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Abstract

In the mathematical optimization community the term scheduling usually describes the
computation of a sequential plan for a set of jobs w.r.t. a set of side conditions such as
precedence constraints and resource restrictions. Thereby, a certain objective should be
fulfilled which can be for example to minimize the latest completion time of all jobs. The
sequential plan can be an ordering of the jobs or in case of this dissertation a schedule
which assigns a start time to each job.

Many scheduling problems can be modeled and solved as a constraint program as well
as a mixed-integer (linear) program. Both approaches have their advantages and disad-
vantages which are often complementary. In this dissertation we use a hybrid approach,
called constraint integer programming, to solve scheduling problems. We focus on schedul-
ing problems which contain a cumulative resource structure: the available resources are
renewable and can be shared between jobs which have to be scheduled non-preemptively.

We define the class of energy-based propagation algorithms which are inference algo-
rithms for the cumulative resource structure using volume arguments to infer bounds on
the start time and the completion time of a job. Many of the known propagation algorithms
for the cumulative resource structure, such as time-tabling, edge-finding, time-tabling edge-
finding, and energetic reasoning, belong to this class. For this class we develop explanations
for their inferred bound changes. These explanations are used during the analyzes of in-
feasible sub-problem to retrieve additional (redundant) constraints which help to solve a
particular problem more quickly. This concept generalizes known explanations for prop-
agation algorithms for the cumulative resource structure. In addition we show that each
energy-based propagation algorithm implies a linear relaxation for the cumulative resource
structure with optional jobs.

For current state-of-the-art mixed-integer programming solvers presolving is an impor-
tant feature. During presolving, the original problem is reformulated into a hopefully
easier-to-solve problem. One aim is to remove redundant variables and constraints. For
the cumulative resource structure we present several presolving techniques generalizing the
concept of dual reductions, which is known for mixed-integer programs to shrink a problem
formulation, to constraint programs. This techniques allows us to remove feasible or even
optimal solutions from the solution space as long as one optimal solution remains in case
that the problem is feasible. Using this idea we develop several dual reduction steps for
the cumulative resource structure. These reductions enable the removal of jobs from a
cumulative resource with the knowledge that this job can be scheduled independently of
the schedule for the remaining jobs.

In a computational study, we analyze the impact of the presolving techniques for the
cumulative constraint and the linear relaxations for the cumulative constraint with op-
tional jobs. Therefore, we use two problem classes which are resource-constrained project
scheduling problems and resource allocation and scheduling problem.





Zusammenfassung

In der mathematischen Optimierung bezeichnet der Begriff Scheduling die Berechnung eines
Ablaufplans, die eine gegebenen Menge von Prozessen (Jobs), typischerweise mit Reihen-
folgebeziehungen, einer Menge von beschränkten Ressourcen (z.B. Maschinen) zuordnet,
meist mit dem Ziel die späteste Fertigstellungszeit aller Jobs zu minimieren.

Scheduling-Probleme lassen sich sowohl als Gemischt-Ganzzahlige (Lineare) Programme
als auch als Constraint-Programme modellieren und lösen. Beide Ansätze haben ihre
Stärken und Schwächen, diese sind aber in vielerlei Hinsicht komplementär. In der vor-
liegenden Arbeit verwenden wir einen integrierten Ansatz, die sogenannte Constraint-
Ganzzahlige Programmierung, um Scheduling-Probleme zu lösen. Wir konzentrieren uns
auf Scheduling-Probleme mit Kumulativ-Bedingungen, d.h. es gibt Ressourcen, welche sich
mehrere nicht-unterbrechbare Jobs teilen.

Wir definieren die Klasse von Energie-basierten Propagierungsalgorithmen für Kumulativ-
Bedingungen, welche Volumenargumente nutzen, um die Startzeit und Endzeit eines Jobs
zu beschränken. Viele aus der Literatur bekannte Propagierungsalgorithmen, wie time-
tabling, edge-finding, time-tabling edge-finding und energetic reasoning, gehören zu dieser
Klasse. Für die Klasse der Energie-basierten Propagierungsalgorithmen entwickeln wir all-
gemeine Erklärungen für die propagierten Schranken. Diese Erklärungen werden in der
Analyse von unzulässigen Teilproblemen genutzt, um zusätzliche gültige Bedingungen zu
lernen. Dabei generalisieren wir aus der Literatur bekannte Erklärungen für Propagierungs-
algorithmen für Kumulativ-Bedingungen. Zusätzlich zeigen wir, dass jeder Energie-basierte
Propagierungsalgorithmus eine lineare Relaxierung für Kumulativ-Bedingung mit optionalen
Jobs impliziert. Diese Relaxierung kann genutzt werden, um die lineare Relaxierung eines
Constraint-Ganzzahligen Programms zu verstärken.

Presolving-Verfahren sind ein wichtiger algorithmischer Bestandteil zum Lösen Gemischt-
Ganzzahlige Programme. Presolving-Verfahren reformulieren das Original-Problem in ein
(hoffentlich) leichter zu lösendes Problem. Oftmals werden dabei redundante Variablen
und Bedingungen eliminiert. Wir entwickeln diverse Presolving-Verfahren für Kumulativ-
Bedingungen vor. Unter anderem verallgemeinern wir das Konzept der dualen Reduktion,
welches in der Gemischt-Ganzzahlige Programmierung für Problemvereinfachungen genutzt
wird, auf die Constraint-Programmierung. Solch eine Reduktion kann genutzt werden, um
zulässige oder sogar optimale Lösungen aus dem Lösungsraum zu entfernen, solange sicher
gestellt wird, dass nicht alle Optimallösung entfernt werden. Wenn es beispielsweise eine
Bearbeitungszeit für einen Job gibt, aus der sich keinerlei Einschränkungen für andere
Jobs ergeben, kann dieser dort platziert werden und aus der entsprechenden Kumulativ-
Bedingung entfernt werden.

In einem umfangreichen Rechenexperiment zeigen wir, dass der im Rahmen dieser Ar-
beit entwickelte Scheduling-Löser kompetitiv zu den besten aus der Literatur bekannten
Scheduling-Lösern ist. Dabei ist zu bemerken, dass die entwickelten Techniken allgemein
gültig sind für die Constraint-Ganzzahlige Programmierung. Das heißt, diese Techniken
können allgemein zum Lösen aller Gemischt-Ganzzahligen Programme, die Kumulativ-
Bedingungen enthalten, genutzt werden und sind nicht problemspezifisch.
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Introduction

Optimization problems can be addressed by diverse modeling and solving techniques that
have been developed in different areas of Mathematics and Computer Science research.
Common approaches include constraint programming [RBW06] and mixed-integer pro-
gramming [NW88]. For either of them, there exist applications for which they appear as
the natural method of choice. On the one hand, constraint programming typically ex-
cels for highly combinatorial problems, for problems with a nonlinear, discrete structure,
and for pure feasibility problems. Examples include combinatorial puzzles and verifica-
tion problems. Mixed-integer programming shines for problems which include continuous
variables, for problems which have a strong linear relaxation, and for problems for the
hardness consists of proving optimality. Examples include unit commitment and network
flow problems.

