
Primal Heuristics for Mixed Integer Programs

Diplomarbeit

bei Prof. Dr. Dr. h.c. M. Grötschel

vorgelegt von Timo Berthold 1

Fachbereich Mathematik der

Technischen Universität Berlin

Berlin, 11. September 2006

1Konrad-Zuse-Zentrum für Informationstechnik Berlin, berthold@zib.de

2

Contents

Acknowledgments iii

Zusammenfassung v

1 Introduction 1

1.1 Definitions . 2

1.2 A Brief History of MIP Heuristics 5

2 Integration Into SCIP 9

2.1 SCIP – a MIP-Solver . 9

2.2 Our Test Set . 10

3 Start Heuristics 15

3.1 Diving Heuristics . 15

3.1.1 Some Simple Divers 16

3.1.2 Feasibility Pump . 21

3.2 Rounding Methods . 29

3.2.1 RENS . 29

3.2.2 Some Other Rounding Methods 34

3.3 Octane . 42

4 Improvement Heuristics 53

4.1 Local Branching . 54

4.2 RINS . 59

4.3 Crossover . 62

4.4 Mutation . 64

4.5 Computational Results . 66

5 Results 69

5.1 Impact of the SCIP Heuristics 69

5.2 Conclusions . 75

A Notation 77

B Tables 79

i

ii Contents

List of Algorithms 113

List of Figures 115

List of Tables 117

Bibliography 123

Acknowledgments

First of all I wish to thank my parents and Friederike C. Häckl for all the
love and support they gave me. I thank Annegret Dix, Annette Mura, and
Tim Januschowski for the best office atmosphere I could imagine.

I wish to thank Benjamin Hiller, Kati Wolter, Axel Metzler, and Marieluise
Häckl for reading parts of the preliminary version and showing me how many
mistakes one person can make on 123 pages. Especially, I thank Tobias
Achterberg for all the advice and encouragement he gave me. It was a plea-
sure to work with you.

Furthermore, I wish to thank Prof. Dr. Martin Grötschel for supervising
this thesis.

iii

iv Chapter 0. Acknowledgments

Zusammenfassung

Die vorliegende Arbeit beschäftigt sich mit Primalheuristiken für Gemischt-
Ganzzahlige Programme (MIPs).

Diverse praktische Problemstellungen lassen sich mit Methoden der Kom-
binatorischen Optimierung modellieren. Kombinatorische Optimierungsprob-
leme können häufig effektiv als MIP formuliert werden (siehe [54]). Das Lösen
eines MIPs ist ein NP-vollständiges Optimierungsproblem. Eine Standard-
methode zum Lösen von MIPs ist das Branch-And-Cut-Verfahren, welches
eine Kombination der exakten Methoden des Branch-And-Bound und der
Schnittebenenverfahren ist.

Moderne MIP-Löser wie Cplex oder das in dieser Arbeit verwendete
SCIP bedienen sich zusätzlich einer Reihe von Methoden, welche in der Pra-
xis häufig zu einer deutlichen Beschleunigung des Lösungsverfahrens führen.
Primalheuristiken dienen dabei dem frühzeitigen Auffinden zulässiger Lösun-
gen (Startheuristiken) oder der Konstruktion besserer Lösungen aus bereits
vorhandenen (Verbesserungsheuristiken).

Wir geben zunächst einen Literaturüberblick und geben dann eine kurze
Einführung in das MIP-Solving-Framework SCIP, in welches die in dieser
Arbeit beschriebenen Heuristiken implementiert wurden.

Anschliessend stellen wir verschiedene Heuristiken ausführlicher vor. Zum
einen konzentrieren wir uns dabei auf solche, die in der Literatur der let-
zten 10 Jahre beschrieben wurden: Die Feasibility Pump, Octane, Local
Branching und Rins. Im Zuge dessen stellen wir eine verbesserte Version der
Feasibility Pump vor, die wir auch schon in [3] beschrieben haben, sowie eine
leichte modifizierte Version von Octane.

Zum anderen präsentieren wir zwei neue Heuristiken: Rens, eine Start-
heuristik, die Rundemethoden mit Nachbarschaftssuche kombiniert sowie
Crossover, eine Verbesserungsheuristik, die Ähnlichkeiten zwischen verschie-
denen bereits gefundenen Lösungen ausnutzt. Desweiteren stellen wir ver-
schiedene konkrete Implementierungen der allgemeinen heuristischen Ideen
des Rundens und des Diving vor.

In jedem Unterkapitel werden dabei neben den Ideen und der ausführli-
chen Beschreibung der jeweiligen Heuristik eine algorithmische Darstellung,
Ergebnisse aus Testrechnungen sowie meist eine Illustration gegeben.

Die Arbeit schließt mit einem Vergleich der 15 Heuristiken, die stan-
dardmäßig in SCIP aktiviert sind. Wir untersuchen dabei den Einfluss der
einzelnen Heuristiken auf den Gesamtverlauf von SCIP.

v

vi Chapter 0. Zusammenfassung

Chapter 1

Introduction

Mixed Integer Programming is a powerful tool to model and solve hard combi-
natorial optimization problems. Chip design and verification, network design,
line planning, frequency assignment, various types of scheduling and many
other combinatorial optimization problems (see e.g., Heipcke [38]) have been
successfully modelled as Mixed Integer Programs, shortly MIPs. Since MIP-
solving is NP-hard [54], heuristic methods for it are of high interest.

Although a lot of heuristic ideas have been published in the recent years,
few attempts have been made to summarize these and compare their per-
formance to each other. This thesis gives an overview of a couple of MIP
heuristics that have been developed during the last ten years. We introduce
a new start heuristic which we named Rens and a new improvement heuris-
tic called Crossover. The latter one has been independently developed by
Rothberg [52]. Furthermore, we will present an extension of the Feasibility
Pump heuristic by Bertacco, Fischetti, and Lodi [14] and some general diving
and rounding heuristics.

We implemented all these heuristics into a MIP-solving framework called
SCIP, see Achterberg [1], and ran extensive tests in order to evaluate their
performance.

This thesis is organized as follows. In the remainder of this chapter we
give basic definitions and a brief introduction into primal heuristics. In the
second chapter, we describe the framework into which we integrated our
implementations and the set of instances on which we ran our tests. The
third and fourth chapter present several heuristics. The former concentrates
on start heuristics, the latter on improvement heuristics.

For each heuristic, we begin with a short description of the main idea,
mostly supplemented by an illustration and an algorithmic outline. Next, we
fill in the implementation details, before subsuming the procedure into an
algorithm. Finally, we present and discuss computational results.

The fifth chapter demonstrates the impact of the heuristics when we in-
tegrated them into SCIP.

1

2 Chapter 1. Introduction

1.1 Definitions

This section provides definitions of the most important terms that we use in
this thesis. For a detailed introduction into linear and integer programming
and combinatorial optimization see for example [20, 35, 54].

Let R̂ := R ∪ {±∞}.

Definition 1.1 Let m,n ∈ R, A ∈ R
m×n, b ∈ R

m, c ∈ R
n, l, u ∈ R̂

n, and
I ⊆ N = {1, . . . , n}.

min cT x

such that Ax ≤ b

l ≤ x ≤ u

xj ∈ Z for all j ∈ I

(1.1)

is called a mixed integer program (MIP).

We call cT x the objective function, shortly the objective, of the MIP.
l and u are called the lower and upper bounds of the variables x. We call
l ≤ x ≤ u the bounding constraints, Ax ≤ b the linear constraints, and
xj ∈ Z for all j ∈ I the integrality constraints of the MIP. A row Ai· of the
matrix A is often identified with the linear constraint Ai·x ≤ bi.

Let B := {j ∈ I | lj = 0, uj = 1}. We call {xj | j ∈ I} the set of integer
variables, {xj | j ∈ B} the set of binary variables, {xj | j ∈ I \B} the set of
general integer variables, {xj | j ∈ N \ I} the set of continuous variables.

Naturally, if an integer variable has a fractional upper bound uj, the
bound can be strengthened to ⌊uj⌋. The same holds for fractional lj and
⌈lj⌉. Due to this, we assume that lj , uj ∈ Z, for all j ∈ I.

Definition 1.2 A MIP given in the form (1.1) is called

a linear program (LP) if I = ∅,

an integer program (IP) if I = N ,

a binary program (BP) if B = I = N , and

a mixed binary program (MBP) if B = I.

Definition 1.3 Let x̂ ∈ R
n. We call x̂

LP-feasible for (1.1) if Ax̂ ≤ b and l ≤ x̂ ≤ u,

integer feasible for (1.1) if x̂j ∈ Z for all j ∈ I,

a feasible solution for (1.1) if x̂ is LP-feasible and integer feasible, and

an optimal solution for (1.1) if x̂ is a feasible solution and cT x̂ ≤ cT x

for all other feasible solutions x.
(1.2)

1.1. Definitions 3

The terms LP-infeasible, integer infeasible, and infeasible vector are defined
analogously. If a MIP is given, the LP which arises by omitting the integrality
constraints (xj ∈ Z for all j ∈ I) is called the LP-relaxation of the MIP. The
set P (A, b, l, u) := {x ∈ R

n | Ax ≤ b, l ≤ x ≤ u} is called the LP-polyhedron
of (1.1).

Definition 1.4 Let x ∈ R
n and I the index set of integer variables of a given

MIP. We call f(xj) := |xj − ⌊xj + 0.5⌋| the fractionality of the variable xj,
j ∈ I and

f(x) :=
∑

j∈I

f(xj)

the fractionality of the vector x. Let Ai· be a row of the matrix A. We call
βi(x) := Ai·x the activity of the row Ai·, and

vi(x) :=

{

0 if βi(x) ≤ bi

βi(x)− bi if βi(x) > bi

the violation of the row Ai·.

Obviously, a vector x is integer feasible if and only if f(x) = 0, and
LP-feasible, if and only if l ≤ x ≤ u and vi(x) = 0 for all i ∈ {1, . . . ,m}.
A variable xj , j ∈ I, with f(xj) 6= 0 is called fractional.

Especially for rounding and diving heuristics it is of interest, whether a
fractional variable can be rounded up or down without violating any con-
straint or how many constraints could possibly be violated. This motivates
the following definitions:

Definition 1.5 Let a MIP in the form 1.1 be given.

1. A variable xj is called trivially down-roundable, if all coefficients aij

of the corresponding column of the matrix A are nonnegative, hence
A·j ≥ 0.

2. A variable xj is called trivially up-roundable, if all coefficients aij of the
corresponding column of the matrix A are nonpositive, hence A·j ≤ 0.

3. A variable is called trivially roundable, if it is trivially down-roundable
or trivially up-roundable.

4. The number of negative coefficients aij of a column A·j is called the
number of down-locks of the variable xj.

5. The number of positive coefficients aij of a column A·j is called the
number of up-locks of the variable xj.

4 Chapter 1. Introduction

6. The minimum of the number of up-locks and the number of down-locks
of xj is called the number of locks of xj.

Sometimes we will talk about the minima of more general functions or
sets than those given in Definition 1.1.

Definition 1.6 Let X ⊆ R
n be some closed set and g : X → R a real-valued

function on X.

x′ = argmin{g(x)} :⇔ x′ ∈ X ∧ g(x′) = min{g(x) | x ∈ X} (1.3)

If we evaluate the quality of a feasible solution with respect to the objec-
tive function, we will consider the relative gap to the objective value of an
optimal solution. One could also consider the relative gap to the proven dual
bound, if the MIP-solving process has not been finished yet.

Definition 1.7 Let x be a feasible solution of a given MIP, x⋆ an optimal
or best known solution of this MIP, and cT y⋆ the current dual bound during
a MIP solving process.

γP (x) :=

0 if cT x = cT x⋆ = 0
∞ if cT x > cT x⋆ = 0

100 · (cT x−cT x⋆)
|cT x⋆|

else

γPD(x) :=

0 if cT x = cT y⋆ = 0
∞ if cT x > cT y⋆ = 0 ∨ cT x · cT y⋆ < 0

100 · (cT x−cT y⋆)
|cT y⋆|

else

(1.4)
γP (x) is called the primal gap of the solution x, γPD(x) is called the primal-
dual gap of x.

If we want to compare different heuristics or settings, we also want to
state how good they were “on average”. Taking the arithmetic mean seems
not practical to us, since the values we want to compare differ heavily in
their magnitude. For example, the number of solving nodes lies in a range of
1 node to 50 million nodes. The arithmetic mean would only depend on the
“huge” numbers. Therefore, we decided to use the geometric mean, but in a
slightly modified form:

Definition 1.8 Let x1, . . . , xn be a sequence of nonnegative real numbers.

µ := n

√

√

√

√

n
∏

i=1

max(xi, 1) (1.5)

is called the geometric mean of x1, . . . , xn.

1.2. A Brief History of MIP Heuristics 5

We take the maximum of a number and one, in order to avoid difficulties
caused by measuring errors of values near to zero. For example, whether
the measured running time is 0.01 or 0.02 seconds could just be due to an
imprecise measuring. Nevertheless, this would have the same impact as if
the running time would be 1 hour or 2 hours. The above definition avoids
this trouble or reduces it to an acceptable size, respectively.

1.2 A Brief History of MIP Heuristics

The word heuristic is derived from the Greek word ǫυρισκǫιν, which means
’to find something’. Heuristics are procedures which try to find good solutions
in a short time by orientating themselves on some information about the
problem which seems helpful to lead to the desired result.

In the sense of this very general and vague definition, we all apply heuristic
methods quite frequently. For example, if we want to buy a new PC, we
decide on the model to chose and the shop to buy it, after having considered
only a small part of the available information. Collecting and evaluating all
offers would probably take too much time, such that our PC is already out
of fashion, until we are sure, which one is the optimal for us. Instead of, we
orientate ourselves on some criteria which seem reasonable to us: maybe we
read some test reports, we ask a neighbor who is interested in computers and
bought a new one just a month ago. We could also follow the salesman’s
advice at our favorite computer shop who hopefully also wants to maximize
our benefit and not merely his own profit.

The salesman willing to optimize his profit brings us back to mathematics.
The Traveling Salesman Problem, briefly called TSP, was one of the first
problems in combinatorial optimization, to which heuristics were efficiently
applied and often succeeded in finding an optimal solution in a time quite
small compared to the time it needs to prove the optimality of this solution.
Among others, Grötschel and Padberg [36] give a short introduction into
TSPs and present some simple heuristic ideas, an extensive discussion of
the TSP was published by Gutin and Punnen [37]. The Nearest Neighbor
heuristic and the Christofides Algorithm [19] are well known start heuristics
for the TSP.

The k-OPT-algorithm is an improvement heuristic which was originally
designed for the TSP, but variants of this are used for several other combina-
torial optimization problems. It also formed the basis for the Lin-Kernighan-
Heuristic [43] which is one of the most common algorithms used to find high
quality solutions for TSPs in practice. Both, the Christofides and the k-OPT
heuristic were developed in the 1970s.

Some years before, in 1958, Gomory [34] claimed the basic ideas of integer
programming.

In 1969, Hillier [39] gave an algorithm for IPs without equality constraints
which searches for feasible solutions along a line connecting an LP-feasible

6 Chapter 1. Introduction

and an integer feasible solution. He also included a k-OPT improvement
heuristic into it.

In 1980, Balas and Martin [11] presented a heuristic called Pivot-and-
Complement which was developed for BPs. It is based on the observation
that, in the nomenclature of the simplex algorithm, an LP-feasible solution of
which all basic variables are slack variables is also integer feasible. It performs
pivot operations which drive the integer variables out of the basis and the
slacks into the basis. Six years later, the same authors [12] gave an extension
of this heuristic called Pivot-and-Shift which could be applied to general
MIPs. In 2004, Balas, Schmieta, and Wallace [13] published an improved
version of Pivot-and-Shift. It contains more pivot types and new rules for
selecting them, an extension of the shifting procedure, and a neighborhood
search related to Local Branching (see [25] and Chapter 4.1).

In 1992, Saltzman and Hillier [53] presented a so-called Heuristic Ceiling
Point Algorithm which was restricted to IPs without equality constraints.
It enumerates integer feasible points which are near or on the boundary of
P (A, b, l, u) and close to the optimum of the LP-relaxation.

Scatter Search with Star Paths is a diversification heuristic which is based
on the work of Glover and Laguna [29, 30] from 1997 and was further im-
proved by Glover, Løkketangen, and Woodruff [32] in 2000. It creates a
couple of points which are then linked by paths along which feasible solu-
tions are searched. The basic ideas of path relinking were introduced by
Ibaraki, Ohashi, and Mine [40] in the 1970s. The main goal of Scatter Search
is to diversify the set of solutions and not improving the incumbent.

In the year of 2001, Balas, Ceria, Dawande, Margot, and Pataki [10]
published Octane, in full words OCTAhedral Neighborhood Search. This
heuristic for BPs will be discussed in Chapter 3.3. It is based on a ray
shooting algorithm starting at the LP-optimum and hitting facets of the
octahedron dual to the unit hypercube.

In the same year, Eckstein, and Nediak presented Pivot-Cut-and-Dive, a
heuristic for MBPs. Its main procedure is a rounding method which is based
on simplex pivot operations, supplemented by explicit probing techniques, cut
generation and a diving heuristic. As well as the other pivot based heuristics,
this one was not implemented into SCIP and will therefore not be treated in
this thesis. This is due to the fact that the underlying LP-solver of SCIP is
seen as a black-box and hence, features like pivot selection are not supported.

During the last years, a couple of Large Neighborhood Search heuristics
(see Chapter 4) have been presented. One of the first was Local Branching
which was published by Fischetti and Lodi [25] in 2003. One year later,
Danna, Rothberg, and Le Pape [21] presented Rins, also known as Relaxation
Induced Neighborhood Search. The evolutionary algorithm of Rothberg [52]
is also combined of two Large Neighborhood Search heuristics which we will
call Crossover and Mutation. We will present an alternative variant of the
Crossover heuristic in Chapter 4.3, and another Large Neighborhood Search
heuristic, called Rens in Chapter 3.2.1. With the exception of Rens, all

1.2. A Brief History of MIP Heuristics 7

Large Neighborhood Search heuristics try to improve an incumbent solution
of a MIP (or an MBP in the case of Local Branching) by solving a sufficiently
smaller sub-MIP which promises to contain feasible solutions of high quality.

The Feasibility Pump is one of the most recently investigated heuristics.
It creates two sequences of points, which hopefully converge to a common
point. One of the sequences is LP-feasible, the other one is integer feasible,
The Feasibility Pump was introduced by Fischetti, Glover, and Lodi [24]
in 2005 and further improved by Bertacco, Fischetti, and Lodi [14] and by
Achterberg, and Berthold [3]. We will present these improvements in Chap-
ter 3.1.2.

In addition, a couple of meta-heuristics which could also be specified and
applied to MIP-solving were described in literature. Amongst others, these
are Tabu Search [28, 31], Local Search [57], Simulated Annealing [42, 56],
and Evolutionary Algorithms [8, 47]. For example, Løkketangen [45] gives
an introduction to meta-heuristics for MBP-solving.

8 Chapter 1. Introduction

Chapter 2

Integration Into SCIP

In the following chapters, we will present several primal heuristics. We will
always describe the theoretical ideas, followed by implementation details and
computational results. In order to evaluate the performance of the heuris-
tics, we integrated implementations of them into the MIP-solving framework
SCIP, which is to be shortly explained in this chapter. Furthermore, we will
present the set of MIP instances on which we performed our tests.

2.1 SCIP – a MIP-Solver

SCIP [1] is a framework created to solve Constraint Integer Programs, shortly
called CIPs, which denotes an integration of Constraint Programming (see
for example [7]) and Mixed Integer Programming. An exact definition and
a discussion of CIPs is given in [2]. Since MIPs are a sub-category of CIPs,
and since the current distribution of SCIP primarily contains algorithms for
MIP-solving, we want to regard SCIP as a MIP-solver.

SCIP was developed by Achterberg et al. [4]. It is conceived as a frame-
work into which the majority of the algorithms that are needed to solve a
MIP must be included as external plugins. The current distribution of SCIP

already contains a bundle of MIP-solving plugins, e.g., presolvers, cut separa-
tors, and all primal heuristics described in this thesis. SCIP is implemented
in C. For the computations presented in this thesis we used version SCIP

0.82b, which was compiled with gcc 4.1.0. Some of the primal heuristic
plugins were implemented by Achterberg, while the others were implemented
by the author of this thesis.

We used SCIP as an LP-based Branch-And-Cut MIP-solver, meaning
that the problem instances are recursively subdivided into smaller subprob-
lems, thereby generating a Branch-And-Bound-tree. At each node of this tree
the LP-relaxation is solved to provide a lower bound of the objective value.
In the root node the problem is strengthened by various types of cutting
planes (see [58]). SCIP with default plugins is a state-of-the-art MIP-solver
which is competitive (note Mittelmann’s “Benchmarks for Optimization Soft-

9

10 Chapter 2. Integration Into SCIP

ware” [48]) with other free solvers like CBC [27], GLPK [33], Minto [49],
and Symphony [50] and also with commercial solvers like Cplex [41], and
XPress [22].

Except for the Objective Feasibility Pump from Section 3.1.2 where we
gained access to the source code of the authors who described the original
version, all implementations used in this thesis were made as SCIP plugins.
Cplex 10.0 [41] was always used as underlying LP-solver for SCIP.

2.2 Our Test Set

The computations of the Sections 2.2, 3.1, 3.2.2, and the first part of Sec-
tion 3.2.1 were made on a 2.20 GHz AMD Opteron with 1024 KB cache and
32 GB RAM. The computations of the second part of Section 3.2.1, Sec-
tions 3.3 and 4.5 and of Chapter 5 were made on a 3.80 GHz Intel Pentium 4
with 1024 KB cache and 2 GB RAM.

We decided to use a test set consisting of 129 instances taken from:

• the Miplib 3.0 [16],

• the Miplib 2003 [6], and

• the MIP collection of Mittelmann [48].

Our test set contains all instances of these three collections except for the
following: gen, mod010, p0033, vpm1, manna81, neos4, neos8, for which the
optimum of the LP-relaxation using SCIP default settings is already integer
feasible, momentum3, stp3d, whose root node LPs could not be solved by
SCIP within a time limit of half an hour, and markshare1 1, harp2, which
caused numerical troubles when running SCIP with default settings.

We subdivided the remaining 129 instances into two groups:

• the easy test set, all 97 instances which could be solved to optimality
by SCIP with default settings on the 2.20 GHz AMD Opteron within
a time limit of one hour, and

• the hard test set, all 32 instances which could not be solved to optimality
by SCIP with default settings on the 2.20 GHz AMD Opteron within
a time limit of one hour.

Tables 2.1 and 2.2 show the results of running SCIP with default settings
and a time limit of one hour on all instances. They are already subdivided
into both sets, and listed alphabetically. In Table 2.2, all instances of which
the optimal objective is unknown are written in italics as well as their best
known objective value.

The first column shows the name of the instance, the second one shows the
type (for definitions see Section 1.1), the third one the number of constraints,
and the fourth one the number of variables. Note that the data of Column 2
to 4 refers to the problem after SCIP presolving.

2.2. Our Test Set 11

In Table 2.1, Column 5 shows the objective value of an optimal solution,
Column 6 and 7 show the number of nodes and the time that SCIP, with
default settings, needs to solve the instance to optimality.

Note that in contrast to the seven instances which were excluded, the
optimal solutions of instances in Table 2.1, which were solved at the root
node could only be found via heuristics.

In Table 2.2, Column 5 and 6 show the dual and primal bounds achieved
by SCIP within the time limit of one hour. Column 7 shows the objective
value of an optimal or best known solution of the MIP, Column 8 and 9 show
the primal gap γP (x̃) and the primal-dual gap γPD(x̃) of the incumbent
solution x̃ from Column 6. Column 10 gives the number of nodes SCIP

processed until the time limit was reached.
For the remainder of this thesis, the tables with the detailed results of the

test runs are always to be looked up in Appendix B. A survey of the main
results is always given in the according section.

Due to technical reasons, the SCIP parameter “maxrestarts” was set to
0 for all tests in this thesis which process only the root node, since otherwise
some heuristics would not have been applied. For all tests on the hard test
set which were performed on the 3.80 GHz Intel Pentium 4 a memory limit
of 1.5 GB was set.

12 Chapter 2. Integration Into SCIP

Name Type Constraints Variables Primal Bound Nodes Time

10teams BP 210 1600 924 1795 61.3
30:70:4 5:0 5:100 BP 12035 10768 9 183 485.9
30:70:4 5:0 95:98 BP 12459 10978 12 130 354.3
30:70:4 5:0 95:100 BP 12525 10975 3 121 457.0
acc-0 BP 1737 1620 0 1 13.2
acc-1 BP 2286 1620 0 1 29.6
acc-2 BP 2520 1620 0 1 33.0
acc-3 BP 3246 1570 0 78 203.9
acc-4 BP 3280 1570 0 1600 1230.5
acc-5 BP 2534 1017 0 4087 1041.0
acc-6 BP 2540 1018 0 274 150.8
aflow30a MBP 479 842 1158 8751 60.6
air03 BP 81 10639 340160 2 38.4
air04 BP 601 7370 56137 269 236.2
air05 BP 343 6120 26374 215 94.8
bc1 MBP 1620 1002 3.33836255 16046 820.7
bell3a MIP 97 110 878430.316 47669 44.8
bell5 MIP 75 94 8966406.49 1231 0.8
bienst1 MBP 576 505 46.75 9600 47.5
bienst2 MBP 576 505 54.6 94824 553.3
blend2 MIP 169 319 7.598985 869 3.1
cap6000 BP 1342 4109 -2451377 2938 63.9
dano3 3 MBP 3187 13873 576.344633 19 320.9
dano3 4 MBP 3187 13873 576.435225 41 277.3
dano3 5 MBP 3187 13873 576.924916 193 588.3
disctom BP 394 9991 -5000 1 113.6
dcmulti MBP 269 545 188182 151 5.1
dsbmip MBP 1012 1662 -305.198175 1 0.5
egout MBP 40 52 568.1007 2 0.0
eilD76 BP 75 1823 885.411847 1325 101.3
enigma BP 21 100 0 731 0.5
fast0507 BP 474 62999 174 1747 2907.9
fiber BP 279 930 405935.18 31 2.2
fixnet6 MBP 477 877 3983 13 1.5
flugpl MIP 15 15 1201500 474 0.3
gesa2-o MIP 1248 1224 25779856.4 1402 13.0
gesa2 MIP 1392 1224 25779856.4 153 6.4
gesa3 MIP 1344 1128 27991042.6 28 3.5
gesa3 o MIP 1200 1128 27991042.6 647 10.9
gt2 IP 28 173 21166 60 0.1
irp BP 39 19941 12159.4928 480 151.3
khb05250 MBP 100 1299 106940226 4 0.6
l152lav BP 97 1989 4722 63 8.6
lseu BP 27 88 1120 304 0.3
mas74 MBP 13 150 11801.1857 4578439 1241.0
mas76 MBP 12 150 40005.0541 347300 89.9
mas284 MBP 68 150 91405.7237 17213 29.7
misc03 BP 95 138 3360 38 1.4
misc06 MBP 630 1352 12850.8607 16 0.5
misc07 BP 223 232 2810 34475 44.3
mitre BP 1115 3662 115155 27 93.6
mod008 BP 6 319 307 212 1.0
mod011 MBP 2215 6764 -54558535 2159 172.7
modglob MBP 287 387 20740508.1 6842 11.2
mzzv11 IP 8633 8878 -21718 3003 1130.5

continue next page

2.2. Our Test Set 13

Name Type Constraints Variables Primal Bound Nodes Time

mzzv42z IP 9604 10390 -20540 2095 563.0
neos1 BP 1738 1728 19 1 5.0
neos2 MBP 813 1525 454.864697 71178 268.1
neos3 MBP 1190 2245 368.842751 655725 3219.9
neos5 MBP 33434 18985 -4.86034408e+10 3 344.9
neos6 MBP 868 8563 83 5177 549.5
neos7 MIP 1987 1538 721934 9061 87.4
neos10 IP 14621 793 -1135 5 306.6
neos11 MBP 2566 1130 9 21385 1551.0
neos13 MBP 14698 1827 -95.4748066 11191 1077.7
neos21 BP 1081 599 7 2107 39.5
neos22 MBP 4300 2786 779715 31583 410.4
neos632659 MBP 180 300 -94 1405657 601.1
noswot MIP 171 120 -41 9209331 2569.5
nug08 BP 912 1632 214 5 103.8
nw04 BP 34 76309 16862 6 230.6
p0201 BP 107 195 7615 61 1.9
p0282 BP 253 189 258411 35 0.5
p0548 BP 288 445 8691 43 0.8
p2756 BP 1866 2635 3124 71 6.0
pk1 MBP 45 86 11 330702 145.2
pp08a MBP 136 240 7350 1761 3.7
pp08aCUTS MBP 246 240 7350 355 2.6
prod1 MBP 171 213 -56 65869 53.3
qap10 BP 1820 4150 340 5 519.1
qiu MBP 1192 840 -132.873137 9947 156.2
qnet1 IP 364 1417 16029.6927 112 5.6
qnet1 o IP 332 1417 16029.6927 40 4.1
ran8x32 MBP 296 512 5247 14497 30.7
ran10x26 MBP 296 520 4270 24747 54.7
ran12x21 MBP 285 504 3664 147324 243.2
ran13x13 MBP 195 338 3252 71961 75.3
rentacar MBP 1350 3133 30356761 6 4.6
rgn MBP 24 175 82.1999991 2125 0.8
rout MIP 290 555 1077.56 80420 134.7
set1ch MBP 446 666 54537.75 22 1.7
seymour1 MBP 4827 1255 410.763701 4680 985.6
stein27 BP 118 27 18 4063 3.4
stein45 BP 331 45 30 53074 51.1
swath1 MBP 482 6320 379.071296 11225 277.1
swath2 MBP 482 6320 385.199693 63456 894.0
vpm2 MBP 128 181 13.75 9815 7.3

Total (97) 17509205 28945.4
Geom. Mean 686 41.9

Table 2.1. Easy test set: all instances were solved to optimality within one hour

14
C

h
a
p
t
e
r

2
.

I
n
t
e
g
r
a
t
io

n
I
n
t
o

S
C

I
P

Name Type Conss Vars Dual Bound Primal Bound Optimum / Best known P-D Gap P Gap Nodes Time

a1c1s1 MBP 3240 3493 8625.9465 12505.9439 11596.1364 45.0 7.8 23175
aflow40b MBP 1442 2728 1145.17278 1215 1168 6.1 4.0 247369
arki001 MIP 767 960 7580525.42 7584819.57 7580928.38 0.1 0.1 618932
atlanta-ip MIP 19412 17261 82.9973629 – 95.0095497 – – 375
binkar10 1 MBP 826 1444 6735.06954 6743.24002 6742.20002 0.1 0.0 677473
dano3mip MBP 3187 13873 576.909847 743.464286 697.857143 28.9 6.5 802
danoint MBP 664 521 63.671765 66.25 65.67 4.0 0.9 236660
ds BP 625 67076 58.3411586 399.275161 283.4425 584.4 40.9 433
glass4 MBP 392 317 800087789 1.7800148e+09 1.2000126e+09 122.5 48.3 3967642
liu MBP 2178 1154 560 1926 1172 243.9 64.3 488269
markshare1 BP 6 50 0 5 1 – 400.0 41678324
markshare2 BP 7 60 0 11 1 – 1000.0 35738239
mkc MBP 3212 5198 -565.03 -546.412 -563.846 3.3 3.1 251796
mkc1 MBP 3274 5314 -607.21 -606.71 -607.207 0.1 0.1 450353
momentum1 MBP 14859 2785 96411.7673 – 109143.493 – – 2091
momentum2 MIP 15440 2785 10710.8783 – 12314.2196 – – 1895
msc98-ip MIP 15159 12790 19702877 – 23271298 – – 821
neos616206 MBP 534 440 889.561042 937.866667 937.6 5.4 0.0 859053
net12 MBP 12783 12531 137.910831 – 214 – – 1560
nsrand-ipx MBP 536 6601 50651.6299 55040 51200 8.7 7.5 58256
opt1217 MBP 64 759 -19.2240572 -16.000007 -16 16.8 0.0 4251254
protfold BP 2112 1835 -36.3333333 – -30 – – 862
rd-rplusc-21 MBP 17905 484 100 179794.684 171182 Large 5.0 38747
roll3000 MIP 1478 881 12722.6185 12936 12929 1.7 0.1 194565
seymour BP 4827 1255 413.675105 425 423 2.7 0.5 5469
sp97ar BP 1638 14100 655957310 700910273 664565104 6.9 5.5 7107
swath MBP 482 6320 397.576488 504.002447 477.341 26.8 5.6 190274
swath3 MBP 482 6320 371.816774 397.761344 397.761344 7.0 0.0 297024
t1717 BP 551 67716 135535.1 208442 193221 53.8 7.9 225
timtab1 MIP 168 201 642081.421 911718 764772 42.0 19.2 3892397
timtab2 MIP 291 341 567341.879 1548284 1216284 172.9 27.3 1728071
tr12-30 MBP 730 1048 130485.754 130683 130596 0.2 0.1 374439

Table 2.2. Hard test set: No instance was solved to optimality within one hour

Chapter 3

Start Heuristics

Pruning suboptimal branches is an important part of Branch-And-Bound-
algorithms. This helps keeping the Branch-And-Bound-tree small as well as
the number of computing steps and hence, the solving time and the required
memory. A branch can be pruned if the objective value of its LP-optimum
is not smaller than the one of the incumbent solution.

Therefore, it is of high importance to discover feasible solutions as early
as possible in order to achieve a good performance of the Branch-And-Bound-
process. Start heuristics aim at finding a feasible solution early in the
Branch-And-Bound-process.

In practice, most of them are already applied at the root node, some can
even be applied while or before the root-LP is solved to optimality.

3.1 Diving Heuristics

SCIP, like most state-of-the-art MIP solvers, uses the techniques of LP-based
Branch-And-Bound. The branching process hereby focuses on two different
aims: on the one hand fractional variables should be driven towards inte-
grality in order to find feasible solutions, on the other hand the dual bound
should be raised in order to prove the optimality (see [5]). For the process
of finding feasible solutions, it would be desirable to completely concentrate
on bounding variables such that the number of fractional variables decreases
while staying LP-feasible without caring for the dual.

This is the motivation of the following heuristic idea: one bounds or
fixes variables of a fractional LP-solution to promising values and resolves
the LP iteratively. Thereby, the exploration of a possible root-leaf path of
the Branch-And-Bound-tree is simulated. The behavior that these heuristics
“quickly go down” the Branch-And-Bound-tree gave the reason to name this
class diving heuristics.

Another approach is to change the objective function such that the cor-
responding LP-solution is driven towards integer feasibility. The heuristics
presented in Section 3.1.1 are of the first type, whereas the one presented in

15

16 Chapter 3. Start Heuristics

Section 3.1.2 is of the second type.

The implementation of the heuristics of Section 3.1.1 has been done by
Achterberg, the integration into the original source code and the SCIP-
implementation of the heuristic described in Section 3.1.2 has been done
by the author of this thesis.

3.1.1 Some Simple Divers

Most of the diving heuristics of SCIP bound a single fractional variable in
each iteration, like most MIP branching rules do (see [5]).

Definition 3.1 Let x̄ be an LP-feasible solution of a given MIP, l,u the lower
and upper bound vectors. Let j ∈ I. We call the process of replacing lj by
⌈x̄j⌉ bounding up the variable xj, replacing lj by ⌊x̄j⌋ bounding down the
variable xj.

Note that for fractional binary variables bounding and fixing are equiv-
alent actions, whereas for general integers bounding in general is a weaker
action than fixing the variable.

The Idea

Bounding variables – especially binary ones – helps to simplify the LP, and
additionally, the solution of the modified LP has less fractional variables.
The LP with the changed bound is resolved in order to regain linear feasibil-
ity. The resolving is normally done with the dual simplex algorithm, since
the dual LP-solution stays feasible if changing a bound. The dual simplex
algorithm usually needs only few LP iterations to reoptimize the modified
problem. If this process of bounding and resolving is iterated, it simulates
a depth-first-search of a promising root-leaf path of the Branch-And-Bound-
tree and might lead to a feasible solution.

The diving process terminates as soon as one of the following conditions
holds:

• the LP gets infeasible,

• the optimum of the LP is worse than the incumbent solution of the
MIP in terms of the objective function,

• we reach some iteration limit or some limit on the LP solving process.

