gesa2 1344 1176 4968 0.314 4.22 2
gesa2-o 1176 1152 3648 0.269 3.17 2
greenbea 1858 3879 23418 0.325 6.04 1
greenbeb 1854 3864 23350 0.326 6.04 1
ken-18 78862 128304 298728 0.003 2.33 3
l30 2701 15380 51169 0.123 3.33 3
liu 2178 1154 10626 0.423 9.21 2
lp22 2872 8693 60181 0.241 6.92 3
manna81 6480 3321 12960 0.060 3.90 2
maros-r7 2156 6620 80480 0.564 12.16 1
mkc 1286 3223 12509 0.302 3.88 2
mod011 1404 7022 13969 0.142 1.99 2
mod2 29882 29316 136227 0.016 4.65 3
momentum1 11633 3579 46429 0.112 12.97 2
momentum2 18840 3306 178920 0.287 54.12 2
momentum3 53868 13333 542736 0.076 40.71 2
msc98-ip 15008 12797 79499 0.041 6.21 2
mzzv11 8272 8775 114289 0.157 13.02 2
mzzv42z 9951 11291 136659 0.122 12.10 2
N BA*mann 3160202 1573827 7869027 0.000 5.00 4
neos 423189 36786 915386 0.006 24.88 3
neos1 131581 1892 468009 0.188 247.36 3
neos2 131902 1560 549855 0.267 352.47 3
neos3 512209 6624 1542816 0.045 232.91 3
net12 13757 13819 78232 0.041 5.66 2
nsct2 7797 11297 612106 0.695 54.18 3
nug08-3rd 19728 20448 139008 0.034 6.80 3
nug15 6330 22275 94950 0.067 4.26 3
continued on next page
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continued from previous page

name nrows ncols nnz %dens nzpc source
nug20 15240 72600 304800 0.028 4.20 3
pds-100 152300 489909 1053001 0.001 2.15 3
pds-40 64276 210139 454345 0.003 2.16 3
pilot 1373 3337 40653 0.887 12.18 1
pilot87 1967 4587 70372 0.780 15.34 1
protfold 2110 1835 21776 0.562 11.87 2
qiu 1192 840 3432 0.343 4.09 2
rail4284 4176 1090538 11174651 0.245 10.25 3
rd-r*c-21 54169 538 352274 1.209 654.78 2
rlfprim 57422 8048 264483 0.057 32.86 3
roll3000 1109 810 20432 2.275 25.22 2
scm3*0pre 1220936 3602518 14407840 0.000 4.00 4
sctap3 1344 1767 7630 0.321 4.32 1
seymour 4624 1085 32282 0.643 29.75 2
sgpf5y6 143546 206033 500901 0.002 2.43 3
sierra 1212 2016 7242 0.296 3.59 1
sp97ar 1670 14085 276989 1.178 19.67 2
spal 004 10203 321696 46161316 1.406 143.49 3
stat96v1 5846 190755 581635 0.052 3.05 3
stat96v2 28750 942131 2835917 0.010 3.01 3
stat96v4 3172 62211 490471 0.249 7.88 3
stocfor2 2065 1951 8127 0.202 4.17 1
stocfor3 16105 15151 63543 0.026 4.19 1
stor*-125 56286 138619 376373 0.005 2.72 3
stor*1000 450036 1108119 3008373 0.001 2.71 3
stp3d 97476 136940 498355 0.004 3.64 2
truss 1000 8806 27836 0.316 3.16 1
ts.l*0315 1654588 271971 3764552 0.001 13.84 4
ts.l*2029 1089131 216935 2533576 0.001 11.68 4
ts.l*2253 1089128 216875 2533513 0.001 11.68 4
ts.l*4012 1654588 271980 3764561 0.001 13.84 4
ts.l*4139 2214771 310996 4991762 0.001 16.05 4
watson 2 206926 400438 1083142 0.001 2.70 3
world 29768 31061 137057 0.015 4.41 3