There are, however, applications which are equally challenging for both constraint pro-
gramming and mixed-integer programming. A prime example is scheduling. It is an
active field of research in both communities and a canonical candidate for the applica-
tion of hybrid approaches [Hoo11, MH11]. Scheduling problems arise with many different
characteristics in practice [BPN01, Bru01]. In this dissertation, we concentrate on the
resource-constrained project scheduling problem [BDM+99] and on the resource allocation
and scheduling problem [Hoo04, Hoo05a]. Both can be modeled using the so-called cu-
mulative constraint [AB93], one of the classical global constraints [BCDP07] in constraint
programming. It is used to describe a relationship between a renewable resource, e.g., a
machine, and non-preemptive jobs which require a certain amount of the resource during
their execution.

The dissertation studies algorithms for presolving, propagation, and conflict analysis us-
ing cumulative constraints and evaluates their effectiveness within an integrated constraint
and integer programming framework.

This dissertation is subdivided into five chapters, one for introducing basic notations and
concepts, two mostly theoretic chapters which propose new algorithms and extensions of
existing algorithms to efficiently deal with cumulative constraints, and two mainly com-
putational chapters which present numerical results for the resource-constrained project
scheduling problem and for the resource allocation and scheduling problem. It concludes
with a summary and outlook chapter.

Outline and contributions of the dissertation

In Chapter 1 we introduce the basic notations and concepts used throughout the disser-
tation. This includes a definition of constraint programming, mixed-integer programming,
and related problem classes as well a solving approach for these types of problem. Fur-
thermore, we discuss the cumulative constraint, which plays a central role in the work, in
detail. Besides a formal definition we recall those propagation algorithms for this global
constraint which are of interest in this dissertation.
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Introduction

In Chapter 2, we consider propagation algorithms for the cumulative constraints and
relaxations derived therefrom. We introduce a generalized class of propagation algorithms,
the energy-based propagation algorithms and describe how existing propagation algorithms
relate to this class. We develop explanations for their inferences, generalizing previously
existing results. The conflict constraints derived from those explanations are used to create
the conflict relaxation, which we formally define. This relaxation is dynamically tightened
during the search by the analysis of infeasible sub-problems.

Furthermore, we present new linear relaxations for the cumulative constraint with op-
tional jobs in this chapter. We prove that each propagation algorithm belonging to the
class of energy-based propagation algorithm implies a linear relaxation.

In Chapter 3, we develop various presolving algorithms for single cumulative constraints
as well as for sets of cumulative constraints. Presolving algorithms for scheduling typically
need a precedence graph of the jobs as an input. We introduce an algorithm which projects
a variable bound graph of an arbitrary optimization problem to a precedence graph. We
exploit this to extend problem-specific presolving techniques to general optimization prob-
lems with cumulative constraints. We also discuss the detection of disjunctive constraints
in order to apply stronger domain propagation.

Furthermore, we generalize the concept of dual reductions – which is well known for
mixed-integer programming – to constraint programming. We show that for classical
scheduling benchmarking instances, this leads to a reduction of the problem size. Fi-
nally, the developed presolving algorithms are extended to the cumulative constraints with
optional jobs.

In Chapter 4, we present the first of two comprehensive computational studies. We con-
sider resource-constrained project scheduling problems. The goal of resource-constrained
project scheduling problems is to schedule jobs on renewable resources subject to prece-
dence constraints while minimizing the makespan. We evaluate the impact of different
propagation algorithms for cumulative constraints. We analyze the effect of applying pri-
mal and dual presolving techniques. We show results which compare the general solver
SCIP, including our implementation of a cumulative constraint handler, against a state-of-
the-art solver for resource-constrained project scheduling problems.

In Chapter 5, we consider scheduling problems with optional jobs, more pecisely, re-
source allocation and scheduling problems. That means, that in addition to the ordering
of jobs, an assignment of each job to a particular resource has to be made. We utilize the
linear relaxation which we introduced for the cumulative constraint with optional jobs and
present a logic-based Benders approach and a mixed-integer programming approach. We
compare them against a state-of-the-art logic-based Benders implementation and classify
the individual strenghts of each of the approaches.

All algorithms that are presented within this dissertation are implemented within SCIP.
They are freely available in source code for all academic users at http://scip.zib.de.
Partial work and preliminary results of this dissertation have been published in [BHL+10,
HS11, BHS11, HB11, HB12a, HKB13, HSB13].
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1 Constraint optimization problems
Constraint optimization problems (COP) are a very rich problem class that has almost no
restriction w.r.t. the side constraints and objective function. Many scheduling problems fit
into that paradigm. Mixed-integer programming (MIP) and satisfiability testing (SAT) are
special cases of the general idea of COP. The power of COP arises from the possibility to
model a given problem with a large variety of expressive constraints [RBW06]. In contrast,
SAT and MIP only allow for very specific constraints: Boolean clauses for SAT and linear
and integrality constraints for MIP. Their advantage, however, lies in the sophisticated
techniques available to exploit the structure provided by these restrictive constraint types.

The goal of constraint integer programming (CIP) is to combine the advantages and
compensate for the weaknesses of CP, MIP, and SAT. It was introduced by Achter-
berg [Ach04, Ach07b, Ach09] and implemented in the framework SCIP [Ach09, SCI].

The central solving approach for CIP as implemented in the SCIP framework is branch-
and-cut-and-propagate: as in SAT, CP, and MIP-solvers, SCIP performs a branch-and-
bound search to decompose the problem into sub-problems. As in MIP, a linear relaxation,
potentially strengthened by additional inequalities/cutting planes, is solved at each search
node and used to guide and bound the search. Similar to CP solvers, inference in the
form of constraint propagation is used at each node to further restrict search and detect
dead-ends. Moreover, as in SAT solving, SCIP uses conflict analysis to learn from infeasible
sub-problems and restarts.

Outline. This chapter is organized as follows. In Section 1.1 we define the different prob-
lem classes COP, CIP, MIP, and SAT formally. A solving approach for COPs is recalled
in Section 1.2. In Section 1.3 we focus on special structures which are of interest for this
work. The cumulative constraint is introduced in Section 1.4.

1.1 Problem definition
In this section we recall a definition for a constraint optimization program (COP) and
introduce special problem classes which are of interest for this dissertation.

Definition 1.1 (constraint optimization problem). A constraint optimization problem
COP = (X,C,D, f) consists in solving

(COP) c⋆ = min{f(X) : C(X) = 1, X ∈ D}

with D = D1×· · ·×Dn representing the domains of finitely many variables X = (x1, . . . , xn),
with n ∈ N, a finite set C = {C1, . . . , Cm} of constraints Ci : D→ {0, 1}, i = 1, . . . , m with
m ∈ N, and an objective function f : D→ R.

We remark that for a given variable assignment, that is x ∈ D with xj ∈ Dj for j =
1, . . . , n, a constraint C indicates whether it is feasible (one) or violated (zero). We restrict
ourselves w.l.o.g. to minimization problems to keep the notation clear.