If one of the first two conditions holds, the diving process cannot produce
a better solution and should hence be aborted. The limits mentioned in the
third condition are made to keep control of the time the heuristic needs.
A limit on the LP solving process could be a time limit or a limit on the
LP-iterations, say nlp ∈ N.

The principial process can be seen in Algorithm 1.

3.1. Diving Heuristics 17

Input: x̄ LP-feasible point
Ī ← index set of all fractional variables of x̄ ;1

cmax ←

{

∞ if no feasible solution found so far
cT x̃ else, with x̃ being the incumbent solution

;
2

nlp ← 0, i← 0,nfr ← |Ī|;3

while Ī 6= ∅ and cT x̄ < cmax and ((nlp < nlpmax and i < imax) or4

i < imin or |Ī| ≤ nfr − i
2) do

i← i + 1;5

Select some j ∈ Ī ;6

Bound xj: either lj ← ⌈x̄j⌉ or uj ← ⌊x̄j⌋;7

if modified LP has a feasible solution then8

x̄← optimal solution of modified LP ;9

else10

stop!11

Ī ← index set of all fractional variables of x̄, nfr ← |Ī| ;12

if all xj with j ∈ Ī are trivially roundable then13

Round x̄ ; /* yields feasible solution */14

nlp ← nlp + number of LP-iterations needed to solve LP in Step 9;15

Algorithm 1: A General Diving heuristic

The last part of the loop-condition (Step 4) is introduced, because there
are two cases for which we want to continue diving, even if we exceeded one
of the iteration limits. The first one is that we just have started our dive
(i < imin). The second one is that we are in a promising dive, meaning that
the number of fractional variables decreased rapidly enough (|Ī | ≤ nfr − i

2 ,
where nfr ∈ N denotes the number of fractional variables at the beginning of
the diving).

Implementation Details

There are a couple of ideas how to select the variable which should be
bounded. Some of them are presented here, each one is implemented in
the named SCIP diving heuristic. Let x̄ be the optimum of the LP relax-
ation of the current Branch-And-Bound node. The variable xj which shall
be bounded is always chosen among all integer variables xj for which x̄j is
fractional.

• Fractional Diving : A variable xj with lowest fractionality f(x̄j) is
bounded to the nearest integer.

• Coefficient Diving : A variable xj with minimal positive number of
locks is bounded to a direction where this minimum is achieved. If
there is more than one variable where the minimal number of locks is
reached, one chooses a variable with minimal fractionality f(x̄j). The

18 Chapter 3. Start Heuristics

number of locks is the number of constraints which could possibly be
violated if rounding a variable to a certain direction (see Definition 1.5).

• Linesearch Diving : Let x̊ be the optimum of the LP-relaxation of
the root node and let s be the line connecting x̊ with x̄. A fractional
variable xj for which s first intersects the coordinate-hyperplane xj = k,
k ∈ {⌊x̄j⌋, ⌈x̄j⌉} is bounded to the value k.

• Guided Diving : Like Fractional Diving, Guided Diving tends to bound
variables with low fractionality. Let x̃ be the incumbent solution of
the MIP. Fractional Diving selects a fractional variable with lowest
value |x̃j − x̄j| and bounds it to x̃j . Note that due to the fact that
Guided Diving needs a feasible solution of the MIP, it is actually an
improvement heuristic, not a start heuristic.

• Pseudocost Diving : The pseudocosts of a variable are a measure for the
average change of the objective function per unit change of the variable,
taken over all Branch-And-Bound-nodes, where this variable has been
chosen to branch on. An exact definition and discussion of pseudo-
costs and their applications is given in [5, 46]. The Pseudocost Diving
heuristic integrated into SCIP combines some ideas of other diving
heuristics. First of all, one makes the decision whether a variable xj

would be bounded up or down, if it was chosen for bounding.

If |x̄j − x̊j| > 0.4, xj would be bounded to the direction, the variable
has developed, like it is done in Linesearch Diving: if x̄j > x̊j the
variable would be bounded up, otherwise it would be bounded down.
If f(xj) < 0.3, xj would be bounded to the nearest integer, like it is
done in Fractional Diving. Otherwise the variable would be bounded
to the direction with the smaller pseudocosts. Afterwards, a score is
calculated for each variable: the fractionality f(x̄) times the quotient
between the pseudocosts of the variable to the direction where it should
not be bounded, and the pseudocosts of the variable to the direction
where it should be bounded. A low score indicates a direction with high
decrease in the objective function, a high score a direction with small
decrease. A variable with highest score will be chosen for bounding.

• Vectorlength Diving : The idea of this diving heuristic is taken from
regarding set partitioning constraints (see [18]). 27 out of 60 Miplib

2003 instances (see [6]) contain such constraints. If one of the variables
of a set partitioning constraint is fractional, there is at least one other
fractional variable in this constraint. Hence, fixing a variable and re-
solving the LP influences the other variables and hopefully drives them
to integrality, too. Especially fixing a variable to 1 fixes all others to 0
in the solution of the resolved LP. Vectorlength Diving bounds a vari-
able, for which the quotient between ([x̄j]− x̄j)∗cj and |{aij | aij 6= 0}|
is minimal. In this case, [·] denotes rounding to the direction where

3.1. Diving Heuristics 19

c

c c

x̄1

x̄1

x̄1

x̄2

x̄2

x̄2

x̄3x̄3

x̊

s

Fractional Diving Coefficient Diving

Linesearch Diving

Figure 3.1. The fundamental procedure of some selected diving heuristics

20 Chapter 3. Start Heuristics

the objective function potentially gets worse, hence up, if cj ≥ 0 and
down otherwise. This ratio provides the change in the objective func-
tion per row which is effected by the rounding. Naturally, little loss in
the objective and a high number of “repaired” rows is desirable.

Figure 3.1 illustrates the fundamental procedure of some diving heuristics.
x̄i denotes the optimum of the LP-relaxation in the i-th step of the diving
process, x̊ the optimum of the LP-relaxation of the Branch-And-Bound root
node. A dashed arrow shows which variable is bounded and to which direc-
tion. The objective function is only sketched at the first LP-solution.

However, there are some properties which the variables chosen as bound-
ing candidate should not have. The first one is that the chosen variable
should not be trivially roundable (see Definition 1.5), since in Step 14 fixing
them will be tried either way, as soon as there are only trivially roundable,
fractional variables left. Hence, trivially roundable variables should only be
chosen if there are only such variables left. If a trivially roundable variable
is chosen to be bounded, it should always be bounded to the direction where
rounding is not trivial. Otherwise, the developing of x̄ would be similar to
the one of a rounding heuristic but with much more computational effort.

Secondly, binary variables should be favored over general integers, since
bounding binary variables in the described way is equivalent to fixing them.
On the one hand this results in easier LPs, on the other hand one avoids the
risk of bounding the same integer variable again and again. Another reason
for preferring binary variables is that in many real world motivated problems
the binary variables present the critical decisions and thereby induce the
main structure of the problem.

Computational Results

We analyzed the performance of Coefficient Diving, Fractional Diving, and
Vectorlength Diving applied to the optimum of the root node’s LP-relaxation.
These three diving heuristics only require some starting point and the general
structure of the MIP itself in order to get started. In contrast to that the
other three diving heuristics described in this chapter rely on some informa-
tion which is got during the MIP-solving process: Guided Diving needs an
incumbent solution, Linesearch Diving the LP-optimum of a deeper node of
the Branch-And-Bound-tree, and Pseudocost Diving needs pseudocosts of at
least some variables.

The results are to be seen in Table B.1. Table 3.1 summarizes the main
results of Table B.1.

Coefficient Diving found at least one feasible solution for 71 out of the 129
instances, Fractional Diving succeeded 68 times, and Vectorlength Diving
was able to find a solution for 93 instances. There were 54 instances for
which all three diving heuristics found a feasible solution. Coefficient Diving
found a strictly better solution than the other two 10 times, Fractional Diving
was superior 7 times, and Vectorlength Diving defeated the others 29 times.

3.1. Diving Heuristics 21

Criterion Coefficient Diving Fractional Diving Vectorlength Diving

Solution Found 71 68 93

Best Solution 10 7 29

Only Solution 1 2 12

Optimal Solution 8 4 14

Total Time 834.6 700.2 2370.7

Time Geometric Mean 2.3 2.1 3.9

Table 3.1. Summarized results of applying different diving heuristics to the optimum of
the LP-relaxation

There was one instance for which Coefficient Diving was the only diving
heuristic which found a feasible solution, two instances where this holds for
Fractional Diving, and 12 for Vectorlength Diving. Coefficient Diving was
able to find an optimal solution for 8 instances, 4 times Fractional Diving
found an optimum. However, Vectorlength Diving found optimal solutions
for 14 instances. Note that due to rounding the primal gap, a value of 0.0% in
the table does not necessarily mean that the solution is optimal. For example,
all three heuristics found solutions with a pairwise different objective value
and a primal gap of nearly 0 % for instance mitre, but only the solution
found by Coefficient Diving is optimal.

Hence, Vectorlength Diving is superior to the other two variants in terms
of the number and the quality of the solutions it found, but it looses in terms
of the computation time. Coefficient Diving needed 834.6 seconds or 2.3
seconds in the geometric mean, Fractional Diving 700.2 or 2.1 seconds, but
Vectorlength Diving took 2370.7 seconds overall, and 3.9 in the geometric
mean.

All three divers proved to be reasonable start heuristics as they all found
solutions for more than half of the problems, and often these solutions were of
good quality. Due to the necessity of resolving LPs they consume much more
time than, for example, all rounding heuristics from Chapter 3.2.2 do and
should hence be called less frequently during the Branch-And-Bound-process.

3.1.2 Feasibility Pump

The Feasibility Pump, as proposed by Fischetti, Glover, and Lodi [24], is a
primal heuristic for MBPs. It was restated for MIPs with general integer
variables by Bertacco, Fischetti, and Lodi [14]. Achterberg, and Berthold [3]
described a modified version which takes the objective function of the MIP
into account and is therefore called Objective Feasibility Pump.

The Idea

The fundamental idea of the Feasibility Pump is to construct two sequences
of points which hopefully converge to a feasible solution of the given MIP.
One sequence consists of LP-feasible, but possibly integer infeasible points,
the other one of integer feasible, but possibly LP-infeasible points. These

22 Chapter 3. Start Heuristics

c

∆1 ∆2

x̄0

x̄1 x̄2x̃1 x̃2

Figure 3.2. Fundamental procedure of the Feasibility Pump: two sequences of
LP-feasible points x̄t and integer feasible points x̃t are build up until they converge

are produced by alternately rounding an LP-feasible point x̄ ∈ P (A, b, l, u)
to an integer feasible point x̃ and finding a point in P (A, b, l, u) closest to
x̃ (w. r. t. the Manhattan distance), which is then used as the new x̄ in the
next iteration step. This procedure is illustrated in Figure 3.2.

Definition 3.2 Let S ⊆ N . The rounding of a vector x ∈ R
n with respect

to S is defined by components:

[x]Sj :=

{

⌊xj + 0.5⌋ if j ∈ S
xj if j /∈ S.

Similarly, the L1-distance of two vectors x, y ∈ R
n with respect to S is defined

as:

∆S(x, y) :=
∑

j∈S

|xj − yj|

and the fractionality of a vector x ∈ R
n with respect to S is defined as:

fS(x) :=
∑

j∈S

f(xj) with f(xj) := |xj − ⌊xj + 0.5⌋| .

For the rest of this section, the terms rounding, distance, and fractionality
will always refer to these definitions unless otherwise noted.

The Feasibility Pump as described in [14] proceeds as follows: first of all
the LP-relaxation is solved, taking an optimal LP-solution as starting point
x̄. Then, x̄ is rounded to a vector x̃ = [x]S (with S = B or S = I). If x̃ is
a feasible solution, the procedure stops. If not, an additional LP is solved in
order to find a new LP-feasible point x̄ in the polyhedron P (A, b, l, u) which
is a closest to x̃, with respect to ∆S(x, x̃) as the distance function. The
procedure is iterated using this point as new solution x̄ ∈ P . The algorithm

3.1. Diving Heuristics 23

terminates, if a feasible solution is found or if a predefined iteration limit is
reached.

Algorithm 2 gives us an outline of the fundamental proceeding of the
Feasibility Pump.

Input: x̄ LP-feasible point
repeat1

Get an integer feasible point x̃ by rounding x̃ ← [x̄]S ;2

Get a new LP-feasible point x̄ by solving3

x̄ ← argmin{∆S(x, x̃) | x ∈ P (A, b, l, u)};
until x̄ = x̃ or some limit reached ;4

Algorithm 2: Outline of the Feasibility Pump

Implementation Details

In order to determine a point

x̄ := argmin{∆S(x, x̃) | x ∈ P (A, b, l, u)} (3.1)

which is closest to x̃ in P (A, b, l, u), one solves the LP

min
∑

j∈S:x̃j=lj

(xj − lj) +
∑

j∈S:x̃j=uj

(uj − xj) +
∑

j∈S:lj<x̃j<uj

dj

such that Ax ≤ b

d ≥ x− x̃

d ≥ x̃− x

l ≤ x ≤ u.

(3.2)

The variables dj are introduced to model the nonlinear function |xj − x̃j |
for general integer variables xj that are not equal to one of their bounds
in the rounded solution x̃. Since for an optimal solution x̄ of (3.2) every
dj strictly fulfills one of its two inequalities with equality, (3.2) is a correct
linearization of (3.1). Note that for S = B the variables dj are not needed.

In many practical applications the binary variables represent the most
important decisions that define most of the structure. Therefore, Bertacco,
Fischetti, and Lodi [14] suggested to subdivide the Feasibility Pump into
three stages.

During the first stage, the algorithm tries to find an LP-feasible solution
that is integral in the binary variables by setting S = B, hence relaxing the
integrality constraints for all general integer variables. Stage 1 is interrupted
as soon as such a solution is found or an iteration limit is reached. This
could be a limit on the absolute number of iterations or on the number of
consecutive stallings. In the following, we will call an iteration a stalling, if
the fractionality measure fS(x̄) could not be decreased by at least a factor of

24 Chapter 3. Start Heuristics

p ∈ [0, 1] (e.g., p = 0.9 for 10 % reduction). By setting a limit on the number
of consecutive stallings, one wants to avoid wasting time on performing a huge
number of iterations with only slight advances in the main goal of reducing
the fractionality of the LP-feasible points, as it can be seen in [14].

The motivation for dividing the algorithm into stages is that in a solution
from Stage 1 hopefully only a few general integer variables have a fractional
value and require the introduction of the auxiliary variables dj in the second
stage of the algorithm in which S = I is chosen. It starts from a rounded
point x̃ of Stage 1 with minimal distance from P (A, b, l, u). Thus, we try to
benefit from the insights we won in Stage 1. Stage 2 terminates as soon as a
feasible solution of the given MIP is found or some iteration limit as above
is reached. Note that the algorithm will skip Stage 2 for MBPs.

Stage 3 consists of a Large Neighborhood Search (see Chapter 4) which
examines the neighborhood of a point x̃ from Stage 2 with minimal distance
to P (A, b, l, u). It is the hope that such a point is nearly feasible and that it
is likely to find feasible solutions in the vicinity of this point. Therefore, one
tries to solve the MIP

min ∆I(x, x̃)

such that Ax ≤ b

l ≤ x ≤ u

d ≥ x− x̃

d ≥ x̃− x

xj ∈ Z for all j ∈ I

(3.3)

by a MIP-solver which stops after the first feasible solution was found.

The Objective Feasibility Pump

Computational results show that the Feasibility Pump is quite successful in
finding feasible solutions of a given MIP [24, 14, 3]. Unfortunately, the quality
of the solutions in terms of the primal gap is sometimes quite poor. This can
be explained from the observation that the original objective function c of
the given MIP is only regarded once, namely, when the first LP-feasible point
x̄ is determined as an optimal solution of the LP-relaxation. Achterberg and
Berthold [3] provide a modified version of the Feasibility Pump, called the
Objective Feasibility Pump, which takes the objective function much more
into account than the original Feasibility Pump does.

The Objective Feasibility Pump does not totally disregard the objective
function c after the first iteration, but decreases its influence in every iteration
step. Therefore, it tends to go more towards feasibility and less towards
optimality the longer it runs. If no proper original objective function exists,
i.e., c = 0, one will just use the original version of the Feasibility Pump. To
avoid some technical difficulties, we assume that c 6= 0 for the remainder of
this chapter.

3.1. Diving Heuristics 25

The Objective Feasibility Pump is gained from the original Feasibility
Pump by replacing the distance function ∆S(· , x̃) by a convex combination
of ∆S(· , x̃) and c, the original objective function vector.

Definition 3.3 Let x̃ ∈ R
n, S ⊆ N , c ∈ R

n\{0}, and α ∈ [0, 1].

∆S
α(x, x̃) := (1− α)∆S(x, x̃) + α

√

|S|

‖c‖
cT x (3.4)

Here, ‖ · ‖ denotes the Euclidean norm of a vector. Note that
√

|S| is the
Euclidean norm of the objective function vector of (3.2).

The Objective Feasibility Pump computes the LP-feasible points x̄ using
∆S

α instead of ∆S in (3.1). Therefore, the objective function of (3.2) is
appropriately modified, namely by replacing it with a convex combination of
itself and c. In each iteration step α is geometrically decreased by a fixed
factor ϕ ∈ [0, 1), i.e., αt+1 = ϕαt and α0 ∈ [0, 1]. Note that if we choose
α0 = 0 we will get the original version of the heuristic.

Dealing with Cycles

One main problem arises in both variants of the Feasibility Pump: what to
do if one gets back to an integer feasible point x̃ which was already visited
in a prior iteration? The urgency to deal with this manner differs in both
versions. For the original Feasibility Pump, turning back to a point that has
been already visited means getting caught in a cycle. The Feasibility Pump
would find exactly the same closest point x̄, would round it to the same
integer feasible point like in the prior iteration and hence, get the whole
sequence of points over and over again. Therefore, Fischetti, Glover and
Lodi [24] suggest to perform a restart operation.

A restart conducts a random perturbation which shifts some of the vari-
ables’ values of the last LP-feasible solution x̄ randomly up or down, instead
of rounding them as usual. If there is a cycle of the length 1, which means
that you immediately turn back to the rounded point x̃ of the preceding it-
eration, you will skip the random choice, but just round a certain number of
the say T most fractional variables to the other side.

The Objective Feasibility Pump uses different parameters αt and αt′ in
different iteration steps t and t′. Because of the different objective functions
∆αt and ∆αt′

it is possible to get to a new LP-feasible point x̄ and not to
run into a cycle even if x̃ was already visited. The probability of this event
clearly depends on how much the two functions ∆αt and ∆αt′

differ, which
itself depends on how much αt and αt′ differ. The Objective Feasibility Pump
performs a restart at iteration t only if the point x̃ was already visited at
iteration t′ < t with αt′ − αt ≤ δα, where δα ∈ (0, 1] is a fixed parameter
value.

Altogether this provides the start heuristic, which is depicted in Algo-
rithm 3.

26 Chapter 3. Start Heuristics

Input: x̄ LP-feasible point
Parameters: maxIterST1 maximum number of iterations in stage 1

maxIterST2 maximum number of iterations in stage 2
maxStallsST1 maximum number of stallings in stage 1
maxStallsST2 maximum number of stallings in stage 2
T number of variables to change if 1-cycle occurs
p minimum improvement during maxStalls iterations
α0 initial value for α
ϕ factor to reduce α in each iteration
δα equality tolerance for α

Stage 1

Initialize x̄0 ← argmin{cT x | x ∈ P (A, b, l, u)}, S ← B, x̃0 ← [x̄0]S ,1

maxIter ← maxIterST1, maxStalls ← maxStallsST1, t ← 0;
Initialize list of visited points L ← ∅;2

loop3

if x̃t = x̃t−1 then4

Round the T most fractional variables x̄t
j , j ∈ S, to the other5

side compared to x̃t−1
j ;

while ∃ (x̃t′ , αt′) ∈ L : x̃t′ = x̃t ∧ αt′ − αt ≤ δα do6

Perform a random perturbation on x̃t;7

if x̃t is feasible for (MIP) then stop!8

L ← L ∪ {(x̃t, αt)};9

t ← t + 1, αt ← ϕ · αt−1;10

if t ≥ maxIter then goto next stage;11

Solve x̄t ← argmin{∆S
αt

(x, x̃t−1) | x ∈ P (A, b, l, u)};12

if x̄t = x̃t−1 then goto next stage;13

if t ≥ maxStalls ∧ fS(x̄t) ≥ p · fS(x̄t−maxStalls) then14

goto next stage;15

x̃t ← [x̄t]S ;16

Stage 2

Initialize x̃0 to be an integer point of Stage 1 with minimal ∆B(x, x̃i),1

x ∈ P (A, b, l, u);
Set t ← 0, S ← I, maxIter ← maxIterST2,2

maxStalls ← maxStallsST2, L ← ∅;
Perform Steps 3 to 16 of Stage 1, but if Step 7 is performed more than3

100 times then goto Stage 3, and if x̄t = x̃t−1in Step 13 then stop!

Stage 3

Solve MIP (3.3) with x̃ being an integer point of Stage 2 with minimal1

∆I(x, x̃i), x ∈ P (A, b, l, u);
After the first feasible solution has been found → stop!2

Algorithm 3: Objective Feasibility Pump

3.1. Diving Heuristics 27

Computational Results

Bertacco, Fischetti, and Lodi sent us their original source code. Thus, we
were able to directly integrate our ideas for the Objective Feasibility Pump
into it. We thank them for making this possible.

Since we wanted to facilitate the comparison of both Feasibility Pump
variants, we decided not to perform the tests on our usual test set. In-
stead of, we decided to use a huge test set, which besides others includes all
instances on which Bertacco, Fischetti, and Lodi [14] tested their implemen-
tation. It consists of 121 instances taken from

• Miplib 2003 [6],

• the MIP collection of Mittelmann [48], and

• Danna, Rothberg, and LePape [21].

Like the authors of the original source code, we used Cplex 9.03 as underly-
ing LP-solver. In all runs we used the parameter settings for the Feasibility
Pump as suggested in [14]. The maximum numbers of total iterations for
Stages 1 and 2 were set to maxIterST1 = 10000 and maxIterST2 = 2000. The
maximum numbers of iterations without at least p = 10% improvement in a
single iteration were set to maxStallsST1 = 70 and maxStallsST2 = 600.

The shifting described in Step 5 of algorithm 3 is applied on a random
number of T ∈ [10, 30] variables, whereby only variables xj with current
fractionality f(x̄j) > 0.02 are regarded as shifting candidates. For the un-
modified Feasibility Pump we set α0 = 0 to deactivate all modifications. For
the Objective Feasibility Pump we set α0 = 1, ϕ = 0.9, and δα = 0.005.

In contrast to the results presented in [3], we deactivated the third stage
of the Feasibility Pump, since we were about to examine the diving process,
which is only performed in the first two stages.

We applied the MIP preprocessing of Cplex before running the Feasi-
bility Pump, since we aimed to avoid difficulties with the calculation of ∆S

α.
Such cases may appear if the objective function is highly degenerated, e.g.,
it consists of only one single artificial variable which is defined as a linear
combination of several other variables.

Table B.2 shows the results of running the Objective Feasibility Pump
with different settings for the parameter ϕ, namely ϕ = 0 (and δα = 0)
in order to simulate the original Feasibility Pump and δα = 0.8, δα = 0.9,
δα = 0.95, δα = 0.99, δα = 0.999. For the latter five, we set α0 = 1 and
δα = 0.005. For reasons of simplification we will abbreviate the different
versions with FP00, FP08, etc.

Table 3.2 summarizes the results we got from Table B.2.
Our first observation is that all versions, except for FP0999, are able to

produce feasible solutions for a large number of instances. FP00 found a
solution for 90 out of 121 instances, FP08 for 93, FP09 for 92, FP095 for
92, FP099 for 80, but FP0999 only for 25 instances.

28 Chapter 3. Start Heuristics

Criterion FP00 FP08 FP09 FP095 FP099 FP0999

Solution Found 90 93 92 92 80 25

Compared to FP00 (better:draw:worse) – 68:36:17 68:35:18 70:33:18 64:35:22 21:35:65

Best Solution 12 23 27 37 30 12

Unique Best Solution 6 11 14 25 22 8

Only Solution 0 1 1 2 1 0

Time Geometric Mean 4.7 5.1 5.3 5.6 7.4 9.1

Primal Gap Geometric Mean (of 75) 106.7 47.0 43.1 37.8 39.8 –

Table 3.2. Summarized comparison of Feasibility Pump versions which differ in the factor
ϕ ∈ [0, 1) to reduce the convex combination parameter α

Every Objective Feasibility Pump version except FP0999 clearly domi-
nates the original Feasibility Pump in terms of the quality of the solutions.
FP08 produced a better solution for 68 instances, a worse for 17 instances
with 36 draws. FP09 was superior in 68 cases, inferior in 18 cases, 35 times
both variants got the same result. FP095 defeated the original Feasibility
Pump in 70 cases, succumbed in 18 cases, 33 draws. FP099 still was better
for 64 instances, worse for only 22 and 35 ties. Only for FP0999 the original
Feasibility Pump scored better 65 times, the modified version 21 times, 35
times both got the same result.

Comparing all six variants, FP00 found a solution best among the six
12 times, FP08 23 times, FP09 27 times, FP095 37 times, FP099 30 times,
FP0999 12 times. FP00 was the unique winner in 6 cases, in the sense that
all solutions found by other variants were worse, FP08 in 11 cases, FP09 in
14 cases, FP095 in 25 cases, FP099 in 22 cases, FP0999 in 8 cases.

For one instance, FP08 was the only variant, which found a solution,
FP09 was the only successful variant for one instance, too, FP095 for two
instances, FP099 for one.

The geometric mean of the primal gap is 106.7% for FP00, 47.0% for
FP08, 43.1% for FP09, 37.8% for FP095, and 39.8% for FP099.

The geometric mean of the running time is 4.7 seconds for FP00, 5.1 for
FP08, 5.3 for FP09, 5.6 for FP095, 7.4 for FP099, 9.1 for FP0999. We
see, that all Objective Feasibility Pump versions are slower than the original
Feasibility Pump.

To put all these data together, using the Objective Feasibility Pump and
setting ϕ = 0.95 seems to be the best choice. FP095 scored first for the
geometric mean of the primal gap, for the number of best solutions found,
for the number of unique best solutions, and for the number of instances
where it was the only variant which found any solution. FP095 finished
second for the number of instances where it found a solution with only one
less than FP08, whose solutions have a clearly worse quality.

In comparison to the original Feasibility Pump, using FP095 causes a
slowdown of 19% in the geometric mean, but reduces the (geometric mean
of the) primal gap to nearly a third.

3.2. Rounding Methods 29

Other Approaches

There were some other approaches than the one of the Objective Feasibility
Pump to deal with the annoying circumstance of a poor solution quality. One
was proposed by Fischetti, Glover, and Lodi [24], who suggested to add an
objective cutoff and iterate the whole solving process. Let x̊ be an optimal
solution of the LP-relaxation of the MIP and x̃ a feasible point found by
the Feasibility Pump. Fischetti, Glover, and Lodi suggested to iterate the
Feasibility Pump with an additional constraint cT x ≤ βcT x̊ + (1− β)cT x̃ for
some fixed parameter β ∈ (0, 1). Bertacco, Fischetti, and Lodi proposed to
use some Large Neighborhood Search improvement heuristics, namely Local
Branching (see Section 4.1) or Rins (see Section 4.2) to improve the quality
of the solution found by the Feasibility Pump.

3.2 Rounding Methods

Whenever an LP is solved in the Branch-And-Cut-process, at least one LP-
feasible, but probably fractional solution is produced. It seems natural that
one tries to round the fractional variables in order to get a feasible solution.

The possible number of roundings of an LP-feasible point doubles with
every fractional variable and it is not obvious to which direction variables
should be rounded. A fractional value of 0.9 can be interpreted as “nearly 1”
as well as “could not be set to 1”.

Let x̄ be an LP-feasible point. Classical ideas are to round a variable
xj down, if cj > 0 and up, if cj < 0 or to round every variable up with a
probability of x̄j − ⌊x̄j⌋ and down otherwise.

In order to end up at a feasible solution, it seems reasonable that one takes
care of the LP-feasibility, when iteratively rounding variables. The approach
of the rounding heuristics presented in Section 3.2.2 is to find rounding di-
rections for each variable, which maintain or retrieve the LP-feasibility of a
partially rounded point.

Section 3.2.1 describes a heuristic which regards the problem of finding a
best rounding as a MIP and is able to enumerate the whole subspace of all
possible roundings.

The implementation of the heuristics of Section 3.2.2 has been done by
Achterberg, whereas the implementation of the Rens heuristic presented in
Section 3.2.1 has been done by the author of the thesis.

3.2.1 RENS

Pure rounding heuristics all work in a common fashion: they round every
integer variable which takes a fractional value in an LP-feasible vector to an
integer value. Vice versa, this means that every integer variable which is
already integral in this LP-feasible vector stays unchanged.

30 Chapter 3. Start Heuristics

cc
x̄x̄

Figure 3.3. Sub-MIPs received by fixing integer variables of x̄ (left hand) and
additionally changing the variables’ bounds (right hand)

This section will describe a heuristic working in the way of a Large Neigh-
borhood Search. The main difference, acoording to the large neighborhood
search strategies which will be described in Chapter 4, is that it does not
require an existing feasible solution to work. Therefore, it can be used as a
start heuristic.

The Idea

Let x̄ be an optimum of the LP-relaxation at some node (normally the root)
of the Branch-And-Bound-tree. The idea is to create a sub-MIP of the orig-
inal MIP by changing the bounds of all integer variables to lj = ⌊x̄j⌋ and
uj = ⌈x̄j⌉ as it can be seen in Figure 3.3. Note that every integer variable
which takes an integral value in x̄ gets fixed. As the overall performance of
the heuristic strongly depends on x̄ we named it relaxation enforced neigh-
borhood search, or shortly Rens.

We decided to regard Rens as a rounding heuristic since every feasible
solution of the described sub-MIP is a possible rounding of x̄.

Because of this, Rens is of special interest for the analysis of pure round-
ing heuristics. If the sub-MIP created by Rens is proven to be infeasible, no
pure rounding heuristic exists which is able to generate a feasible solution
out of the fractional LP optimum. If the sub-MIP created by Rens is com-
pletely solved, its optimal solutions are the best roundings any pure rounding
heuristic can generate.

The outline of Rens is quite simple. We create a sub-MIP

min cT x

such that Ax ≤ b

lj ≤ xj ≤ uj for all j ∈ N\I

⌊x̄j⌋ ≤ xj ≤ ⌈x̄j⌉ for all j ∈ I

xj ∈ Z for all j ∈ I

(3.5)

3.2. Rounding Methods 31

of the original MIP that fixes all integer variables for which the optimum
of the LP-relaxation x̄ takes an integral value. MIP (3.5) can be easily
transformed to an MBP by substituting yj = xj − ⌊x̄j⌋. We will identify
these two programs and, with a slight abuse of notation, also call (3.5) an
MBP or a sub-MBP of the original MIP, respectively.

Implementation Details

For the practical use as a start heuristic integrated into a Branch-And-Bound-
framework, one should only call Rens, if the resulting sub-MBP seems to
be substantially easier than the original one. Which means that at least a
specific ratio of all integer variables, say rI ∈ (0, 1), or a specific ratio of all
variables including the continuous ones, say rN ∈ (0, 1), should be fixed. The
first criterion keeps control of the difficulty of the sub-MBP itself, the second
one of the LPs that will have to be solved during the solving process. For
example, think of a MIP which consists of 20 integer and 10’000 continuous
variables. Even if one fixes 50% of the integer variables, Rens would be a
time-consuming heuristic since solving the LPs of the sub-MBP would be
nearly as expensive as solving the ones of the original MIP. Another way to
avoid spending too much time in solving sub-MBPs is to add some limit to
the solving process of the sub-MBP. This could be a time limit or a limit on
the solving nodes.

We decided to limit the number of solving nodes and the number of
stalling nodes of the sub-MBP. The solving node limit is a hard limit on
the maximum number of Branch-And-Bound-nodes the MIP-solver should
at most process. The stalling node limit indicates how many nodes the MIP-
solver should at most process without an improvement in the incumbent
solution of the sub-MBP. On the one hand one wants to keep control of the
overall running time of the heuristic and hence, use a solving node limit. On
the other hand one does not want to abort the procedure too early if the
objective value of the incumbent solution decreases continuously and hence
use a stalling node limit. Therefore, we decided to use both node limitation
strategies simultaneously.

As the idea is rather simple, it can be subsumed to the rather short
Algorithm 4.

Computational Results

As mentioned earlier, Rens can be used to determine whether there are
solutions of the MIP which are roundings of the optimum of the LP-relaxation
and if so, which objective value is the best possible for such solutions. To
investigate this, we set the solving node limit of the original MIP to 1, the
time limit to 1 hour, the solving node limit and the stalling node limit of
the Rens sub-MBP to infinity, rI and rN to 0.0. Some expensive presolving
strategies and heuristics were deactivated when solving the sub-MBP since
using Rens as a start heuristic should avoid such time wasting features.

32 Chapter 3. Start Heuristics

Input: x̄ LP-feasible point
Parameters: nl node limit for the sub-MBP

rI minimum ratio of integer variables to fix
rN minimum ratio of all variables to fix

x̄← optimum of LP-relaxation;1

Create MBP (3.5);2

if at least rI · |I| integer variables fixed and at least rN · n variables3

fixed then

Set node limit nl for MIP-solver;4

Solve MBP (3.5);5

Algorithm 4: Rens

Table B.3 shows the results of applying Rens with the described settings
for our standard test set.

Rens found a feasible solution for 82 out of 129 MIPs, for 47 instances it
failed. 23 times it could find an optimal solution of the original MIP. Note
that even if γP (x̃) = 0.0% there could be a little gap which is omitted due to
rounding the gap (which for example happens for instance gesa2). 16 times
the Rens sub-MBP could not be solved within the time limit of one hour,
for 13 of these 16 instances Rens could find at least one feasible solution.

Which means that for 69 instances the solution found by Rens is the best
possible rounding of the LP-relaxation’s optimum and for 44 instances there
does not exist any feasible rounding.

For the three instances a1c1s1, momentum1, and momentum2 it is unknown,
whether a feasible rounding of the root-LP optimum exists. Rens did not
find any feasible solution within the time limit, but it was not able to prove
the infeasibility of the problem.

Sometimes solving the Rens sub-MBP takes more time than solving the
original MIP. This is due to the fact that some SCIP parameters which
were set for solving the sub-MBP differ from defaults (e.g., the presolving
techniques and the cut separation).

There are a bundle of instances for which Rens with this settings con-
sumes too much time, e.g., qiu, where SCIP needs 2.7 seconds for processing
the root node, but Rens does not finish within an hour. For most of these
instances this can be explained by the high number of Branch-And-Bound-
nodes processed in order to solve the Rens sub-MBP. Therefore, we suggest
to set some limit on the number of nodes, as it is described above. However,
there are also some instances such as dano3 5 for which Rens needs much
time, but not so many Branch-And-Bound-nodes. One can see, that the
number of fixed variables is relatively small for such instances, e.g., 15.4%
of all variables in the mentioned case. Therefore, we recommend to set the
parameters rN and rI to a sufficiently large value.

Next, we would like to examine the integration of Rens into an LP-based

3.2. Rounding Methods 33

Criterion SCIPNoR SCIPRRoot SCIPRFreq10

Time Geometric Mean 36.7 35.9 36.3

Nodes Geometric Mean 704 614 615

Fewest Nodes 11 24 21

Fastest (of 19) 8 10 5

Table 3.3. Summarized results of different integrations of Rens into SCIP, easy instances

Branch-And-Bound-framework. Therefore, we applied SCIP without Rens,
SCIP with Rens used in the root node, and SCIP with Rens used at every
tenth depth of the Branch-And-Bound-tree on both standard test sets.

We set the stalling node limit to 500, the absolute node limit to 10’000,
rI = 0.5, and rN = 0.25. The results are shown in Tables B.4 and B.5.

To keep the following paragraphs short, we abbreviate the three ver-
sions as follows: SCIP with Rens only used at the root node should be
called SCIPRRoot, SCIP with Rens completely deactivated should be called
SCIPNoR, and SCIP with Rens used every tenth depth should be called
SCIPRFreq10.

For our easy test set, SCIPNoR needs 36.7 seconds in the geometric
mean to find and prove an optimal solution, SCIPRRoot needs 35.9 seconds,
SCIPRFreq10 36.3 seconds. SCIPNoR needs 704 nodes in the geometric mean
to finish, SCIPRRoot needs 614, and SCIPRFreq10 615 nodes.