Table I: Information on the LPs for the numerical experiments

4.2 The size of the nucleus N

We already indicated above that the dimension of the nucleus N typically is sig-
nificantly smaller than the dimension of the corresponding basis matrix B. Our
experimental setup is as follows: we let SoPlex solve each of the LPs (with a time
limit of 80, 000 seconds). Whenever SoPlex decided to compute a factorization of
the basis matrix, we recorded the number of non-unit columns in the basis and
the dimension of the nucleus at that iteration. In order to obtain a single number
ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.
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for both quantities, we simply use the average over all such factorizations where
the nucleus did not vanish, that is, where the basis matrix was not a (permuted)
triangular matrix. All this information is shown in Table II: The second column
shows how many factorizations were computed and the third how many of these
resulted in a non-vanishing nucleus. Next to the basis dimension of the LP (which
is, of course, constant throughout the execution of the simplex algorithm) columns
five and six show the average number of non-unit columns and average nucleus
dimension. Again, the average is taken over all factorizations where the nucleus did
not vanish to allow for comparability among columns five and six.

LP name #fac #N dim B ∅ #NU ∅ dim N
80bau3b 28 25 1990 1271 139
a1c1s1 8 2 2283 1085 43
aflow40b 14 7 1405 1340 18
aflo*0 50 2658 210 500998 490697 584
aflo*0 50 7342 11 2001998 1461779 31
atla*a-ip 85 84 19446 4891 1398
BER *od10 834 833 1425456 20107 9602
bnl2 12 11 1559 750 246
cap6000 6 5 1891 295 2
classify 183 182 21398 335 335
cont1 212 113 120395 30913 22329
cont11 577 478 120395 60996 35746
cont11 l 1660 438 1468599 288100 86164
cont1 l 2064 467 1918399 366000 93375
cont4 208 110 106866 30292 21212
cycle 6 5 1277 370 124
d2q06c 33 32 2021 1268 753
dano3mip 180 179 3151 1822 1013
dbic1 63417 63416 33688 7991 932
degen3 19 17 1502 935 506
dfl001 115 112 5927 4595 2254
fit2p 30 29 3000 21 20
fome12 440 437 23708 18140 8886
fome13 901 895 47416 36295 17793
ganges 8 7 1097 628 190
gen4 8 7 1537 526 526
gesa2 8 7 1344 410 99
gesa2-o 7 6 1176 365 70
greenbea 63 62 1858 1558 630
greenbeb 36 35 1854 1399 603
ken-18 885 318 78862 66953 78
l30 69 68 2701 2347 2340
liu 4 1 2178 408 2
lp22 146 145 2872 1707 1518
manna81 17 16 6480 1522 295
continued on next page
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continued from previous page

LP name #fac #N dim B ∅ #NU ∅ dim N
maros-r7 15 14 2156 924 907
mkc 6 4 1286 464 31
mod011 13 1 1404 716 7
mod2 355 353 29882 11573 2884
momentum1 44 38 11633 2687 760
momentum2 52 48 18840 2243 624
momentum3 149 116 53868 8934 4444
msc98-ip 79 78 15008 3882 1207
mzzv11 666 665 8272 3355 2384
mzzv42z 111 110 9951 3893 1200
N BA*mann 4879 73 3160202 28152 34
neos 464 463 423189 27682 2213
neos1 46 44 131581 1393 453
neos2 70 68 131902 1363 597
neos3 435 431 512209 5908 4667
net12 23 22 13757 1025 433
nsct2 34 33 7797 251 162
nug08-3rd 7946 7945 19728 10214 9491
nug15 43227 43226 6330 5671 5544
nug20 12308 12307 15240 9256 8181
pds-100 2365 2113 152300 103632 3907
pds-40 541 294 64276 56506 1607
pilot 28 27 1373 1030 863
pilot87 66 65 1967 1496 1317
protfold 13 12 2110 466 308
qiu 7 6 1192 562 204
rail4284 305 304 4176 2456 2179
rd-r*c-21 3 2 54169 261 126
rlfprim 48 45 57422 3917 372
roll3000 6 5 1109 264 145
scm3*0pre 2441 2438 1220936 45501 22692
sctap3 4 3 1344 212 13
seymour 13 12 4624 497 345
sgpf5y6 685 634 143546 72758 290
sierra 5 0 1212 0 0
sp97ar 8 7 1670 245 215
spal 004 1731 1730 10203 1564 1564
stat96v1 88 87 5846 4811 4694
stat96v2 741 740 28750 25612 25228
stat96v4 515 514 3172 2776 2748
stocfor2 11 10 2065 845 70
stocfor3 78 75 16105 6334 584
stor*-125 517 464 56286 35596 1509
stor*1000 4233 4110 450036 274215 12286
continued on next page