5



Constraint optimization problems

Restriction 1.2 (integer domains). For a COP, domains can be, for example, discrete,
continuous, or even power sets. In this dissertation we restrict ourselves to variable domains
being integers and finite. If results hold for more general domains, we state that explicitly.

COPs are a very general class of problems. Special classes which are of insterest in
this work are satisfiability problems (SAT), mixed-integer programs (MIP), and constraint
integer programs (CIP). In the following we define these problem classes.

Definition 1.3 (satisfiability problem). A satisfiability problem (SAT) is a COP =
(X,C,D, f) where the objective function f is the constant zero, the variable domains are
restricted to Booleans, that is D = {0, 1}n, and the constraints are restricted to clauses. A
clause is a disjunction of literals Ci = ℓi

1 ∨ . . . ∨ ℓi
ki

. A literal ℓ ∈ {x1, . . . , xn, x̄1, . . . , x̄n} is
either a variable xj or the negation of a variable x̄j = (1 − xj). A clause is satisfied if at
least one literal is true.

As the name already suggests, these problems are satisfiability problem asking if there
exists an assignment to the Boolean variables such that each clause is satisfied. For more
details on this problem class we refer to the “Handbook of Satisfiability” [BHvMW09].

Definition 1.4 (mixed-integer program). A mixed-integer program (MIP) is a COP =
(X,C,D, f) where the objective function is linear, the variable domains are restricted to
real or integer intervals, and the constraints are linear inequalities.

If all integer domains are relaxed to be continuous, we have the linear programming
(LP) relaxation of a MIP. An LP can be solved efficiently in practice using the simplex
method [Dan51] or a barrier approach, see, e.g., [NN94]. A solution to this relaxation
satisfies all (linear) constraints, but might violate the integrality conditions for the variable
domains. It provides a lower bound on the optimal objective function.

The concept of an LP relaxation is used within LP-based branch-and-bound [Dak65],
the method by which MIPs are typically solved. In the last decades, MIP solvers improved
tremendously w.r.t. speed and the complexity of instances which these solvers can han-
dle [BFG+00, AW13]. For more details on mixed-integer programming, we refer to [NW88].

Definition 1.5 (constraint integer program). A constraint integer program CIP is a
COP = (X,C,D, f) for which the objective function is linear, the variable domains are
restricted to real and integer intervals, and the constraint set satisfies the restriction that
after all variables with integer domains are fixed the remaining problem is a linear program.

For more details on constraint integer programming we refer to [Ach07b].
Figure 1.1 visualizes the inclusion of the different problem classes. It shows that SAT is

subclass of MIP which is again a subclass of CIP. COP is a superset of all the three special
problem classes.

For a COP, we define the set of feasible and optimal solutions with XCOP and X⋆
COP,

respectively. That is

XCOP := {x : x ∈ D,C(x) = 1}, X⋆
COP := {x : f(x) = c⋆, x ∈ XCOP}

6



1.2 Solving techniques

COPCIPMIPSAT

Figure 1.1: Visualizing of the inclusions of the different problem spaces: constraint optimization
problems (COP), constraint integer program (CIP), mixed-integer programs (MIP), and satisfiabil-
ity testing (SAT).

where c⋆ is the minimum objective function value of any feasible solution (see Defini-
tion 1.1).

1.2 Solving techniques

In this dissertation, we restrict ourselves to COPs where the variable have finite integer
domains (see Restriction 1.2). Such COPs can be solved by enumerating all possible assign-
ments for variables. To avoid explicitly testing all assignments, a systematic search can be
performed combined with sophisticated techniques which remove infeasible and sub-optimal
assignments early.

One way of doing this is to recursively split the problem into smaller sub-problems,
thereby creating a search tree. In each search node a variety of techniques are used to
remove assignments which are infeasible or sub-optimal. This approach is known as branch-
and-bound [LD60] and is widely used in commercial and academic solvers to solve sub-
classes of COPs.

In this section we briefly sketch the techniques which are of interest for this work. These
are domain reductions and the use of a linear relaxation. The analysis of infeasible sub-
problems is addressed separately in Chapter 2.

1.2.1 Domain reductions

Each sub-problem contains restrictions which are added during the splitting of the parent
sub-problem into smaller sub-problems. These restrictions can be used to infer further
reductions, thereby shrinking the feasibility region.

Propagation algorithms are used to shrink variable domains. Such an algorithm takes
the variable domains and a subset of constraints as input and returns a smaller or same
size domain space. Usually, it is guaranteed that it does not remove any feasible solution.
Such a reduction is called primal feasible.

Definition 1.6 (primal feasible). Given a COP = (X,C,D, f). For any variable xj ,
a domain reduction D′

j ⊂ Dj is called primal feasible if for all x ∈ XCOP it holds that
xj ∈ D′

j .

7
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Since we are focusing on constraint optimization problems, where the goal is to find an
optimal solution, we can allow propagation algorithms to remove feasible or even optimal
solutions as long as it is guaranteed that at least one optimal solution remains. Such a
domain reduction is called dual feasible.

Definition 1.7 (dual feasible). Given a COP = (X,C,D, f). For any variable xj , a
domain reduction D′

j ⊂ Dj is called dual feasible if the non-reduced COP is infeasible or
there exists an optimal solution x ∈ X⋆

COP where xj ∈ D′
j .

Remark 1.8. Note that a dual feasible domain reduction is an extension of the unifying
framework for structural properties of constraint satisfaction problems introduced by Bor-
deaux et al. [BCM08]. Their conditions have to hold statically for each feasible (optimal)
solution. This is not the case for a dual feasible reduction. We only assume that after
applying a domain reduction there still exists a feasible (optimal) solution for the original
problem if the problem is feasible at all. There is no restrictions on the assignments of the
other variables.

A special form of a domain reduction is a bound change. Since we consider integer
domains, a bound change can be defined as follows.

Definition 1.9 (bound change). We distinguish for a variable xi between lower and
upper bound change. A lower bound change for xi is a hyperplane of the form

Jxi ≥ aK = {x : xi ≥ a}

whereas an upper bound change is

Jxi ≤ bK = {x : xi ≤ b}.

1.2.2 Linear relaxation
For MIPs, the linear programming relaxation omits the integrality conditions. An optimal
solution of the LP relaxation satisfies all linear constraints and provides a lower bound for
the optimal solution value of the MIP. If in addition all integrality conditions are respected
the LP solution provides an optimal solution for the corresponding MIP. If, however, the
LP solution contains fractional solution values for variables which have an integer domain
in the MIP, then these variables are “good” candidates to split the problem. After selecting
one of these variables, the solution value of the variable in the LP solution defines how the
variable domain can be split. Therefore, the LP relaxation of a MIP can be used to drive
the search by providing candidates for branching.

SAT problems are a special case of MIPs. For SAT problem, where we have no objective
function, assigning to all variables 1

2 is feasible1 for the corresponding LP relaxation. That
means all variables might have a fractional solution value in a solution of the LP relaxation.
In that case the LP relaxation does not restrict the candidates for branching and is not
useful to guide the search.