There are 32 instances for which the number of solving nodes differs
among the three versions. SCIPNoR needs fewest solving nodes 11 times,
SCIPRRoot 24 times, and SCIPRFreq10 21 times.

In many cases, the differences in the solving time are only marginal.
However, there are 19 instances, for which the longest solving time and the
shortest solving time differ by more than 10%. Among these, SCIPNoR is
fastest 8 times, SCIPRRoot 10 times, and SCIPRFreq10 5 times.

We also notice that, on our hard test set, SCIP with Rens performs
better than SCIP without Rens. At the moment we reach the time or
memory limit, SCIPRRoot has a smaller primal bound 6 times compared to
SCIPNoR which is superior 4 times.

SCIPRRoot defeats SCIPRFreq10 5 times, for 1 instance the latter one is
superior.

The results of calling Rens at the root node with a stalling node limit of
500, an absolute node limit of 10’000, rI = 0.5, and rN = 0.25 can be seen in
Table B.6. Rens still finds feasible solutions for 66 instances (of 82 without
these settings). It achieves an optimal or best known rounding in 45 cases,
and finds an optimal solution 9 times.

After all, Rens seems to be a reasonable root node heuristic.

34 Chapter 3. Start Heuristics

3.2.2 Some Other Rounding Methods

There are some other rounding methods integrated into SCIP. All of them
are easy to describe and hence, they are subsumed to one section.

Simple Rounding

Simple Rounding iterates over the set of fractional variables of some LP-
feasible point and, if possible, rounds them to an integral value while staying
LP-feasible.

We can state the following about trivially roundable variables (see Def-
inition 1.5): if a trivially down-roundable variable xj is fractional in some
solution of the LP, rounding down this variable yields another solution of the
LP, since the activities of all rows get smaller or stay equal. The number of
down-locks of a variable xj equals the number of rows whose values grow, if
rounding down xj, and which could possibly be violated. Obviously, a vari-
able is trivially down-roundable, if its number of down-locks is 0. Everything
holds vice versa for up-roundable variables and up-locks.

Let x̄ be a solution of the LP-relaxation of the current Branch-And-Bound-
node. Let Ī ⊆ I be the index set of all integer variables which are fractional
in x̄. Simple Rounding iteratively checks for each variable xi with i ∈ Ī
whether it is trivially down- or up-roundable. If this holds it rounds variable
xi, concluding one iteration step, if not, the procedure stops.

If Simple Rounding is able to round all fractional variables, it will re-
sult in a feasible solution of the MIP after |Ī| iteration steps.. Algorithm 5
summarizes the procedure.

Input: x̄ LP-feasible point
Ī ← index set of all fractional variables of x̄ ;1

for j ∈ Ī do2

if xj is trivially down-roundable then3

x̄← x̄ with x̄j replaced by ⌊x̄j⌋;4

else if xj is trivially up-roundable then5

x̄← x̄ with x̄j replaced by ⌈x̄j⌉;6

else7

stop!8

Algorithm 5: Simple Rounding

Rounding

In difference to Simple Rounding, Rounding also performs roundings which
may lead to LP-infeasible points and then, tries to recover from this infeasi-
bility by further roundings as it can be seen in Figure 3.4.

3.2. Rounding Methods 35

cc

x̄x̄

Figure 3.4. Simple Rounding compared to Rounding: Simple Rounding (left) always
stays LP-feasible, Rounding is able to recover from an LP-infeasible point

Input: x̄ LP-feasible point
x′ ← x̄;1

Ī ← index set of all fractional variables of x′ ;2

while Ī 6= ∅ do3

if there is a violated row then4

Look for fractional variable xj, whose rounding decreases5

violation of this row and minimizes the number of locks;

else6

Look for fractional variable xj, whose rounding to the other7

side maximizes the number of locks;

x′ ← x′ with x′
j replaced by x′

j rounded to according direction;8

Ī ← Ī\xj ;9

Algorithm 6: Outline of Rounding

Rounding reduces the number of fractional variables by 1 in each step,
just like Simple Rounding does, but follows a selection strategy in order to
find a variable which is locally most crucial to round, see Algorithm 7. Let
x′ be an integer infeasible (and potentially also linear infeasible) point. The
choice, which variable of x′ to round, is done by the following criteria:

• If there is a violated linear constraint, hence vi(x
′) > 0, only fractional

variables xj with non-zero coefficients aij in the row Ai· are regarded
as candidates for the next rounding.

Obviously, if aij > 0, the variable xj has to be rounded down in order
to reduce the violation vi(x

′) of the constraint, and if aij < 0, the
variable xj has to be rounded up. Let ξj be the number of down-locks
for variables xj with aij > 0, and the number of up-locks for variables

36 Chapter 3. Start Heuristics

xj with aij < 0.

If there are fractional variables with non-zero coefficients in the row
Ai·, one with minimal ξj will be rounded, otherwise the heuristic will
abort. If the minimum of ξj is not unique, a variable xj with minimal
increase ∆cj = cj([xj] − xj) of the objective function is chosen. Here,
[·] denotes the rounding to the direction where the violation of the row
is reduced.

• If there is no violated linear constraint, hence x′ is LP-feasible, one
looks for a rounding which seems most crucial in order to maintain
LP-feasibility.

For every variable let ξj be the maximum of the number of down-locks
and the number of up-locks. The variable with maximal ξj is chosen
to be rounded into the opposite direction of where the maximum is
achieved. As it was shown in the first case, if the maximum of ξj is not
unique, a variable xj with minimal increase ∆cj = cj([xj]− xj) in the
objective function is chosen.

The first criterion is made to recover from an infeasibility by rounding some
variable in a direction, such that the infeasibility of the selected violated
constraint decreases or vanishes with minimal potential violation of other
rows.

The second criterion is made to perform the essential steps as early as
possible. Since every variable has to be rounded, one tries to avoid the most
“awkward” roundings as soon as possible.

Shifting

The computational results of Section 3.2.1 showed that there often is no
feasible pure rounding of an LP-solution. Shifting is a heuristic which does
not only round fractional variables, but it is also able to change continuous
or integral variables, if this seems necessary. This can be seen in Figure 3.5.
Therefore, it is not a pure rounding heuristic like the ones we have described
earlier in this subsection. Nevertheless, we will treat it as a rounding heuristic
due to its high resemblance to Rounding.

Let x′ ∈ R
n. A shift x′′

j of a variable xj denotes:

• a rounding x′′
j = ⌊x′

j⌋ or x′′
j = ⌈x′

j⌉ for a fractional variable xj, j ∈ I,
x′

j /∈ Z,

• a variation within the bounds x′′
j ∈ [lj , uj] for a continuous variable xj ,

j ∈ N\I,

• a variation within the bounds x′′
j ∈ [lj , uj] preserving the integrality

x′′
j ∈ Z for an integer variable xj, j ∈ I, x′

j ∈ Z.

Like Rounding, Shifting follows different variable selection strategies de-
pending on the existence of a violated row.

3.2. Rounding Methods 37

Input: x̄ LP-feasible point
x′ ← x̄;1

Ī ← index set of all fractional variables of x′ ;2

while Ī 6= ∅ do3

if ∃i ∈ {1, . . . ,m} : Ai·x
′ > bi then4

ξmin ←∞, ∆cmin ←∞, jmin ←∞;5

for j ∈ Ī do6

if aij > 0 then7

ξj ← number of down-locks of xj ;8

if ξj < ξmin ∨ ξj = ξmin ∧ cj(⌊x
′
j⌋ − x′

j) < ∆cmin then9

ξmin ← ξj, ∆cmin ← cj(⌊x
′
j⌋ − x′

j), jmin ← j ;10

else if aij < 0 then11

ξj ← number of up-locks of xj;12

if ξj < ξmin ∨ ξj = ξmin ∧ cj(⌈x
′
j⌉ − x′

j) < ∆cmin then13

ξmin ← ξj, ∆cmin ← cj(⌈x
′
j⌉ − x′

j), jmin ← j ;14

if ξmin =∞ then15

stop!16

else17

if aijmin
> 0 then18

x′ ← x′ with x′
jmin

replaced by ⌊x′
jmin
⌋;19

else20

x′ ← x′ with x′
jmin

replaced by ⌈x′
jmin
⌉;21

Ī ← Ī\jmin;22

else23

ξmax ← −1, ∆cmin ←∞, jmin ←∞, σ ← 0;24

for j ∈ Ī do25

ξj ← number of up-locks of xj ;26

if ξj > ξmax ∨ ξj = ξmax ∧ cj(⌊x
′
j⌋ − x′

j) < ∆cmin then27

ξmax ← ξj, ∆cmin ← cj(⌊x
′
j⌋ − x′

j), jmin ← j, σ ← −1 ;28

ξj ← number of down-locks of xj;29

if ξj > ξmax ∨ ξj = ξmax ∧ cj(⌈x
′
j⌉ − x′

j) < ∆cmin then30

ξmax ← ξj, ∆cmin ← cj(⌈x
′
j⌉ − x′

j), jmin ← j, σ ← +1 ;31

if σ = +1 then32

x′ ← x′ with x′
jmin

replaced by ⌈x′
jmin
⌉;33

else34

x′ ← x′ with x′
jmin

replaced by ⌊x′
jmin
⌋;35

Ī ← Ī\jmin;36

Check x′ for linear feasibility;37

Algorithm 7: Rounding

38 Chapter 3. Start Heuristics

cc

x̄x̄

Figure 3.5. Rounding compared to Shifting: Rounding (left) only changes fractional
variables, Shifting is able to vary integral variables

• If a violated row exists, Shifting first selects a row whose violation
should be vanished or at least decreased. If there are violated rows
with fractional variables, Shifting selects one of these and rounds a
fractional variable with minimal number of locks.

• If a violated row exists, but none which has fractional variables, a vi-
olated row is chosen randomly. Every variable that has a non-zero
coefficient in this row will get a score which indicates the urgency to
shift this variable. A variable with lowest score will be shifted. The
score mainly depends on how often and how many steps before the vari-
able has been shifted to the other side. Additionally, integer variables
get an extra “penalty score” in contrast to continuous variables.

• If no violated row exists, Shifting proceeds just like Rounding does:
It rounds a fractional variable with maximal number ξj of up- or down-
locks into the opposite direction. If this maximum is not unique, a
variable xj with a minimal increase ∆cj = cj([xj]−xj) in the objective
function is chosen.

The procedure terminates, as soon as a feasible solution is found, or
after a certain number of non-improving shifts have been applied. A non-
improving shift is a shift, where neither the number of fractional variables
nor the number of violated rows can be reduced.

Taking all these considerations together yields Algorithm 8.

Computational Results

First of all, we will compare the performance of the described rounding heuris-
tics and of the Rens heuristic from Section 3.2.1, if they are applied to a
single LP solution, namely the optimum of the root node’s LP relaxation.

3.2. Rounding Methods 39

Input: x̄ LP-feasible point
x′ ← x̄, t← 0;1

Ī ← index set of all fractional variables of x′ ;2

while Ī 6= ∅ or ∃i ∈ {1, . . . ,m} : Ai·x
′ > bi do3

t← t + 1;4

if ∃i′ ∈ {1, . . . ,m} : Ai′·x
′ > bi′ then5

if ∃i′ ∈ {1, . . . ,m} : Ai′·x
′ > bi′ and ∃j ∈ Ī | ai′j 6= 0 then6

i← i′;7

else Select i randomly under all violated rows;8

ςmin ←∞, jmin ←∞;9

for j ∈ N | aij 6= 0 do10

if aij < 0 then11

if j ∈ Ī then12

ξj ← number of down-locks of xj ;13

ςj ← −1 + 1
ξj+1 ;14

else15

S ← {iterations when xj was shifted down};16

ςj ←
∑

s∈S 1.1s−t;17

if j ∈ I then ςj ← ςj + 1;18

if ςj < ςmin then19

ςmin ← ςj ,jmin ← j;20

else analog to Lines 12 to 20 with down replaced by up21

if aijmin
> 0 then22

x′ ← x′ with x′
jmin

replaced by ⌊x′
jmin
⌋;23

else24

x′ ← x′ with x′
jmin

replaced by ⌈x′
jmin
⌉;25

if jmin ∈ Ī then Ī ← Ī\jmin;26

else27

ξmax ← −1, ∆cmin ←∞, jmin ←∞, σ ← 0;28

for j ∈ Ī do29

ξj ← number of up-locks of xj ;30

if ξj > ξmax ∨ (ξj = ξmax ∧ cj(⌊x
′
j⌋ − x′

j) < ∆cmin) then31

ξmax ← ξj, ∆cmin ← cj(⌊x
′
j⌋ − x′

j), jmin ← j, σ ← −1 ;32

ξj ← number of down-locks of xj;33

if ξj > ξmax ∨ (ξj = ξmax ∧ cj(⌈x
′
j⌉ − x′

j) < ∆cmin) then34

ξmax ← ξj, ∆cmin ← cj(⌈x
′
j⌉ − x′

j), jmin ← j, σ ← +1 ;35

if σ = +1 then36

x′ ← x′ with x′
jmin

replaced by ⌈x′
jmin
⌉;37

else38

x′ ← x′ with x′
jmin

replaced by ⌊x′
jmin
⌋;39

Ī ← Ī\jmin;40

Check x′ for linear feasibility;41

Algorithm 8: Shifting

40 Chapter 3. Start Heuristics

Criterion Simple Rounding Rounding Shifting Rens

Solution Found 26 37 55 66

Feasible Rounding Found in % (of 92) 28 40 – 72

Optimal Rounding 0 0 – 45

Total Time 0.1 3.4 8.2 932.6

Table 3.4. Summarized results of different rounding heuristics applied to the optimum of
the LP-relaxation

For this test, we modified the SCIP implementations of Simple Rounding,
Rounding, and Shifting such that they are only applied to the optimum of the
LP-relaxation, not to every LP-solution during the cutting plane separation
loop.

For Rens we used the settings as they are described in the Computational
Results of Section 3.2.1: the stalling node limit was set to 500, the absolute
node limit to 10’000, the minimal fixing rates rI = 0.5, and rN = 0.25.

Table B.6 shows the results of this test and compares the rounding heuris-
tics from this chapter to the best known rounding which can be seen in Ta-
ble B.3. The values of the last two columns are taken from Table B.3. Note
that since Shifting is able to unfix integer variables, it could find solutions,
which are not a pure rounding of the LP-optimum. Table 3.4 summarizes the
main results taken from Table B.6. In Columns “Optimal Rounding” and
“Feasibile Rounding Found”, Shifting gets a bar “–” since it can produce
solutions which are not a rounding of the starting point.

Since Rounding is an extension of Simple Rounding, and Shifting is an
extension of Rounding, we would expect that Shifting dominates Rounding
and Rounding dominates Shifting in terms of the number of found solutions.
We would further expect that Simple Rounding dominates Rounding and
Rounding dominates Shifting in terms of the running time.

Simple Rounding succeeds in finding a feasible solution 26 times, Round-
ing 37 times, and Shifting 55 times. For all instances where Simple Rounding
found a solution, the other two variants found the same one, respectively a
solution of the same objective value. Analogously, for all instances for which
Rounding found a solution, Shifting found one of the same objective value.
This substantiates the statement that these heuristics are extensions of each
other.

A feasible rounding is known for 89 instances, and for 3 instances we
do not know whether a feasible rounding exists (see computational results
of Section 3.2.1). Simple Rounding finds some feasible rounding for 28% of
these 92 instances, Rounding succeeds for 40%, Rens for 72%. Note, that
neither Simple Rounding nor Rounding succeeded in finding an optimal or
best known rounding in any case. In some cases, Shifting gets even better
solutions than an optimal rounding. This is due to the fact that shifting does
not only consider pure roundings.

The computation time is small for all three variants, but increases with
the complexity of the method. The overall computation time for all 129

3.2. Rounding Methods 41

Criterion Simple Rounding Rounding Shifting Rens

Solution Found (of 129) 27 39 61 66

Better Than Single Call 14 29 41 72

Total Time 0.6 23.6 54.5 932.6

Time Geometric Mean 1.0 1.0 1.1 2.0

Only Solution (Shifting vs. Rens) – – 9 13

Better Solution(Shifting vs. Rens) – – 4 47

Table 3.5. Summarized results of different rounding heuristics applied to every LP-feasible
point of the LP-solving loop

instances is 0.1 seconds for Simple Rounding, 3.4 seconds for Rounding, and
8.2 seconds for Shifting.

Next we want to compare Shifting, the best of the three heuristics we
described in this section, to Rens, the heuristic presented in Section 3.2.1.
7 times Shifting found a solution, when Rens failed. There were 48 instances
for which a feasible solution was found by Rens as well as by Shifting. In 2
of these 48 cases, the one found by Shifting had a better objective value, 46
times the one found by Rens was superior.

All three heuristics are not very time consuming. The computation time
of the slowest heuristic summed up over all instances was 8.2 seconds, whereas
the overall time which SCIP needed to solve the root LPs was about 7200
seconds. This is their advantage if comparing them to Rens, a quite time con-
suming heuristic, which needed 932.6 seconds summed up over all instances.
It seems reasonable to apply the three heuristics presented in this section
not just to the LP-optimum, but to all LP-feasible points the underlying
LP-solver creates during its solving loop.

Therefore, we performed another test run on our two standard test sets,
using the SCIP default settings of applying the three rounding heuristics to
every LP-solution during the cut separation loop at the root node.

The results can be seen in Table B.7. The best known rounding is missing
in this table, since it only referred to rounding the LP-optimum after having
finished the cut separation loop. Table 3.5 is a summary of the results from
Table B.7.

Altogether there were 27 instances (versus 26 in the previous test) for
which Simple Rounding found a solution, 39 (vs. 37) for which Rounding
succeeded, and 61 (vs. 55) instances for which Shifting was successful.

As before, the solutions found by Rounding are at least as good as the ones
found by Simple Rounding. There were 9 instances where both heuristics
found a feasible solution, but the one found by Rounding was strictly better
with respect to the objective. There were 5 instances for which the solution
found by Shifting was superior to the one found by Rounding.

Of course, the best solution of an instance found in this test run was as
least as good as the one found in the previous run. Simple Rounding called
for every LP-solution yielded a strictly better solution than Simple Rounding
called only for the LP-optimum 14 times, Rounding called for every LP-

42 Chapter 3. Start Heuristics

solution was superior to the single call case 29 times and Shifting improved
its quality 41 times.

Comparing Shifting and Rens again, we see that there were 52 instances
for which both found a solution, 9 instances for which only Shifting succeeded,
and 13 instances for which Rens found a solution, but Shifting failed. For 4
out of these 52 instances, the solution found by Shifting was superior, 47 times
Rens found a better solution, once both achieved the same objective value.

The overall computation time needed by each of the heuristics grew
roughly by a factor between 6 and 7. The multi call variant of Simple Round-
ing needed 0.6 seconds in sum, Rounding 23.6 seconds, Shifting 54.5 seconds.
These values are still small compared to the overall computation time of
2 hours SCIP needed for presolving and solving the root LPs or to the
933 seconds Rens needed.

Since the number of instances for which solutions were found, and espe-
cially the quality of the solutions increased substantially, it seems reasonable
to call Shifting for every LP solution, at least at the root node. The overall
computation time of Simple Rounding seems small enough, that this heuristic
could be called at every node of the Branch-And-Bound-tree.

In the majority of the cases, Rens is superior to the three other heuristics
in terms of the objective, but they have two advantages. First, they need
few time and can hence be applied more frequently. Second, they even find
better solutions in some cases. The extensive computations of Rens and the
straight-forward-strategy of Simple Rounding, Rounding, and Shifting seem
to complement each other in a useful way.

3.3 Octane

Balas, Ceria, Dawande, Margot, and Pataki [10] provided an extensive de-
scription of a heuristic for pure binary programs which in its strategy is very
different from all other classes of start heuristics. They called it Octane, an
abbreviation for OCTAhedral Neighborhood Search. It is based on a highly
geometrical idea.

The Idea – Geometric Background

Clearly, every point x̃ ∈ X̃ := {0, 1}n is integer feasible for any BP. One can
observe that there is a one-to-one correspondence between these 2n points
and the 2n facets of an n-dimensional octahedron.

The basic idea of Octane is that finding facets that are near an LP-
feasible point x̄ is equivalent to finding integer feasible points x̃ that are near
x̄ and therefore potentially LP-feasible themselves. Furthermore, if we choose
the optimum of the LP-relaxation as our initial point x̄, they potentially will
be of high quality in terms of the objective function. These facets will be
determined as k facets of an n-dimensional octahedron first hit by a ray

3.3. Octane 43

starting at x̄. Obviously, choosing the direction of the ray is the crucial part
of this ray shooting algorithm.

First of all, we specify the relationship between the elements of X̃ and
the facets of an octahedron.

Definition 3.4 Let e := {1}n be the vector of all ones.

K := {x ∈ R
n | −

e

2
≤ x ≤

e

2
}

is called the unit hypercube, centered at the origin.

K⋆ := {x ∈ R
n | ‖x‖1 ≤

n

2
}

= {x ∈ R
n | δT x ≤

n

2
for all δ ∈ {±1}n}

is called its circumscribing octahedron.

For simplification, we will identify the vector δ with the hyperplane δT x = n
2

it creates and which contains exactly one facet of the octahedron K⋆. We
call both, the vector and the corresponding hyperplane, just facet.

Note that every facet δ of the octahedron K⋆ contains exactly one vertex
ν of the hypercube K, namely the one with νj = 1

2 if δj = 1 and νj = −1
2

if δj = −1. Since both sets have the same cardinality, every vertex of the
hypercube is as well contained in exactly one facet of the octahedron.

This correspondence is kept if translating K and K⋆ by the same vector.
Consider the hypercube K + e

2 = {x ∈ R
n | 0 ≤ xj ≤ 1}. Its vertex set

is exactly X̃ , the set of all integer feasible points, and its circumscribing
octahedron is K⋆ + e

2 . Hence we have a one-to-one correspondence between

X̃ and the facets of K⋆ + e
2 .

Nevertheless, we will describe the whole procedure on K and K⋆ and not
on the translated version, since we would like to take advantage of the origin
symmetry of K and K⋆ which results in a much easier notation.

Therefore, we will at first transform our initial point x̄, normally the
optimum of the LP-relaxation, to its corresponding point χ̄ := x̄− e

2 . After
finishing the ray shooting algorithm, every vertex νi of K it determined, will
be transformed to an integer feasible point x̃i = νi + e

2 .

A Ray Shooting Algorithm

The ray shooting algorithm should find k facets {δ1, . . . , δk} which are first
hit by the half-line

r : R
>0 → R

n

λ 7→ χ̄ + λa
(3.6)

with a 6= 0 being the direction of the ray. These k facets correspond to k
vertices {ν1, . . . , νk} ⊂ K and hence, to k integer feasible points {x̃1, . . . , x̃k}.

44 Chapter 3. Start Heuristics

Definition 3.5 We call a facet δ ∈ {±1}n reachable, if there exists a λ > 0
for which δT r(λ) = n

2 .

A facet is called first-reachable, if the parameter λ is minimal among all
reachable facets.

The set of reachable facets contains exactly all facets which get hit by the
ray r defined in (3.6). Note that the first-reachable facet will not be unique,
if the ray hits the facets just at a point where two or more facets intersect
each other.

The outline of the ray shooting algorithm is the following: at first, some
facet is generated, which is definitely reachable. Secondly, by changing com-
ponents of this facet a first-reachable facet is determined. At last, one per-
forms a reverse search in order to find k − 1 further facets.

Input: x̄ LP-feasible point
a direction of the shooting ray

Parameters: k number of integer feasible points to create
Transform coordinates appropriately (see Figure 3.6);1

Find a first-reachable facet δ⋆ ;2

Incrementally construct k facets nearest to χ̄ ;3

Transform these facets to k integer feasible points {x̃1, . . . , x̃k} of4

the BP ;
Check the integer feasible points {x̃1, . . . , x̃k} for LP-feasibility;5

Algorithm 9: Outline of Octane

Before the algorithm is able to start two further transformations are done
which the authors stated as general assumption (3.14). Firstly, for all j ∈ B
for which aj < 0, the signs of aj and χ̄j are flipped. Secondly, the coordinates
are sorted by nondescending values

x̄j

aj
. This leads to a problem which is

completely symmetric to the original one, compare Figure 3.6. Of course,
one has to flip the signs of the according νi

j and resort after finishing the
algorithm.

Then the first step, namely finding any reachable facet, is as trivial as it
can be. δ = e = {+1}n fulfills the requirement, as aj ≥ 0 for all j ∈ B and
a 6= 0.

The following theorem deals with the problem of finding a first-reachable
facet, i.e., one nearest to χ̄, if you have any reachable facet δ at hand:

Theorem 3.6 1. If a facet δ is reachable, but not first-reachable, there
exists an i ∈ N for which the facet δ3i defined by

(δ3i)j :=

{

−δj if j = i
δj otherwise

is a facet which is hit before δ. Then i is called a decreasing flip.

3.3. Octane 45

cc x̄ χ̄

x1

x1

x1

x2

x2

x2

x2

x1

a

a

K⋆ + e
2 ; K⋆

a = −c

aj ≥ 0

sort by
x̄j

aj

Figure 3.6. Three transformations are applied to x̄ and a

2. Starting with δ = e and iteratively flipping its components, if they yield
a decreasing flip, is an algorithm which has a first-reachable facet as
output and can be implemented with a running time of O(n log n).

For detailed proofs of these statements, please see pages 5-10 of [10]. Note
that the running time the authors gave in Lemma 3.7 differs from the one
stated above, since we took also the time into account that is needed for
sorting the components j ∈ N by ascending values

x̄j

aj
.

Now, we know how to get a facet which is first-reachable. Note that there
could be more than one first-reachable facet. In practice this is rather the
rule, if one chooses ray directions not randomly, but following some certain
geometric structure [10].

46 Chapter 3. Start Heuristics

χ̄

r

δ1 = δ⋆δ2 = e

Figure 3.7. Shooting ray hits two facets, each associated with a feasible solution

Reverse Search

At next, we will focus our attention on the problem of finding the rest of
the k facets we need. Therefore, one builds up an arborescence which has a
first-reachable facet as root-node and reachable facets as vertices.

All arcs connect facets which can be obtained from each other by flipping
the sign of a single component, but not every possible flip is represented by
an arc.

We want to define a unique predecessor pred(δ) for each reachable facet
δ, except for one first-reachable facet which will be the root-node of the
arborescence.

Definition 3.7 We call i ∈ N a

• decreasing + to − flip for δ, if δi = +1 and δ3i is a facet hit before δ,

• nonincreasing − to + flip for δ, if δi = −1 and δ3i is a facet hit by r,
but not after δ.

The terms decreasing and nonincreasing hereby refer to the change of λ.
If there exists at least one decreasing + to − flip for δ, let i be the one with
the minimum index. Then, pred(δ) := δ3i. If there exists no decreasing
+ to − flip for δ, but at least one nonincreasing − to + flip, let i be the
one with the maximum index. Then, pred(δ) := δ3i. Otherwise, pred(δ)
stays undefined. One can prove that there is exactly one facet δ⋆ for which
pred(δ⋆) is undefined and obviously this is a first-reachable facet.

3.3. Octane 47

Consider the following weighted digraph:

V :={all reachable facets δ ∈ {±1}n}

A :={(pred(δ), δ) for all δ ∈ V \{δ⋆}}

w(pred(δ), δ) := (distance between the two points,

where r hits pred(δ) and δ) for all (pred(δ), δ) ∈ A

Balas, Ceria, Dawande, Margot, and Pataki [10] proved:

Theorem 3.8 Let V,A,w as mentioned above.

1. G = (V,A,w) is an arborescence rooted at δ⋆.

2. There is an O(kn log k) algorithm which finds k vertices of G with min-
imum distance to δ⋆.

3. These k vertices of G correspond to the k facets of K⋆ first hit by r.

Selection of the Ray Direction

However, we still need to know in which direction the ray should be shot.
The authors of [10] gave four different approaches:

• the objective ray: There is already one ray, one has, when solving a
MIP: the direction of the objective function c. It seems reasonable to
shoot a ray into the opposite direction −c, as this clearly leads into the
inner of the polyhedron and promises to produce feasible solutions.

• the difference ray: If Octane is not called at the root-node of the
Branch-And-Bound-tree, but somewhere deeper, the difference between
the optimum of the LP-relaxation at the root-node and the current LP-
optimum can indicate some useful information. It shows a part of the
development of each variable from the value in an optimal LP-solution
to the one in an integer feasible solution. Therefore, this difference
vector seems to be a ray direction with a promising geometric interpre-
tation. The same vector is used for Linesearch Diving, see Section 3.1.1.

• the average ray: The optimal basis the simplex algorithm found for
the LP-relaxation at the current node defines a cone C which has the
optimum the LP-solver found as apex. The extreme rays of C are
defined by edges of the current LP-polyhedron. The average of the
normalized extreme rays of C points into the inner of the polyhedron
P (A, b, l, u) and therefore, hopefully into the direction of some feasible
solutions. Balas [9] described that one can easily get the extreme rays
from the last simplex tableau.

48 Chapter 3. Start Heuristics

• the average weighted slack ray: This ray is obtained from the one men-
tioned before by additionally assigning weights to the extreme rays.
Every extreme ray corresponding to a non-basic slack variable with
positive reduced costs gets the inverse of the reduced costs as weights,
all others weights are assigned to 0.

We additionally tested another direction which seems to be promising:

• the average normal ray: The LP-optimum is a vertex of the polyhedron
P (A, b, l, u) and therefore, at least n of the linear and bounding con-
straints are fulfilled with equality. The normalized (inner) normal of a
hyperplanes corresponding to some linear constraint gives a direction
where all points are feasible for this constraint. It is the hope that the
average of all these normals indicates a direction where one can find
feasible points.

Balas, Ceria, Dawande, Margot, and Pataki [10] proposed to carry out
the enumeration on the space of fractional variables and not on the whole
space of variables. Their computational results ([10], Tables A.1 and A.2)
show that this is only slightly inferior in terms of the objective function of
the best solution, but noticeably superior in terms of the computation time.
Furthermore, they suggested to abort the construction of facets if all of the
say k1 first facets violate a common linear constraint.

All these considerations are summed up in Algorithm 10.

Computational Results

As Octane is a heuristic designed for BPs, we tested it on the set of all BPs
taken from our two standard test sets. The first test compares the four ray
selection rules which can be applied to any point of an LP: the objective ray,
the average ray, the average weighted slack ray, and the average normal ray.
The difference ray needs some information about the Branch-And-Bound-
process and is therefore regarded later, when we are looking at the integration
of Octane into SCIP.

We took the optimum of the LP-relaxation attained by SCIP with stan-
dard settings as LP-feasible point x̄ defining the origin χ̄ of the shooting
ray. We applied Octane once with each of the four rules to each of the 45
problems. The node limit of SCIP was set to 1, all other heuristics were
deactivated. Furthermore, we ran SCIP with the three rounding heuristics
Simple Rounding, Rounding, Shifting and the integrated Feasibility Pump
version. Thus, it is possible to compare the solutions Octane finds to the
solutions of the other root-node heuristics of SCIP. Rens was deactivated,
since it is a very investigative heuristic, and it seemed unfair to us to compare
it to Octane. The implementation of Octane has been done by the author
of this thesis.

3.3. Octane 49

Input: x̄ LP-feasible point
a direction of the shooting ray

Parameters: k1 number of integer feasible points to create first
k number of integer feasible points to create at all

Translate χ̄← x̄− e
2 ;1

Flip coordinates xj with aj < 0;2

Resort coordinates by nondescending values
x̄j

aj
;3

δ⋆ ← e;4

for j ← 1 to n do5

if δ⋆
3j is a decreasing flip then δ⋆ ← δ⋆

3j;6

for j ← n down to 1 do7

if δ⋆
3j is a nonincreasing − to + flip then δ⋆ ← δ⋆

3j;8

Initialize L← δ⋆, a list of facets sorted by their distance to χ̄ ;9

for j ← 1 to k1 do10

δ ← j-th element of L; Determine all facets which can be obtained11

from δ by a single nondecreasing flip and insert them into L, if not
already contained;

if All integer feasible points associated with the first k1 elements of L12

violate a common constraint then stop!

for j ← k1 + 1 to k do13

δ ← j-th element of L ;14

Determine all facets which can be obtained from δ by a single15

nondecreasing flip and insert them into L, if not already contained;

Apply inverse transformations of Steps 1 to 3 to the first k elements of16

L ; {x̃1, . . . , x̃k};
Check {x̃1, . . . , x̃k} for linear feasibility;17

Algorithm 10: Octane

50 Chapter 3. Start Heuristics

Criterion Objective Ray Average Ray Avg Weighted Slack Ray Avg Normal Ray

Solution Found (of 45) 15 8 6 15

Best Solution 7 4 4 11

Better Than SCIP heuristics 5 1 5 7

Table 3.6. Summarized results of of different ray directions

Table B.8 shows the results of this test. In order to keep it compact, we
just show those problems for which at least one ray selection rule was able
to find a feasible solution. Table 3.6 summarizes the results.

There were 17 out of 45 instances for which at least one rule bore a feasible
solution. The objective ray and the average normal ray were the most fruitful
directions. Octane could find feasible solutions for 15 instances either way.
The variant which uses the average ray was successful in 8 cases, the one
with the average weighted slack ray in 6 cases. Octane using the average
normal ray found a solution, minimal among the four versions, in 11 cases,
using the objective ray in 7 cases, using the average weighted slack ray in 4
cases, and finally using the average ray in 4 cases.

It is worth mentioning that for each rule there is at least one instance
for which this rule was the only one which found a solution of this minimal
value, e.g., air03 for the average normal ray, fiber for the objective ray, irp
for the average weighted slack ray, and neos21 for the average ray. Although
the average weighted slack ray has the fewest number of instances for which
it found solutions, these solutions are of a remarkable quality within less
than 1% gap to the optimal or best known solution in 3 out of 6 cases.
Additionally, for two instances the average weighted slack ray was the only
variant for which the minimal value could be achieved.

To sum it up, the average normal ray seems to be the best one, as it scored
first in the number of instances for which it found feasible solutions as well as
in the number of instances for which the objective value of the solution found
by a certain rule was minimal. Hence, it is a good amendment to the ray
rules suggested by Balas, Ceria, Dawande, Margot, and Pataki [10]. As all
four rules performed well, we decided to integrate them all into our Octane

implementation and to use them alternately in consecutive calls of Octane.

Octane was only able to find a feasible solution for 37.8% of the BPs
in our test set, but the solutions often were of high quality, as Table B.8
shows. There were 10 out of 17 instances, where the best solution, delivered
by Octane, was superior to the best solution which we obtained by the other
root-node heuristics. The average ray could defeat SCIP once, the objective
and the average weighted slack ray 5 times, and the average normal ray 7
times.

Next, we want to examine, how Octane changes the overall performance
of SCIP and whether the difference ray is useful as fifth integrated ray se-
lection rule. We ran SCIP without Octane, with Octane and only four
ray selection rules activated, with Octane and all five ray selection rules

3.3. Octane 51

activated, and with Octane called only at the root-node. For the second
and third variant we choose to call Octane at every tenth depth of the
Branch-And-Bound-tree.

The test run was made on the same set like before, namely all BPs from
our two standard test sets. Tables B.9 and B.10 show the results of this test.

All four variants yielded very similar results. Regarding the easy in-
stances, in most cases the running time of SCIP was roughly the same.
However, the two variants calling Octane frequently tended to take slightly
more time. There were only few instances for which the difference of the
solving time was remarkable, namely cap6000 and irp, for which the vari-
ants which call Octane at most once were superior. There were only two
instances, namely p0282 and p0548, for which calling Octane helped de-
creasing the number of solving nodes, but without an improvement in the
solving time.

Regarding the hard instances, we can observe that the two variants with
frequent calls of Octane yield a better primal bound for markshare2, al-
though this solution was not found by Octane.

Summarizing, the integration of Octane has only a slight influence on
the overall performance. The improvements made on few instances result in
a higher running time for most instances. The average normal ray and the
average weighted slack ray seem to complement each other in a good way.
Furthermore, the usage of the difference ray causes no remarkable changes in
the performance of Octane.

52 Chapter 3. Start Heuristics

Chapter 4

Improvement Heuristics

Since MIP-solving is NP-hard [54], finding any feasible solution of a MIP is
in theory as hard as finding an optimal one. In practice, however, there are
classes of MIP instances for which finding a feasible solution is much easier
than finding the optimal one, e.g., set covering problems [18]. State-of-the-
art MIP-solvers are able to produce feasible solutions for a lot of different
MIP instances in early steps of the Branch-And-Bound-process (compare
Section 3.1.2, [48] or [15]).