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.



Factorization of simplex basis matrices · 13

continued from previous page

LP name #fac #N dim B ∅ #NU ∅ dim N
stp3d 6481 6357 97476 53783 17763
truss 99 98 1000 945 704
ts.l*0315 913 911 1654588 78578 3684
ts.l*2029 664 663 1089131 57115 1846
ts.l*2253 739 738 1089128 63732 3186
ts.l*4012 1368 1366 1654588 103807 12762
ts.l*4139 1006 1005 2214771 87748 3713
watson 2 2055 2053 206926 146320 21970
world 478 477 29768 12495 3230

Table II: Detailed data on the nuclei sizes

Observe that for some LPs (the “aflow” LPs, for example), the basis matrix often
really is a permuted triangular matrix. In this case, there is no nucleus and the
matrix admits a trivial factorization. From the difference between column 2 and
column 3 it can be seen how often this happens for a particular LP instance.

Fig. 5 offers a more condensed view of the data in Table II: In the upper plot,
our 88 LPs are given on the x-axis, sorted by their average nuclei size as in column
6 of Table II. The y-axis shows the average nucleus size in percentage of the basis
dimension,

100 ∗ ∅ dim N

dim B
,

so every cross (×) in this plot maps an LP to this quantity. Associated with every
such cross, a vertical interval is shown, which simply depicts the mean deviation
of the relative nuclei sizes from their average. Figure 6 shows the same data as
Figure 5, but restricted to the 35 LPs having the smallest average nucleus sizes.
We see that for a considerable number of LPs, including all large-scale LPs, the
nuclei sizes never reach 4% of the size of the basis matrix throughout the simplex
run. Note that in contrast to the numbers on the average nucleus dimension in
Table II, the averages shown in these figures also take into account the occurrences
of vanishing nuclei.

4.3 Fill-in results for dynamic Markowitz pivoting (SoPlex)

The LU factorization of SoPlex is based on a right-looking scheme using dynamic
Markowitz pivoting, similar to what is described in [Suhl and Suhl 1990]. Pivoting
(for sparsity and stability) is performed on the whole remaining submatrix at every
stage using current row and column counts. No column ordering is symbolically
computed upfront and no BLAS is used.

We applied SoPlex to each of the LPs in our test set. We recorded the number
of non-zeros in the L and U factors of the nucleus N of every basis matrix B at the
iteration steps of the simplex algorithm where B was factorized. Let the number
of nonzero elements in the factors of N computed by SoPlex be denoted by

ns := nnz(L− I) + nnz(U).
ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.
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Fig. 5. Upper plot: Ranges of the nuclei sizes of the LPs we tested. The LPs are sorted according

to nucleus size. The lower graph indicates the dimension of the corresponding LP.

0

1

2

3

4

re
la

tiv
e 

si
ze

 o
f n

uc
le

us

LPs sorted by nucleus size

10
4

10
5

10
6

10
7

LPs sorted by nucleus size

di
m

en
si

on
 o

f b
as

is
 m

at
rix

Fig. 6. The LPs from Figure 5 on the left-hand side of the marker.
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Then ns

nnz(N) is the relative fill-in in the factorization of N . Furthermore, let the
number of nonzero elements in the triangular parts of B permuted as in (2), be
denoted by

nt := nnz(B)− nnz(N).