For general COPs, we have the same issue w.r.t. search guidance, however, due to a
different reason. Usually a COP has no unique LP relaxation because the individual con-
straints of a COP often have no unique linear relaxation. For example, the cumulative

1Ignoring fixed variables and assuming each clause contains at least 2 literals.
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constraint with optional jobs (see Section 1.4.4) has different linear relaxation (see Sec-
tion 2.3). Hence, the LP relaxation of a COP depends on the chosen linear relaxation for
each constraint. In addition, if a solution of an linear programming relaxation satisfies all
integrality conditions, the solution might still not be feasible for the COP. Since the LP
is a relaxation, it still provides a lower bound but the search guidance is not as strong as
for a MIP. For example if all variables with integer domain have integral values in an LP
relaxation, the LP relaxation does not directly provide any candidate as branch variable.
Furthermore, it is not clear how the variable domain should be split. As a consequence
it is not clear if variables with fractional solution value in an LP relaxation are “good”
candidates for branching. Often, however, the LP relaxation provides enough information
to select a branching.

1.3 Sources of globally valid structures
In the previous section we discussed how COP with integer variable domain can be solved.
This section is dedicated to special problem structures which can be detected and used
to improve the solving process of COPs. For MIP solvers, which are restricted to linear
constraints and a linear objective, there are few problem specific structures that can be
passed the the solve. MIP solvers, however, try to detect useful structures to take advantage
of them during the solving process. In contrast, CP solvers follow a different strategy. In
CP, the modeler communicates structure via global constraints and can even create a new
global constraint for structures which they want to handle [BCDP07].

The structures which are of interest in this dissertation are the variable bound graph
and the variable locks. In the following we introduce these structures in more detail.

1.3.1 Variable bound graph
A variable bound constraint between two variables x and y has one of the following forms

b · x + c ≤ y or b · x + c ≥ y (1.1)

with b ∈ R \ {0} and c ∈ R. The coefficients b and c are called the variable bound
coefficient and the variable bound constant, respectively. The first inequality is a variable
lower bound constraint since x bounds the lower bound of y. The second inequality is
a variable upper bound constraint. Here x bounds y from above. Depending on the
variable bound coefficient b, variable y also bounds the lower or upper bound of variable x.
Consequently, a variable bound relation expresses the dependency of one bound of a variable
on a bound of another variable. Typical examples for the use of variable bound constraints
are precedence constraints on start time variables in scheduling (see Section 3.1) or big-M
constraints modeling fixed-costs in production planning [DDK12].

Variable bound relations cannot only be deduced from variable bound constraints, but
can also be identified within more general constraints (see Section 3.3.3) or during presolv-
ing, e.g., by probing [Sav94]. These relations are exploited by different solver components,
e.g., for c-MIR cut separation, where they can be used to replace non-binary variables
with binary variables [MW01], lifting flow cover inequalities [GNS96], or primal heuristics
which take advantage of the variable bound graph to construct a neighborhood containing
hopefully “good” feasible solutions [GBHW15]. In this work we present algorithms which
use variable bound constraints together with a cumulative constraint to strengthen other
variable bound constraints (see Section 3.3.4).
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Figure 1.2: The figure displays a variable bound graph for the variable bound constraints given
in Example 1.10. A vertex corresponds to one of the bounds of a variable. The vertex number
refers to the variable name and the under (over) line indicates if it is the lower (upper) bound of
the variable. Each arc is labelled with a tuple (b, c) stating the variable bound coefficient b and the
variable bound constant c.

In order to exploit variable bound relations, we stored them in a global structure. They
form the variable bound graph, a directed graph in which each node corresponds to a lower
or upper bound of a variable. Each variable bound relation is then represented by an arc
in the graph, which points from the influencing bound to the dependent bound. That
implies that each variable bound constraint corresponds to two arcs in the variable bound
graph. In addition, each arc is equipped with the variable bound coefficient and the variable
bound constant. Hence, the global structure of variable bounds consists of a directed graph
D = (V, A) with variable bound coefficient mapping b : A→ R and variable bound constant
mapping c : A → R. A vertex of the graph corresponds to a lower or upper bound of a
variable. Hence, the number of vertices is limited by two times the number of variables.
The following example illustrates the variable bound graph.

Example 1.10. Given six variables x1, . . . , x6 and the following variable bound constraints:

x1 − x3 ≤ −3 5x1 − x2 ≤ −2 −x2 − x3 ≤ 0
2x3 − x5 ≤ 0 −0.25x2 − x5 ≤ −10 x2 − x4 ≤ −3

−0.5x4 − x4 ≤ −8 1.5x4 − x5 ≤ −1 3x5 − x6 ≤ −1

Figure 1.2 depicts the variable bound graph. For each variable bound constraint two arcs
are added to the graph.

This graph can be used to read all implications of bound change by following all paths
starting from the corresponding vertex.

1.3.2 Variable locks
Achterberg [Ach07b] defined a mechanism, called variable locks, to implement dual reduc-
tions based on global information for CIP problems. Essentially, a variable lock represents
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information about the relationship between a variable and a set of constraints. Achter-
berg used this information during presolving to infer dual reductions for mixed-integer
linear programs within a constraint-based system. Building on the existing idea of variable
locks, we formally define and justify the use of dual information for constraint optimization
problems.

In this section, we generalize variable locks to constraint optimization programs and
show how these locks can be used to infer dual reductions. As our results hold for both
constraint satisfaction problems and constraint optimization problems, we introduce them
in the more general optimization context.

While domains can be, for example, discrete, continuous, or even power sets, variable
locks rely on the variable domains being totally ordered w.r.t. to the relation “≤”. The
relation “≤” is a total order on a set M if, for all a, b, c ∈ M , it is true that: (i) if a ≤ b
and b ≤ a then a = b (antisymmetry); (ii) if a ≤ b and b ≤ c then a ≤ c (transitivity); and
(iii) a ≤ b or b ≤ a (totality).

The basic idea of the variable locks is to maintain a count, for each variable, of the
number of constraints that might become violated by increasing or decreasing the value of
the variable. To define the variable locks formally, we define the property that a constraint
is monotone decreasing or increasing in a variable.

Definition 1.11. A constraint C : D → {0, 1}, is monotone decreasing (increasing) in
variable xj , if for all assignments ẋ ∈ D which are feasible for constraint C, that is C(ẋ) = 1,
it holds that for all assignments x̂ ∈ D with ẋk = x̂k for all k ̸= j and x̂j < ẋj (x̂j > ẋj)
are also feasible for constraint C, that is C(x̂) = 1.

If a constraint is either monotone decreasing or increasing in each variable in its scope,
it is a monotone constraint (see Dechter [Dec03]). Depending on the monotone status of a
constraint, variable locks can be omitted.

Definition 1.12. Given a constraint C : D→ {0, 1}. The constraint C needs to down-lock
(up-lock) variable xj if and only if the constraint is not monotone decreasing (increasing) in
variable xj . That is, if and only if there exist two vectors ẋ, x̂ ∈ D with C(ẋ) = 0, C(x̂) = 1,
ẋk = x̂k for all k ̸= j, and ẋj < x̂j (ẋj > x̂j).