The goal of an improvement heuristic is to form a new feasible solution
of better objective value out of one or more given feasible solutions, trying
to use some provided information. One of the first improvement heuristics
described in literature was the k-OPT heuristic for TSPs [43].

The Local Search [57, 31] approach generalizes the idea of k-OPT: one
defines a neighborhood of some reference point (the feasible solution), deter-
mines a point of this neighborhood which is optimal for some function (e.g.,
the objective function of the MIP or a feasibility measure), which is then
used as a new reference point in the next iteration step. Most improvement
heuristics can be formulated as Local Search methods.

Classical Local Search uses relatively small neighborhoods which can be
quickly explored and performs a couple of iteration steps, building up a net-
work of visited points. Several classical Local Search methods have been
developed for specific optimization problems (see [23, 51, 55] among others).
There have also been some advances in integrating classical Local Search into
MIP solving [57, 32].

Large Neighborhood Search or shortly LNS is a variant of Local Search.
It incorporates the complexity of general MIPs by defining a relatively large
neighborhood of some reference point (normally the incumbent solution) and
performing just a single iteration step, where the neighborhood is completely
or partially searched. A lot of the recent methods which integrate Local
Search ideas into general MIP solving are based on the idea of LNS [21, 26,
52].

Obviously, finding a good definition of the neighborhood is the crucial part
of LNS heuristics. The neighborhood should contain high quality solutions,

53

54 Chapter 4. Improvement Heuristics

these solutions should be easy to find, and the neighborhood should be easy
to process. Often, these three goals are conflicting in practice.

For example, neighborhoods for LNS can be defined by evaluating a func-
tion measuring the distance to the reference point in some metric as in Local
Branching (see Section 4.1), by comparing the reference point with the opti-
mum of the LP-relaxation as in Rins (see Section 4.2) or with other feasible
solutions as in Crossover (see Section 4.3), or by just randomly fixing a cer-
tain number of integer variables in a given feasible solution as in the Mutation
heuristic (see Section 4.4).

There are several methods of how to search such a neighborhood. One
could just enumerate it, one could construct a special heuristic to search the
neighborhood or, as it has an analog structure, process it in the same fashion
as one processed the original problem. All the methods described in this
section will be of the last type.

In our cases, the neighborhood can be expressed as a sub-MIP of the
original MIP. The Local Branching sub-MIP is constructed by adding con-
straints to the original MIP. The sub-MIPs used in Rins, Crossover, and
Mutation are generated by fixing an adequate number of variables of the
original problem to the value they take in at least one feasible solution.

Shrinking the problem size by fixing variables often results in a much
easier sub-MIP. One can easily observe that fixing a single variable of an BP
halves the number of integer feasible solutions and a similar statement holds
for MIPs with bounded variable domains. One can hope that this behavior is
transmitted to the solving process of the sub-MIP. In addition, many MIPs
regarded in practice have a strong combinatorial structure, whose difficulty
decreases rapidly if some variables are fixed. For example, if one fixes one
variable of a set partitioning constraint (see [18]) to 1, all other variables of
this constraint can be fixed to 0.

The SCIP-implementations of all heuristics presented in this chapter have
been done by the author of this thesis.

4.1 Local Branching

Local Branching was introduced by Fischetti and Lodi [25] as a new branching
strategy for MIPs which can also be effectively used as a heuristic improv-
ing the incumbent solution. The same authors [26] suggested to use Local
Branching as a method for driving nearly feasible solutions towards feasibil-
ity. This can also be used for the analysis of infeasible MIPs (see [26]).

The usage of Local Branching as an improvement heuristic relies on the
observation that the neighborhood of a feasible MIP-solution in terms of the
Manhattan distance of two points often contains further solutions of possibly
better quality.

4.1. Local Branching 55

The Idea: Soft Fixing as Motivation for Local Branching

Diving heuristics (Section 3.1) usually perform hard fixings on variables until
they attain a feasible solution or an infeasible subproblem. That means they
eliminate integer variables by fixing them to some promising value and resolve
some LP, in order to determine the next fixing candidates. This procedure
is iterated, and thereby the subproblems get smaller and smaller.

Unfortunately, diving heuristics often end in an infeasible subproblem.
This is due to the fact that on the one hand in the early steps of the diving
process one cannot predict how the fixing decisions will affect the feasibility
of the later subproblems and on other hand in the later steps it is hard to
find out which former fixings caused the infeasibility.

The crucial idea is to perform a soft fixing for a given integer feasible
point x̃ in order to get a linearized expression of its neighborhood which
can be integrated into the original MIP description. Soft fixing demands
that a certain number of variables, e.g., 90%, takes the same values as in
the incumbent solution, but it does not concretely fix any of those variables.
The following definition induces such a soft fixing scheme, as it describes the
set of all integer feasible points which do not differ in more than k variables
from a reference point x.

Definition 4.1 Let x ∈ R
n with xj ∈ Z for all j ∈ I, and let k ∈ N. The set

{y ∈ P (A, b, l, u) |
∑

j∈I

|xj − yj| ≤ k, yj ∈ Z for all j ∈ I} (4.1)

is called the k-neighborhood of x.

An example for a 2-neighborhood of a feasible solution of a MIP with
general integer variables is given in Figure 4.1.

If there is an incumbent solution x̃ of the MIP, one wants to search its
k-neighborhood, which hopefully contains further solutions of better quality.
If one wants to do this using a MIP-solver, you need to find a linearized
expression of (4.1) which you can integrate into the MIP. Local Branching
in its variant for MBPs realizes this by adding a single linear constraint. If one
wants to apply Local Branching on MIPs with general integer variables, you
need to introduce some extra variables, see the definition of the MIP (4.5) at
the end of this section.

Obviously, if regarding MBPs, the distance function ∆B (compare Defini-
tion 3.2) from Section 3.1.2 is suited for the linearization of the k-neighborhood
stated in Definition (4.1).

The local branching cut

∆B(x, x̃) =
∑

j∈B:x̃j=0

xj +
∑

j∈B:x̃j=1

(1− xj) ≤ k (4.2)

describes the k-neighborhood of the central point x̃ to improve. k ∈ N

should be a given parameter here, which can be updated by Local Branching

56 Chapter 4. Improvement Heuristics

c

x̃

Figure 4.1. Idea of Local Branching: P (A, b, l, u) intersected with
the 2-neighborhood of x̃

in further calls. The original MBP supplemented by constraint (4.2) and an
objective cutoff

cT x ≤ (1− ǫ)cT x̃ for some ǫ > 0 (4.3)

tends to be a sub-MBP noticeably easier to solve than the original MBP
and it is embedded in an area of good objective function values [26]. Algo-
rithm 11 sketches Local Branching in its variant as an improvement heuristic
for MBPs.

Input: x̃ feasible solution
Parameters: k neighborhood size
Create a sub-MBP by adding the two constraints (4.2) and (4.3) to1

the original sub-MBP ;
Solve the sub-MBP ;2

Algorithm 11: Outline of Local Branching

Intermezzo: Local Branching as Branching Strategy

If one prefers to use Local Branching as a branching strategy rather than as
a heuristic, the according branching rule would be

∆B(x, x̃) ≤ k or ∆B(x, x̃) ≥ k + 1. (4.4)

Indeed, this divides the solution space into two disjoint parts. The left one
should be relatively small for well chosen parameter k and can therefore be
examined by a MIP-solver in short time. It is the hope that it contains
further solutions of better quality than the current incumbent x̃. The other
only needs to be explored, if no improving solution can be found. Note that
this yields an exact solution strategy.

4.1. Local Branching 57

Implementation Details

If you want to use Local Branching as an improvement heuristic, the time
it consumes will be a crucial factor for the evaluation of its performance.
One main problem which arises is that you have no reliable control whether
the sub-MBP is actually much easier to solve than the original MBP is.
That is why one should introduce some limit on the solving process of the
sub-MBP, e.g., a time limit or a node limit. Another problem could be that
the sub-MBP is too restricted, which should mean that it can be processed
relatively fast but does not improve the incumbent solution, or does not drive
an infeasible solution more towards feasibility, respectively.

Both issues can be handled by varying the value of the parameter k,
which is responsible for the size of the neighborhood of x̃. For example, one
could reduce k by ⌊k2⌋ if the solving process of the sub-MBP was interrupted
due to some limit without having found a new solution and enlarge k by
⌈k2⌉, if the sub-MBP was completely solved, but did not contain a new best
reference solution. Local Branching used as a heuristic would then restart
its solving routine or one would postpone this to a later point of time in the
Branch-And-Bound process, if no new incumbent was found up to then. It is
obvious that one should not apply both of these mechanisms consecutively
at one reference point x̃, because this would lead into a cycling process.
Furthermore, one should not apply one of these diversification schemes too
often at one point x̃, in order to not waste too much time for exploring a
part of the MBP that is highly related to some where the Local Branching
process already failed.

Fischetti and Lodi [25] proposed another strategy to deal with the case
that the Local Branching process terminated within the limits, but without
having found any improved solution even after the size of the neighborhood
was increased. They suggest to search for a new solution in the vicinity of
x̃ which needs not to improve the objective value. The local branching cut
is updated to 1 ≤ ∆B(x, x̃) ≤ k + 2⌈k2⌉ and the objective cutoff is left out.
The resulting MBP is solved and the solving process is stopped as soon as
a feasible solution, probably of worse quality than x̃, has been found. This
new solution is then taken as the new reference solution x̃, hoping that it has
a neighborhood which can be better explored than the last one.

The above considerations result in Algorithm 12. In contrast to the one
published by Fischetti and Lodi [25] this one is made to be used as a part
of a MIP-solver, strictly concentrating on the improvement of an incumbent
solution. It starts only, if a feasible solution is at hand, it sets limits on the
subproblem size, restarts the solving process from the same reference point
at most once, and it desists from the use of diversification schemes which
lead to solutions of inferior quality.

58 Chapter 4. Improvement Heuristics

Input: x̃ feasible solution
Parameters: nl node limit for the sub-MBP

k0 initial neighborhood size
if first call of Local Branching or x̃ has changed since last call then1

exec ← true ;2

k ← k0 ;3

else if exec = false then4

stop!5

Set node limit nl for MIP-solver;6

Solve the sub-MBP, which is obtained from the original MBP plus the7

two constraints (4.2) and (4.3);
if new solution found then8

stop!9

if node limit nl reached then10

if k = k0 then11

Set k← k0 − ⌊
k0

2 ⌋ for next call;12

else13

Set exec← false;14

else15

if k = k0 then16

Set k← k0 + ⌈k0

2 ⌉ for next call;17

else18

Set exec← false;19

Algorithm 12: Local Branching

4.2. RINS 59

Generalization to MIPs

Lodi [44] described how to generalize Local Branching to a LNS scheme to
MIPs with general integer variables. This requires the introduction of some
artificial variables to model the non-linear function ∆I(x, x̃) (see (4.2) and
Section 3.1.2). Note that the resulting MIP would no longer be a sub-MIP
of the original one. The task of finding a good solution for the original MIP
can then be expressed as the following MIP:

min
∑

j∈I:x̃j=lj

(xj − lj) +
∑

j∈I:x̃j=uj

(uj − xj) +
∑

j∈I:lj<x̃j<uj

(x+
j + x−

j)

such that Ax ≤ b

xj = x̃j + x+
j − x−

j for all j ∈ I : lj < x̃j < uj

x+ ≥ 0

x− ≥ 0

l ≤ x ≤ u

xj ∈ Z for all j ∈ I

x+
j , x−

j ∈ Z for all j ∈ I : lj < x̃j < uj

(4.5)

4.2 RINS

The relaxation induced neighborhood search, shortly Rins, was first de-
scribed by Danna, Rothberg, and Le Pape [21]. It is based on the observation
that often the incumbent solution x̃ of a MIP and the optimum of the LP-
relaxation x̄ have a couple of variables set to the same values. As mentioned
in Section 3.1.2, a “good” solution of a MIP has to fulfill three conditions:
it has to be integer feasible, LP-feasible, and it should have a small objective
value.

The Idea

The Objective Feasibility Pump described in Section 3.1.2 worked with two
points in each iteration, one fulfilling the first condition, the other one the
second and brought in the third by a little trick (see Definition (3.3)).

Rins also requires two points, one fulfilling the first two conditions and
one fulfilling the last two. The incumbent MIP solution x̃ is integer feasible
and LP-feasible. As well, at some node of the Branch-And-Bound-tree, the
optimal solution x̄ of the current LP is clearly LP-feasible and of an optimal
objective value for the current subproblem.

Note that Rins needs an incumbent solution. This is different from Rens

(see Section 3.2.1), which only took the optimum of the LP-relaxation into ac-
count, or Local Branching, where Fischetti and Lodi [26] described a general
approach that could also be used to drive integer feasible, but LP-infeasible
solutions towards feasibility.

60 Chapter 4. Improvement Heuristics

If the current subproblem was not pruned by bounding, cT x̄ < cT x̃ holds.
This implies x̄ 6= x̃, i.e., there are some variables for which x̃ and x̄ take
different values. If there is a sufficient number of variables, however, for
which the values coincide, it is worth paying special attention to them. It
seems likely that the values identical in an optimal LP-solution x̄ and a
feasible solution x̃ form a partial solution of good objective value.

Definition 4.2 Let x̄ ∈ P (A, b, l, u) be an optimal solution of the LP-relaxation
at the current Branch-And-Bound-node, and let x̃ ∈ P (A, b, l, u) be the in-
cumbent solution. The set

{y ∈ P (A, b, l, u) | yj = x̃j for all (j ∈ I with x̃j = x̄j) and yj ∈ Z for all j ∈ I}

is called the relaxation induced neighborhood of x̃.

This is also illustrated in Figure 4.2.

Implementation Details

Minimizing cT x over this set means to solve a sub-MIP of the original one,
which concentrates on the variables differing in the two reference solutions.
As usual for improvement heuristics, we are just interested in solutions that
are better than the current incumbent. Thus, we add an objective cutoff
cT x ≤ (1− ǫ) cT x̃ to the sub-MIP with ǫ > 0. The resulting problem can be
stated as:

min cT x

such that Ax ≤ b

cT x ≤ (1− ǫ)cT x̃ for some ǫ > 0

xj = x̃j for all j ∈ I with x̃j = x̄j

l ≤ x ≤ u

xj ∈ Z for all j ∈ I

(4.6)

As solving MIPs can be time consuming, one wants to avoid solving
sub-MIPs which are very similar. One possibility would be to call Rins

only if a new reference solution x̃ was found in the MIP-solving process, as
for example our implementation of Local Branching does. The reason was,
that the Local Branching sub-MIP only depended on the incumbent solution
x̃ and on some fixed parameters.

Since the current optimal LP-solution x̄ potentially changes at every
branching node, Rins yields much larger diversification than Local Branch-
ing. However, since their LPs are very similar, consecutive nodes of the
Branch-And-Bound-tree tend to have very similar optimal solutions. Hence
the relaxation induced neighborhoods, if achieved from the same integer point
x̃, will be strongly related. But if one takes an optimal LP-solution from an-
other region of the Branch-And-Bound tree, it is likely that the Rins sub-MIP
is fairly different, even if the same integer point x̃ is used.

4.2. RINS 61

��
��
��
��

��
��
��
��

c

x̃
x̄

Figure 4.2. Fixing variables identical in x̄ and x̃ implies a sub-MIP

One problem which is typical for procedures solving sub-MIPs also arises
when analyzing Rins. Although the MIP (4.6) tends to be much smaller
than the original one, it can still be difficult to solve. One way to control the
difficulty of the sub-MIP is to call Rins only if a high enough percentage of
variables can be fixed, i.e., if at least a certain number of variables takes the
same value in the incumbent solution x̃ and the LP-solution x̄. Moreover,
one should introduce a node limit for the solving process of the sub-MIP.
Putting all these ideas together, one obtains Algorithm 13.

Input: x̄ optimal LP-solution
x̃ feasible solution

Parameters: nl node limit for the sub-MIP
mfr minimum ratio of integer variables to fix

Create sub-MIP (4.6) by fixing all variables xj with x̃j = x̄j to x̃j and1

adding the cutoff constraint;
if at least mfr · |I| integer variables were fixed then2

Set node limit nl for MIP-solver;3

Solve MIP (4.6);4

else5

stop!6

Algorithm 13: Rins

62 Chapter 4. Improvement Heuristics

4.3 Crossover

If one already has a couple of solutions for a MIP at hand, these can be ana-
lyzed in order to construct further, better solutions. This section introduces
an improvement heuristic, which relaxes variables with identical values in
different feasible solutions.

Rins creates a sub-MIP by fixing variables with identical values in the
incumbent solution and the optimum of the LP-relaxation of the current
Branch-And-Bound-node. The idea of fixing variables which are identical in
different, partially feasible solutions is a well-working improvement strategy
and can easily be transformed into a heuristic operating with different feasible
solutions.

The Idea

If one has more than one feasible solution at hand, comparing them and
fixing variables with identical values will be a procedure, which promises to
deliver another fruitful neighborhood.

Definition 4.3 For K = {1, . . . , κ} let X̃ = {x̃k | k ∈ K} be a set of κ ∈ N

feasible solutions for a given MIP. The set

{y ∈ P (A, b, l, u) | yj = x̃1
j for all j ∈ I with x̃1

j = x̃k
j for all k ∈ K

and yj ∈ Z for all j ∈ I}

is called the crossed neighborhood of X̃.

If you combine the Crossover heuristic with a mutation strategy (see Sec-
tion 4.4), which diversifies single solutions, you get an evolutionary algorithm
like the one Rothberg described in 2005 [52].

In terms of evolutionary algorithms you would call the elements of X̃
the parents of a solution possibly provided by Crossover, which itself would
consequently be called the offspring of X̃.

Algorithm 14 and Figure 4.3 supply an impression of the fundamental
proceeding of Crossover.

Input: S set of all MIP-solutions found so far
Parameters: κ number of solutions to involve
if |S| ≥ κ then1

X̃ ← set of κ pairwise different elements of S;2

Create a sub-MIP by fixing all integer variables xj with x̃1
j = x̃k

j3

for all k ∈ K;
Solve the sub-MIP ;4

Algorithm 14: Outline of Crossover

4.3. Crossover 63

��
��
��
��

��
��
��
��

c

x̃1

x̃2

Figure 4.3. A sub-MIP implied by fixing one variable identical in two feasible solutions

Selection of Parent Solutions

The main issue on which the success or the failure of Crossover depends is
the selection of the set X̃ . One point of interest surely is the cardinality κ
of X̃ , the other one, how to choose its components x̃k from the pool of all
feasible solutions found so far and how to make this depend on previous runs
of Crossover.

Rothberg suggested to choose κ = 2 in the fashion of evolutionary al-
gorithms, where it is usual to combine an offspring of exactly two parents.
In general, every κ > 1 would be possible, but there is a tradeoff one has
to keep in mind. The bigger κ, the greater is the chance that the fixings
that Crossover produces are indispensable for feasible solutions and that
Crossover does not coincidently fix variables to a misleading value. The
smaller κ, the greater is the chance that a lot of variables get fixed and the
resulting sub-MIP is easy to solve. Regrettably, both behaviors are desirable,
but contrary.

The other point is how to select the set X̃ among all feasible solutions
found so far. We could just take the best κ solutions concerning their ob-
jective value. Another method which was suggested by Rothberg [52] is to
randomize the selection.

Generalizing his method for more than two reference solutions, it would
work as follows: sort the solutions by nondecreasing objective value, then
randomly choose a solution between the κ-th and the L-th position, where
L ≥ κ is the size of the solution pool. Let the position of the chosen solution

64 Chapter 4. Improvement Heuristics

be t ≥ κ. Now iterate this process by randomly choosing a solution between
the (κ-1)-th position and the t-th position. For L > κ, one obtains a ran-
domized set X̃ of κ solutions. This randomization process tends to choose
solutions with good objective value as in every iteration it takes only such
solutions into account which are at least as good as the one chosen in the
previous iteration.

Naturally, there is the possibility of combining these two selection meth-
ods. We suggest to call Crossover with the criterion to select the best κ
solutions, if this set changes, hence every time a solution being among the κ
best ones so far is found. In the meantime Crossover performs the selection
in a randomized fashion.

As soon as we have a promising set of solutions X̃ with index set K which
should be crossed, the remainder of the procedure is as follows. Crossover pro-
ceeds analogously to the Rins heuristic of Section 4.2, by solving a sub-MIP
which consists of the original MIP extended by an objective cutoff and the
constraint

xj = x̃1
j for all j ∈ I with x̃1

j = x̃k
j for all k ∈ K. (4.7)

Implementation Details

As Crossover is a time consuming heuristic like Rins and Local Branching,
one wants to avoid solving the same sub-MIP more than once. This can
happen when you call Crossover twice using the same solution set X̃.

Furthermore we want to prevent a behavior of memorizing special assign-
ments for variables. For example, consider the following situation: Crossover
is called with a solution set X̃ ′, which is the same like the set X̃ in a prior call
with just one parent solution exchanged by the offspring solution Crossover
found in this prior call.

Now every variable fixed in the prior call will be fixed again in the current
call. Hence the current sub-MIP will itself be a sub-MIP of the old one. If the
old one was solved to optimality, our new call will be redundant as it cannot
deliver any better solution.

One method to avoid such redundant calls is to keep some kind of tabu
list (see, e.g., [31]) containing all combinations of solutions which have been
used in earlier calls of Crossover and all combinations of a solution found by
Crossover with κ− 1 of its parents. Algorithm 15 describes Crossover with a
combined solution selection strategy and a tabu list of likely fruitless solution
sets.

4.4 Mutation

In the preceding section, we described an improvement strategy called Cross-
over, which resembled the combination step in Rothberg’s evolutionary al-
gorithm [52] in its idea, but differed in its details. The algorithm Rothberg

4.4. Mutation 65

Input: S set of all MIP-solutions found so far
Parameters: nl node limit for the sub-MIP

mfr minimum ratio of integer variables to fix
κ number of solutions to involve

if first call of Crossover in current MIP solving process then1

Initialize tabu list T ← ∅;2

if |S| < κ then3

stop!4

Sort S by nondescending objective value;5

Initialize X̃ ← ∅ ;6

if |S| = κ or new solution among the first κ elements of S then7

X̃ ← first κ elements of S;8

else9

k ← |S|+ 1 ;10

for j ← 0 to κ− 1 do11

k ← randomized number in {κ− j, . . . , k − 1};12

X̃ ← X̃ ∪ {x̃k}, where x̃k is the k-th element of S;13

if X̃ ∈ T then14

goto step 10; /* repeat at most 100 times, then stop */15

T ← T ∪ {X̃};16

if at least mfr · |I| of the integer variables are identical for all x̃k ∈ X̃17

then

Set node limit nl for MIP solver;18

Solve the sub-MIP which one gains by adding an objective cutoff19

and the constraints (4.7) to the original MIP ;
if new solution x̃ found by Crossover then20

for x̃k ∈ X̃ do21

T ← T ∪ {X̃\{x̃k} ∪ {x̃}};22

Algorithm 15: Crossover

66 Chapter 4. Improvement Heuristics

published in 2005 consisted of some selection step, the combination step and
another one, called the mutation step. This one will be presented in this
section. As both steps could be performed independently, we will treat them
as independent LNS heuristics, and call the mutation step from now on just
Mutation.

If you want to use the evolutionary algorithm as a polishing method which
should improve the x̃ solution after the run of the Branch-And-Bound-process
(like Rothberg [52]), Mutation is necessary in order to get enough diversity
into your solution pool. But if the Branch-And-Bound-framework itself keeps
a pool of all (or at least a high number of) solutions it found, Mutation is
not longer needed for this special issue, but nevertheless it could be a useful
improvement heuristic.

The idea is quite simple and should thus be just sketched here: first of
all, a solution x̃ to be mutated is determined. This could be the incumbent
or any other feasible solution at hand. Secondly, a random set Y of say υ
variables is chosen among all integer variables. Third, a sub-MIP is created
which consists of the original MIP plus an objective cutoff and the fixing
constraints xj = x̃j for all xj ∈ Y . Fourth, the MIP-solver tries to solve the
sub-MIP within a certain time or node limit. If a feasible solution is found, it
is also feasible for the original MIP and of better quality. This simple scheme
is illustrated in Algorithm 16 once again.

The crucial parameter that balances a fast running time and enough
freedom to achieve a feasible sub-MIP clearly is υ, the fraction of variables
which should be fixed.

Input: x̃ feasible solution for the MIP
Parameters: υ ratio of variables to fix

nl node limit for the sub-MIP
x̃← incumbent solution of MIP ;1

Create sub-MIP by fixing a random set of υ variables xj to xj = x̃j2

and adding an objective cutoff;
Set node limit nl for MIP-solver;3

Solve sub-MIP ;4

Algorithm 16: Mutation

4.5 Computational Results

We tested the four LNS improvement heuristics on our two standard test sets.
Therefrom we made one SCIP-run without any LNS improvement heuristics
and four runs, where one of the four was activated in each case. In order to
keep this section clearly arranged, we will from now on call SCIP with all
four LNS improvement heuristics deactivated SCIP-NO. SCIP with Local
Branching activated and the other LNS improvement heuristics deactivated

4.5. Computational Results 67

Criterion No LNS Local Branching Rins Crossover Mutation

Fewest Solving Nodes 5 5 10 18 6

Nodes Geom. Mean 3579 3581 3473 3404 3535

Heuristic Time Geom. Mean – 3.1 2.1 1.5 1.6

Solving Time Geom. Mean 57.9 60.9 57.2 56.0 57.8

Smallest P Gap (hard test set) 3 5 7 6 9

Heuristic Time Geom. Mean (hard) – 33.9 15.8 4.6 12.7

Table 4.1. Summarized performance of SCIP with different LNS heuristics

will be called SCIP-LB, SCIP with Rins activated SCIP-RI, SCIP with
Crossover activated SCIP-CO and with Mutation SCIP-MU.

For the four versions where one improvement heuristic is activated, the
particular heuristic was called at depth 10 of the Branch-And-Bound-tree
and then at every 30th depth. The minimum improvement factor ǫ for the
objective cutoff was always set to 0.01, and a node limit of 5000 nodes was
set for solving the sub-MIP.

A node delay of 200 was set. This means that the heuristics will not be
called until at least 200 nodes of the Branch-And-Bound-tree were processed
since the last change of the incumbent. This avoids calling an expensive
heuristic which solves a sub-MIP during a phase of the solving process where
new incumbents are frequently produced by cheaper heuristics. One could
also say that improvement heuristics “should wait for a good incumbent”.
This gave us the reason to remove all 40 instances from the test which can
be solved to optimality by SCIP with default settings in less than 200 nodes.

We set the specific parameters of the heuristics as follows. For Local
Branching, we chose k = 18, as recommended in the original description of
Fischetti and Lodi [25]. For Rins, we decided to set mfr = 0, as this yielded
the best results in our tests and no minimum fixing rate was given by Danna,
Rothberg and Le Pape [21]. For Crossover we set κ = 3 and mfr = 2

3 . For
Mutation we chose υ = 0.8.

The results are shown in Tables B.11 and B.12 and summarized in Ta-
ble 4.1.

Among the 57 easy instances which needed more than 200 solving nodes to
get solved to optimality by SCIP with default settings, there are 32 instances
for which the number of solving nodes differs among the 5 versions. Among
these, SCIP-NO was a version with fewest solving nodes 5 times, SCIP-LB
5 times, SCIP-RI 10 times, SCIP-CO 18 times, SCIP-MU 6 times.

In the geometric mean taken over 57 instances, SCIP-NO needs 3579 solv-
ing nodes, SCIP-LB 3581, SCIP-RI 3473, SCIP-CO 3404, and SCIP-MU
3535. In the geometric mean, SCIP-NO needs 57.9 seconds to find an opti-
mal solution and prove ist optimality, SCIP-LB needs 60.9 seconds, SCIP-RI
57.2 seconds, SCIP-CO 56.0 seconds, SCIP-MU 57.8. From these times, Lo-
cal Branching took 3.1 seconds, Rins 2.1, Crossover 1.5 and Mutation 1.6
seconds running time in the geometric mean.

Note, that SCIP-CO was the only variant which could solve neos3 to

68 Chapter 4. Improvement Heuristics

optimality within the time limit of one hour.
Next, we examine the results for the hard instances. SCIP with default

settings did not find a feasible solution within one hour for 6 of the hard
instances, so none of the improvement heuristics was called for them. Fur-
thermore, there are 3 instances, namely noswot, opt1217, and t1717 for
which all 5 variants finished their run with the same primal bound.

SCIP-NO found a solution smallest among the 5 variants 3 times, SCIP-
LB 5 times, SCIP-RI 7 times, SCIP-CO 6 times, and SCIP-MU 9 times.
For the primal-dual gap γPD similar results hold. In the geomtric mean, the
heuristic running time was 33.9 seconds for Local Branching, 15.8 seconds
for Rins, 4.6 seconds for Crossover and 12.7 seconds for Mutation.

Concluding, the use of a LNS heuristic, which constructs a sub-MIP by
fixing variables is a promising approach: Rins, Crossover, Mutation all im-
prove the performance of SCIP. The Local Branching approach of adding an
extra constraint, but leaving all variables free, does not seem to work well.
It slowed down the computation and increased the number of solving nodes.

Especially due to the performance on the easy test set we decided to
integrate Crossover into SCIP as default LNS heuristic. It decreased the
absolute running time by 9 %, the averaged running time by 3.3 %, the
absolute number of solving nodes by 11 %, the averaged number of solving
nodes by 4.9 %.

Regrettably, some further tests we did, showed that integrating more than
one LNS heuristic into SCIP produced inferior results. Nevertheless, it would
be desirable to combine the advantages of different LNS heuristics since there
was a couple of instances for which Rins or Mutation yielded strictly better
results than Crossover did. This could be an area of further research.

Chapter 5

Results

Throughout this thesis we saw that most of the presented heuristics perform
well in finding or improving feasible solutions for the instances of our test sets.
Only for a few of them we tested how they influence the overall performance
of the Branch-And-Bound framework in which they are embedded. This will
be done in the first section of this chapter. In the second section we will
summarize the insights we have won throughout this thesis.

5.1 Impact of the SCIP Heuristics

According to the work of Bixby, Fenelon, Gu, Rothberg, and Wunderling [17],
we want to investigate, how the performance of SCIP changes if switching
off any one of the heuristics which are activated by default.

Bixby et al. chose a test set of instances which could be solved to op-
timality by Cplex 6.5 within a time limit of twelve hours. Similarly, we
compare the performance on all instances of our test set which can be solved
to optimality by SCIP 0.82b with default settings and a time limit of one
hour. This is exactly our easy test set which can be seen in Table 2.1. Fur-
thermore, we compare the performance on instances which cannot be solved
to optimality within one hour. This is our hard test set, see Table 2.2.

We treated all heuristics equally without dividing them into classes, since
those tests have been made in the preceding chapters.

Description of the Tests

First, we ran SCIP with default settings first, at next we made 15 runs with
one heuristic switched off at a time, and last we tested SCIP without any
heuristic at all.

Tables B.13, B.14, and B.15 show the results of these runs, Table 5.1
summarizes them. In Tables B.13, B.14 and B.15, the first column shows the
names of the instances, further columns stand for the heuristics which were
switched off.

69

70 Chapter 5. Results

Definition 5.1 Let t be the running time SCIP needed to solve a specific
instance with some settings and t0 the running time SCIP needed to solve
the same instance with default settings. We call t+1

t0+1 the relative running
time of the instance with respect to this settings. The relative number of
solving nodes and the relative primal-dual gap are defined in a similar way.

Table B.13 shows the relative running times, and Table B.14 shows the
relative number of solving nodes. For the easy test set, the symbol “ ≥”
indicates, that the instance could not be solved to optimality if SCIP is
called with these settings. Table B.15 shows the relative primal-dual achieved
within the time limit using the specific settings. A bar “–” indicates that
no solution could be found with these settings or the primal-dual gap with
default settings is infinity. The symbol ∞ shows that a solution was found
with these settings, but none using the default settings.

All values which indicate a difference by 20% or more from the default
value have been marked. Values larger than or equal to 1.2 are written in a
bold face, values smaller than or equal to 0.8 are written in italics.

In Table 5.1, all entries which indicate that disabling the according heuris-
tic leads to an inferior performance are written in a green, bold face. All
entries which indicate that disabling the according heuristic leads to a supe-
rior performance are written in red italics. In other words, a couple of green,
bold entries in a column shows that using this heuristic seems reasonable, a
bundle of red entries shows that the heuristic should not be used.

We used the following abbreviations for the heuristics: SimpleRounding,
Rounding, Shifting, FeasibilityPump, CoefficientDiving, PseudoCost-
Diving, FractionalityDiving, VectorlengthDiving, ObjectivePseudocost-
Diving, RootSolutionDiving, LinesearchDiving, GuidedDiving, Octane,
CrossOver, Rens. ALL stands for all heuristics deactivated. Diving means
that all diving heuristics were deactivated.

Rootsolution Diving and Objective Pseudocost Diving are two diving
heuristics which were not presented in this thesis. They work similarly to
the Feasibility Pump since they do not bound any variables during diving,
but vary the objective function.

Rootsolution Diving determines the new objective based on the difference
between the current LP solution and the optimum of the LP-relaxation, as it
was done in Linesearch Diving when choosing variables for bounding. Objec-
tive Pseudocost Diving uses the pseudocosts of the variables. This resembles
the strategy of Pseudocost Diving.

Computational Results for the Easy Instances

In the following, we will discuss the influence of deactivating a single heuristic.
SCIP with default settings was able to solve 97 instances to optimality

within a time limit of one hour. Deactivating Octane or Rens did not
change this number. For all other heuristics, there exists at least one instance
which was no longer solved to optimality if this heuristic was deactivated.

5.1. Impact of the SCIP Heuristics 71

Criterion SimRou Round Shift FeasP CoefDi PsCstDi FracDi VecDi OPsDi

Instances Solved 96 96 96 95 96 96 95 95 95

Geom. Mean Time 1.0436 1.0440 0.9735 1.1231 0.9945 1.0403 1.0639 1.0309 0.9983

≥ 20% Variation Time 3:0 3:0 2:3 21:5 5:8 7:5 14:2 7:3 7:4

Geom. Mean Node 1.0001 1.0470 0.9912 1.3035 0.9550 0.9839 0.9991 0.9696 0.9933

≥ 20% Variation Nodes 1:0 3:0 2:3 11:4 8:8 10:7 9:4 5:8 9:4

Solutions Found 26 26 26 25 27 27 25 29 27

Geom. Mean P-D Gap 1.0040 1.0034 1.0012 0.9112 0.9357 0.9025 0.9779 0.9930 0.9602

≥ 20% Variation Gap 0:0 0:0 0:0 0:5 2:2 3:6 1:4 1:1 4:5

Name RooSoDi LineDi GuiDi Octane CrOv Rens ALL Diving

Instances Solved 95 95 96 97 96 97 90 –
Geom. Mean Time 1.0214 1.0157 1.0114 0.9787 1.0229 1.0223 2.0183 –
≥ 20% Variation Time 7:0 7:3 5:2 1:4 6:2 10:2 86:2 –
Geom. Mean Node 1.0311 1.0041 1.0241 1.0037 1.0365 1.1453 1.9912 –
≥ 20% Variation Nodes 10:2 6:5 5:1 1:0 9:1 12:0 49:5 –

Solutions Found 26 26 26 26 26 26 17 23

Geom. Mean P-D Gap 0.9700 0.9497 0.9979 1.0042 1.0220 1.0004 1.4666 1.2558

≥ 20% Variation Gap 0:2 2:4 0:1 0:0 1:0 2:2 7:1 11:2

Table 5.1. Summarized results: switch off one heuristic each time, switch off all heuristics,
and switch off all divers for the hard test set

There are four heuristics, namely Shifting, Coefficient Diving, Objective
Pseudocost Diving and Octane, for which the geometric mean of the relative
running time will decrease if they are deactivated. If we consider the “extreme
cases” where the solving time differs by at least 20% compared to the default,
we will observe that switching off Shifting, Coefficient Diving, or Octane

more often leads to a decrease of at least 20% than to an increase. This is
not the case for Objective Pseudocost Diving, although the geometric mean
of the relative running time decreases.

For six heuristics, switching them off yields a decrease of the geometric
mean of the number of solving nodes. But only for two of them, namely
Shifting and Vectorlength Diving, there are also more instances for which the
number of solving nodes decreased by at least 20% than there are instances
for which the number of solving nodes increased by at least 20%.