Then ns+nt

nnz(B) is the relative fill-in in the factorization of B. In order to obtain
a single number for each LP, we computed the average of these numbers over all
factorized basis matrices and nuclei, respectively.

Table III shows these two different fill measures in columns three and six alongside
with the mean deviation of the relative fill-in from the average. For completeness,
the number of factorizations of B and N are shown in columns two and five. Note
that the average fill-in for the LP instances “ganges” and “nsct2” is less than 1.0.
The reason is numerical cancellation in the course of the factorization.

LP name #fac. B ∅fill B dev. #fac. N ∅fill N dev.
80bau3b 28 1.016 0.008 25 1.230 0.029
a1c1s1 8 1.001 0.002 2 1.301 0.009
aflow40b 14 1.002 0.002 7 1.264 0.037
aflo*0 50 2658 1.000 0.000 210 1.425 0.134
aflo*0 50 7342 1.000 0.000 11 1.436 0.019
atla*a-ip 85 1.026 0.020 84 1.500 0.241
BER *od10 834 1.015 0.004 833 1.774 0.114
bnl2 12 1.051 0.022 11 1.291 0.043
cap6000 6 1.000 0.000 5 1.000 0.000
classify 183 1.049 0.017 182 3.864 0.173
cont1 212 2.348 1.566 113 7.424 2.699
cont11 577 5.292 2.234 478 11.452 2.211
cont11 l 1660 1.219 0.340 438 6.120 1.978
cont1 l 2064 1.116 0.187 467 5.907 1.875
cont4 208 2.267 1.491 110 7.072 2.679
cycle 6 1.022 0.010 5 1.244 0.046
d2q06c 33 1.189 0.105 32 1.495 0.177
dano3mip 180 1.506 0.260 179 2.551 0.482
dbic1 63417 1.013 0.002 63416 1.397 0.031
degen3 19 1.022 0.011 17 1.139 0.043
dfl001 115 1.342 0.175 112 1.795 0.256
fit2p 30 1.000 0.000 29 1.003 0.059
fome12 440 1.357 0.193 437 1.813 0.295
fome13 901 1.350 0.184 895 1.798 0.278
ganges 8 0.999 0.003 7 1.008 0.041
gen4 8 3.979 2.291 7 8.335 2.783
gesa2 8 1.005 0.003 7 1.071 0.028
gesa2-o 7 1.001 0.001 6 1.015 0.017
greenbea 63 1.132 0.031 62 1.456 0.049
greenbeb 36 1.147 0.041 35 1.477 0.056
ken-18 885 1.000 0.000 318 1.383 0.075
continued on next page
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continued from previous page