Given a variable xj with a totally ordered domain, a constraint C does not need to down-
lock (up-lock) xj if, for any feasible assignment x̂, any assignment ẋ that differs from x̂
only in that the value of xj is smaller (greater) is also feasible. This definition directly
yields the following corollary.

Corollary 1.13. Given a constraint C : D→ {0, 1}. A variable x can be removed from the
scope of constraint C if this constraint is monotone decreasing and increasing in variable x
(i.e., it does not lock variable x in any direction).

To be able to remove such a “completely free” variable from a constraint, some adjustment
to the particular constraint may be necessary (see Lemma 3.10 as example).

Individual locks can be aggregated into dual information for a set of constraints. Here,
following Achterberg [Ach07b], we accumulate locks by simply counting the number of con-
straints that down- or up-lock a variable, respectively. For a given constraint optimization
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problem, the (accumulated) variable locks, ζ−
j and ζ+

j , can be interpreted as the number of
constraints that “block” the shifting of xj towards its lower or upper bound.

Example 1.14. Given four integer variables x1, x2, x3, x4 ∈ {0, . . . , 10} and the following
linear constraint system:

5 x1 − 6 x2 + x4 ≤ 8
x1 + x3 = 1

The locks are: ζ+
1 = 2, ζ−

1 = 1, ζ+
2 = 0, ζ−

2 = 1, ζ+
3 = 1, ζ−

3 = 1, ζ+
4 = 1, and ζ−

4 = 0.

Remark 1.15. For linear constraints the variable locks are predefined and independent of
the variable domains. This means, they do not change if the variable domains are tightened.
This is not the case for example for cumulative constraints (see Section 3.3.1).

A MIP solver usually has access to the column representation of the problem matrix.
That allows it to efficiently identify in which constraints each variable appears with a non-
zero coefficient. That knowledge allows a solver to perform dual reductions in a sound way.
Variable locks are not as informative as the column representation and, in fact, can be seen
as a relaxation. However, a substantial number of dual reductions performed in a MIP
solver can be done using only the variable locks [Ach07b].

Consider a variable xj with a totally ordered domain and no down-locks (ζ−
j = 0), that

is, all constraints are monotone decreasing in variable xj . If there exists a feasible solution
x̂ with x̂j ̸= min{d ∈ Dj}, then it follows that the solutions ẋ with ẋk = x̂k for all k ̸= j and
ẋj ∈ {d ∈ Dj : d < x̂j} are also feasible. Therefore, fixing this variable to its lower bound
is a valid inference w.r.t. the feasibility of the problem. This is the case for variable x4 in
the above example. In an optimization context, such a fixing can only be performed if the
objective function, which we assume is to be minimized, is monotonically non-decreasing2

in this variable. A symmetric argument holds for up-locks. Hence, each variable that has
a down-lock (up-lock) of zero and the objective function is monotonically non-decreasing
(non-increasing) in this variable can be fixed to its lower (upper) bound.3 Such an inference
is dual feasible and is called a dual fixing.

As noted, using variable locks to detect such “half free” variables was already pre-
sented [Ach07b]. The following lemma summarizes this idea of dual fixing.

Lemma 1.16. Given a COP = (X,C,D, f). If a variable xj with totally ordered domain Dj

has ζ−
j = 0 (ζ+

j = 0) and the objective function is monotonically non-decreasing (non-
increasing) in xj , then fixing this variable to xj = min{d ∈ Dj} (xj = max{d ∈ Dj}) is
dual feasible.

Example 1.17. Reconsider the linear constraints from Example 1.14. Given, additionally,
an objective function f(x) = x1 + x2 + x3 + x4 to be minimized, the variable x4 can be
dual fixed to its lower bound. In contrast, variable x2 cannot be fixed to its upper bound
since the objective function is not monotone non-increasing in x2.

2A function f(x) is called to be monotonically non-decreasing (non-increasing) on an interval I if f(b) ≥
f(a) (f(b) ≤ f(a)) for all b > a where a, b ∈ I.

3For a variable that is not directly involved in the objective function, the objective function is both
monotonically non-decreasing and non-increasing w.r.t. that variable.
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In practice, the accumulated variable locks can be an overestimate of the actual variable
locks since each constraint can guarantee completeness by just locking its variables in both
directions without considering Definition 1.12. Such an overestimate is a relaxation and
is still usable. However, if a constraint does not lock a variable where it should w.r.t.
Definition 1.12, the result will be an underestimate of the variable locks that can lead to
an incomplete search if dual fixings are applied for this variable.

As a special case, the variable locks can be used to detect variables that are not involved
in any constraint: that is if, for a variable xj , ζ−

j = 0 and ζ+
j = 0. If we find such an xj and

the objective functions is monotonically non-decreasing or non-increasing, then Lemma 1.16
can be applied.

Besides detecting isolated variables, the variable locks can also be used to detect isolated
constraints: constraints with a variable scope that has no overlap with any other constraint
variable scope. Such a constraint defines an independent component and can be solved
separately with a specialized algorithm. Such structure appears for several instances of the
Miplib 2010 [KAA+11]. For example the instances bnatt350 contain isolated knapsack
constraints which can be solved via dynamic programming.

1.4 Cumulative constraint
This section is dedicated to basics about the global cumulative constraint [AB93]. We
first (Section 1.4.1) define this constraint and present in Section 1.4.2 the notation used
in this part of the dissertation. In Section 1.4.3 we discuss propagation algorithms for the
cumulative constraint. Thereby, we restrict ourselves to those which are realized in the
SCIP framework. The discussion for each propagator involves the consistency check and
the bound update. The explanations which are needed for an enhanced conflict analysis
are discussion in next chapter (Section 2.2.3). Finally, we introduce in Section 1.4.4 an
extension of cumulative constraints where jobs are optional.

1.4.1 Definition
In the case of cumulative scheduling, a finite set J = {1, . . . , n} of n ∈ N jobs is given
which have to be assigned to starting points such that certain conditions are satisfied. These
conditions depend on the particular problem. There are usually conditions regarding time
which might define a release date, that is the earliest possible start time, and a due date,
which is the latest possible completion time. On the other hand, resources are involved
which are required by the jobs to be processed. Resources provide a certain capacity. In
this work we focus on the following setting: each job j ∈ J has a processing time pj ∈ N,
which is the number of time steps a job runs consecutively after it started. That means,
a running job cannot be interrupted (non-preemptive scheduling). Furthermore, each job
is equipped with a release date Rj ∈ N and a due date Dj ∈ N ∪ {∞}. These two time
points define the time window within which a job has to be processed. For job j we call
this interval [Rj , Dj) the feasible time window. The release date is the earliest possible
start point. The due date defines the first time point where the job must not run. Thus,
the set of feasible start points w.r.t. the release date and due date of job j is given by:

Tj = {t ∈ N | Rj ≤ t ≤ Dj − pj}.