Altogether, deactivating Shifting and Coefficient Diving seems reason-
able, since more criteria argue for disabling them than vice versa. Switching
off Octane yields an improvement in the solving time and only causes slight
changes in the number of solving nodes. Hence, we would recommend to
deactivate these three heuristics in further versions of SCIP.

If Vectorlength Diving is switched off, this will cause an decrease of the
relative running time, but an increase of the relative number of solving nodes.
Similarly, switching off Objective Pseudocost Diving causes improvements in
the geometric mean of solving time and solving nodes, but the “20% statis-
tics” argue for not disabling it. If deactivating one of the two heuristics,
there will be two instances which cannot be solved to optimality any longer.
Therefore, we decided to let them activated in the default settings of the next
SCIP version.

72 Chapter 5. Results

For Pseudocost Diving and Fractional Diving we have observed a slight
improvement in the geometric mean of the number of solving nodes if switch-
ing them off. But the increase of the running time, the fact that not all easy
instances can be solved to optimality and the “20% statistics” give reason to
let these heuristics activated. Deactivating Simple Rounding, Rounding, the
Feasibility Pump, Rootsolution Diving, Linesearch Diving, Guided Diving,
Crossover, or Rens does not cause an improvement of any of the five criteria
we have considered. For all of them we observe that the performance gets
worse if disabling them. Hence, on average they are useful heuristics.

If we compare the results of SCIP with default settings to SCIP without
any heuristic, we will see that the latter one is clearly inferior in all criteria we
have considered. There are seven instances which could no longer be solved
to optimality within one hour after we had deactivated all heuristics. The
geometric mean of the running time doubled. In 86 out of 97 cases, SCIP,
having all heuristics deactivated, was at least 20% slower than SCIP with
default settings, only twice the opposite held. The geometric mean of the
number of solving nodes doubled, too. In 49 cases the number increased by
at least 20% when deactivating the heuristics, 5 times it decreased by at least
20%. These statistics indicate that the heuristics have a positive impact on
the performance of SCIP.

Computational Results for the Hard Instances

Next, we will analyze the impact of the heuristics on those instances which
could not be solved to optimality by SCIP with default settings and a time
limit of one hour. We made the same tests like before: we compared SCIP

with default settings to SCIP with one of the heuristics deactivated and to
SCIP without any heuristics.

Table 5.1 shows that deactivating Simple Rounding, Rounding, Shifting,
Octane, Crossover or Rens does not cause a change in the number of in-
stances for which a feasible solution could be found, it stays 26 as well as for
SCIP with default settings. Furthermore, the geometric mean of the rela-
tive primal-dual gap will increase if one switches off any of these six heuris-
tics. Deactivating Crossover causes a change of 2.2%, whereas for the others
the difference was only marginal, below 0.5%. Disabling Simple Rounding,
Rounding, Crossover or Rens yielded an impairment for the easy instances,
too. This substantiates the statement that they should be used in SCIP in
order to achieve a good performance.

Since the geometric mean of the relative primal-dual gap only changes
slightly if Shifting or Octane are deactivated, we still recommend to deac-
tivate them.

The results of testing the diving heuristics on the hard instances was
surprising. If we switch any of the divers off, the geometric mean of the
relative primal-dual gap always gets smaller. The change is in a range
from 0.2% to 10%. Additionally, for seven of nine diving heuristics, there

5.1. Impact of the SCIP Heuristics 73

Figure 5.1. Distribution of heuristics that found the optimal or best solution, left: easy
instances, right: hard instances

are more instances for which disabling them causes an increase of at least
20% of the relative primal-dual gap than there are instances for which this
causes a decrease of at least 20%. Furthermore, if we switch off either
Coefficient Diving, Pseudocost Diving or Objective Pseudocost Diving, we
will find a feasible solution for 27 instances within the time limit. If we
switch off Vectorlength Diving, we will find a feasible solution for 29 in-
stances, compared to 26 if we use SCIP with default settings. If we switch
off the Feasibility Pump or Fractional Diving, this number reduces to 25.

Altogether, deactivating either of the diving heuristics seems to improve
the performance of SCIP on the hard instances. According to the results
above, one could come to the conclusion that diving heuristics are not useful
on difficult or large instances at all. The next test will demonstrate that this
is not the case.

We applied SCIP with all diving heuristics deactivated to every instance
of the hard test set. The last column of Table B.15 shows the relative primal-
dual gaps we got and the last column of Table 5.1 summarizes them.

SCIP without any diving heuristic was inferior to SCIP with default
settings. The number of instances for which a solution could be found was
reduced by three. The geometric mean of the relative primal-dual gap in-
creased by more than 25%. There were 11 instances for which we got an
at least 20% increase of the primal-dual gap, but only two for which we got
an at least 20% decrease. We conclude that the diving heuristics should not
be completely deactivated, but their current settings, and the way they are
combined in SCIP should be modified.

Further Results

We saw that SCIP without any heuristics is clearly inferior to SCIP with
the heuristics as they are set in default. After we had disabled the heuristics,
the geometric mean of the running time and the number of solving nodes,
needed for the easy test set, doubled. There were 9 hard instances for which
no solution could be found any longer and 7 easy instances for which no
optimal solution could be found and proven.

When we analyzed our test data, we recognized that for the easy test set

74 Chapter 5. Results

 1000

 1100

 1200

 1300

 1400

 1500

 0 20 40 60 80 100

bo
un

d

time (seconds)

Optimal Objective
Primal Bound With Heuristics

Dual Bound With Heuristics
Primal Bound Without Heuristics

Dual Bound Without Heuristics
Solution Found By: Relaxation

Feaspump
Crossover

Rens

Figure 5.2. Development of the primal and dual bound, if SCIP processes instance
aflow30a, with default settings (red) and without any heuristic (green)

in 59 out of 97 cases the optimal solutions has been found by the relaxation
of some Branch-And-Bound-node. Only in 38 cases a heuristic found the op-
timal solution. Crossover and the Feasibility Pump were the most successful
heuristics. The former found 11 optimal solutions and the latter one found
7 optimal solutions.

Controversially, 23 of the 26 incumbent (after one hour) solutions of the
hard instances have been found by a heuristic. The most successful was
Guided Diving which found the best primal bound 5 times, Crossover suc-
ceeded 4 times, Coefficient Diving and the relaxation 3 times. Figure 5.1
demonstrates these distributions.

The tests of Chapter 3 showed us that in many cases heuristics already
find feasible solutions at the root node. In Table B.13 we see that the running
time reduced by at least 20% in nearly every case (86 out of 97) if we used
heuristics, but in 60% of the cases the optimal solution was found by the
relaxation. This shows us that the effect of heuristics is not mainly finding
an optimal solution, but finding solutions in early steps of the solving process.
This results in pruning suboptimal branches of the Branch-And-Bound-tree.
Hence, SCIP processes the part of the Branch-And-Bound-tree containing
optimal solutions earlier and therefore, it is able to terminate after a shorter
period of time.

As an example, we discuss the solving process of the instance aflow30a

which is part of the easy test set. If we solve this instance by using SCIP

with default settings and SCIP with all heuristic deactivated, the differences

5.2. Conclusions 75

between the two solving processes are quite typical. Figure 5.2 visualizes the
development of the primal and dual bound if we call SCIP for aflow30a.
The red line indicates the development, if we use SCIP with default set-
tings, while the green line shows the development, if we deactivate all pri-
mal heuristics. We recognize that heuristics – in this case the Feasibility
Pump, Rens, and Crossover– find feasible solutions much earlier than the
Branch-And-Bound-process on itself. With activated heuristics, solutions
found by the relaxation occur in earlier steps, and the dual bound increases
faster. Altogether, the solving process terminates within nearly a third of
the time SCIP without heuristics needs.

5.2 Conclusions

We described five primal heuristics taken from the literature of the last ten
years in this thesis: the Feasibility Pump, Octane, Local Branching, Rins,
and Mutation. We presented special implementations of the general heuristic
ideas of rounding and diving. Furthermore, we introduced two new heuris-
tics, Rens and Crossover. Thereby, the last one was parallelly developed
by Rothberg [52]. We presented an improvement of the Feasibility Pump,
which we also published in [3] and we supplemented a new, well working ray
selection rule to Octane.

We integrated all described heuristics into SCIP and showed that they
have a big impact on the solving process. The default settings of SCIP will
be modified according to the results of this thesis.

When we experimented with LNS heuristics and when we tested the
diving heuristics on hard instances, we recognized that combining different
heuristics of the same type can cause difficulties. This could be an area of
further research.

76 Chapter 5. Results

Appendix A

Notation

A a real-valued (m× n)-matrix
b a real-valued m-dimensional vector
c the objective function vector of a MIP
l the lower bound vector of a MIP
u the upper bound vector of a MIP
N the index set of all variables of a MIP
I the index set of all integer variables of a MIP
B the index set of all binary variables of a MIP
P (A, b, l, u) the polyhedron defined by Ax ≤ b, l ≤ x ≤ u
x̄ an LP-feasible vector
X̄ a set of LP-feasible vectors
x̃ an integer feasible vector

X̃ a set of integer feasible vectors
x⋆ an optimal or best known feasible solution
x̊ an optimal solution of the LP-relaxation
f(x) the fractionality of x
γP (x) gap of x to optimal or best known solution (in %)
γPD(x) gap of x to dual bound (in %)

77

78 Appendix A. Notation

Appendix B

Tables

In this section, we present the results of our test runs in detail. The tables
are all organized as follows.

Rows:

• The head row names the heuristics or settings which were tested, and
the criteria which are shown in the columns.

• Every row lists the data of one specific instance from our test sets.

• The tail row shows the overall time, nodes, and/or heuristic time the
solving took and the geometric mean taken over the number of instances
in the test set.

Columns:

• “Name” shows you the name of the instance, this is always the first
column.

• “Primal Bound” presents the objective value of the best solution, the
heuristic found, or “–” if no feasible solution could be found.

• “P Gap” or “γP ” gives the primal bound’s primal gap in percent. A
bar “–” means that no feasible solution could be found or the gap is
infinity, “Large” means that the primal gap is above 10’000%.

• “Nodes” shows the number of Branch-And-Bound nodes SCIP pro-
cessed until a problem was solved or the solving process was aborted
due to some limit.

• “Time” presents the overall running time of SCIP in seconds until some
time, memory or node limit is reached.

• “HeurTime” gives the running time the heuristic (as a SCIP plugin)
took, “PresTime” gives you the time SCIP needs for presolving and
solving the root LP.

79

80 Appendix B. Tables

A horizontal line between two rows separates the easy and the hard test
set.

In Table B.2, Column “Time” shows the overall running time of the Fea-
sibility Pump code. The geometric mean of the primal gap is taken over all
instances for which the first five versions all found a solution. The version
shown in the last column is excluded, since there were not enough instances
for which it could find a feasible solution.

In Table B.3, Columns “FixInt” and “FixAll” show the percentages of
integer and of all variables that could be fixed.

81

Coefficient Diving Fractional Diving Vectorlength Diving

Name Primal Bound P Gap HeurTime Primal Bound P Gap HeurTime Primal Bound P Gap HeurTime

10teams – – 3.5 – – 3.7 – – 33.9
30:70:4 5:0 5:100 18 100.0 24.7 21 133.3 50.6 214 2277.8 38.9
30:70:4 5:0 95:98 13 8.3 32.8 18 50.0 57.7 155 1191.7 43.4
30:70:4 5:0 95:100 3 0.0 27.4 5 66.7 52.3 70 2233.3 39.2
acc-0 – – 2.5 – – 2.2 0 0.0 2.4
acc-1 – – 3.5 – – 3.2 0 0.0 8.2
acc-2 – – 5.5 – – 4.2 0 0.0 9.6
acc-3 – – 18.8 – – 10.2 – – 38.1
acc-4 – – 13.5 – – 8.9 – – 28.5
acc-5 – – 6.2 – – 4.5 – – 16.2
acc-6 – – 6.4 – – 4.4 – – 21.6
aflow30a – – 0.1 – – 0.4 1267 9.4 1.6
air03 368644 8.4 0.6 343026 0.8 0.2 342998 0.8 3.5
air04 57971 3.3 10.4 – – 9.5 – – 93.8
air05 – – 6.3 – – 5.1 27276 3.4 9.0
bc1 – – 2.3 3.4867846 4.4 2.0 3.4198842 2.4 3.7
bell3a 880414.281 0.2 0.1 880414.281 0.2 0.0 880414.281 0.2 0.0
bell5 – – 0.0 – – 0.0 9787786.46 9.2 0.1
bienst1 67.6666667 44.7 0.1 51.3333333 9.8 0.1 61.5 31.6 1.4
bienst2 74 35.5 0.1 73.3333333 34.3 0.2 61.6666667 12.9 2.1
blend2 – – 0.0 – – 0.0 235.593725 3000.3 1.4
cap6000 -2451215 0.0 0.6 -2450472 0.0 0.3 -2443599 0.3 1.8
dano3 3 576.804034 0.1 6.4 576.396385 0.0 7.4 – – 45.9
dano3 4 578.708155 0.4 12.8 576.435225 0.0 11.3 – – 44.1
dano3 5 579.838661 0.5 13.8 578.648269 0.3 17.8 – – 48.6
disctom – – 14.1 – – 14.4 -5000 0.0 72.2
dcmulti – – 0.1 – – 0.1 – – 0.0
dsbmip -304.904815 0.1 0.0 -304.904815 0.1 0.0 -305.198175 0.0 0.1
egout 568.1007 0.0 0.0 579.718806 2.0 0.0 572.23465 0.7 0.0
eilD76 1536.78149 73.6 0.1 1467.63093 65.8 0.1 979.945566 10.7 2.9
enigma – – 0.0 – – 0.0 – – 0.2
fast0507 457 162.6 61.3 460 164.4 41.3 178 2.3 94.3
fiber 505640.95 24.6 0.2 448168.15 10.4 0.1 419895.5 3.4 1.1

continue next page

82
A

p
p
e
n
d
ix

B
.

T
a
b
l
e
s

Coefficient Diving Fractional Diving Vectorlength Diving

Name Primal Bound P Gap HeurTime Primal Bound P Gap HeurTime Primal Bound P Gap HeurTime

fixnet6 4240 6.5 0.1 5665.18198 42.2 0.1 3986 0.1 0.7
flugpl – – 0.0 – – 0.0 – – 0.2
gesa2-o – – 0.1 – – 0.1 44681219.7 73.3 1.3
gesa2 25963975.9 0.7 0.1 25790902.5 0.0 0.1 27379074.5 6.2 1.5
gesa3 28528957.9 1.9 0.1 – – 0.1 29316624.2 4.7 0.1
gesa3 o 28429843 1.6 0.1 27991042.6 0.0 0.1 47352002.7 69.2 0.7
gt2 30306 43.2 0.0 30306 43.2 0.0 49561 134.2 0.0
irp 14460.5068 18.9 0.3 12187.721 0.2 0.3 12295.6729 1.1 10.4
khb05250 106940226 0.0 0.0 111430400 4.2 0.0 106940226 0.0 0.2
l152lav 4957 5.0 0.2 – – 0.9 4790 1.4 1.4
lseu 1748 56.1 0.0 – – 0.0 1148 2.5 0.1
mas74 14372.8711 21.8 0.0 19189.9325 62.6 0.0 13755.8924 16.6 0.3
mas76 45879.978 14.7 0.0 42907.2181 7.3 0.0 40560.0518 1.4 0.1
mas284 97070.4637 6.2 0.0 97462.7524 6.6 0.1 94380.8188 3.3 0.5
misc03 – – 0.0 – – 0.0 4765 41.8 0.4
misc06 12857.3473 0.1 0.0 12869.2349 0.1 0.1 12881.2224 0.2 0.2
misc07 – – 0.0 3020 7.5 0.0 4760 69.4 0.7
mitre 115155 0.0 1.0 115170 0.0 0.5 115185 0.0 0.1
mod008 418 36.2 0.1 456 48.5 0.1 307 0.0 0.1
mod011 -53664992.4 1.6 1.4 -53664992.4 1.6 1.4 – – 9.0
modglob 21032193 1.4 0.0 21032640.2 1.4 0.0 20930259.7 0.9 1.3
mzzv11 – – 17.6 – – 18.1 – – 15.5
mzzv42z -20220 1.6 19.0 -20290 1.2 16.5 – – 10.8
neos1 20 5.3 0.2 20 5.3 0.1 19 0.0 0.5
neos2 – – 0.0 – – 0.8 – – 0.1
neos3 – – 0.0 – – 0.9 – – 1.6
neos5 – – 0.5 – – 0.9 – – 0.1
neos6 – – 8.3 – – 6.4 100 20.5 6.2
neos7 744934 3.2 0.1 – – 0.2 721934 0.0 1.4
neos10 – – 2.4 -403 64.5 0.9 -372 67.2 1.6
neos11 – – 1.7 – – 1.5 – – 8.7
neos13 -28.0396395 70.6 4.9 -28.0396395 70.6 4.1 -63.6115258 33.4 32.5
neos21 11 57.1 0.1 – – 0.8 11 57.1 3.0

continue next page

83

Coefficient Diving Fractional Diving Vectorlength Diving

Name Primal Bound P Gap HeurTime Primal Bound P Gap HeurTime Primal Bound P Gap HeurTime

neos22 781155 0.2 1.0 781155 0.2 0.9 782905.625 0.4 0.3
neos632659 -94 0.0 0.0 -74 21.3 0.0 -94 0.0 0.2
nug08 – – 9.9 – – 9.1 232 8.4 11.0
nw04 90666 437.7 23.8 17094 1.4 8.7 23418 38.9 1.4
p0201 8405 10.4 0.0 – – 0.0 7905 3.8 0.6
p0282 259890 0.6 0.0 260131 0.7 0.0 258945 0.2 0.1
p0548 – – 0.0 8701 0.1 0.0 – – 0.0
p2756 – – 0.1 3135 0.4 0.5 3136 0.4 0.0
pk1 38 245.5 0.0 38 245.5 0.0 26 136.4 0.3
pp08a 7737.14286 5.3 0.0 10620.748 44.5 0.0 7550 2.7 0.8
pp08aCUTS 7550 2.7 0.1 9658.36859 31.4 0.0 7380 0.4 0.9
prod1 – – 0.0 – – 0.0 -48 14.3 0.0
qap10 – – 88.2 – – 88.2 – – 136.1
qiu 805.158298 706.0 0.3 1117.04612 940.7 0.1 278.580725 309.7 1.0
qnet1 17104.4815 6.7 0.2 17716.0174 10.5 0.1 31820.57 98.5 0.6
qnet1 o 17412.5947 8.6 0.2 28665.8309 78.8 0.2 37674.1033 135.0 0.7
ran8x32 5838 11.3 0.2 6619.91379 26.2 0.1 5329 1.6 0.6
ran10x26 5076 18.9 0.3 5888.56508 37.9 0.2 4459 4.4 1.5
ran12x21 4012 9.5 0.2 5359.36364 46.3 0.1 3992 9.0 1.1
ran13x13 3640 11.9 0.1 4756 46.2 0.1 3572 9.8 1.0
rentacar 40802384.7 34.4 0.2 40802384.7 34.4 0.2 30356761 0.0 2.5
rgn 82.1999992 0.0 0.0 82.1999991 0.0 0.0 82.1999991 0.0 0.1
rout – – 0.1 – – 0.0 1473.17 36.7 0.9
set1ch 54706 0.3 0.1 57447.6384 5.3 0.1 54628 0.2 0.3
seymour1 414.920399 1.0 2.6 430.456984 4.8 3.5 411.909941 0.3 12.9
stein27 18 0.0 0.0 18 0.0 0.0 22 22.2 0.1
stein45 32 6.7 0.0 32 6.7 0.0 36 20.0 0.1
swath1 – – 1.5 – – 0.6 379.071296 0.0 83.8
swath2 – – 1.6 – – 0.5 411.91766 6.9 88.8
vpm2 – – 0.0 – – 0.0 15 9.1 0.4
a1c1s1 18149.0069 56.5 1.8 – – 1.7 – – 15.2
aflow40b – – 0.3 – – 1.9 1318 12.8 5.6
arki001 – – 0.1 – – 0.1 – – 5.3

continue next page

84
A

p
p
e
n
d
ix

B
.

T
a
b
l
e
s

Coefficient Diving Fractional Diving Vectorlength Diving

Name Primal Bound P Gap HeurTime Primal Bound P Gap HeurTime Primal Bound P Gap HeurTime

atlanta-ip – – 88.5 – – 43.0 – – 41.3
binkar10 1 6981.14002 3.5 0.1 6889.07003 2.2 0.1 6835.61003 1.4 0.1
dano3mip 785.714286 12.6 30.2 – – 40.3 743.464286 6.5 431.2
danoint – – 0.2 66.5 1.3 0.3 – – 2.4
ds 1102.53266 289.0 82.2 725.010161 155.8 25.4 1437.2175 407.1 181.9
glass4 – – 0.4 – – 0.3 3.10002857e+09 158.3 0.8
liu – – 2.7 – – 2.5 3132 167.2 7.6
markshare1 419 Large 0.0 243 Large 0.0 136 Large 0.0
markshare2 200 Large 0.0 496 Large 0.0 212 Large 0.0
mkc – – 2.2 -500.912 11.2 2.1 -533.432 5.4 2.6
mkc1 – – 2.1 -597.997 1.5 1.9 -596.519 1.8 1.3
momentum1 – – 21.3 – – 9.0 – – 97.6
momentum2 – – 17.3 – – 3.9 – – 69.3
msc98-ip – – 44.2 – – 16.0 – – 38.4
neos616206 – – 0.2 – – 0.3 – – 3.8
net12 – – 10.7 – – 10.4 – – 34.9
noswot -41 0.0 0.0 -40 2.4 0.0 -36 12.2 0.4
nsrand-ipx 64000 25.0 0.5 – – 2.5 60480 18.1 16.2
opt1217 – – 0.0 – – 0.1 -16 0.0 0.1
protfold – – 15.3 – – 2.0 – – 13.9
rd-rplusc-21 – – 5.1 – – 4.3 – – 0.0
roll3000 – – 0.7 – – 0.9 14945 15.6 6.3
seymour 442 4.5 7.5 465 9.9 4.2 431 1.9 27.3
sp97ar 750544279 12.9 3.3 – – 14.4 723182495 8.8 38.2
swath – – 2.4 – – 2.0 – – 9.2
swath3 – – 1.6 – – 0.4 460.523571 15.8 64.5
t1717 – – 29.4 – – 28.6 – – 81.6
timtab1 – – 0.0 – – 0.1 – – 0.6
timtab2 – – 0.0 – – 0.0 – – 1.1
tr12-30 132548 1.5 0.7 132057 1.1 0.6 159967.543 22.5 3.8

Total (129) 834.6 700.2 2370.7
Geom. Mean 2.3 2.1 3.9

Table B.1. Comparison of different diving heuristics applied to the optimum of the LP-relaxation

85

ϕ = 0.0 ϕ = 0.8 ϕ = 0.9 ϕ = 0.95 ϕ = 0.99 ϕ = 0.999
Name γP Time γP Time γP Time γP Time γP Time γP Time

10teams – 18 – 22 – 21 5.8 12 – 28 – 18
a1c1s1 108.0 7 76.0 3 78.6 5 77.3 3 59.1 3 – 3
aflow30a 185.9 0 219.3 0 306.7 0 256.0 0 52.2 0 42.6 0
aflow40b 327.7 1 106.7 2 246.9 1 230.5 2 47.4 2 42.4 4
air04 5.8 39 5.1 174 7.2 169 0.5 23 0.1 29 0.1 297
air05 19.5 7 2.4 4 2.1 2 8.4 37 1.5 1 0.6 6
arki001 – 16 – 15 – 14 – 13 – 21 – 13
atlanta-ip – 75 – 104 – 112 – 119 – 273 – 608
cap6000 11.7 0 12.6 1 0.4 1 43.4 1 57.5 5 – 7
dano3mip 43.3 43 15.3 328 8.6 510 7.9 943 – >3600 – 264
danoint – 1 31.0 2 31.0 3 21.8 4 15.0 25 – 35
disctom 0.0 8 0.0 8 0.0 8 0.0 8 0.0 9 0.0 9
ds – 3281 – >3600 – >3600 – >3600 – >3600 – >3600
fast0507 5.7 23 1.7 31 1.7 41 1.1 28 1.1 43 0.6 252
fiber 2069.1 0 274.4 0 274.4 0 2476.9 0 2171.2 0 – 1
fixnet6 796.3 0 410.4 0 89.8 0 635.0 0 953.9 0 – 1
gesa2-o 135.6 1 89.0 0 40.4 0 104.1 0 9.1 1 12.2 1
gesa2 58.8 0 9.5 0 9.1 0 17.9 0 0.1 0 17.4 0
glass4 280.2 0 641.7 1 – 0 – 1 – 0 – 1
harp2 21.3 1 23.7 0 22.5 1 21.0 1 – 2 – 1
liu 450.3 0 616.6 2 616.6 4 251.7 2 – 9 – 9
manna81 1.9 2 1.7 2 1.7 2 1.9 2 1.9 4 – 19
markshare1 Large 0 Large 0 Large 0 Large 0 Large 0 – 0
markshare2 Large 0 Large 0 Large 0 Large 0 Large 1 – 0
mas74 44.6 0 84.8 0 91.4 0 74.4 1 – 0 – 1
mas76 9.4 0 11.6 0 24.8 1 9.1 0 – 0 – 0
misc07 66.2 1 53.7 1 39.5 0 19.4 0 39.1 0 – 0
mkc 75.3 1 53.5 0 53.5 0 53.5 0 43.1 3 – 6
mod011 100.0 0 16.8 0 16.8 1 18.0 1 8.6 4 – 2
modglob 69.5 0 4.2 0 2.8 0 3.2 0 2.1 0 – 1
momentum1 – 161 – 76 – 106 – 121 – 102 – 83
momentum2 – 178 – 165 – 206 – 148 – 212 – 174
momentum3 – 994 48.0 1440 40.1 1820 – 1841 – 3403 – >3600
msc98-ip 32.9 53 32.9 57 32.9 65 29.3 55 28.9 72 – 190
mzzv11 – 153 – 173 – 164 11.9 65 8.3 84 – 146
mzzv42z 61.8 31 34.2 30 31.3 34 19.7 33 – 126 – 88
net12 57.5 12 57.5 18 57.5 22 57.5 22 57.5 27 – 46
noswot 68.3 0 31.7 0 14.6 0 – 0 34.1 0 – 1
nsrand-ipx 1023.1 1 78.4 1 107.5 1 71.2 1 420.0 2 144.4 7
nw04 13.4 4 4.4 5 13.3 9 4.4 8 17.5 41 – 77
opt1217 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 – 1
p2756 – 5 – 3 – 4 – 7 – 8 – 4
pk1 418.2 0 445.5 0 890.9 0 945.5 1 336.4 0 – 0
pp08a 83.0 0 31.0 1 41.1 0 96.1 0 66.7 0 – 0
pp08aCUTS 79.9 0 23.1 0 13.7 0 28.6 0 61.8 0 – 0
protfold 70.0 183 50.0 167 – 683 – 366 30.0 307 – 273
qiu 1146.5 1 950.3 1 224.3 0 82.5 0 72.6 1 – 2
rd-rplusc-21 – 151 – 175 – 182 – 93 – 174 – 152
roll3000 45.8 1 – 7 64.5 7 84.3 7 – 11 – 18
rout 53.8 1 29.2 1 52.3 0 52.5 0 52.8 0 – 2
set1ch 53.4 0 64.3 0 58.4 0 66.7 0 87.7 1 – 0
seymour 6.4 2 3.8 3 3.3 4 1.4 3 1.9 4 1.7 26
sp97ar 973.0 4 54.3 3 36.7 4 25.1 5 461.7 10 364.6 56
stp3d – >3600 – >3600 – >3600 – >3600 – >3600 – >3600
swath 158.4 4 140.6 17 13.0 10 44.7 18 – 42 – 25
t1717 61.0 417 75.5 286 56.6 220 29.3 153 7.1 562 – 1317
timtab1 93.1 0 41.1 1 87.4 0 33.6 1 56.8 1 – 1
timtab2 – 3 – 3 63.7 3 62.2 1 – 7 – 2
tr12-30 109.5 0 53.9 0 25.4 0 48.2 0 43.4 1 – 0
vpm2 129.1 0 20.0 0 16.4 0 12.7 0 123.6 0 – 0
bell3a Large 0 8832.0 0 5346.7 0 5436.1 0 8706.8 0 1.0 0

continue next page

86 Appendix B. Tables

ϕ = 0.0 ϕ = 0.8 ϕ = 0.9 ϕ = 0.95 ϕ = 0.99 ϕ = 0.999
Name γP Time γP Time γP Time γP Time γP Time γP Time

bell5 638.8 0 364.6 0 478.1 1 322.8 0 393.4 0 – 1
gesa3 28.3 0 23.0 0 65.2 0 0.1 1 0.1 0 1.3 0
gesa3 o 186.9 1 124.8 0 179.8 0 1.0 0 0.2 0 2.5 0
l152lav 4.5 0 10.7 1 3.5 1 1.2 0 1.0 0 – 2
stein45 13.3 0 13.3 0 36.7 0 20.0 0 6.7 1 0.0 1
ran8x32 101.2 0 15.5 0 12.3 0 12.5 0 46.9 0 – 0
ran10x26 83.1 0 12.4 0 12.7 0 13.0 0 161.6 0 – 1
ran12x21 269.1 0 14.1 0 18.4 0 67.9 0 85.5 0 – 0
ran13x13 136.7 0 25.8 0 22.0 0 10.6 0 130.8 0 – 0
binkar10 1 Large 0 5.4 0 5.4 0 5.4 0 5.4 0 13.0 1
eilD76 – 10 47.4 8 – 11 45.4 7 – 11 – 8
irp 2.9 2 17.7 3 3.1 2 4.6 4 0.4 9 0.1 3
mas284 14.2 0 4.7 0 5.8 0 10.3 0 – 0 – 0
prod1 44.6 0 35.7 0 28.6 1 30.4 0 39.3 0 – 0
bc1 495.6 2 63.3 2 93.1 2 3.3 3 212.0 5 91.8 32
bienst1 57.4 1 36.4 0 16.9 0 40.1 1 – 0 – 0
bienst2 99.3 0 48.4 0 40.1 1 21.8 0 – 1 – 0
dano3 3 6.4 38 0.0 53 0.0 62 0.0 104 0.0 337 – 205
dano3 4 13.1 39 0.0 79 0.0 95 0.0 157 0.0 395 – 197
dano3 5 17.5 39 0.2 117 0.0 154 0.0 275 0.1 752 – 193
mkc1 13.9 0 7.0 0 5.6 1 7.2 1 7.2 0 1.4 5
neos1 473.7 1 342.1 1 268.4 0 384.2 0 352.6 1 – 1
neos2 – 5 – 5 – 6 – 6 – 8 – 5
neos3 – 6 – 7 – 7 – 7 – 9 – 6
neos4 – 4 – 5 – 5 – 4 – 3 – 3
neos5 – 3 – 5 – 4 – 5 – 3 – 3
neos6 90.4 13 42.2 11 62.7 25 13.3 41 22.9 171 – 79
neos7 587.3 0 386.3 1 10.3 1 15.5 1 18.3 1 – 3
nug08 9.3 3 0.0 3 0.0 3 0.0 3 5.6 4 2.8 19
qap10 22.9 53 12.4 60 0.0 59 20.6 107 0.0 211 13.5 1385
seymour1 5.8 3 1.3 4 1.7 4 2.0 5 0.3 15 0.8 102
swath1 127.6 0 38.9 2 36.0 2 30.4 2 44.6 2 – 6
swath2 249.2 1 17.0 2 73.1 2 51.4 2 19.3 2 – 6
acc-0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 1 0.0 0
acc-1 0.0 2 0.0 2 0.0 2 0.0 2 0.0 1 0.0 2
acc-2 0.0 5 0.0 4 0.0 4 0.0 4 0.0 4 0.0 4
acc-3 – 285 – 242 – 284 – 226 – 389 – 493
acc-4 – 254 – 293 – 291 – 293 – 479 – 613
acc-5 – 182 – 175 – 202 – 197 – 320 – 352
acc-6 – 198 – 216 0.0 96 – 211 – 346 – 392
ic97 potential – 2 – 2 – 4 – 2 – 3 – 3
ic97 tension – 1 13.0 1 – 2 – 1 – 2 – 1
icir97 tension – 10 – 9 – 9 – 10 3.4 8 – 24
icir97 potential – 6 – 6 – 7 – 6 – 8 – 11
nh97 potential – 4 – 5 – 4 – 4 – 4 – 5
nh97 tension – 7 – 7 – 8 – 6 – 7 – 10
B10-011000 544.6 3 544.6 2 509.8 1 485.5 2 524.5 3 – 5
B10-011001 423.4 3 405.9 2 424.6 2 467.5 2 470.8 2 – 4
B11-010000 560.8 9 559.1 9 525.3 8 560.0 7 532.3 10 – 20
B11-110001 271.8 12 278.9 16 297.4 28 274.7 18 316.4 22 – 38
B12-111111 – 65 – 49 – 62 – 78 – 85 – 66
C10-001000 1821.4 1 1829.8 1 1777.5 1 1645.8 2 1302.7 1 – 3
C10-100001 1096.1 3 994.5 5 663.1 5 597.1 4 – 7 – 8
C11-010100 450.4 4 437.8 5 450.4 6 450.4 5 450.4 12 – 18
C11-011100 539.6 3 549.1 2 547.1 3 520.2 3 535.2 4 – 6
C12-100000 1401.7 19 1387.6 21 1316.8 32 1337.6 33 293.3 23 – 50
C12-111100 215.0 14 202.8 6 209.1 2 189.3 20 182.7 12 – 10
neos10 101.3 514 64.8 11 100.2 9 101.6 336 100.7 354 – 153
neos16 – 1 – 1 – 2 – 2 – 2 – 2
neos20 – 3 – 3 – 3 – 2 – 2 – 2