LP name #fac. B ∅fill B dev. #fac. N ∅fill N dev.
l30 69 4.376 0.960 68 4.872 1.001
liu 4 1.000 0.000 1 1.000 0.000
lp22 146 3.351 0.955 145 4.715 1.156
manna81 17 1.006 0.009 16 1.167 0.000
maros-r7 15 1.501 0.134 14 1.884 0.096
mkc 6 1.002 0.003 4 1.062 0.062
mod011 13 1.000 0.000 1 1.111 0.000
mod2 355 1.050 0.020 353 1.508 0.061
momentum1 44 1.022 0.016 38 1.409 0.090
momentum2 52 1.006 0.004 48 1.370 0.087
momentum3 149 1.022 0.012 116 1.625 0.099
msc98-ip 79 1.033 0.019 78 1.420 0.133
mzzv11 666 1.190 0.055 665 1.895 0.163
mzzv42z 111 1.045 0.015 110 1.428 0.075
N BA*mann 4879 1.000 0.000 73 1.243 0.068
neos 464 1.001 0.001 463 1.305 0.092
neos1 46 1.003 0.002 44 1.899 0.308
neos2 70 1.004 0.003 68 2.035 0.538
neos3 435 1.020 0.016 431 2.947 1.340
net12 23 1.015 0.006 22 1.380 0.049
nsct2 34 0.995 0.001 33 0.839 0.016
nug08-3rd 7946 13.419 1.470 7945 27.648 2.381
nug15 43227 15.311 0.642 43226 17.588 0.597
nug20 12308 15.733 3.604 12307 24.370 3.397
pds-100 2365 1.011 0.006 2113 1.414 0.038
pds-40 541 1.006 0.007 294 1.399 0.046
pilot 28 2.083 0.474 27 2.453 0.367
pilot87 66 2.546 0.420 65 2.863 0.303
protfold 13 1.150 0.074 12 1.872 0.248
qiu 7 1.052 0.071 6 1.204 0.135
rail4284 305 2.069 0.294 304 2.972 0.436
rd-r*c-21 3 1.000 0.000 2 1.242 0.031
rlfprim 48 1.003 0.002 45 1.397 0.060
roll3000 6 1.013 0.008 5 1.123 0.030
scm3*0pre 2441 1.031 0.014 2438 1.674 0.109
sctap3 4 1.000 0.000 3 1.017 0.011
seymour 13 1.021 0.012 12 1.424 0.115
sgpf5y6 685 1.000 0.000 634 1.235 0.033
sierra 5 1.000 0.000 0 0.00 0.00
sp97ar 8 1.041 0.023 7 1.145 0.041
spal 004 1731 6.596 3.697 1730 27.699 12.051
stat96v1 88 2.220 0.491 87 2.363 0.375
stat96v2 741 4.520 1.095 740 4.697 0.946
stat96v4 515 1.716 0.219 514 1.751 0.185
continued on next page
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Fig. 7. Distribution of the LPs by their average fill-in in the nucleus (left) and basis matrix (right)

at iterations where the nucleus was factorized. See section 4.3 for explanations.

continued from previous page

LP name #fac. B ∅fill B dev. #fac. N ∅fill N dev.
stocfor2 11 1.009 0.009 10 1.213 0.120
stocfor3 78 1.010 0.008 75 1.215 0.092
stor*-125 517 1.007 0.005 464 1.231 0.059
stor*1000 4233 1.008 0.006 4110 1.249 0.061
stp3d 6481 1.413 0.119 6357 3.264 0.522
truss 99 1.379 0.074 98 1.515 0.087
ts.l*0315 913 1.001 0.001 911 1.160 0.040
ts.l*2029 664 1.001 0.000 663 1.131 0.032
ts.l*2253 739 1.001 0.001 738 1.170 0.051
ts.l*4012 1368 1.005 0.005 1366 1.257 0.117
ts.l*4139 1006 1.001 0.001 1005 1.175 0.059
watson 2 2055 1.069 0.039 2053 1.515 0.111
world 478 1.058 0.021 477 1.538 0.084

Table III: #fac. indicates the number of SoPlex factorizations of
the basis matrices B and N , “fill” shows the average fill-in during
the LP process and “dev.” indicates the mean deviation.

A more condensed view of the data in Table III is offered in Figures 7. These
histograms show the distribution of the average relative fill-in in B and N over the
whole set of 88 LPs. That means that each LP accounts for one data item and is
sorted into the bin according to its average fill-in. Note that for the LP “sierra”
there was not a single nucleus to factorize, so that this LP accounts for the leftmost
bin in Figure 7 by convention. The LP’s which account for the elements in the
bins covering the interval [0.75, 1.0) in both Figures are “ganges” and “nsct2”: As
explained before, numerical cancellation during the factorization results in factors
L and U that are slightly sparser than the nuclei N or basis matrices themselves.