A resource provides a capacity C ∈ N which is available during the whole time horizon,
i.e., the resource has a renewable capacity. A job has a resource demand rj ∈ N which is
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consumed in each time step of its processing. Jobs have to be assigned to feasible start
points, such that at each point in time the cumulative resource demand is never larger than
the capacity C provided by the resource. If Ŝj ∈ Tj are feasible start times of jobs j ∈ J ,
then the following conditions have to hold:

∑
j∈J

1[Ŝj ,Ŝj+pj)(t) rj ≤ C for all t ∈ N (1.2)

where the indicator function 1M (x) evaluates to one if and only if x ∈M , and zero other-
wise. The global cumulative constraint ensures these conditions. Therefore, a cumulative
constraint is defined by the start time variables S, processing times p, resource demands r,
and its capacity C, i.e.,

cumulative(S, p, r, C).

Thereby, the j-element of the vectors S, p, and r, give the required information for job j ∈
J . The tuple (S, p, r, C) defines a cumulative constraint uniquely. A cumulative constraint
with capacity one is called disjunctive constraint [Car82]. In this chapter, however, we are
focusing on the more general cumulative constraint with arbitrary capacity.

In this work, we assume that the processing time and resource demand for each job and
the resource capacity are fixed values. The only decisions which need to be made are the
start times for the jobs.

1.4.2 Notations

Before we discuss several algorithms for the cumulative constraint in more detail let us
introduce some notation.

For each job there are some time points of particular interest. These are the earliest
start and completion time and the latest start and completion time, respectively. They are
defined as follows.

Definition 1.18 (distinctive time points). Given a job j with processing time pj , release
date Rj , and due date Dj , we define the earliest start time estj , the latest start time lstj ,
the earliest completion time ectj , and the latest completion time lctj as follows:

estj = Rj lstj = Dj − pj

ectj = Rj + pj lctj = Dj .

Figure 1.3 shows how jobs are visualized in this dissertation and states the distinctive
time points.

The feasible time window [Rj , Dj) = [estj , lctj)4 of each job j can be used to define the
first and latest time points where the resource capacity C can be potentially exceeded. We
denote with hmin the minimum time point where the resource capacity could be exceeded
and with hmax the minimum time point at which and after which the resource capacity is
surely satisfied. Formally:

4Note that the latest completion time of a job is the first time point where this job definitely does not run.
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j

estj lctjpp

(a) Visualization of a job j as it is used in this work.

j

estj ectj lctj

(b) Job j is assigned to its earliest start time (estj) and
finishes at its earliest completion time (ectj).

j

estj lstj lctj

(c) Job j is assigned to its latest start time (lstj) and
finishes at its latest completion time (lctj).

Figure 1.3: A job j is visualized with its feasible time window given by the earliest start
time (estj) and latest completion time (lctj) and with its resource consumption j defined from
the processing time pj and demand rj . If the start time is not yet fixed indicates possible
placements.

hmin = inf{t ∈ Z :
∑
j∈J

1[estj ,lctj)(t) rj > C}

hmax = sup{t ∈ Z :
∑
j∈J

1[estj ,lctj)(t− 1) rj > C}.

Note that hmin ≤ hmax only holds if hmin and hmax are finite. Example 1.20 shows a
setup where this is not the case. Using these two time points the effective time horizon can
be defined.

Definition 1.19 (effective horizon). Given a set of jobs J , each with a resource de-
mand rj ∈ N that have to be scheduled on a resource with capacity C ∈ N. We define the
effective horizon H as

H =
{

[hmin, hmax) if hmin < hmax
∅ otherwise.

The effective horizon is a continuous, half-open interval. If the effective horizon is empty,
it follows from the definition of hmin and hmax that Condition (1.2) is satisfied for all
assignments Ŝ that respect the release date and due date of each job. Hence, the cor-
responding resource condition is redundant and the entire cumulative constraint can be
removed from the problem instance. On the other hand, if the effective horizon is not
empty, it follows that at least one job has an earliest start time which matches hmin and
that at least one job has a latest completion time which is equal to hmax. For a disjunctive
constraint, we additionally know that hmin defines the first point in time where potentially
two jobs are running and hmax the first point in time where this is not the case anymore.
The following example illustrates the effective horizon.
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t
1 3 5 7 9 11 13

1
est1 lct1

2
est2 lct2

(a) In this case hmin = ∞, hmax = −∞, and H = ∅.

t
1 3 5 7 9 11 13

1
est1 lct1

2
est2 lct2

3
est3 lct3

hmin hmax
H

(b) Here hmin = 4, hmax = 10, and H = [4, 10).

Figure 1.4: Illustration of the effective horizon H and the worst case profile for Example 1.20.

Example 1.20. Consider two jobs with unit demand and a resource with unit capacity.
The first job has a release date of 1 and a due date of 6. The second job is released at
time 8 and has to be completed by time 13. Figure 1.4(a) depicts this situation. In this
case hmin =∞ and hmax = −∞ and therefore H = ∅.

Consider additionally a third job with unit demand. This job has a release date of 4 and a
due date of 10. Now the effective horizon is not empty: it is H = [4, 10) (see Figure 1.4(b)).

From the example we can observe that the actual processing time of a job is not relevant
for the effective horizon. Only the earliest start times, the latest completion times, the
demands, and the available capacity matter. The time points hmin and hmax bound the
relevant section of the worst case resource profile [Bec99, BF00b]. The worst case profile
returns for each time point the total sum of potentially required capacity. That means, it
is assumed that all jobs are processed in every period between their earliest start time and
latest completion time (ignoring the actual processing time).

Remark 1.21. The definition of the effective horizon can easily be extended for the case
where the available capacity depends on the time point.

The above example also suggests that the corresponding cumulative constraint can be
decomposed into two individual cumulative constraints. One handling jobs 1 and 3 and
the other jobs 2 and 3. We analyze this observation formally in Section 3.2.

For a cumulative constraint, there are jobs which cannot be processed in parallel, due
to their demands. In case of Example 1.20, the available capacity is one which implies
that none of the jobs can be processed at the same time. In general, if two jobs have
a cumulative demand larger than the given capacity, these jobs have to be arranged se-
quentially. Such information can be captured in a so-called non-overlapping graph. The
idea is to capture non-overlapping relation from several cumulative conditions in a single
graph. Since the processing times of jobs might differ for different cumulative constraints,
the non-overlapping graph depends on the chosen processing times and the analyzed cu-
mulative constraints.
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job j pj rj Rj Dj Sj

1 5 3 1 7 [1, 2]
2 4 2 3 10 [3, 6]
3 3 2 1 7 [1, 4]
4 3 3 1 12 [1, 9]
5 3 2 1 7 [1, 4]

5

4

3

2

1

1 3 5 7 9 11 13
t

Figure 1.5: The table gives the processing time pj , the resource demand rj , the release date Rj ,
the due date Dj , and the domain of the start time variable Sj for five jobs. The figure visualizes
all these information about the five jobs.