G. Mean (75|121) 106.7 4.7 47.0 5.1 43.1 5.3 37.8 5.6 39.8 7.4 – 9.1

Table B.2. Comparison of different feasibility pump versions

87

Name Primal Bound P Gap FixInt FixAll Nodes Rens PreTime HeurTime

10teams – – 91.312 91.312 3 5.7 9.5
30:70:4 5:0 5:100 25 177.8 82.086 82.086 506825 239.7 3361.7
30:70:4 5:0 95:98 155 1191.7 80.871 80.871 544291 189.2 3412.3
30:70:4 5:0 95:100 9 200.0 84.456 84.456 606852 227.3 3376.9
acc-0 – – 79.383 79.383 1 10.7 2.2
acc-1 – – 74.074 74.074 1 22.6 1.7
acc-2 – – 68.889 68.889 1917 24.0 17.5
acc-3 – – 59.427 59.427 2845 40.2 32.3
acc-4 – – 65.350 65.350 197 39.9 9.4
acc-5 – – 64.700 64.700 5 22.1 5.4
acc-6 – – 59.921 59.921 23 18.8 6.5
aflow30a 1158 0.0 81.948 80.760 13639 4.0 12.7
air03 394874 16.1 99.662 99.662 15 35.7 0.3
air04 – – 96.866 96.866 3 72.5 6.9
air05 – – 96.323 96.323 5 48.8 4.9
bc1 3.4198842 2.4 95.635 48.104 125 21.9 2.9
bell3a 878430.316 0.0 98.214 57.273 2 0.0 0.1
bell5 – – 76.923 43.617 0 0.0 0.0
bienst1 46.75 0.0 0.000 0.000 97684 1.1 258.1
bienst2 54.6 0.0 0.000 0.000 971372 2.5 3598.2
blend2 8.103921 6.6 96.761 96.552 2 0.1 0.0
cap6000 -2443599 0.3 99.966 99.966 1 1.3 0.1
dano3 3 576.344633 0.0 85.507 9.947 32 44.4 72.4
dano3 4 576.435225 0.0 80.435 12.651 88 57.6 153.3
dano3 5 576.924916 0.0 78.261 15.361 1115 63.3 561.3
disctom – – 99.259 99.259 0 47.2 2.0
dcmulti 188182 0.0 35.135 22.303 309 1.3 0.7
dsbmip -305.198175 0.0 91.429 19.314 1 0.4 0.1
egout 572.23465 0.7 92.857 94.231 1 0.0 0.0
eilD76 979.945566 10.7 92.046 92.046 255 22.8 1.0
enigma – – 97.000 97.000 0 0.0 0.0
fast0507 177 1.7 99.562 99.562 4821 106.7 118.3
fiber 419895.5 3.4 96.777 96.777 107 0.4 0.1
fixnet6 3986 0.1 92.593 85.861 153 0.7 0.1
flugpl – – 22.222 13.333 0 0.0 0.0
gesa2-o – – 89.722 80.882 1395 4.5 1.0
gesa2 25782398.1 0.0 84.804 73.039 494 2.7 0.5
gesa3 27991430 0.0 89.062 76.773 71 2.6 0.1
gesa3 o – – 90.586 83.245 28 3.8 0.2
gt2 – – 97.688 97.688 0 0.0 0.0
irp 12409.4125 2.1 99.850 99.850 1 10.1 0.4
khb05250 106940226 0.0 83.333 40.801 5 0.4 0.0
l152lav – – 97.788 97.788 3 1.8 1.2
lseu 1148 2.5 78.409 78.409 23 0.0 0.0
mas74 14372.8713 21.8 91.946 91.333 89 0.0 0.0
mas76 40560.0518 1.4 92.617 92.000 19 0.0 0.0
mas284 93597.2337 2.4 86.577 86.000 14244 0.1 2.9
misc03 – – 86.957 86.957 1 0.3 0.0
misc06 12852.2468 0.0 94.643 41.649 19 0.2 0.1
misc07 – – 98.276 98.276 0 0.2 0.0
mitre 115170 0.0 99.972 99.972 1 17.0 0.3
mod008 308 0.3 94.984 94.984 13 0.1 0.0
mod011 -54205576.1 0.6 57.292 21.969 2311 21.5 57.1
modglob 20930259.7 0.9 51.020 41.085 73591 0.3 39.5
mzzv11 – – 88.569 88.060 0 341.9 0.3
mzzv42z – – 93.139 92.762 0 304.2 0.3
neos1 20 5.3 98.495 98.495 1 4.5 0.0
neos2 – – 96.146 94.269 3 18.0 0.3
neos3 – – 95.938 93.842 1 28.6 0.1
neos5 -4.86034408e+10 0.0 96.510 89.345 1 326.0 0.7
neos6 – – 98.669 96.356 1549 19.2 3.4
neos7 721934 0.0 97.266 81.794 13 5.1 0.8
neos10 -372 67.2 99.748 99.748 1 312.9 0.1
neos11 – – 71.429 61.770 325 8.9 3.5
neos13 -63.1134148 33.9 78.788 78.270 109547 139.8 3460.5

continue next page

88 Appendix B. Tables

Name Primal Bound P Gap FixInt FixAll Nodes Rens PreTime HeurTime

neos21 7 0.0 74.291 74.291 5098 2.3 10.2
neos22 779715 0.0 85.683 31.192 10558 4.9 31.4
neos632659 -94 0.0 57.000 53.333 3569 0.2 0.8
noswot – – 90.526 89.167 39 0.0 0.2
nug08 – – 61.458 61.458 5 75.6 8.2
nw04 22494 33.4 99.970 99.970 9 74.3 2.1
p0201 7905 3.8 64.103 64.103 33 0.2 0.5
p0282 258945 0.2 77.228 77.228 90 0.2 0.1
p0548 8763 0.8 99.127 99.127 1 0.3 0.0
p2756 3359 7.5 99.658 99.658 1 1.2 0.1
pk1 26 136.4 70.909 45.349 1140 0.0 0.2
pp08a 7480 1.8 59.375 33.750 2896 0.4 2.2
pp08aCUTS 7350 0.0 50.000 29.583 1388 0.5 1.3
prod1 – – 73.826 73.092 49 0.3 0.5
qap10 – – 69.494 69.494 3 262.3 55.3
qiu -128.466917 3.3 25.000 25.000 806811 2.7 3599.2
qnet1 21159.9639 32.0 96.965 96.965 1 1.4 0.0
qnet1 o 19351.9 20.7 95.625 95.625 7 1.4 0.0
ran8x32 5329 1.6 81.250 82.422 1403 0.3 0.5
ran10x26 4347 1.8 74.615 75.769 292670 1.0 129.4
ran12x21 3754 2.5 73.809 74.603 162252 1.0 68.2
ran13x13 3364 3.4 70.414 71.302 335888 0.7 115.7
rentacar 30356761 0.0 75.000 7.756 11 1.8 2.2
rgn 82.1999991 0.0 78.000 44.571 363 0.0 0.1
rout – – 86.349 86.667 65 0.4 0.7
set1ch 54628 0.2 96.170 91.441 23 1.2 0.0
seymour1 410.963143 0.0 78.495 23.267 251965 14.9 3585.5
stein27 18 0.0 11.111 11.111 2302 0.0 1.9
stein45 30 0.0 17.778 17.778 12219 0.2 9.2
swath1 – – 99.426 47.263 21 41.9 78.3
swath2 – – 99.038 43.275 43 45.7 84.2
vpm2 13.75 0.0 56.627 50.276 6359 0.4 2.1
a1c1s1 – – 19.271 8.188 207911 79.8 3521.4
aflow40b 1168 0.0 92.815 92.302 200655 32.8 197.1
arki001 – – 86.542 67.188 89 2.9 1.8
atlanta-ip – – 91.201 88.210 0 265.1 0.4
binkar10 1 6746.76002 0.1 48.235 47.230 726439 0.9 833.6
dano3mip 743.133333 6.5 73.913 70.410 15191 168.8 3431.8
danoint 65.6666667 0.0 7.143 0.768 53320 3.5 175.2
ds 1045.71 268.9 99.211 99.211 224694 318.6 3282.5
glass4 2.90001895e+09 141.7 86.242 81.073 11939411 0.1 3021.3
liu 3132 167.2 53.634 50.520 1561530 10.3 3594.6
markshare1 136 Large 82.000 82.000 17 0.0 0.0
markshare2 212 Large 85.000 85.000 50 0.0 0.0
mkc -541.112 4.0 97.133 97.114 72971 12.4 19.8
mkc1 -596.519 1.8 98.635 97.234 121 6.2 0.1
momentum1 – – 81.203 72.316 323807 127.6 3472.9
momentum2 – – 85.118 78.420 426888 128.7 3474.1
msc98-ip – – 93.313 91.532 0 373.9 0.3
neos616206 – – 55.454 55.454 207953 2.0 119.2
net12 – – 83.738 75.772 0 189.9 0.3
nsrand-ipx 57120 11.6 98.561 98.546 5304594 16.4 1381.6
opt1217 -16 0.0 97.230 97.101 19 0.2 0.0
protfold – – 74.060 74.060 757 24.6 4.2
rd-rplusc-21 – – 78.934 64.330 17281 1073.0 30.8
roll3000 13974 8.1 85.501 72.077 11535 5.5 11.9
seymour 430 1.7 62.151 62.151 310809 30.6 3570.1
sp97ar 691318495 4.0 98.766 98.766 2395490 58.9 3555.1
swath – – 99.984 98.718 1 31.7 0.2
swath3 – – 98.864 49.399 55 75.48 56.87
t1717 – – 99.194 99.194 179 609.3 17.1
timtab1 902037 17.9 26.712 20.398 1621418 1.4 690.2
timtab2 – – 13.386 9.971 16035 5.2 25.6
tr12-30 131616 0.8 65.625 45.134 2673240 23.6 3590.9

Table B.3. Rens applied to the optimum of the LP-relaxation

89

Rens Rens only Rens

deactivated at root node every 10th depth

Name Nodes Time Nodes Time Nodes Time

10teams 324 30.8 324 31.0 324 31.2
30:70:4 5:0 5:100 167 349.5 167 364.7 167 366.1
30:70:4 5:0 95:98 125 298.9 125 312.1 125 313.8
30:70:4 5:0 95:100 109 315.4 109 323.5 109 324.7
acc-0 1 14.8 1 14.7 1 15.0
acc-1 1 29.3 1 29.3 1 29.5
acc-2 79 91.3 79 99.8 79 99.1
acc-3 75 169.5 75 186.1 75 186.6
acc-4 236 401.7 236 423.0 236 417.4
acc-5 5011 1449.4 5011 1434.5 5011 1435.1
acc-6 18 75.1 18 80.7 18 81.0
aflow30a 8309 47.8 6026 35.3 6026 35.3
air03 2 25.5 2 25.8 2 25.8
air04 153 157.8 153 158.0 153 159.0
air05 239 90.7 239 96.9 239 98.3
bc1 19008 843.1 16043 735.1 16043 741.2
bell3a 48995 44.4 48995 45.2 48995 45.1
bell5 1170 1.2 1170 1.2 1170 1.2
bienst1 9574 48.2 9574 48.0 10358 57.8
bienst2 101372 605.2 101372 598.5 91427 561.8
blend2 5761 9.8 879 3.4 879 3.4
cap6000 2937 37.5 2937 37.5 2937 37.8
dano3 3 19 191.1 19 190.7 19 191.2
dano3 4 41 247.9 41 248.2 41 248.8
dano3 5 186 513.7 186 511.8 186 513.7
disctom 1 66.7 1 66.5 1 66.7
dcmulti 168 4.8 168 4.8 168 4.9
dsbmip 1 0.8 1 0.8 1 0.8
egout 2 0.0 2 0.0 2 0.0
eilD76 4636 103.7 1359 107.7 1359 107.8
enigma 4455 1.5 4455 1.5 4455 1.6
fast0507 1488 2424.6 1488 2432.9 1488 2430.7
fiber 209 3.8 137 2.4 137 2.4
fixnet6 68 1.6 17 1.5 17 1.5
flugpl 474 0.3 474 0.4 474 0.4
gesa2-o 1604 12.0 1604 12.5 1604 12.6
gesa2 444 6.3 93 4.5 93 4.5
gesa3 928 10.6 28 3.7 28 3.8
gesa3 o 725 10.8 725 10.7 725 10.9
gt2 137 0.1 137 0.2 137 0.1
irp 544 94.7 312 59.1 312 59.2
khb05250 12 0.5 10 0.5 10 0.5
l152lav 63 5.6 63 7.1 63 7.1
lseu 415 0.4 302 0.8 302 0.8
mas74 4856815 1534.6 4856815 1527.1 4856815 1567.1
mas76 366438 178.1 347300 103.7 347300 105.1
mas284 17489 31.6 17379 31.6 17379 32.3
misc03 52 1.4 52 2.0 52 1.9
misc06 24 0.5 24 0.6 24 0.6
misc07 34963 47.0 34963 47.9 34963 47.0
mitre 27 86.7 27 86.8 27 86.8
mod008 212 0.8 212 0.9 212 0.8
mod011 2449 171.5 2449 172.6 2449 180.7
modglob 3125 5.5 3815 7.0 3815 7.0
mzzv11 2541 1138.7 2541 1159.6 2541 1143.0
mzzv42z 1452 677.3 1452 685.5 1452 677.8

continue next page

90 Appendix B. Tables

Rens Rens only Rens

deactivated at root node every 10th depth

Name Nodes Time Nodes Time Nodes Time

neos1 1 6.1 1 6.0 1 6.0
neos2 51967 203.5 51967 203.4 51967 207.8
neos3 508140 2463.8 508140 2392.5 508140 2399.5
neos5 2 138.7 2 141.2 2 139.6
neos6 3738 396.3 3738 398.4 3738 399.8
neos7 55463 599.1 51407 557.0 51407 562.1
neos10 7 183.5 7 183.9 7 183.9
neos11 6796 788.0 6796 783.3 6796 799.9
neos13 11242 768.4 11242 798.4 11242 822.6
neos21 2223 41.3 2223 41.9 2223 42.3
neos22 35891 394.8 35891 419.3 35891 397.6
neos632659 45635 29.8 31971 20.8 31971 21.1
nug08 3 73.3 3 78.8 3 79.5
nw04 3 65.8 3 67.4 3 66.8
p0201 262 1.9 262 2.4 262 2.4
p0282 76 0.9 35 0.5 35 0.5
p0548 46 0.7 46 0.8 46 0.8
p2756 194 12.8 194 12.7 194 12.8
pk1 267839 116.2 293834 131.7 293834 142.3
pp08a 1817 4.1 1817 4.1 1874 3.8
pp08aCUTS 2408 6.3 2514 7.9 2514 8.0
prod1 59023 47.9 59023 48.9 59023 53.9
qap10 5 404.3 5 448.4 5 448.2
qiu 10584 184.7 10584 184.9 12232 216.3
qnet1 130 6.3 132 6.6 132 6.5
qnet1 o 275 6.6 134 6.1 134 6.0
ran8x32 15057 30.0 15693 28.6 15693 28.8
ran10x26 34306 75.0 29868 67.1 29868 67.3
ran12x21 122274 222.6 136566 242.1 136566 240.3
ran13x13 66728 83.2 67410 82.6 67410 81.5
rentacar 4 4.8 4 4.8 4 4.8
rgn 2341 1.0 2341 1.1 2341 1.1
rout 32398 68.1 32398 68.9 32398 69.1
set1ch 59 2.0 54 2.0 54 1.9
seymour1 4564 979.4 4564 988.1 4564 986.0
stein27 4173 4.0 4173 3.9 4173 3.7
stein45 53354 56.4 53354 55.7 54951 59.0
swath1 2435 87.5 2435 102.9 2435 172.9
swath2 12543 167.9 12543 181.8 12543 195.3
vpm2 10029 8.8 9890 9.6 9890 9.6

Total (96) 6929908 21447.7 6915451 21364.1 6909592 21537.8
Geom. Mean 704 36.7 614 35.9 615 36.3

Table B.4. Integration of Rens into SCIP, easy instances

91

Rens Rens only Rens

deactivated at root node every 10th depth

Name Primal Bound Nodes Primal Bound Nodes Primal Bound Nodes

a1c1s1 12657.4229 24653 12657.4229 24391 12657.4229 20031
aflow40b 1232 264660 1235 229040 1250 217989
arki001 7584054.38 592707 7584054.38 591564 7584054.38 590693
atlanta-ip 1e+20 436 1e+20 436 1e+20 436
binkar10 1 6746.76002 433757 6746.76002 433757 6746.76002 433757
dano3mip 727.0625 1063 729.608696 877 729.608696 804
danoint 66.375 219986 66.375 220165 66.375 217115
ds 360.715161 617 360.715161 615 360.715161 615
glass4 1.7000151e+09 3726852 1.77663851e+09 3689102 1.70001355e+09 3771237
liu 2948 720469 2490 656324 2510 627469
markshare1 6 26340583 6 26340591 6 26340591
markshare2 15 18686795 15 18686795 15 18686795
mkc -552.744 284256 -556.212 319354 -549.692 348444
mkc1 -606.717 610712 -606.767 614881 -606.767 610207
momentum1 160490.615 2205 160490.615 2205 160490.615 2197
momentum2 1e+20 1949 1e+20 1910 1e+20 1917
msc98-ip 1e+20 220 1e+20 220 1e+20 220
neos616206 937.6 815310 937.6 814177 937.6 802986
net12 296 1364 296 1360 296 1350
noswot -41 9731424 -41 9760690 -41 9551961
nsrand-ipx 55680 144107 54880 153612 55520 119355
opt1217 -16.000007 2425474 -16.000007 2469635 -16.000007 2462413
protfold 1e+20 871 1e+20 864 1e+20 853
rd-rplusc-21 1e+20 37134 1e+20 36465 1e+20 36822
roll3000 12960 173560 12960 172091 12960 172575
seymour 426 5761 425 5550 426 5328
sp97ar 690159742 12132 674161010 11411 674161010 11515
swath 499.694345 189986 499.694345 189986 499.694345 189986
swath3 397.761344 227579 397.761344 227579 397.761344 227579
t1717 192060 447 192060 443 192060 443
timtab1 915760.996 3148630 915760.996 3110297 915760.996 3107288
timtab2 1661007 1858791 1661007 1855999 1661007 1857879
tr12-30 130723 387478 130701 405614 130701 405614

Table B.5. Integration of Rens into SCIP, hard instances

92
A

p
p
e
n
d
ix

B
.

T
a
b
l
e
s

Simple Rounding Rounding Shifting Rens Best Known Rounding

Name Primal Bound P Gap Time Primal Bound P Gap Time Primal Bound P Gap Time Primal Bound P Gap Time Primal Bound P Gap

10teams – – 0.0 – – 0.0 – – 0.0 – – 11.0 – –
30:70:4 5:0 5:100 – – 0.0 2300 Large 0.3 2300 Large 0.3 214 2277.8 21.2 25 177.8
30:70:4 5:0 95:98 – – 0.0 2574 Large 0.5 2574 Large 0.4 155 1191.7 22.1 155 1191.7
30:70:4 5:0 95:100 – – 0.0 2048 Large 0.2 2048 Large 0.2 70 2233.3 20.5 9 200.0
acc-0 – – 0.0 – – 0.0 – – 0.0 – – 2.3 – –
acc-1 – – 0.0 – – 0.0 – – 0.0 – – 1.8 – –
acc-2 – – 0.0 – – 0.0 – – 0.0 – – 10.5 – –
acc-3 – – 0.0 – – 0.0 – – 0.0 – – 13.6 – –
acc-4 – – 0.0 – – 0.0 – – 0.0 – – 9.7 – –
acc-5 – – 0.0 – – 0.0 – – 0.0 – – 5.4 – –
acc-6 – – 0.0 – – 0.0 – – 0.0 – – 6.7 – –
aflow30a – – 0.0 – – 0.0 – – 0.0 1267 9.4 0.9 1158 0.0
air03 – – 0.0 1184204 248.1 0.0 1184204 248.1 0.0 394874 16.1 0.3 394874 16.1
air04 – – 0.0 – – 0.1 – – 0.2 – – 7.0 – –
air05 – – 0.0 – – 0.1 – – 0.2 – – 5.0 – –
bc1 – – 0.0 – – 0.0 – – 0.0 3.4198842 2.4 2.8 3.4198842 2.4
bell3a 880414.281 0.2 0.0 880414.281 0.2 0.0 880414.281 0.2 0.0 878430.316 0.0 0.1 878430.316 0.0
bell5 – – 0.0 – – 0.0 9787786.46 9.2 0.0 – – 0.0 – –
bienst1 – – 0.0 – – 0.0 – – 0.0 – – 0.0 46.75 0.0
bienst2 – – 0.0 – – 0.0 – – 0.0 – – 0.0 54.6 0.0
blend2 – – 0.0 – – 0.0 – – 0.0 8.103921 6.6 0.0 8.103921 6.6
cap6000 -2441736 0.4 0.0 -2441736 0.4 0.0 -2441736 0.4 0.0 -2443599 0.3 0.1 -2443599 0.3
dano3 3 – – 0.0 – – 0.0 – – 0.0 – – 0.3 576.344633 0.0
dano3 4 – – 0.0 – – 0.0 – – 0.0 – – 0.4 576.435225 0.0
dano3 5 – – 0.0 – – 0.0 – – 0.0 – – 0.4 576.924916 0.0
disctom – – 0.0 – – 0.1 – – 0.2 – – 2.0 – –
dcmulti – – 0.0 – – 0.0 – – 0.0 – – 0.0 188182 0.0
dsbmip – – 0.0 – – 0.0 – – 0.0 – – 0.0 -305.198175 0.0
egout 579.718806 2.0 0.0 579.718806 2.0 0.0 579.718806 2.0 0.0 572.23465 0.7 0.0 572.23465 0.7
eilD76 3630.85679 310.1 0.0 3630.85679 310.1 0.0 3630.85679 310.1 0.0 979.945566 10.7 1.0 979.945566 10.7
enigma – – 0.0 – – 0.0 – – 0.0 – – 0.0 – –
fast0507 508 192.0 0.0 508 192.0 0.1 508 192.0 0.1 179 2.9 20.6 177 1.7
fiber – – 0.0 – – 0.0 1304481.19 221.4 0.0 419895.5 3.4 0.1 419895.5 3.4

continue next page

93

Simple Rounding Rounding Shifting Rens Best Known Rounding

Name Primal Bound P Gap Time Primal Bound P Gap Time Primal Bound P Gap Time Primal Bound P Gap Time Primal Bound P Gap

fixnet6 8462.72852 112.5 0.0 8462.72852 112.5 0.0 8462.72852 112.5 0.0 3986 0.1 0.2 3986 0.1
flugpl – – 0.0 – – 0.0 – – 0.0 – – 0.0 – –
gesa2-o – – 0.0 – – 0.0 – – 0.0 – – 0.7 – –
gesa2 – – 0.0 – – 0.0 27379074.5 6.2 0.0 25782398.1 0.0 0.5 25782398.1 0.0
gesa3 – – 0.0 – – 0.0 39136522.8 39.8 0.0 27991430 0.0 0.1 27991430 0.0
gesa3 o – – 0.0 – – 0.0 – – 0.0 – – 0.2 – –
gt2 – – 0.0 – – 0.0 – – 0.0 – – 0.0 – –
irp 18142.1226 49.2 0.0 18142.1226 49.2 0.0 18142.1226 49.2 0.1 12409.4125 2.1 0.6 12409.4125 2.1
khb05250 111896869 4.6 0.0 111896869 4.6 0.0 111896869 4.6 0.0 106940226 0.0 0.1 106940226 0.0
l152lav – – 0.0 – – 0.0 – – 0.0 – – 1.2 – –
lseu – – 0.0 – – 0.0 3089 175.8 0.0 1148 2.5 0.0 1148 2.5
mas74 – – 0.0 – – 0.0 13755.8924 16.6 0.0 14372.8713 21.8 0.0 14372.8713 21.8
mas76 – – 0.0 – – 0.0 46793.6933 17.0 0.0 40560.0518 1.4 0.0 40560.0518 1.4
mas284 – – 0.0 – – 0.0 103611.404 13.4 0.0 95703.3781 4.7 0.3 93597.2337 2.4
misc03 – – 0.0 – – 0.0 – – 0.0 – – 0.0 – –
misc06 12887.8134 0.3 0.0 12887.8134 0.3 0.0 12887.8134 0.3 0.0 12852.2468 0.0 0.1 12852.2468 0.0
misc07 – – 0.0 – – 0.0 – – 0.0 – – 0.0 – –
mitre – – 0.0 115185 0.0 0.1 115185 0.0 0.2 115170 0.0 0.3 115170 0.0
mod008 1182 285.0 0.0 1182 285.0 0.0 1182 285.0 0.0 308 0.3 0.0 308 0.3
mod011 – – 0.0 – – 0.0 – – 0.0 – – 0.2 -54205576.1 0.6
modglob 21113576.7 1.8 0.0 21113576.7 1.8 0.0 21113576.7 1.8 0.0 20930259.7 0.9 0.6 20930259.7 0.9
mzzv11 – – 0.0 – – 0.0 – – 0.0 – – 0.3 – –
mzzv42z – – 0.0 – – 0.0 – – 0.0 – – 0.3 – –
neos1 – – 0.0 31 63.2 0.0 31 63.2 0.0 20 5.3 0.1 20 5.3
neos2 – – 0.0 – – 0.0 – – 0.1 – – 0.4 – –
neos3 – – 0.0 – – 0.0 – – 0.0 – – 0.1 – –
neos5 – – 0.0 – – 0.1 – – 0.1 -4.86034408e+10 0.0 0.8 -4.86034408e+10 0.0
neos6 – – 0.0 – – 0.0 – – 0.1 – – 2.5 – –
neos7 – – 0.0 – – 0.0 – – 0.0 721934 0.0 0.8 721934 0.0
neos10 – – 0.0 – – 0.0 – – 0.0 -372 67.2 0.1 -372 67.2
neos11 – – 0.0 – – 0.0 – – 0.0 – – 3.5 – –
neos13 – – 0.0 – – 0.0 – – 0.5 -62.3278436 34.7 34.4 -63.1134148 33.9
neos21 – – 0.0 30 328.6 0.0 30 328.6 0.0 11 57.1 1.6 7 0.0

continue next page

94
A

p
p
e
n
d
ix

B
.

T
a
b
l
e
s

Simple Rounding Rounding Shifting Rens Best Known Rounding

Name Primal Bound P Gap Time Primal Bound P Gap Time Primal Bound P Gap Time Primal Bound P Gap Time Primal Bound P Gap

neos22 – – 0.0 – – 0.0 814466.191 4.5 0.0 782405.625 0.3 3.4 779715 0.0
neos632659 – – 0.0 – – 0.0 6 106.4 0.0 -94 0.0 0.2 -94 0.0
noswot – – 0.0 – – 0.0 -35 14.6 0.0 – – 0.2 – –
nug08 – – 0.0 – – 0.0 – – 0.0 – – 8.4 – –
nw04 – – 0.0 23418 38.9 0.7 23418 38.9 2.5 22494 33.4 2.8 22494 33.4
p0201 – – 0.0 – – 0.0 – – 0.0 7905 3.8 0.5 7905 3.8
p0282 – – 0.0 327891 26.9 0.0 327891 26.9 0.0 258945 0.2 0.1 258945 0.2
p0548 – – 0.0 – – 0.0 – – 0.0 8763 0.8 0.0 8763 0.8
p2756 – – 0.0 – – 0.0 3293 5.4 0.0 3359 7.5 0.1 3359 7.5
pk1 – – 0.0 – – 0.0 102 827.3 0.0 26 136.4 0.2 26 136.4
pp08a 12646.9248 72.1 0.0 12646.9248 72.1 0.0 12646.9248 72.1 0.0 7660 4.2 0.7 7480 1.8
pp08aCUTS 13379.1374 82.0 0.0 13379.1374 82.0 0.0 13379.1374 82.0 0.0 7350 0.0 1.2 7350 0.0
prod1 – – 0.0 – – 0.0 -48 14.3 0.0 – – 0.5 – –
qap10 – – 0.0 – – 0.3 – – 0.4 – – 56.6 – –
qiu 1805.17714 1458.6 0.0 1805.17714 1458.6 0.0 1805.17714 1458.6 0.0 – – 0.0 -128.466917 3.3
qnet1 – – 0.0 – – 0.0 45592.0759 184.4 0.0 21159.9639 32.0 0.0 21159.9639 32.0
qnet1 o – – 0.0 46163.758 188.0 0.0 46163.758 188.0 0.0 19351.9 20.7 0.1 19351.9 20.7
ran8x32 9139.68621 74.2 0.0 9139.68621 74.2 0.0 9139.68621 74.2 0.0 5329 1.6 0.3 5329 1.6
ran10x26 10100.4015 136.5 0.0 10100.4015 136.5 0.0 10100.4015 136.5 0.0 4459 4.4 1.2 4347 1.8
ran12x21 9034.10774 146.6 0.0 9034.10774 146.6 0.0 9034.10774 146.6 0.0 3782 3.2 1.1 3754 2.5
ran13x13 8045.50912 147.4 0.0 8045.50912 147.4 0.0 8045.50912 147.4 0.0 3636 11.8 0.6 3364 3.4
rentacar – – 0.0 – – 0.0 – – 0.0 – – 0.1 30356761 0.0
rgn – – 0.0 – – 0.0 – – 0.0 82.1999991 0.0 0.1 82.1999991 0.0
rout – – 0.0 – – 0.0 – – 0.0 – – 0.7 – –
set1ch 57621.6608 5.7 0.0 57621.6608 5.7 0.0 57621.6608 5.7 0.0 54628 0.2 0.0 54628 0.2
seymour1 449.489972 9.4 0.0 449.489972 9.4 0.0 449.489972 9.4 0.0 – – 0.1 410.963143 0.0
stein27 27 50.0 0.0 27 50.0 0.0 27 50.0 0.0 – – 0.0 18 0.0
stein45 45 50.0 0.0 45 50.0 0.0 45 50.0 0.0 – – 0.0 30 0.0
swath1 – – 0.0 – – 0.0 – – 0.0 – – 79.4 – –
swath2 – – 0.0 – – 0.0 – – 0.0 – – 84.9 – –
vpm2 – – 0.0 – – 0.0 – – 0.0 13.75 0.0 0.5 13.75 0.0
a1c1s1 – – 0.0 – – 0.0 – – 0.0 – – 0.0 – –
aflow40b – – 0.0 – – 0.0 – – 0.0 1318 12.8 1.4 1168 0.0

continue next page

95

Simple Rounding Rounding Shifting Rens Best Known Rounding

Name Primal Bound P Gap Time Primal Bound P Gap Time Primal Bound P Gap Time Primal Bound P Gap Time Primal Bound P Gap

arki001 – – 0.0 – – 0.0 – – 0.0 – – 1.8 – –
atlanta-ip – – 0.0 – – 0.0 – – 0.2 – – 0.5 – –
binkar10 1 – – 0.0 – – 0.0 – – 0.0 – – 0.0 6746.76002 0.1
dano3mip – – 0.0 – – 0.0 – – 0.0 743.464286 6.5 276.1 743.133333 6.5
danoint – – 0.0 – – 0.0 – – 0.0 – – 0.0 65.6666667 0.0
ds 5418.56016 1811.7 0.0 5418.56016 1811.7 0.4 5418.56016 1811.7 0.5 1437.2175 407.1 35.2 1045.71 268.9
glass4 – – 0.0 – – 0.0 – – 0.0 4.3000342e+09 258.3 0.2 2.90001895e+09 141.7
liu – – 0.0 – – 0.0 – – 0.4 3132 167.2 5.0 3132 167.2
markshare1 854 Large 0.0 854 Large 0.0 854 Large 0.0 136 Large 0.0 136 Large
markshare2 1623 Large 0.0 1623 Large 0.0 1623 Large 0.0 212 Large 0.0 212 Large
mkc – – 0.0 – – 0.0 -393.212 30.3 0.1 -533.432 5.4 0.6 -541.112 4.0
mkc1 – – 0.0 – – 0.0 – – 0.3 -596.519 1.8 0.2 -596.519 1.8
momentum1 – – 0.0 – – 0.0 – – 0.0 – – 17.0 – –
momentum2 – – 0.0 – – 0.0 – – 0.0 – – 14.1 – –
msc98-ip – – 0.0 – – 0.0 – – 0.1 – – 0.4 – –
neos616206 – – 0.0 – – 0.0 – – 0.0 – – 1.8 – –
net12 – – 0.0 – – 0.0 – – 0.0 – – 0.3 – –
nsrand-ipx – – 0.0 – – 0.0 76800 50.0 0.3 61280 19.7 1.1 57120 11.6
opt1217 – – 0.0 – – 0.0 -14 12.5 0.0 -16 0.0 0.0 -16 0.0
protfold – – 0.0 – – 0.0 – – 0.0 – – 3.8 – –
rd-rplusc-21 – – 0.0 – – 0.0 – – 0.0 – – 4.3 – –
roll3000 – – 0.0 – – 0.0 – – 0.0 14945 15.6 1.6 13974 8.1
seymour 708 67.4 0.0 708 67.4 0.0 708 67.4 0.0 430 1.7 18.7 430 1.7
sp97ar – – 0.0 1.44316835e+09 117.2 0.1 1.44316835e+09 117.2 0.1 722387462 8.7 10.1 691318495 4.0
swath – – 0.0 – – 0.0 – – 0.0 – – 0.2 – –
swath3 – – 0.0 – – 0.0 – – 0.0 – – 57.4 – –
t1717 – – 0.0 – – 0.1 – – 0.2 – – 18.0 – –
timtab1 – – 0.0 – – 0.0 – – 0.0 – – 0.0 902037 17.9
timtab2 – – 0.0 – – 0.0 – – 0.0 – – 0.0 – –
tr12-30 – – 0.0 – – 0.0 – – 0.0 159967.543 22.5 2.9 131616 0.8

Total (129) 0.1 3.4 8.2 932.6
Geom. Mean 1.0 1.0 1.0 2.0

Table B.6. Comparison of different rounding heuristics applied to the optimum of the LP-relaxation

96
A

p
p
e
n
d
ix

B
.

T
a
b
l
e
s

Simple Rounding Rounding Shifting Rens

Name Primal Bound P Gap Time Primal Bound P Gap Time Primal Bound P Gap Time Primal Bound P Gap Time

10teams – – 0.0 – – 0.0 – – 0.1 – – 11.0
30:70:4 5:0 5:100 – – 0.0 2196 Large 4.1 2196 Large 4.9 214 2277.8 21.2
30:70:4 5:0 95:98 – – 0.0 2533 Large 4.5 2533 Large 4.5 155 1191.7 22.1
30:70:4 5:0 95:100 – – 0.0 1996 Large 4.2 1996 Large 3.9 70 2233.3 20.5
acc-0 – – 0.0 – – 0.0 – – 0.0 – – 2.3
acc-1 – – 0.0 – – 0.0 – – 0.0 – – 1.8
acc-2 – – 0.0 – – 0.0 – – 0.0 – – 10.5
acc-3 – – 0.0 – – 0.1 – – 0.1 – – 13.6
acc-4 – – 0.0 – – 0.0 – – 0.1 – – 9.7
acc-5 – – 0.0 – – 0.0 – – 0.0 – – 5.4
acc-6 – – 0.0 – – 0.0 – – 0.0 – – 6.7
aflow30a – – 0.0 – – 0.0 – – 0.1 1267 9.4 0.9
air03 – – 0.0 1091684 220.9 0.2 1091684 220.9 0.2 394874 16.1 0.3
air04 – – 0.0 – – 0.9 – – 1.3 – – 7.0
air05 – – 0.0 – – 0.9 – – 1.3 – – 5.0
bc1 – – 0.0 – – 0.0 – – 0.1 3.4198842 2.4 2.8
bell3a 880028.753 0.2 0.0 880028.753 0.2 0.0 880028.753 0.2 0.0 878430.316 0.0 0.1
bell5 – – 0.0 – – 0.0 9618234.44 7.3 0.0 – – 0.0
bienst1 – – 0.0 – – 0.0 – – 0.0 – – 0.0
bienst2 – – 0.0 – – 0.0 – – 0.0 – – 0.0
blend2 – – 0.0 – – 0.0 – – 0.0 8.103921 6.6 0.0
cap6000 -2442801 0.3 0.0 -2442801 0.3 0.0 -2442801 0.3 0.9 -2443599 0.3 0.1
dano3 3 – – 0.0 – – 0.0 – – 0.0 – – 0.3
dano3 4 – – 0.0 – – 0.0 – – 0.0 – – 0.4
dano3 5 – – 0.0 – – 0.0 – – 0.0 – – 0.4
disctom – – 0.0 – – 0.8 – – 1.3 – – 2.0
dcmulti – – 0.0 – – 0.0 – – 0.0 – – 0.0
dsbmip – – 0.0 – – 0.0 – – 0.0 – – 0.0
egout 579.718806 2.0 0.0 579.718806 2.0 0.0 579.718806 2.0 0.0 572.23465 0.7 0.0
eilD76 3630.85679 310.1 0.0 2987.4607 237.4 0.0 2987.4607 237.4 0.1 979.945566 10.7 1.0
enigma – – 0.0 – – 0.0 – – 0.0 – – 0.0
fast0507 508 192.0 0.1 508 192.0 0.1 508 192.0 0.1 179 2.9 20.6
fiber – – 0.0 – – 0.0 1237567.75 204.9 0.0 419895.5 3.4 0.1

continue next page

97

Simple Rounding Rounding Shifting Rens

Name Primal Bound P Gap Time Primal Bound P Gap Time Primal Bound P Gap Time Primal Bound P Gap Time

fixnet6 4536 13.9 0.0 4536 13.9 0.0 4536 13.9 0.0 3986 0.1 0.2
flugpl – – 0.0 – – 0.0 – – 0.0 – – 0.0
gesa2-o – – 0.0 – – 0.0 27997882.6 8.6 0.0 – – 0.7
gesa2 – – 0.0 – – 0.0 26685746.9 3.5 0.0 25782398.1 0.0 0.5
gesa3 – – 0.0 – – 0.0 29346599.3 4.8 0.0 27991430 0.0 0.1
gesa3 o – – 0.0 – – 0.0 – – 0.0 – – 0.2
gt2 – – 0.0 – – 0.0 – – 0.0 – – 0.0
irp 18142.1226 49.2 0.1 16555.0074 36.1 0.3 16555.0074 36.1 0.2 12409.4125 2.1 0.6
khb05250 111772902 4.5 0.0 111772902 4.5 0.0 111772902 4.5 0.0 106940226 0.0 0.1
l152lav – – 0.0 – – 0.0 – – 0.1 – – 1.2
lseu – – 0.0 – – 0.0 1405 25.4 0.0 1148 2.5 0.0
mas74 – – 0.0 – – 0.0 13755.8924 16.6 0.0 14372.8713 21.8 0.0
mas76 – – 0.0 – – 0.0 46793.6933 17.0 0.0 40560.0518 1.4 0.0
mas284 – – 0.0 – – 0.0 103611.404 13.4 0.0 95703.3781 4.7 0.3
misc03 – – 0.0 – – 0.0 – – 0.1 – – 0.0
misc06 12885.976 0.3 0.0 12885.976 0.3 0.0 12885.976 0.3 0.0 12852.2468 0.0 0.1
misc07 – – 0.0 – – 0.0 – – 0.0 – – 0.0
mitre – – 0.1 115185 0.0 0.1 115185 0.0 1.1 115170 0.0 0.3
mod008 510 66.1 0.0 432 40.7 0.0 432 40.7 0.0 308 0.3 0.0
mod011 – – 0.0 – – 0.0 – – 0.4 – – 0.2
modglob 20786787 0.2 0.0 20786787 0.2 0.0 20786787 0.2 0.0 20930259.7 0.9 0.6
mzzv11 – – 0.0 – – 0.1 – – 0.5 – – 0.3
mzzv42z – – 0.0 – – 0.0 – – 0.5 – – 0.3
neos1 – – 0.0 31 63.2 0.0 28 47.4 0.0 20 5.3 0.1
neos2 – – 0.0 – – 0.0 – – 0.1 – – 0.4
neos3 – – 0.0 – – 0.0 – – 0.1 – – 0.1
neos5 – – 0.1 – – 0.1 – – 0.1 -4.86034408e+10 0.0 0.8
neos6 – – 0.0 – – 0.0 – – 0.5 – – 2.5
neos7 – – 0.0 – – 0.0 – – 0.0 721934 0.0 0.8
neos10 – – 0.0 50 104.4 0.1 50 104.4 0.5 -372 67.2 0.1
neos11 – – 0.0 – – 0.0 – – 0.0 – – 3.5
neos13 – – 0.0 – – 0.0 – – 4.1 -62.3278436 34.7 34.4
neos21 – – 0.0 30 328.6 0.0 30 328.6 0.0 11 57.1 1.6

continue next page

98
A

p
p
e
n
d
ix

B
.