From Figure 7 it is immediately clear that the number of fill-in elements in N
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generated by SoPlex’ LU factorization of N is extremely small: for about 75% of
the LPs, the average relative fill-in is less than two, and for many of them much less.
Combined with the results on the nucleus sizes from section 4.2, the distribution
shown in right graphic in Figure 7 is no surprise as the average relative fill-in in
the basis matrices is close to 1.0 for almost all LPs in our set.

Of the ten LPs of which the average fill-in in the nucleus is quite large, say,
greater than five as indicated by the rightmost bin in Figure 7, the “nug*” LPs
account for three and the “cont*” LPs account for four. Since one can expect that
different instances of the same underlying model share many structural properties,
it may be advisable to employ a counting scheme that covers this aspect so as not
to “overweight” similar LPs. In order not to make the presentation of the data
overly complicated, we did not use such a counting scheme, but expect the reader
to consider this aspect when judging based on the data shown in Figure 7.

We remark that within the runs of SoPlex for the 88 test LPs a total of 181,460
basis matrices B were factorized, and 162,174 had a nontrivial nucleus N .

4.4 Comparison with other LU codes

We now describe the fill-in results for the factorization of the nucleus N generated
by a selection of modern LU codes and compare them with the results produced by
SoPlex. In our selection of LU codes, we tried to achieve a good coverage of top-level
strategies different from what is employed in SoPlex. We used the exhaustive list of
available LU codes maintained at the University of Florida7 for orientation, which
led us to use Pardiso 3.18, Umfpack 5.0.19, and Wsmp 6.9.2510. We did not
select a LU code based on (full) dynamic Markowitz pivoting, because we expect
the resulting number of fill elements would be very similar to the number of fill
elements generated by SoPlex’ built-in factorization routines.

When a nonsymmetric, sparse linear system of equations Ax = b is to be solved
by means of an LU factorization, it is a standard procedure to permute the matrix
A into block triangular form (BTF) [Duff et al. 1986, ch. 6] first, so that only the
diagonal blocks need to be factorized. This preprocessing can greatly reduce the
fill-in if the matrix is far from being irreducible, that is, if the graph of the matrix
A is far from being strongly connected.

In the very special setting of this LP context, BTF is not applicable: the column
exchange in B from one iteration to the next can alter the strongly connected
components of the graph of the basis matrix quite drastically, so that efficient
updating procedures for the LU factors of the diagonal blocks of the BTF would
be very difficult to develop.

Wsmp and Pardiso both compute their default fill-in reducing ordering based
on the pattern of the symmetric matrix NT + N . The primary advantage of this
strategy is that the numerical factorization can be computed very efficiently. Due
to the lack of structural symmetry in N , these methods produce more fill-in than
methods based on Markowitz pivoting. The fact that the factorization of LP basis

7http://www.cise.ufl.edu/research/sparse/codes/
8http://www.pardiso-project.org
9http://www.cise.ufl.edu/research/sparse/umfpack/
10http://www-users.cs.umn.edu/~agupta/wsmp.html
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matrices cannot be cast as the factorization of the diagonal blocks of their block
triangular form poses a difficulty for Wsmp. Umfpack pre-orders the columns of
N and performs partial Markowitz pivoting in the course of the numerical factor-
ization. This explains why Umfpack delivers factors with only slightly more fill-in
than (full) dynamic Markowitz pivoting.

4.4.1 Methodology. For our comparison we let SoPlex solve each LP as usual
(with a time limit of 80, 000 seconds for each LP). Every time SoPlex factorizes a
basis matrix, we let the other LU packages factorize it as well. For every factor-
ization we recorded the fill-in. Apart from counting the fill-in, the factorizations of
the other LU codes were not used at all. All algorithmic decisions remained to be
determined by the solves with SoPlex’ own factorization.