Definition 1.22 (non-overlapping graph). Given a set of jobs J , each with a processing
time pj ∈ N and a set of cumulative constraints C, we define the non-overlapping graph
G = (J , E) as follows: If and only if there exists a cumulative constraint C = (S, p̂, r, C)
where two jobs i and j are in conflict w.r.t. the capacity C, i.e., ri + rj > C, pi ≤ p̂i, and
pj ≤ p̂j , then we add an edge between the vertices i, j ∈ J .

The non-overlapping graph depends on the chosen processing time for each job and can
capture information for several cumulative constraints. For the resource-constrained project
scheduling problem (see Chapter 4) and the resources allocation and scheduling problem
(see Chapter 5) the processing time for a job does not depend on the available resources.
Hence, one would choose the unique processing times given for each job to construct a
non-overlapping graph. The above definition, however, captures the possibility that the
processing time of a job depends on the chosen resource.

Remark 1.23. For a single disjunctive constraint (cumulative constraint with unit capac-
ity) the non-overlapping graph is complete since no pair of jobs can be processed in parallel.
Conversely, each clique in a non-overlapping graph implies a disjunctive constraint.

1.4.3 Propagation algorithms

In this section, we present existing propagation algorithms for the cumulative constraint,
focusing on those that are available in SCIP. We briefly discuss their individual goals and
illustrate the basic idea using an example. Figure 1.5 depicts a set of 5 jobs which we use
to visualize the different propagation algorithms. We restrict ourselves to the update of
the lower bound of the start time variables. The inference for the upper bound follows
by symmetric arguments. In Section 4.3, we present computational results which indicate
the impact of the different propagation algorithms in case of resource-constrained project
scheduling problems.

In the current version5 of SCIP we realized three propagation algorithms. These are time-
tabling [LL82, KS99], edge-finding [Nui94, Vil09a], and time-tabling edge-finding [Vil11,
SFS13]. Besides these propagation algorithms, there exist other propagation algorithms,
such as not-first/not-last [Nui94, SW10], extended edge-finding [MH08], and energetic rea-

5version 3.0.1.4 or later
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soning [BP00, BPN01]. These propagation algorithms are not implemented in SCIP and
will not be discussed in this thesis.

Time-tabling

Depending on the tightness of the time window and the processing time of a single job,
there might be time points where a job must be executed. These time points define the
core6 of a job. If for a job j the latest start time lstj is smaller than the earliest completion
time ectj , the core γj is given by the interval [lstj , ectj). Otherwise, the core is empty.

The time-tabling propagator [LL82, KS99] makes inferences via these core parts of the
jobs. Therefore, a core profile is defined for any set of jobs J as follows:

ΓJ : R→ N with t ↦→
∑
j∈J

1γj (t) rj . (1.3)

This function maps each point in time t to the cumulative demand of all cores which need
to be processed. Note that this function is a step function. If at any point in time the
aggregated demands of the cores exceed the available capacity, an inconsistency is detected.

Lemma 1.24. Given a cumulative constraint (S, p, r, C). We denote with J the set of jobs
which need to be scheduled. If there exists a time point t with ΓJ (t) > C, the constraint
is not satisfiable.

In case no inconsistency is detected, the core profile can be used to infer bound changes
for the start time variables. For a given start time variable Sj the core profile for the
remaining jobs J \ {j} is scanned for the first potential start time where job j fits w.r.t.
the cores of the other jobs.

Lemma 1.25. Given a cumulative constraint (S, p, r, C). We denote with J the set of
jobs which need to be scheduled. A valid lower bound for the start time variable Sj (j ∈ J )
is:

Sj ≥ min{t : t ≥ estj , ΓJ \{j}(τ) ≤ C − rj for τ = t, . . . , t + pj − 1} (1.4)

where estj denotes the earliest start time (lower bound) of the start time variable Sj before
the propagation.

The core profile can be constructed in O(n log n) where n is the number of jobs. First,
all earliest completion and latest start times are collected. After sorting these at most
2n time points in non-decreasing order, the profile can be created in linear time. This
can be done by iterating over the sorted time points and constructing the step function
from the smallest time point to the largest time point. Having this profile, an overload
can be detected in linear time by scanning the supporting points of the core profile. This
implies that this consistency check can be performed in O(n log n). For the update step
of the lower bound for a job j, we need to temporarily remove the core of job j from the
profile (to retrieve ΓJ \{j}), search for an improved lower bound, and potentially add the
core of job j to the profile. Each of these steps requires at most linear time in the number
of jobs. Doing this for all jobs, leads to a worst case complexity of O(n2) for the bound
updates. Recently, a O(n log n) version was introduced for the lower bound update for all
jobs [OQ13].

6also called compulsory part
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Figure 1.6: Visualization of the core profile induced by the jobs stated in Figure 1.5. The pattern
indicates the time interval where job 4 cannot be scheduled due to required demands of the

cores.

We refer to [LL82, KS99, BPN01, OQ13] for a more formal description and analysis of
this propagator. The following examples illustrate the basic idea.

Example 1.26. Consider the jobs which are shown in Figure 1.5. The core profile is
depicted in Figure 1.6. Note that jobs 3, 4, and 5 have empty cores. This profile gives the
load w.r.t. the time which needs to be processed for sure. Assume a resource capacity of 5
as shown in Figure 1.6. This core profile does not imply an inconsistency since the peak
is 3. However, this profile can be used to infer a larger lower bound for job 4. This job has
a demand of 3 and so it cannot be processed in the interval [2, 6) since the core profile (of
the remaining jobs) proves that at any point in time within this interval less than 3 units
of the resource capacity are available. Since job 4 has a processing time of 3 and a release
date of 1, it cannot be scheduled before the conflicting interval [2, 6). Hence, the release
date of job 4 can be updated to 6 which is also given by Formula (1.4). Figure 1.6 visualizes
the lower bound update step. After improving the lower bound of the start time variable
belonging to job 4, this job still has an empty core. For the remaining jobs a bound update
cannot be deduced from the core profile since at any point in time at least 2 resource units
are available.

A version of the time-tabling propagation algorithm posts bound changes incrementally
by changing a bound by at most the processing time of the corresponding job at a time.
This does not give any disadvantages w.r.t. time-tabling propagation. For this purpose,
the update step (1.4) of Lemma 1.25 is replaced by:

Sj ≥ min{t : estj ≤ t ≤ ectj , ΓJ \{j}(τ) ≤ C − rj for τ = t, . . . , t + pj − 1, }. (1.5)

This condition bounds the lower bound update from above with the earliest completion
time ectj .

Example 1.27 (Continuing Example 1.26). In Example 1.26 we illustrated the time-
tabling propagator and showed that for the start time variable S4 a lower bound update
from 1 to 6 can be inferred. This increase of the lower bound is larger than the processing
time of job 4 (which is 3). If the incremental update would be applied, the lower bound is
increased in two steps. These are JS4 ≥ 4K followed by JS4 ≥ 6K.