T
a
b
l
e
s

Simple Rounding Rounding Shifting Rens

Name Primal Bound P Gap Time Primal Bound P Gap Time Primal Bound P Gap Time Primal Bound P Gap Time

neos22 – – 0.0 – – 0.0 786525 0.9 0.0 782405.625 0.3 3.4
neos632659 – – 0.0 – – 0.0 6 106.4 0.0 -94 0.0 0.2
noswot – – 0.0 – – 0.0 -39 4.9 0.0 – – 0.2
nug08 – – 0.0 – – 0.2 – – 0.4 – – 8.4
nw04 – – 0.0 22494 33.4 1.8 22494 33.4 9.6 22494 33.4 2.8
p0201 – – 0.0 – – 0.0 – – 0.0 7905 3.8 0.5
p0282 – – 0.0 307830 19.1 0.0 270471 4.7 0.0 258945 0.2 0.1
p0548 – – 0.0 – – 0.0 – – 0.1 8763 0.8 0.0
p2756 – – 0.0 – – 0.0 3136 0.4 0.1 3359 7.5 0.1
pk1 – – 0.0 – – 0.0 102 827.3 0.0 26 136.4 0.2
pp08a 12083.8672 64.4 0.0 12083.8672 64.4 0.0 11445.4976 55.7 0.0 7660 4.2 0.7
pp08aCUTS 11481.4676 56.2 0.0 11481.4676 56.2 0.0 11481.4676 56.2 0.0 7350 0.0 1.2
prod1 – – 0.0 – – 0.0 -49 12.5 0.0 – – 0.5
qap10 – – 0.0 – – 1.6 – – 2.9 – – 56.6
qiu 1805.17714 1458.6 0.0 1805.17714 1458.6 0.0 1805.17714 1458.6 0.0 – – 0.0
qnet1 – – 0.0 41530.6864 159.1 0.0 31236.0264 94.9 0.0 21159.9639 32.0 0.0
qnet1 o 28462.14 77.6 0.0 27183.378 69.6 0.0 25701.758 60.3 0.0 19351.9 20.7 0.1
ran8x32 5837 11.2 0.0 5837 11.2 0.0 5837 11.2 0.0 5329 1.6 0.3
ran10x26 4745 11.1 0.0 4745 11.1 0.0 4745 11.1 0.0 4459 4.4 1.2
ran12x21 4080 11.4 0.0 4080 11.4 0.0 4080 11.4 0.0 3782 3.2 1.1
ran13x13 3521 8.3 0.0 3521 8.3 0.0 3521 8.3 0.0 3636 11.8 0.6
rentacar – – 0.0 – – 0.0 – – 0.0 – – 0.1
rgn – – 0.0 – – 0.0 – – 0.0 82.1999991 0.0 0.1
rout – – 0.0 – – 0.0 – – 0.0 – – 0.7
set1ch 57621.6608 5.7 0.0 57621.6608 5.7 0.0 57621.6608 5.7 0.0 54628 0.2 0.0
seymour1 449.489972 9.4 0.0 449.489972 9.4 0.0 449.489972 9.4 0.0 – – 0.1
stein27 27 50.0 0.0 21 16.7 0.0 21 16.7 0.0 – – 0.0
stein45 45 50.0 0.0 40 33.3 0.0 40 33.3 0.0 – – 0.0
swath1 – – 0.0 – – 0.0 – – 0.1 – – 79.4
swath2 – – 0.0 – – 0.0 – – 0.1 – – 84.9
vpm2 – – 0.0 – – 0.0 17.25 25.5 0.0 13.75 0.0 0.5
a1c1s1 – – 0.0 – – 0.1 20811.88 79.5 0.2 – – 0.0
aflow40b – – 0.0 – – 0.0 – – 0.1 1318 12.8 1.4

continue next page

99

Simple Rounding Rounding Shifting Rens

Name Primal Bound P Gap Time Primal Bound P Gap Time Primal Bound P Gap Time Primal Bound P Gap Time

arki001 – – 0.0 – – 0.0 – – 0.0 – – 1.8
atlanta-ip – – 0.0 – – 0.0 – – 1.3 – – 0.5
binkar10 1 – – 0.0 – – 0.0 – – 0.0 – – 0.0
dano3mip – – 0.0 – – 0.0 – – 0.1 743.464286 6.5 276.1
danoint – – 0.0 – – 0.0 – – 0.0 – – 0.0
ds 5418.56016 1811.7 0.2 5281.30516 1763.3 1.5 5281.30516 1763.3 1.6 1437.2175 407.1 35.2
glass4 – – 0.0 – – 0.0 – – 0.0 4.3000342e+09 258.3 0.2
liu – – 0.0 – – 0.0 4130 252.4 0.1 3132 167.2 5.0
markshare1 854 Large 0.0 271 Large 0.0 271 Large 0.0 136 Large 0.0
markshare2 1623 Large 0.0 1211 Large 0.0 1211 Large 0.0 212 Large 0.0
mkc – – 0.0 – – 0.1 -431.712 23.4 0.9 -533.432 5.4 0.6
mkc1 – – 0.0 – – 0.0 – – 3.4 -596.519 1.8 0.2
momentum1 – – 0.0 – – 0.0 – – 0.1 – – 17.0
momentum2 – – 0.0 – – 0.0 – – 0.2 – – 14.1
msc98-ip – – 0.0 – – 0.1 – – 0.5 – – 0.4
neos616206 – – 0.0 – – 0.0 – – 0.0 – – 1.8
net12 – – 0.0 – – 0.0 – – 0.2 – – 0.3
nsrand-ipx – – 0.0 – – 0.1 71360 39.4 1.9 61280 19.7 1.1
opt1217 – – 0.0 – – 0.0 -14 12.5 0.0 -16 0.0 0.0
protfold – – 0.0 – – 0.0 – – 0.0 – – 3.8
rd-rplusc-21 – – 0.0 – – 0.0 – – 0.2 – – 4.3
roll3000 – – 0.0 – – 0.0 – – 0.1 14945 15.6 1.6
seymour 707 67.1 0.0 702 66.0 0.2 702 66.0 0.3 430 1.7 18.7
sp97ar – – 0.0 1.37580174e+09 107.0 0.3 1.37580174e+09 107.0 0.4 722387462 8.7 10.1
swath – – 0.0 – – 0.0 – – 0.3 – – 0.2
swath3 – – 0.0 – – 0.0 – – 0.2 – – 57.4
t1717 – – 0.0 – – 0.6 – – 1.4 – – 18.0
timtab1 – – 0.0 – – 0.0 – – 0.0 – – 0.0
timtab2 – – 0.0 – – 0.0 – – 0.1 – – 0.0
tr12-30 – – 0.0 – – 0.0 163290.448 25.0 0.0 159967.543 22.5 2.9

Total (129) 0.6 23.6 54.5 932.6
Geom. Mean 1.0 1.0 1.1 2.0

Table B.7. Comparison of different rounding heuristics applied to every LP-feasible point of the LP-solving loop

100
A

p
p
e
n
d
ix

B
.

T
a
b
l
e
s

Objective Ray Average Ray Avg Weighted Slack Ray Avg Normal Ray SCIP root node heuristics

Name P Bound P Gap% P Bound P Gap% P Bound P Gap% P Bound P Gap% Primal Bound P Gap%

air03 – – – – – – 997224 193.2 727590 113.9

cap6000 -2443599 0.3 -2442801 0.3 -2442801 0.3 -2443599 0.3 -2442801 0.3

eilD76 2836.25525 220.3 – – – – 836.25525 220.3 2987.4607 237.4

fast0507 554 218.4 570 227.6 – – 524 201.1 178 2.3

fiber 973221.9 139.7 – – – – – – 957344.94 135.8

irp 16146.0316 32.8 – – 13938.2651 14.6 14677.6318 20.9 16266.3441 33.8

mod008 978 218.6 950 209.4 308 0.3 874 184.7 369 20.2

neos21 – – 31 342.9 – – – – 12 71.4

nw04 22494 33.4 – – – – 22494 33.4 22494 33.4

p0282 396019 53.3 259966 0.6 259966 0.6 384266 48.7 307830 19.1

p2756 3357 7.5 – – – – 3360 7.6 49141 1473.0

stein27 25 38.9 25 38.9 – – 25 38.9 19 5.6

stein45 43 43.3 43 43.3 – – 43 43.3 37 23.3

ds 5108.14516 1702.2 – – – – 4388.21516 1448.2 5281.30516 1763.3

markshare1 381 Large – – 270 Large 228 Large 305 Large

markshare2 480 Large – – 416 Large 416 Large 452 Large

seymour 723 70.9 722 70.7 – – 693 63.8 709 67.6

Solution found 15 8 6 15

Best solution 7 4 4 11

Table B.8. Comparison of different ray directions

101

Octane Octane Octane Octane

deactivated without Diff Ray with Diff Ray only at root

Name Nodes Time Nodes Time Nodes Time Nodes Time

10teams 324 31.1 324 31.5 324 31.2 324 31.7

30:70:4 5:0 5:100 192 505.3 192 519.6 192 521.7 192 519.9

30:70:4 5:0 95:98 125 293.6 125 301.9 125 300.3 125 298.8

30:70:4 5:0 95:100 109 305.9 109 313.6 109 312.4 109 312.6

acc-0 1 14.9 1 14.9 1 14.8 1 14.9

acc-1 1 29.2 1 29.6 1 29.7 1 29.5

acc-2 79 98.3 79 99.6 79 99.2 79 99.6

acc-3 75 185.3 75 186.1 75 186.6 75 184.8

acc-4 236 414.8 236 421.4 236 419.0 236 415.1

acc-5 8592 2138.4 8592 2113.8 8592 2125.6 8592 2122.9

acc-6 18 80.6 18 82.4 18 82.5 18 82.2

air03 2 22.9 2 26.0 2 25.1 2 25.8

air04 153 167.2 153 169.0 153 168.0 153 167.8

air05 239 98.0 239 98.8 239 98.9 239 98.9

cap6000 2585 24.4 2585 31.3 2585 33.2 2585 24.9

disctom 1 67.0 1 67.2 1 67.0 1 67.0

eilD76 1359 103.2 1359 105.7 1359 104.8 1359 104.2

enigma 1408 0.8 1408 0.8 1408 0.9 1408 0.8

fiber 42 5.1 42 5.1 42 5.1 42 5.2

irp 327 47.5 327 59.9 327 59.4 327 49.5

l152lav 63 7.2 63 7.3 63 7.4 63 7.3

lseu 302 0.3 302 0.3 302 0.3 302 0.3

misc03 52 1.9 52 2.0 52 2.0 52 1.9

misc07 34657 46.6 34657 47.5 34657 47.6 34657 46.4

mitre 5 70.1 5 70.4 5 70.1 5 70.3

mod008 228 0.5 228 0.9 228 1.0 228 0.6

neos1 1 5.9 1 6.0 1 6.0 1 5.9

neos21 2450 42.1 2450 47.0 2450 47.4 2450 42.5

nug08 3 79.7 3 80.0 3 80.3 3 80.3

nw04 7 161.0 7 165.2 7 167.0 7 166.7

p0201 217 2.2 217 2.3 217 2.3 217 2.2

p0282 71 0.7 61 0.9 61 0.8 71 0.8

p0548 63 0.9 46 0.9 46 0.9 63 0.9

p2756 185 5.5 185 7.8 185 8.0 185 6.6

qap10 5 445.7 5 454.6 5 448.3 5 445.3

stein27 4165 1.4 4165 3.9 4165 4.7 4165 1.4

stein45 52305 41.5 53165 58.5 53165 59.5 52305 40.8

Total (37) 110647 5546.9 111480 5633.3 111480 5638.8 110647 5576.5

Geom. Mean 103 28.4 102 30.6 102 30.8 103 28.8

Table B.9. Integration of Octane into SCIP (easy instances)

102
A

p
p
e
n
d
ix

B
.

T
a
b
l
e
s

Octane deactivated Octane without Diff Ray Octane with Diff Ray Octane only at root

Name Primal Bound Nodes Primal Bound Nodes Primal Bound Nodes Primal Bound Nodes

ds 305.105 688 305.105 657 305.105 655 305.105 672

fast0507 177 1022 177 1070 177 1079 177 1022

markshare1 6 27406458 6 27406449 6 27406448 6 27406456

markshare2 18 18232531 16 17651861 16 17651872 18 18232528

protfold 1e+20 713 1e+20 684 1e+20 722 1e+20 726

seymour 427 4942 427 4796 427 4825 427 4950

sp97ar 686076608 11416 686076608 10900 686076608 11177 686076608 11347

t1717 180160 299 180160 287 180160 301 180160 305

Total (8) 45658069 45076704 45077079 45658006

Geom. Mean 15967 15590 15861 15987

Table B.10. Integration of Octane into SCIP (hard instances)

103

No LNS Local Branching Rins Crossover Mutation

Name Nodes Time Nodes Time HeurTime Nodes Time HeurTime Nodes Time HeurTime Nodes Time HeurTime

10teams 324 32.3 324 31.6 0.1 324 31.5 0.0 324 31.6 0.0 324 32.0 0.0
acc-4 236 420.3 236 421.9 0.0 236 418.1 0.0 236 419.8 0.0 236 423.6 0.0
acc-5 5011 1475.3 5011 1470.5 0.0 5011 1457.9 0.0 5011 1469.6 0.0 5011 1461.6 0.0
aflow30a 9408 57.8 9408 64.8 7.0 7740 49.1 0.9 6026 35.5 0.4 8872 48.9 0.3
air05 239 98.6 239 98.7 0.0 239 98.6 0.0 239 98.2 0.0 239 98.5 0.0
bc1 17114 753.6 17114 819.1 64.0 17114 776.2 18.5 16043 733.6 29.8 16443 748.5 17.8
bell3a 48908 43.2 48908 43.4 0.0 48682 46.4 4.1 48995 45.4 2.5 48908 46.8 3.6
bell5 1170 1.1 1170 1.1 0.0 1170 1.1 0.0 1170 1.2 0.1 1170 1.2 0.1
bienst1 9574 48.0 9574 48.0 0.0 9638 55.8 6.9 9574 48.6 0.0 11797 61.4 4.8
bienst2 101293 607.7 101293 601.6 0.0 101293 622.5 18.6 101372 608.1 0.5 100584 618.0 13.7
blend2 1066 3.3 1066 4.5 0.9 1520 4.1 0.6 879 3.5 0.3 1066 3.4 0.0
cap6000 2937 36.9 2937 37.2 0.4 2937 37.0 0.2 2937 37.0 0.2 2937 37.4 0.4
eilD76 1359 108.2 1359 121.3 11.9 1359 109.0 0.2 1359 108.0 0.1 1359 108.3 0.1
enigma 4455 1.6 4455 1.5 0.0 4455 1.6 0.0 4455 1.5 0.0 4455 1.5 0.0
fast0507 1488 2451.7 1488 2479.4 29.6 1488 2469.8 21.2 1488 2465.3 2.5 1488 2466.8 3.2
flugpl 474 0.4 474 0.4 0.0 474 0.4 0.0 474 0.4 0.0 474 0.3 0.0
gesa2-o 1656 12.4 1656 12.4 0.1 1495 12.5 0.3 1604 12.4 0.2 1656 12.6 0.1
gesa3 o 725 10.7 725 10.7 0.1 725 10.6 0.1 725 10.7 0.1 725 10.8 0.1
irp 312 59.7 312 74.7 15.5 312 59.6 0.2 312 60.0 0.2 312 59.6 0.2
lseu 302 0.8 302 0.8 0.0 302 0.8 0.0 302 0.8 0.0 302 0.8 0.0
mas74 5206250 1660.9 5206250 1687.0 53.9 3612338 1178.3 30.3 4856815 1551.7 31.7 4842766 1575.0 77.3
mas76 618955 211.9 618955 228.6 13.4 326851 110.5 10.4 347300 104.7 0.3 460271 167.9 3.5
mas284 17379 27.9 17379 31.3 3.6 17379 29.4 1.4 17379 31.2 3.5 17379 28.5 0.7
misc07 34963 47.6 34963 50.5 3.2 34963 46.7 0.2 34963 46.8 0.2 34963 47.1 0.5
mod008 212 0.8 212 1.1 0.3 212 0.8 0.0 212 0.8 0.0 212 0.7 0.0
mod011 2449 164.7 2449 214.3 49.5 2260 168.8 19.6 2449 170.8 4.8 2449 168.1 1.0
modglob 4283 7.7 4283 9.6 1.8 4389 9.2 0.9 3815 6.8 0.5 4224 8.0 0.4
mzzv11 4261 1510.2 4338 1626.2 97.3 3369 1225.5 2.9 2541 1165.1 0.6 4261 1485.3 1.1
mzzv42z 1744 731.3 1744 813.5 71.9 1688 718.1 1.2 1452 678.1 0.5 1744 744.0 0.7
neos2 51967 199.5 51967 211.4 10.8 45449 186.4 5.0 51967 201.6 1.2 51967 205.4 4.5
neos3 784004 3600.0 783940 3600.0 159.5 828482 3600.0 22.6 508140 2391.8 8.1 768020 3600.0 24.6

continue next page

104
A

p
p
e
n
d
ix

B
.

T
a
b
l
e
s

No LNS Local Branching Rins Crossover Mutation

Name Nodes Time Nodes Time HeurTime Nodes Time HeurTime Nodes Time HeurTime Nodes Time HeurTime

neos6 3738 395.9 3738 489.8 94.5 3738 398.6 3.8 3738 398.5 2.5 3738 396.6 1.3
neos7 51431 552.8 51431 554.2 3.5 51431 553.2 2.9 51407 549.0 7.2 51431 542.0 1.6
neos11 6790 793.2 6790 795.4 10.2 7000 796.4 4.0 6796 788.6 0.2 6790 801.3 0.3
neos13 19071 1198.3 19071 1258.3 53.1 13862 1016.8 59.3 11242 793.6 8.9 7770 635.5 8.9
neos21 2223 41.9 2223 45.4 3.7 2223 43.3 1.2 2223 41.9 0.1 2223 41.7 0.1
neos22 32200 289.5 32200 292.3 2.6 32876 344.9 12.2 35891 399.3 14.3 29486 288.3 4.0
neos632659 31971 21.2 31971 22.2 1.4 31971 21.3 0.5 31971 21.1 0.1 31971 21.5 0.6
p0201 262 2.4 262 2.4 0.0 262 2.4 0.0 262 2.4 0.0 262 2.4 0.0
pk1 293834 130.0 293834 136.2 7.1 356629 172.8 8.4 293834 130.9 1.8 293965 148.8 19.1
pp08a 1852 3.9 1852 6.3 2.4 1829 4.5 0.6 1817 4.1 0.2 1929 4.0 0.1
pp08aCUTS 2374 7.2 2374 9.4 2.2 1853 6.5 0.5 2400 7.7 0.4 2374 7.4 0.2
prod1 59396 46.9 61929 51.3 1.6 59736 49.3 0.8 59023 48.7 0.7 59396 47.7 0.6
qiu 10584 186.5 10584 194.9 8.7 10584 192.8 8.7 10584 186.4 0.1 10584 187.0 0.6
ran8x32 14780 26.6 14780 29.3 2.9 14983 25.3 0.5 15693 28.8 0.5 14780 27.0 0.2
ran10x26 36989 78.0 36989 85.8 8.2 30491 69.2 1.3 29868 67.0 0.9 42665 88.0 1.1
ran12x21 132269 233.1 132269 253.3 21.8 124737 231.1 3.7 136566 240.9 4.2 133245 235.0 2.0
ran13x13 72276 87.5 72276 96.4 9.9 100478 117.0 2.5 67410 82.8 2.2 76602 93.0 1.1
rgn 2341 1.1 2341 1.4 0.4 2349 1.1 0.1 2341 1.1 0.1 2341 1.1 0.0
rout 33069 74.4 33069 80.2 5.8 23572 56.3 0.7 32398 69.0 0.5 33069 75.4 0.5
seymour1 4837 1010.6 4837 1019.2 7.9 4837 1037.6 25.2 4564 994.4 23.0 4813 1012.4 13.7
stein27 4173 4.0 4173 3.8 0.0 4173 4.0 0.1 4173 3.9 0.0 4173 3.9 0.0
stein45 53354 58.8 53354 61.6 2.4 53354 62.8 3.3 53354 57.3 0.1 53354 58.6 0.5
swath1 2435 100.7 2435 108.6 8.2 2435 102.2 1.1 2435 101.7 0.6 2435 101.5 0.4
swath2 18520 226.6 18520 252.4 26.1 12993 190.6 5.6 12543 182.3 3.0 18520 228.6 2.7
swath3 131638 1004.2 131638 1099.6 99.6 97650 800.5 15.2 181669 1330.1 12.2 131848 1027.5 23.1
vpm2 10724 9.8 10724 10.9 1.1 10724 10.1 0.5 9890 9.6 0.3 10724 9.9 0.2

Total (57) 7967649 20970.9 7970195 21777.9 979.9 6140664 19846.8 329.1 7094650 19081.6 172.2 7427102 20357.8 241.8
Geom. Mean 3579 57.9 3581 60.9 3.1 3473 57.2 2.1 3404 56.0 1.5 3535 57.8 1.6

Table B.11. The overall performance of SCIP with different LNS heuristics, easy instances

105

No LNS Local Branching Rins Crossover Mutation

Name Primal Bound γPD Primal Bound γPD HeurTime Primal Bound γPD HeurTime Primal Bound γPD HeurTime Primal Bound P-D Gap% HeurTime

a1c1s1 12664.722 44.0 12664.722 44.1 57.8 12664.722 44.2 132.1 12643.7169 43.2 39.5 12382.4229 40.6 34.8
aflow40b 1299 13.7 1299 13.8 305.8 1213 5.9 15.7 1285 12.4 2.9 1299 13.7 11.9
arki001 7585236.61 0.1 7585236.61 0.1 10.3 7582538.72 0.0 54.7 7584890.09 0.1 81.3 7584383.5 0.1 606.9
atlanta-ip – – – – 0.0 – – 0.0 – – 0.0 – – 0.0
binkar10 1 6747.31001 0.2 6747.31001 0.2 4.5 6746.76002 0.2 28.0 6743.24002 0.2 22.8 6746.76002 0.2 7.5
dano3mip 767.043478 33.0 767.043478 33.0 957.9 767.043478 33.0 285.2 767.043478 33.0 0.0 766.954545 32.9 5.3
danoint 66.5 4.5 65.6666667 2.9 76.6 66.375 4.2 99.8 66.5 4.5 0.3 66.25 4.1 4.6
ds 360.715161 514.3 411.835161 607.4 1709.4 360.715161 514.3 22.8 360.715161 514.3 1.6 360.715161 514.3 1.7
glass4 1.800015e+09 124.8 1.76668522e+09 120.7 166.6 1.80001365e+09 125.0 51.0 1.78573286e+09 123.2 83.5 1.80001452e+09 125.0 48.8
liu 2771.99994 395.0 2596 363.6 254.6 2449.99999 337.5 331.2 2771.99994 395.0 0.7 2132 280.7 81.2
markshare1 1 – 1 – 22.9 1 – 15.3 1 – 11.8 1 – 249.9
markshare2 16 – 16 – 19.5 12 – 30.7 16 – 6.7 16 – 191.7
mkc -551.012 2.4 -548.844 2.8 845.7 -552.15 2.2 23.6 -551.412 2.4 8.1 -551.282 2.4 23.0
mkc1 -606.56 0.1 -606.66 0.1 287.4 -606.56 0.1 4.7 -606.717 0.1 9.3 -606.46 0.1 47.6
momentum1 – – – – 0.0 – – 0.0 – – 0.0 – – 0.0
momentum2 – – – – 0.0 – – 0.0 – – 0.0 – – 0.0
msc98-ip – – – – 0.0 – – 0.0 – – 0.0 – – 0.0
neos616206 937.6 2.4 937.6 2.4 44.0 937.866667 1.8 25.7 937.6 2.4 3.3 937.6 2.4 11.5
net12 337 175.0 337 175.0 17.9 255 108.0 7.0 337 175.1 0.0 337 174.1 0.6
noswot -41 4.7 -41 4.7 10.3 -41 4.7 28.9 -41 4.7 9.2 -41 4.7 77.5
nsrand-ipx 55520 9.5 55520 9.5 329.1 55360 9.2 14.8 54400 7.3 29.3 55840 10.2 36.8
opt1217 -16 16.8 -16 16.8 31.7 -16.000007 16.8 32.3 -16.000007 16.8 16.2 -16.000001 16.8 46.5
protfold – – – – 0.0 – – 0.0 – – 0.0 – – 0.0
rd-rplusc-21 – – – – 0.0 – – 0.0 – – 0.0 – – 0.0
roll3000 12968 1.7 12968 1.7 78.2 13006 2.0 20.6 12933 1.5 10.8 12968 1.7 7.1
seymour 425 2.7 425 2.7 1.7 427 3.2 20.9 426 3.0 5.5 425 2.7 0.4
sp97ar 689918770 5.1 689918770 5.1 255.8 686756724 4.7 24.3 689918770 5.1 23.0 699799048 6.6 25.9
swath 519.023309 33.1 480.36465 23.0 327.5 502.07608 28.8 7.4 518.076418 32.7 5.7 519.023309 33.1 25.1
t1717 190337 40.2 190337 40.2 266.9 190337 40.2 8.2 190337 40.2 0.9 190337 40.2 1.3
timtab1 909726 36.5 909726 36.7 140.5 909726 36.6 39.0 909726 36.5 2.0 903265 36.6 645.9
timtab2 1606961 160.7 1606961 161.1 100.3 1606961 161.0 70.6 1606961 160.7 0.6 1563771 154.1 103.4
tr12-30 130658 0.1 130658 0.1 5.4 130658 0.1 27.2 130658 0.1 48.7 130643 0.1 22.7

Total (32) 6328.5 1421.8 423.7 2319.6
Geom. Mean 33.9 15.8 4.6 12.7

Table B.12. The overall performance of SCIP with different LNS heuristics, hard instances

106
A

p
p
e
n
d
ix

B
.

T
a
b
l
e
s

Name SimRou Round Shift FeasP CoefDi PsCstDi FracDi VecDi OPsDi RooSoD LineDi GuiDi Octane CrOv Rens ALL

10teams 1.01 1.01 0.98 0.58 1.01 1.03 1.06 1.01 1.00 1.00 1.00 1.00 0.99 1.02 0.98 1.06
30:70:4 5:0 5:100 1.02 0.98 0.98 1.01 1.14 1.95 1.17 1.09 1.01 1.00 1.00 1.00 0.98 1.16 1.01 1.62

30:70:4 5:0 95:98 1.02 1.00 0.98 1.06 1.01 1.05 1.07 1.06 1.00 1.00 1.00 1.00 0.98 1.03 0.95 1.72

30:70:4 5:0 95:100 1.02 0.99 0.98 1.02 1.01 1.05 1.11 1.02 1.00 1.00 1.00 0.99 0.98 1.01 0.97 1.78

acc-0 1.03 1.02 0.97 1.94 1.02 1.06 1.10 1.02 1.00 1.00 1.01 1.00 0.99 1.01 1.00 4.10

acc-1 1.02 1.02 0.97 1.91 1.01 1.06 1.08 1.24 0.99 0.99 0.99 1.00 0.99 1.00 0.99 4.01

acc-2 1.01 1.01 0.97 1.18 1.00 1.04 1.08 1.13 0.99 0.99 0.99 0.99 0.98 1.00 0.90 1.95

acc-3 1.03 1.02 1.00 1.00 1.02 1.06 1.10 1.03 1.00 1.00 1.01 1.00 0.99 1.01 0.91 1.95

acc-4 1.04 1.01 0.98 1.08 1.02 1.06 1.13 1.08 1.00 1.00 0.99 1.00 0.99 1.00 0.96 2.12

acc-5 1.03 1.01 0.98 1.15 0.68 0.67 1.22 1.05 0.66 1.17 1.45 1.02 0.99 1.00 0.98 >2.45

acc-6 1.04 1.01 0.97 0.96 1.01 1.05 1.25 1.05 0.98 0.98 0.98 0.99 0.99 0.98 0.92 1.99

aflow30a 1.04 1.01 0.98 1.33 1.27 1.15 1.23 1.15 0.87 0.90 0.96 1.03 1.00 1.61 1.35 2.74

air03 1.03 1.01 0.98 1.05 1.02 1.05 1.12 1.05 1.01 1.02 1.01 1.00 0.90 1.01 1.00 1.78

air04 1.02 1.00 0.97 0.85 1.05 1.06 1.08 1.11 1.00 0.99 0.99 0.99 0.99 1.00 0.98 1.61

air05 1.06 1.01 0.98 1.15 1.03 1.06 1.11 1.13 1.01 1.00 1.01 1.01 1.00 1.00 0.94 1.85

bc1 1.04 1.03 0.98 1.11 0.99 1.12 1.11 1.05 1.01 1.00 1.01 1.03 1.02 1.03 1.15 2.04

bell3a 1.10 1.02 0.98 1.08 0.99 1.07 1.03 1.05 1.00 0.98 1.04 0.92 0.99 0.95 0.98 1.23

bell5 1.00 1.00 0.94 1.01 0.99 1.00 0.97 0.99 0.98 0.99 1.00 1.01 1.00 0.97 0.98 1.16
bienst1 1.02 1.01 0.99 1.08 0.96 1.17 1.67 0.96 0.89 0.98 1.00 0.97 0.99 0.99 1.00 1.34

bienst2 1.03 1.01 0.99 1.20 1.02 0.89 1.20 1.47 1.06 1.10 1.19 0.99 1.00 1.00 0.99 1.72

blend2 1.02 0.98 0.95 0.67 0.96 0.98 1.20 1.12 1.12 1.10 0.98 0.98 0.98 0.96 2.43 3.53

cap6000 1.06 1.12 0.98 1.04 0.94 1.02 1.13 0.93 0.94 1.01 1.01 0.99 0.74 1.00 1.01 >94.81

dano3 3 1.07 1.01 0.99 0.90 1.02 1.05 1.02 1.02 1.00 1.00 0.99 1.00 1.00 1.00 0.99 1.90

dano3 4 1.05 1.02 0.99 0.98 0.88 1.05 1.03 1.09 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.68

dano3 5 1.03 1.01 0.98 0.90 1.00 0.98 0.99 0.96 0.86 0.94 0.99 0.99 1.00 1.00 0.99 1.64

disctom 1.02 1.01 0.99 >52.68 1.00 1.04 1.02 1.09 1.00 0.99 1.00 1.00 1.00 1.00 1.00 >52.68

dcmulti 1.01 1.03 0.99 1.09 1.02 1.05 1.01 1.02 1.01 1.00 1.01 1.01 1.00 1.00 1.00 1.50

dsbmip 0.99 1.01 0.98 1.73 0.99 1.02 0.99 0.99 0.99 0.99 0.99 0.99 1.00 1.00 0.98 2.53

egout 1.00 1.00 1.01 1.01 1.01 1.01 1.00 1.01 1.00 1.00 1.00 0.99 1.00 1.00 1.00 1.00
eilD76 1.01 1.01 0.97 1.24 1.01 1.06 1.02 1.03 0.99 0.98 0.99 1.01 0.97 1.00 0.96 1.53

enigma 1.01 0.97 0.98 0.96 0.61 0.70 0.73 0.73 0.65 0.95 0.80 1.00 0.98 1.02 0.99 0.71

fast0507 >1.46 >1.46 >1.46 0.73 1.19 0.65 >1.46 >1.46 >1.46 >1.47 >1.46 0.68 0.94 0.99 0.99 >1.46

fiber 1.05 1.02 1.02 0.94 1.02 1.06 1.23 1.02 1.00 1.00 1.00 1.01 0.91 1.01 1.42 1.98

continue next page

107

Name SimRou Round Shift FeasP CoefDi PsCstDi FracDi VecDi OPsDi RooSoD LineDi GuiDi Octane CrOv Rens ALL

fixnet6 1.03 1.02 0.99 0.81 1.01 1.04 1.19 1.00 0.98 1.01 1.00 1.00 1.00 1.00 1.02 1.28

flugpl 1.01 1.01 0.99 0.78 1.01 1.01 1.07 1.01 1.00 0.99 1.00 1.00 1.01 1.01 0.99 0.82
gesa2-o 1.05 1.02 0.98 0.98 0.98 1.21 1.36 1.01 0.92 0.92 1.06 1.06 1.02 1.00 0.95 1.84

gesa2 1.06 1.04 0.92 0.88 1.02 1.05 1.05 1.02 0.99 0.99 1.00 1.00 1.02 1.00 1.32 2.53

gesa3 1.06 1.03 0.98 0.95 1.02 1.05 1.02 1.01 1.04 1.01 1.02 1.02 1.01 1.00 2.46 4.97

gesa3 o 1.09 1.01 0.98 1.05 1.02 1.04 0.99 1.06 0.98 0.96 1.05 1.03 1.00 1.00 1.00 1.98

gt2 1.03 1.01 1.01 1.01 1.13 0.97 1.01 1.01 1.01 1.01 1.00 1.00 1.00 1.02 1.00 1.36

irp 1.10 0.99 0.96 1.03 1.00 1.04 1.02 1.06 0.99 0.99 0.99 0.99 0.76 1.00 1.56 1.50

khb05250 1.21 1.03 1.01 1.06 1.02 1.03 1.01 1.01 1.02 1.01 1.01 1.01 1.02 1.01 1.04 1.43

l152lav 1.12 1.01 0.99 1.06 1.03 1.07 1.04 1.03 1.01 1.00 1.00 1.01 1.00 1.01 0.80 1.28

lseu 1.06 0.99 0.94 1.07 0.99 1.02 1.01 1.01 1.00 0.98 1.00 0.99 0.97 0.98 0.79 0.84
mas74 1.04 1.00 0.72 1.16 0.76 0.87 1.01 0.81 0.62 0.87 0.63 0.91 0.99 1.07 0.99 >2.32

mas76 1.07 0.97 1.11 1.59 0.96 1.02 1.05 0.96 0.95 1.00 0.93 0.96 0.99 2.01 1.72 6.90

mas284 1.06 1.00 0.93 1.20 1.12 1.08 1.07 0.99 0.91 0.97 1.08 0.98 1.02 0.90 1.02 1.75

misc03 1.03 1.01 1.00 1.05 1.01 1.04 1.02 1.01 1.00 1.00 1.00 1.00 0.98 1.00 0.79 0.89
misc06 1.02 1.01 0.99 1.05 0.96 0.97 0.99 1.05 0.98 0.97 0.99 0.99 0.99 1.03 0.96 1.35

misc07 1.08 1.01 0.99 1.35 1.06 1.05 1.03 1.10 1.03 1.10 1.08 1.04 1.00 1.02 1.01 1.95

mitre 1.06 1.02 0.58 1.11 1.02 1.06 1.21 1.10 1.01 1.00 1.00 1.01 1.00 0.99 1.01 5.84

mod008 1.07 1.07 1.03 1.06 1.00 1.03 1.14 1.17 1.01 1.01 1.00 1.00 0.83 0.99 1.00 2.62

mod011 1.07 1.02 0.99 1.11 0.96 0.98 1.05 1.05 0.82 0.82 0.99 1.04 1.01 0.96 1.01 2.25

modglob 1.05 1.02 0.98 0.95 0.95 1.09 0.98 0.92 0.83 0.84 0.98 0.99 1.01 1.11 0.83 1.35

mzzv11 1.05 0.99 0.97 1.04 1.40 1.13 1.47 1.16 1.08 1.36 1.02 1.04 0.99 1.30 1.00 >3.09

mzzv42z 1.05 1.02 0.99 1.09 1.02 0.80 1.02 0.91 1.04 1.34 0.87 1.05 1.01 1.08 1.01 1.84

neos1 1.02 1.03 0.98 1.07 1.01 1.06 1.04 1.02 1.00 1.01 1.01 1.01 1.02 1.00 1.01 5.25

neos2 1.04 1.02 0.98 1.06 0.92 0.79 1.07 0.75 1.02 0.86 0.76 1.06 1.02 0.99 1.01 3.12

neos3 1.04 1.01 0.99 >1.51 >1.50 >1.50 >1.50 >1.50 >1.50 >1.50 >1.50 >1.50 1.00 >1.50 1.00 >1.50

neos5 1.04 1.05 0.97 1.24 1.02 1.07 1.03 1.09 1.01 1.01 1.00 1.02 1.01 0.99 1.00 2.40

neos6 1.04 1.01 0.99 1.73 0.48 1.15 0.97 0.43 1.29 1.90 0.99 1.68 1.01 0.99 1.00 5.54

neos7 1.03 1.02 1.01 1.22 1.08 1.11 1.09 1.14 1.00 1.01 1.00 1.03 1.00 1.01 1.09 0.82
neos10 1.04 1.02 0.98 1.04 1.02 1.06 1.02 1.02 1.01 1.01 1.01 1.01 1.01 1.00 1.01 2.29

neos11 1.03 1.03 1.00 1.59 0.98 1.17 1.27 1.48 1.05 1.14 1.20 1.19 1.01 1.01 1.00 3.16

neos13 1.03 3.63 0.88 0.91 0.79 0.83 0.65 0.81 1.02 1.02 1.01 1.02 1.01 1.51 0.98 1.11
neos21 1.02 0.86 1.00 1.05 1.02 1.00 1.18 1.03 1.00 0.99 1.03 1.01 0.89 1.00 0.97 1.61

continue next page

108
A

p
p
e
n
d
ix

B
.