We benchmarked one LU code at a time, that is, only one LU code was called
from SoPlex during the solution of the LPs. This procedure was repeated for each
of the LU codes. All computations were performed on a 64 bit Linux box with two
AMD Opteron 252 CPU with a clock rate of 2.6 GHz and 4GB memory. Only one
CPU was used for each run and all LPs were solved sequentially. Some LU codes
offer a multithreaded implementation, but we always used the codes in serial mode.
The parameters of the LU codes were mostly set to the default values. Packages
that use a threshold for pivoting were instructed to use the value 0.01, which is the
default value SoPlex uses. Wsmp was set up not to perform the reduction to BTF,
for the reasons explained above.

4.4.2 Results. Consider the basis matrix B at a SoPlex iteration where it is
factorized. We define nt := nnz(B)−nnz(N) as in section 4.3. Analogously to ns as
in section 4.3, let nX for LU code X denote the number nX := nnz(L−I)+nnz(U),
where now code X (instead of SoPlex’ LU factorization) is used to compute the L
and U factors of N . Since the computational complexity of solving a system with
resulting factorization of B is a linear function of nX + nt, the number

nX + nt

ns + nt

measures the relative change in the complexity for the solve if the LU factorization
from code X was used as a drop-in replacement for SoPlex’ own factorization.
For example, a value of 1.5 means that the solves with B would take 50% more
operations if X was used.

Another number of interest, which measures the change in the relative fill-in, is
nX/ns. For example, a value of 1.5 means that code X has produced 50% more
fill-in elements per nonzero in N than SoPlex.

To obtain a single number over a whole SoPlex run, we take the geometric mean
over all such basis matrices for both quantities. We denote the geometric mean
over all (nX + nt)/(ns + nt) by cB , and the geometric mean over all (nX/ns) by
cN .

Figures 8–11 show histograms of the distributions of cN and cB for the three
LU codes used in this benchmark (in all plots, the rightmost bin accounts for
values greater than five). From the cN distributions we see that Pardiso and
Wsmp generated in average twice as much fill-in elements as SoPlex which can be
explained by the symmetric minimum degree algorithm used by Pardiso instead
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of the dynamic Markowitz pivoting. Umfpack generated more fill-in for far fewer
LPs than the other LU packages and even performed a little better than SoPlex’ for
some LPs. But altogether Umfpack still does slightly worse, as Figure 11 shows.
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Fig. 8. Distribution of cB and cN for Pardiso.
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Fig. 9. Distribution of cB and cN for Wsmp.
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Fig. 10. Distribution of cB and cN for Umfpack.
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Fig. 11. Distribution of cB and cN for Umfpack, on a finer scale as in Figure 10.

Note that cB could be computed more precisely, if one would apply the LU update
scheme used in SoPlex to the factors of the decomposition from the other LU code.
One would obtain the quantity (nX + nt)/(ns + nt) for every iteration then, and
not only those at which a basis factorization takes place. But since sparser factors
will tend to produce fewer additional fill-in elements during the LU update, the
restriction to these iterations already delivers a good qualitative approximation,
that is, whether the other LU code performs well or not compared to SoPlex.

The time limit of 80, 000 seconds was hit by some of the more difficult LPs. This
implies that some caution has to be taken if one would want to compare the other
LU codes against each other, since a different number of basis factorizations may
have been performed. But since our intention is to compare SoPlex with each of
the modern LU codes, this aspect poses no difficulty for the interpretation of our
results.

Conclusions

Our numerical experiments on a wide range of LP instances, including very large-
scale ones, have shown that the factorization of basis matrices can typically be con-
sidered as being very simple from the numerical point of view: The non-triangular
parts of simplex basis matrices are usually very small, and an LU factorization of
these parts can often be computed with only few fill-in, and thus at very low cost,
using dynamic Markowitz pivoting. We believe that in this special setting it is
unlikely that faster basis factorization routines for the simplex algorithm based on
more sophisticated direct methods can be developed.
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Schenk, O. and Gärtner, K. 2006. On fast factorization pivoting methods for symmetric

indefinite systems. Elec. Trans. Numer. Anal 23, 158–179.
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