T
a
b
l
e
s

Name SimRou Round Shift FeasP CoefDi PsCstDi FracDi VecDi OPsDi RooSoD LineDi GuiDi Octane CrOv Rens ALL

neos22 1.02 1.01 0.58 1.22 1.18 1.48 1.29 1.13 1.25 1.21 1.30 1.06 1.00 0.73 1.02 2.95

neos632659 1.03 0.99 0.96 1.53 1.42 1.56 1.18 1.90 1.40 1.49 1.55 0.85 1.00 1.01 1.40 1.72

nug08 1.04 1.05 1.00 1.06 1.03 1.09 1.03 1.03 1.04 1.04 1.03 1.04 1.04 1.00 0.96 2.04

nw04 1.03 1.00 0.99 1.09 1.01 1.05 1.01 1.01 1.00 1.00 1.00 1.00 0.86 1.00 0.99 1.75

p0201 1.04 1.02 0.98 1.07 1.06 1.09 1.01 1.03 0.99 0.99 0.99 1.00 0.98 1.00 0.85 1.33

p0282 1.00 1.03 1.03 1.01 1.02 1.02 1.01 1.02 0.99 0.99 1.01 1.01 1.00 1.01 1.29 3.23

p0548 1.02 1.01 0.99 1.02 1.03 1.02 1.01 0.99 1.00 0.99 1.00 0.98 1.02 0.98 1.01 2.41

p2756 1.03 1.25 0.98 0.68 1.00 1.04 1.01 1.01 1.00 1.00 1.00 1.01 0.87 1.01 1.01 1.52

pk1 1.06 1.00 1.37 1.08 0.78 1.18 1.13 0.80 1.21 0.93 0.98 0.78 1.00 0.99 0.85 3.31

pp08a 1.04 1.00 0.98 1.01 1.03 1.04 1.03 0.97 0.95 1.05 1.03 1.01 0.99 0.96 1.00 1.38

pp08aCUTS 1.04 1.04 1.00 0.81 0.89 0.93 1.04 0.98 0.76 1.03 1.02 1.03 1.04 0.94 0.83 1.58

prod1 1.04 1.00 1.00 1.45 1.01 1.07 1.00 1.03 1.00 1.02 0.99 0.96 1.00 0.96 0.98 1.71

qap10 1.05 1.03 1.00 0.98 1.02 1.07 1.07 1.09 1.02 1.02 1.01 1.03 1.01 1.02 0.92 1.97

qiu 1.02 1.01 1.00 1.15 0.92 0.99 1.00 1.00 1.03 0.98 1.00 0.97 0.99 1.00 0.99 1.55

qnet1 1.02 1.01 0.99 1.16 1.03 1.04 1.02 1.03 1.00 1.01 1.00 1.00 1.01 1.01 0.97 1.80

qnet1 o 1.05 1.06 0.96 1.14 1.03 1.05 1.02 1.03 1.00 1.00 1.00 1.00 1.00 1.00 1.08 1.75

ran8x32 1.05 0.99 0.99 1.30 0.78 0.75 0.86 1.05 0.98 0.89 0.86 0.92 1.00 0.93 1.02 1.63

ran10x26 1.26 1.01 0.99 1.26 0.97 1.24 1.06 1.36 1.15 1.13 0.99 1.22 1.01 1.16 1.12 1.84

ran12x21 1.08 1.02 0.99 0.97 1.03 0.89 0.99 1.03 0.92 0.92 0.94 0.91 1.00 0.97 0.93 1.65

ran13x13 0.96 1.00 0.99 1.10 1.27 1.08 0.86 0.83 0.96 0.85 1.28 1.42 1.00 1.06 1.00 2.93

rentacar 1.03 1.02 0.99 1.84 1.01 1.05 1.02 1.02 1.00 1.00 1.00 1.01 0.99 0.99 0.99 3.61

rgn 1.01 1.00 0.96 1.02 1.02 1.02 0.98 1.02 1.00 0.99 0.97 0.97 1.00 0.97 0.95 1.32

rout 1.04 1.01 0.99 0.98 1.01 1.02 0.99 1.02 1.06 1.02 0.97 1.03 1.00 1.08 0.99 2.72

set1ch 1.01 1.01 0.95 0.94 1.01 1.03 1.00 1.02 1.00 1.02 1.01 1.01 1.01 1.00 1.02 1.48

seymour1 1.02 1.00 0.94 1.03 0.91 0.96 0.96 0.95 0.89 0.93 0.97 0.96 0.99 1.02 1.00 1.86

stein27 0.94 0.89 0.93 0.96 1.00 0.94 0.96 1.13 0.90 0.90 0.91 0.89 0.51 1.01 0.89 0.72

stein45 1.01 0.91 0.94 1.03 1.05 1.01 0.95 1.09 0.91 0.95 0.97 0.95 0.75 1.03 0.94 1.44

swath1 1.02 1.02 0.99 1.05 1.05 1.07 1.12 1.03 1.00 1.01 1.01 1.02 1.01 0.99 0.86 1.64

swath2 1.03 1.02 0.92 1.03 0.99 1.06 0.93 0.95 1.01 1.10 1.09 1.04 1.01 1.24 0.93 1.87

swath3 1.05 1.01 1.00 1.01 0.65 1.34 1.17 0.92 1.61 1.19 1.26 1.29 1.35 0.76 1.30 1.10
vpm2 1.04 1.02 0.88 1.08 1.06 1.07 1.00 0.89 1.05 1.07 1.03 1.03 1.01 1.02 0.93 1.86

Geom. Mean 1.0436 1.0440 0.9735 1.1231 0.9945 1.0403 1.0639 1.0309 0.9983 1.0214 1.0157 1.0114 0.9787 1.0229 1.0223 2.0183

Table B.13. Factor by which disabling a certain heuristic influences the computation time

109

Name SimRou Round Shift FeasP CoefDi PsCstDi FracDi VecDi OPsDi RooSoD LineDi GuiDi Octane CrOv Rens ALL

10teams 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
30:70:4 5:0 5:100 1.00 1.00 1.00 1.00 1.24 1.93 1.27 1.15 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.18
30:70:4 5:0 95:98 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
30:70:4 5:0 95:100 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
acc-0 1.00 1.00 1.00 55.50 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 55.50

acc-1 1.00 1.00 1.00 47.50 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 47.50

acc-2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
acc-3 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
acc-4 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
acc-5 1.00 1.00 1.00 1.15 0.71 0.76 1.18 1.18 0.80 1.37 1.83 1.00 1.00 1.00 1.00 >1.24

acc-6 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
aflow30a 1.00 1.00 1.00 1.19 1.21 1.13 0.91 1.11 0.83 0.82 0.93 1.05 1.00 1.56 1.38 1.91

air03 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
air04 1.00 1.00 1.00 1.00 0.92 1.21 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.10
air05 1.00 1.00 1.00 1.48 0.96 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.62

bc1 1.00 1.00 1.00 1.01 0.98 1.05 1.07 0.99 0.99 0.99 0.99 1.02 1.00 1.07 1.18 1.17
bell3a 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00 1.00 1.00 1.00 1.02
bell5 1.00 1.00 1.00 1.01 1.00 1.00 1.00 1.01 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.25

bienst1 1.00 1.00 1.00 1.03 0.94 1.15 1.61 0.92 0.90 0.98 1.01 0.96 1.00 1.00 1.00 0.87
bienst2 1.00 1.00 1.00 1.06 0.96 0.88 1.10 1.34 1.06 1.09 1.15 0.97 1.00 1.00 1.00 1.03
blend2 1.00 1.00 1.00 1.00 1.21 1.21 1.21 1.19 1.47 1.46 0.98 0.99 1.00 1.21 6.55 13.01

cap6000 1.00 1.10 1.00 1.00 0.89 0.97 0.95 0.89 0.90 1.01 0.98 0.96 1.00 1.00 1.00 >79.16

dano3 3 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.40

dano3 4 1.00 1.00 1.00 1.00 0.43 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.95
dano3 5 1.00 1.00 1.00 0.97 1.00 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.00 1.00 1.00 1.25

disctom 1.00 1.00 1.00 >36639 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 >18048

dcmulti 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.01
dsbmip 1.00 1.00 1.00 18.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 18.00

egout 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
eilD76 1.00 1.00 1.00 1.00 0.94 0.93 0.93 1.00 1.00 1.00 1.00 1.00 1.00 1.00 3.41 1.99

enigma 1.00 1.00 1.00 1.00 0.09 0.23 0.29 0.32 0.19 0.87 0.54 1.00 1.00 1.00 1.00 0.24

fast0507 >0.86 >0.88 >0.90 1.07 1.06 >0.91 >0.86 >0.79 >0.92 >0.87 >0.84 0.88 1.00 1.00 1.00 >1.25

fiber 1.00 1.00 1.00 1.00 0.99 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.52 1.59

continue next page

110
A

p
p
e
n
d
ix

B
.

T
a
b
l
e
s

Name SimRou Round Shift FeasP CoefDi PsCstDi FracDi VecDi OPsDi RooSoD LineDi GuiDi Octane CrOv Rens ALL

fixnet6 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 3.83 4.06

flugpl 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.93 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.93
gesa2-o 1.00 1.00 1.00 1.00 0.93 1.29 1.11 0.95 0.77 0.77 1.03 1.02 1.00 1.03 1.00 1.08

gesa2 1.00 1.00 1.56 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 4.73 10.16

gesa3 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 32.03 33.66

gesa3 o 1.00 1.00 1.00 0.78 0.91 0.89 0.93 0.98 0.89 0.90 0.97 0.96 1.00 1.00 1.00 1.04
gt2 1.00 1.00 1.03 1.00 2.25 0.44 1.00 1.00 1.25 1.25 1.00 1.00 1.00 1.00 1.00 4.05

irp 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.05 0.97 0.97 1.00 1.00 1.00 1.00 1.74 1.61

khb05250 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.18 2.91

l152lav 1.00 1.06 1.00 0.73 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.86
lseu 1.00 1.00 1.00 1.00 1.00 0.99 0.99 1.00 0.99 0.99 1.00 1.02 1.00 1.00 1.37 1.52

mas74 1.00 1.00 0.75 1.07 0.75 0.80 0.97 0.76 0.64 0.90 0.67 0.92 1.00 1.07 1.00 >0.91
mas76 1.00 1.00 1.03 1.23 0.93 0.96 1.00 0.93 0.94 1.02 0.94 0.97 1.00 1.78 1.06 3.08

mas284 1.00 1.00 1.01 1.08 1.06 1.10 1.08 1.00 0.96 1.02 1.04 1.06 1.00 1.00 1.01 1.46

misc03 1.00 1.00 1.00 0.94 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.91
misc06 1.00 1.00 1.00 1.00 0.96 0.96 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 3.28

misc07 1.00 1.00 1.00 1.00 1.01 0.98 0.99 1.07 1.02 1.12 1.07 1.02 1.00 1.00 1.00 1.10
mitre 1.00 1.00 0.50 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.79

mod008 1.08 1.19 1.08 1.08 0.97 0.97 0.97 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 10.95

mod011 1.00 1.00 1.00 1.18 0.89 0.94 1.11 0.94 0.96 0.96 0.94 1.01 1.00 1.00 1.00 1.63

modglob 1.04 1.00 1.00 1.00 0.92 1.00 0.94 0.85 0.83 0.75 0.98 0.98 1.00 1.12 0.82 1.19
mzzv11 1.00 1.00 1.00 1.00 1.73 1.76 2.88 1.74 1.54 2.16 1.40 1.68 1.00 1.68 1.00 >3.14

mzzv42z 1.00 1.00 1.00 1.00 1.20 0.82 0.82 0.87 1.14 1.65 0.79 1.12 1.00 1.20 1.00 1.91

neos1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 12.50

neos2 1.00 1.00 1.00 0.97 0.80 0.61 0.88 0.63 1.00 0.81 0.64 1.08 1.00 1.00 1.00 2.06

neos3 1.00 1.00 1.00 >1.43 >1.50 >1.51 >1.59 >1.43 >1.63 >1.49 >1.69 >1.58 1.00 >1.54 1.00 >0.61

neos5 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
neos6 1.00 1.00 1.00 1.66 0.32 0.84 1.12 0.23 1.22 2.73 0.94 2.48 1.00 1.00 1.00 6.00

neos7 1.00 1.00 1.00 1.09 1.08 1.06 1.05 1.06 1.04 1.06 1.05 1.03 1.00 1.00 1.08 0.52

neos10 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
neos11 1.00 1.00 1.00 1.61 0.98 1.26 1.37 1.57 1.09 1.29 1.18 1.41 1.00 1.00 1.00 2.19

neos13 1.00 3.96 1.00 0.67 0.68 0.68 0.43 0.66 1.00 1.00 1.00 1.00 1.00 1.70 1.00 0.64

neos21 1.00 0.86 1.00 1.00 1.06 0.93 1.20 0.95 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.87

continue next page

111

Name SimRou Round Shift FeasP CoefDi PsCstDi FracDi VecDi OPsDi RooSoD LineDi GuiDi Octane CrOv Rens ALL

neos22 1.00 1.00 0.61 1.17 1.13 1.41 1.26 1.11 1.33 1.29 1.32 1.08 1.00 0.90 1.00 2.23

neos632659 1.00 1.00 1.01 1.12 1.43 1.58 1.23 1.91 1.49 1.59 1.59 0.80 1.00 1.00 1.43 0.93
nug08 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
nw04 1.00 1.00 1.00 2.50 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 2.50

p0201 1.00 1.13 1.00 1.01 1.07 1.07 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.87
p0282 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 2.14 31.78

p0548 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.36 1.00 1.00 4.79

p2756 1.00 2.00 0.95 0.95 0.91 0.91 0.91 0.95 0.95 1.00 1.00 1.00 1.00 1.00 1.00 3.90

pk1 1.00 1.00 1.29 1.00 0.86 1.12 1.08 0.86 1.14 0.94 0.99 0.87 1.00 1.00 0.91 2.00

pp08a 1.00 1.00 1.00 1.00 1.00 1.02 1.00 0.99 1.01 1.05 1.06 0.98 1.00 1.02 1.00 1.18
pp08aCUTS 0.98 1.05 1.00 0.82 0.87 0.88 1.03 0.97 0.66 1.06 1.01 1.03 1.05 0.99 1.00 1.94

prod1 1.00 1.00 1.07 1.07 0.99 1.01 0.99 1.00 1.03 1.02 1.02 1.00 1.00 1.01 1.00 1.04
qap10 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
qiu 1.00 1.00 1.00 1.08 0.97 1.00 1.01 0.99 1.02 1.00 1.00 0.99 1.00 1.00 1.00 1.07
qnet1 1.00 1.12 1.00 1.00 1.01 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.98 1.32

qnet1 o 1.00 1.31 1.11 1.00 1.04 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 2.04 1.73

ran8x32 1.00 1.00 1.00 0.99 0.64 0.60 0.78 0.95 1.01 0.85 0.76 0.90 1.00 0.94 0.96 1.07
ran10x26 1.21 1.00 1.00 1.07 0.96 1.23 1.04 1.14 1.21 1.12 1.00 1.20 1.00 1.24 1.15 1.31

ran12x21 0.99 1.00 1.00 0.89 0.99 0.84 0.85 0.94 0.96 0.89 0.91 0.88 1.00 0.97 0.90 1.04
ran13x13 0.93 1.00 1.00 1.04 1.26 1.00 0.87 0.84 1.00 0.84 1.33 1.55 1.00 1.07 0.99 2.07

rentacar 1.00 1.00 1.00 7.80 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 6.20

rgn 1.00 1.00 1.00 0.84 0.99 0.99 1.00 1.02 0.99 0.99 0.99 1.00 1.00 1.00 1.00 1.01
rout 1.00 1.00 1.00 0.78 0.87 0.91 0.82 0.87 1.02 0.95 0.87 0.93 1.00 1.02 1.00 1.80

set1ch 1.00 1.00 1.09 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.09 1.09
seymour1 0.93 0.93 0.93 0.93 0.95 0.95 0.96 0.95 0.95 0.98 0.99 1.01 1.00 1.06 1.00 1.54

stein27 1.00 1.01 1.00 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00 1.00 1.00 1.01
stein45 1.00 0.97 1.00 1.00 1.00 0.99 0.94 1.00 0.95 0.96 1.02 0.97 1.00 1.00 1.00 1.17
swath1 1.00 1.00 1.00 0.90 1.12 1.01 1.00 1.02 1.02 1.02 1.00 0.98 1.00 1.00 1.00 1.20

swath2 1.00 1.00 0.91 0.99 0.93 0.98 0.74 0.88 1.03 0.91 1.11 1.05 1.00 1.48 1.00 1.30

swath3 1.00 1.00 1.00 1.05 0.59 1.04 0.88 0.66 1.25 1.00 0.92 0.97 1.00 0.72 1.00 0.90
vpm2 1.00 1.00 0.86 1.03 1.00 1.05 0.99 0.79 1.10 1.11 1.05 1.07 1.00 1.08 1.01 1.33

Geom. Mean 1.0001 1.0470 0.9912 1.3035 0.9550 0.9839 0.9991 0.9696 0.9933 1.0311 1.0041 1.0241 1.0037 1.0365 1.1453 1.9912

Table B.14. Factor by which disabling a certain heuristic influences the solving nodes

112
A

p
p
e
n
d
ix

B
.

T
a
b
l
e
s

Name SimRou Round Shift FeasP CoefDi PsCstDi FracDi VecDi OPsDi RooSoD LineDi GuiDi Octane CrOv Rens ALL Diving

a1c1s1 1.00 1.00 1.00 1.00 0.90 1.02 1.04 1.07 1.28 0.95 0.97 1.00 1.00 1.02 1.00 – 2.71
aflow40b 1.00 1.00 1.00 0.78 0.38 0.78 1.23 0.57 0.52 0.97 0.77 0.87 1.00 1.09 1.32 1.88 1.18
arki001 1.00 1.00 1.00 0.96 1.00 0.98 0.98 1.05 1.00 1.00 0.99 1.01 1.00 1.00 1.00 1.01 1.01
atlanta-ip – – – – – – – ∞ ∞ – – – – – – – –
binkar10 1 1.00 1.00 1.00 1.06 1.00 1.04 1.07 0.99 1.05 1.00 0.97 0.99 1.00 1.06 1.00 1.15 1.46
dano3mip 1.00 1.00 1.00 1.00 1.03 0.94 0.97 0.88 0.96 0.97 1.00 1.00 1.00 1.00 0.93 – 1.73
danoint 1.00 1.00 1.00 0.68 1.16 0.71 1.07 1.09 0.74 1.00 0.96 1.04 1.00 1.00 1.00 0.72 0.89
ds 1.00 1.00 1.00 1.00 0.87 0.88 0.97 0.82 0.70 1.03 1.09 0.90 1.00 1.00 1.00 – 2.42
glass4 1.00 1.00 1.01 0.77 0.89 0.88 0.91 0.91 1.01 0.91 0.98 0.89 1.00 1.01 1.01 1.32 1.40
liu 1.00 1.00 1.00 0.57 0.85 0.85 0.77 1.40 0.85 0.78 0.63 1.16 1.00 1.00 0.73 – 1.43
markshare1 – – – – – – – – – – – – – – – – –
markshare2 – – – – – – – – – – – – – – – – –
mkc 1.00 1.00 0.89 0.78 0.90 0.75 0.78 1.05 0.92 0.85 0.80 0.93 1.00 1.02 0.73 1.60 1.22
mkc1 1.00 1.00 1.00 1.00 0.99 0.97 1.02 1.05 0.97 0.94 1.02 1.01 1.00 1.02 1.00 1.02 1.04
momentum1 – – – – – – – ∞ – – – – – – – – –
momentum2 – – – – – – – – – – – – – – – – –
msc98-ip – – – – – – – – – – – – – – – – –
neos616206 1.05 1.06 1.03 0.86 0.87 0.29 1.05 0.90 1.07 0.90 0.73 0.98 1.08 0.99 1.05 1.46 0.69
net12 1.02 1.02 1.00 – 0.48 0.79 0.77 0.82 0.72 0.44 0.89 0.64 1.01 1.00 1.02 – –
noswot 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.18
nsrand-ipx 1.00 1.00 1.08 1.00 1.38 1.38 1.08 1.15 1.39 1.04 1.04 1.08 1.00 1.27 1.23 5.80 1.72
opt1217 1.00 1.00 1.00 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00 1.00 1.00 – 0.98
protfold – – – – – – – ∞ – – – – – – – – –
rd-rplusc-21 – – – – ∞ ∞ – – – – – – – – – – –
roll3000 1.01 1.00 1.00 1.00 1.07 0.86 1.07 1.11 1.06 0.98 1.04 0.97 1.01 1.09 1.18 4.32 2.96
seymour 1.01 1.00 1.00 0.95 1.00 1.00 1.01 1.01 0.94 0.93 0.99 1.00 1.00 0.94 0.94 – 1.63
sp97ar 1.00 1.00 1.00 0.86 0.96 1.08 1.04 1.16 1.08 1.02 0.89 1.17 1.00 1.00 1.06 1.74 2.06
swath 1.00 1.00 1.00 1.00 0.85 0.80 0.74 0.85 0.76 0.86 0.99 0.88 1.00 1.01 1.00 1.02 0.98
t1717 1.00 1.00 1.00 1.00 1.21 1.23 – 0.82 1.64 1.07 6.20 1.03 1.00 1.00 1.00 – –
timtab1 1.01 1.00 1.00 0.92 0.81 1.23 0.91 0.93 1.27 1.12 0.88 1.19 1.01 1.00 1.00 1.20 1.14
timtab2 1.01 1.00 1.00 1.12 1.10 1.16 0.94 1.15 1.06 1.16 1.33 1.01 1.00 1.00 1.00 – –
tr12-30 1.00 1.00 1.02 0.96 1.04 0.96 0.99 1.00 0.95 1.00 1.04 0.99 1.00 1.00 0.99 1.19 1.18

Geom. Mean 1.0040 1.0034 1.0012 0.9112 0.9357 0.9025 0.9779 0.9930 0.9602 0.9700 0.9497 0.9979 1.0042 1.0220 1.0004 1.4666 1.2558

Table B.15. Factor by which disabling a certain heuristic influences the primal-dual gap γPD

List of Algorithms

1 A General Diving heuristic . 17
2 Outline of the Feasibility Pump 23
3 Objective Feasibility Pump . 26
4 Rens . 32
5 Simple Rounding . 34
6 Outline of Rounding . 35
7 Rounding . 37
8 Shifting . 39
9 Outline of Octane . 44
10 Octane . 49
11 Outline of Local Branching . 56
12 Local Branching . 58
13 Rins . 61
14 Outline of Crossover . 62
15 Crossover . 65
16 Mutation . 66

113

114 List of Algorithms

List of Figures

Some Selected Diving Heuristics 19
Fundamental Procedure Of The Feasibility Pump 22
Sub-MIP Created By Rens . 30
Simple Rounding Compared To Rounding 35
Rounding Compared To Shifting 38
Transformations Applied Before Starting Octane 45
Ray Shooting . 46

Idea Of Local Branching . 56
The Rins-Sub-MIP . 61
The Crossover-Sub-MIP . 63

Distribution of heuristics that found the best solution 73
Solving process for instance aflow30a 74

115

116 List of Figures

List of Tables

Benchmark: Easy Testset . 13
Benchmark: Hard Testset . 14

Survey Of Diving Heuristics Applied To Root Node 21
Survey Of Feasibility Pump Versions 28
Survey Of Integrating Rens into SCIP 33
Survey Of Rounding Heuristics Applied To Optimum of Root-LP . 40
Survey Of Rounding Heuristics Applied During LP-Loop 41
Survey Of Different Ray Directions 50

Survey Of Different LNS Heuristics 67

Summarized Results: Switch Off One Heuristic Each Time 71

Comparison Of Different Diving Heuristics 84
Comparison Of Different Feasibility Pump Versions 86
Integration Of Rens Into SCIP, Easy Instances 90
Integration Of Rens Into SCIP, Hard Instances 91
Comparison Of Different Rounding Heuristics 95
Rounding Heuristics Applied During LP-Loop 99
Octane: Comparison Of Different Ray Directions 100
Integration Of Octane Into SCIP, Easy Instances 101
Integration Of Octane Into SCIP, Hard Instances 102
Comparison Of Different LNS Heuristics, Easy Instances 104
Comparison Of Different LNS Heuristics, Hard Instances 105
Computation Time If Disabling One Heuristic, Easy Instances . . 108
Solving Nodes If Disabling One Heuristic, Easy Instances 111
Primal Dual Gap If Disabling One Heuristic, Hard Instances . . . 112

117

118 List of Tables

Bibliography

[1] T. Achterberg. SCIP - a framework to integrate constraint and mixed
integer programming. Technical Report 04-19, Zuse Institute Berlin,
2004. http://www.zib.de/Publications/abstracts/ZR-04-19/.

[2] T. Achterberg. Constraint Integer Programming. PhD thesis, Technische
Universität Berlin, 2007. To appear.

[3] T. Achterberg and T. Berthold. Improving the Feasibility Pump. Tech-
nical Report 05-42, ZIB, 2005. To appear in Operations Research.

[4] T. Achterberg, T. Berthold, T. Koch, A. Martin, and K. Wolter. SCIP
(Solving Constraint Integer Programs), documentation. http://scip.

zib.de/doc.

[5] T. Achterberg, T. Koch, and A. Martin. Branching rules revisited. Op-
erations Research Letters, 33:42–54, 2005.

[6] T. Achterberg, T. Koch, and A. Martin. MIPLIB 2003. Operations
Research Letters, 34(4):1–12, 2006. http://miplib.zib.de.

[7] K. R. Apt. Principles of Constraint Programming. Cambridge University
Press, 2003.

[8] T. Bäck. Evolutionary algorithms in theory and practice: evolution
strategies, evolutionary programming, genetic algorithms. Oxford Uni-
versity Press, Oxford, UK, 1996.

[9] E. Balas. Intersection cuts – a new type of cutting planes for integer
programming. Operations Research, 19:19–39, 1971.

[10] E. Balas, S. Ceria, M. Dawande, F. Margot, and G. Pataki. OCTANE:
A New Heuristic for Pure 0-1 Programs. Operations Research, 49, 2001.

[11] E. Balas and C. H. Martin. Pivot-and-Complement: A Heuristic for 0-1
Programming. Management Science, 26(1):86–96, 1980.

[12] E. Balas and C. H. Martin. Pivot-and-Shift: A Heuristic for Mixed
Integer Programming. GSIA, Carnegie Mellon University, August 1986.

119

120 Bibliography

[13] E. Balas, S. Schmieta, and C. Wallace. Pivot and shift - a mixed integer
programming heuristic. Discrete Optimization, 1(1):3–12, June 2004.

[14] L. Bertacco, M. Fischetti, and A. Lodi. A feasibility pump heuristic for
general mixed-integer problems. Technical Report OR-05-5, University
of Padova, Italy, May 2005.

[15] R. E. Bixby. MIP Heuristics. ILOG Powerpoint presen-
tation, 2005. http://co-at-work.zib.de/download/CD/Talks/

COatW-2005-10-08-Bixby-MIP3.pdf.

[16] R. E. Bixby, S. Ceria, C. M. McZeal, and M. W. Savelsbergh. An
updated mixed integer programming library: MIPLIB 3.0. Optima,
(58):12–15, June 1998.

[17] R. E. Bixby, M. Fenelon, Z. Gu, E. Rothberg, and R. Wunderling. MIP:
Theory and practice – closing the gap. In M. Powell and S. Scholtes,
editors, Systems Modelling and Optimization: Methods, Theory, and
Applications, pages 19–49. Kluwer Academic Publisher, 2000.

[18] R. Borndörfer. Aspects of Set Packing, Partitioning, and Covering.
Shaker Verlag, Aachen, 1998. Ph.D. thesis, Technische Universität
Berlin.

[19] N. Christofides. Worst-Case Analysis of a New Heuristic for the Travel-
ling Salesman Problem. GSIA report 388, Carnegie-Mellon University,
1976.

[20] V. Chvátal. Linear programming. Freeman, 1983.

[21] E. Danna, E. Rothberg, and C. L. Pape. Exploring relaxation induced
neighborhoods to improve MIP solutions. Mathematical Programming,
Ser. A, 2004.

[22] Dash Optimization. XPress-MP. http://www.dashoptimization.

com/home/products/products_optimizer.html.

[23] A. Eisenblätter, H.-F. Geerdes, T. Koch, A. Martin, and R. Wessäly.
UMTS radio network evaluation and optimization beyond snapshots.
Math. Meth. Oper. Res., 63(1), 2006.

[24] M. Fischetti, F. Glover, and A. Lodi. The feasibility pump. Mathematical
Programming, 104(1):91–104, 2005.

[25] M. Fischetti and A. Lodi. Local branching. Mathematical Programming
98, 2003.

[26] M. Fischetti and A. Lodi. Repairing MIP infeasibility through Local
Branching. Technical report, University of Padova, September 2005.

Bibliography 121

[27] J. Forrest and R. Lougee-Heimer. COIN branch and cut, user guide,
2005. http://www.coin-or.org/Cbc.

[28] F. Glover. Tabu Search: A Tutorial. Interfaces, 20(4):74–94, 1990.

[29] F. Glover and M. Laguna. General Purpose Heuristics for Integer Pro-
gramming - Part I. Journal of Heuristics 3, 1997.

[30] F. Glover and M. Laguna. General Purpose Heuristics for Integer Pro-
gramming - Part II. Journal of Heuristics 3, 1997.

[31] F. Glover and M. Laguna. Tabu Search. Kluwer Academic Publisher,
Boston, Dordrecht, London, 1997.

[32] F. Glover, A. Løkketangen, and D. L. Woodruff. Scatter Search to
Generate Diverse MIP Solutions. OR Computing Tools for Modeling,
Optimization and Simulation: Interfaces in Computer Science and Op-
erations Research, 2000.

[33] GNU. the GNU linear programming kit. http://www.gnu.org/

software/glpk.

[34] R. E. Gomory. Outline of an algorithm for integer solutions to linear
programs. Bulletin of the American Society, 64:275–278, 1958.

[35] M. Grötschel, L. Lovász, and A. Schrijver. Geometric Algorithms and
Combinatorial Optimization, volume 2 of Algorithms and Combinatorics.
Springer, second corrected edition, 1993.

[36] M. Grötschel and M. W. Padberg. Ulysses 2000: In search of opti-
mal solutions to hard combinatorial problems. SC 93-34, Konrad-Zuse-
Zentrum für Informationstechnik Berlin, Nov. 1993.

[37] G. Gutin and A. Punnen. Traveling Salesman Problem and Its Varia-
tions. Kluwer Academic Publishers, 2002.

[38] S. Heipcke. Applications of Optimization with Xpress-MP. Dash Opti-
mization, Blisworth, U.K., 2002.

[39] F. S. Hillier. Efficient heuristic procedures for integer linear program-
ming with an interior. Operations Research, 17:600–637, 1969.

[40] T. Ibaraki, T. Ohashi, and H. Mine. A heuristic algorithm for mixed-
integer programming problems. Mathematical Programming Study,
2:115–136, 1974.

[41] ILOG CPLEX 10.01. Reference Manual, 2006. http://www.ilog.com/
products/cplex.

122 Bibliography

[42] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by Simu-
lated Annealing. Science, Number 4598, 13 May 1983, 220, 4598:671–
680, 1983.

[43] S. Lin and B. W. Kernighan. An effective heuristic algorithm for the
travelling-salesman problem. Operations Research, 21:498–516, 1973.

[44] A. Lodi. Local branching: a tutorial. presented at MIC2003,
Kyoto, 2003. http://www.or.deis.unibo.it/research_pages/

ORinstances/mic2003-lb.pdf.

[45] A. Løkketangen. Heuristics for 0-1 mixed integer programming. Hand-
book of Applied Optimization, 2002.

[46] A. Martin. Integer programs with block structure. Habilitations-
Schrift, Technische Universität Berlin, 1998. http://www.zib.de/

Publications/abstracts/SC-99-03/.

[47] M. Mitchell. An Introduction to Genetic Algorithms. The MIT Press,
Cambridge, USA, 1999.

[48] H. Mittelmann. Decision tree for optimization software: Benchmarks
for optimization software, 2003. http://plato.asu.edu/bench.html.

[49] G. L. Nemhauser and M. W. Savelsbergh. MINTO 3.1, 2004. http:

//coral.ie.lehigh.edu/~minto.

[50] T. K. Ralphs. SYMPHONY version 5.0 user’s manual, 2004. http:

//branchandcut.org/SYMPHONY/man.

[51] Y. Rochat and E. Taillard. Probabilistic diversification and intensifica-
tion in local search for vehicle routing. Journal of Heuristics, 1:147–167,
1995.

[52] E. Rothberg. An Evolutionary Algorithm for Polishing Mixed Integer
Programming Solutions. Technical report, ILOG Inc., 2005.

[53] R. M. Saltzman and F. S. Hillier. A heuristic ceiling point algorithm for
general integer linear programming. Management Science, 38(2):263–
283, February 1992.

[54] A. Schrijver. Combinatorial optimization : polyhedra and efficiency.
Springer, 2003.

[55] E. Tsang and C. Voudouris. Guided Local Search and its Application
to the Travelling Salesman Problem. European Journal of Operational
Research, 113(2):469–499, 1999.

[56] P. J. M. van Laarhoven and E. H. L. Aarts, editors. Simulated annealing:
theory and applications. Kluwer Academic Publishers, Norwell, MA,
USA, 1987.

Bibliography 123

[57] J. P. Walser. Integer Optimization by Local Search, volume 1637 of
Lecture Notes in Computer Science. Springer, Berlin et al., 1999.

[58] K. Wolter. Implementation of Cutting Plane Separators for Mixed Inte-
ger Programs. Master’s thesis, Technische Universität Berlin, 2006. To
appear.

Die selbständige und eigenhändige Anfertigung dieser Arbeit versichere ich
an Eides statt.

Berlin, den 11.09.2006