Edge-finding

In contrast to the time-tabling propagator the edge-finding [Nui94, Vil09a] algorithm does
not use any direct placement arguments. It reasons about the required energies of the
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individual jobs. The energy of a job is the product of the processing time and the resource
demand. That is pj · rj for job j. For a non-empty time interval [a, b) the energy of all jobs
which have to be processed in that interval are aggregated. If the resulting total energy is
larger than the available energy, an inconsistency is discovered. Otherwise, bound changes
can be inferred. Thereby, this propagator focuses only on jobs which have to be completely
processed in that particular time interval, i.e., the earliest start times have to be larger or
equal to a and the latest completion times smaller or equal to b. We define EJ (a, b) to be
the energy of all jobs J which have to be processed completely in the time interval [a, b).
That is:

EJ (a, b) =
∑
j∈J

ej(a, b) with ej(a, b) =
{

pj · rj if [estj , lctj) ⊆ [a, b)
0 otherwise.

(1.6)

Having this notation, the inconsistency check and the lower bound update step can be
formalized as follows.

Lemma 1.28. Given a cumulative constraint (S, p, r, C), an interval [a, b) with a < b,
and the set of jobs J which need to be scheduled. The constraint is not satisfiable if
EJ (a, b) > (b− a) · C.

If no inconsistency is inferred, the energy within this interval can be used to retrieve
bound updates for jobs which do not contribute to the aggregated energy, i.e., jobs j ∈ J
with ej(a, b) = 0.

Lemma 1.29. Given a cumulative constraint (S, p, r, C) and an interval [a, b) with a < b
and EJ (a, b) ≤ (b−a) ·C. Let us denote with J the set of jobs which need to be scheduled.
If for a job j, it holds that ej(a, b) = 0 and

EJ (a, b) + rj · (min{b, ectj} −max{a, estj}) > (b− a) · C, (1.7)

the lower bound of the start time variable Sj can be bounded by:

Sj ≥ b−
⌊

1
rj

((b− a) · C − EJ (a, b))
⌋

. (1.8)

If the cumulative constraint is not inconsistent w.r.t. the time interval [a, b), Condi-
tion (1.7) implies that job j overlaps with the interval [a, b) if it is scheduled at its earliest
start time. This holds since EJ (a, b) ≤ C ·(b−a) implies rj ·(min{b, ectj} −max{a, estj}) >
0. Otherwise, Condition (1.7) is not satisfied. Furthermore, the earliest start time is not
feasible due to a overload within the time interval [a, b). Hence, part of the job needs to
be processed after the interval [a, b) which is enforced by Inequality (1.8). Due to a lack
of energy for job j within the inspected interval, it follows that the maximum potential
overlap of job j is smaller after the propagation took place. That is:⌊

1
rj

((b− a) · C − EJ (a, b))
⌋
≤ 1

rj
((b− a) · C − EJ (a, b))

(1.7)
< min{b, ectj} −max{a, estj}. (1.9)
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Figure 1.7: This figure shows the lower bound update due to the edge-finding propagator for jobs
2 and 4 w.r.t. the time interval [1, 7). The pattern indicates the time interval where job 2 and
4 cannot be scheduled.

Currently, the best known worst case complexity for this propagator is O(kn log n) where
n is the number of jobs and k the capacity of the cumulative constraint. For a more
detailed description and analysis of this propagator, we refer to [Vil09b, Sco10]. In SCIP
we implemented a version which has a worst case complexity of O(n2 log n) (see [Vil09a]).
The following example illustrates the bound update step of the edge-finding propagator.

Example 1.30. Consider the jobs of our running example (Figure 1.5) and the time interval
[1, 7). Within this time interval jobs 1, 3, and 5 have to be processed since their release
and due dates are 1 and 7, respectively. In total these three jobs consume 27 units of the
available energy which is 30. This means that only 3 units are available for the remaining
jobs within the interval [1, 7). Scheduling either job 2 or 4 at its earliest start time would
lead to an overload within the time interval [1, 7). Condition (1.7) of Lemma 1.29 is satisfied
for both jobs. Hence, the lower bounds for job 2 and 4 can be propagated. Following
Formula (1.8), the start time variables for these two jobs can be bounded from below:

S2 ≥ 7−
⌊1

2 ((7− 1) · 5− 27)
⌋

= 6 S4 ≥ 7−
⌊1

3 ((7− 1) · 5− 27)
⌋

= 6.

Figure 1.7 depicts the lower bound update for jobs 2 and 4.

Time-tabling edge-finding

The last propagation algorithm which we discuss is called time-tabling edge-finding [Vil11,
SFS13]. As the name suggests, it is a combination of the two previously introduced propa-
gation algorithms: time-tabling and edge-finding. The basic idea is to add some placement
arguments to the classical edge-finding algorithm. The edge-finding algorithm only consid-
ers jobs which have to be processed completely within the interval under investigation. The
time-tabling edge-finding propagator attempts to use the information of the core profile to
add additional fixed energy consumptions. Thereby, the worst case complexity should not
be increased compared to the edge-finding propagation algorithm.

To be able to take advantages of the time-tabling and edge-finding idea, the processing
time of each job is split into a fixed and free part. The fixed part contains the portion of
the job which is covered by the core of a job (this can be zero). The remaining processing
time belongs to the free part, meaning it is not clear where it will be placed exactly.
More formally, for a job j we denote with pT T

j and pEF
j the fixed and free part of job j,

respectively. That is:

pT T
j = max{0, ectj − lstj} pEF

j = pj − pT T
j .
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Figure 1.8: Visualization of the fixed and free part for the jobs belonging to the running example
(see Figure 1.5). Each job j is divided into two jobs. One representing the fixed part jT T and the
other representing the free part jEF . In case of jobs 3, 4, and 5 the fixed part is empty, therefore,
these parts are not printed.

Figure 1.8 depicts the fixed and free part of the processing time for the jobs of our running
example.

For a given time interval, the time-tabling edge-finding propagation algorithm collects
the energy which is given by the free parts of the jobs and adds the contribution of the
cores which are in the interval under investigation. For the latter, the core profile is used
to compute for each point in time t the total energy of all cores at time point t and later.
That is for a given set of jobs J :

V olJ : R→ R with t ↦→
∫ ∞

t
ΓJ (τ) dτ.

Having the core profile ΓJ , which is a step function, V olJ can be computed for the sup-
porting point of the core profile in linear time w.r.t. the number of jobs. We define the core
energy within a non-empty interval [a, b) with ET T

J (a, b). It is given by:

ET T
J (a, b) = V olJ (a)− V olJ (b).

The core energy is calculated in constant time if V olJ is known for the supporting points
of the core profile.

For a set of jobs J and an interval [a, b) the contribution of the fixed parts of the jobs is
covered by ET T

J (a, b). For the free part we define:

EEF
J (a, b) =

∑
j∈J

eEF
j (a, b) with eEF

j (a, b) =
{

pEF
j · rj if [estj , lctj) ⊆ [a, b)

0 otherwise.

Note that this definition is similar to the one for EJ (a, b) (see Equation (1.6)) which is
needed for the edge-finding propagator. It only differs in using the processing time of the
free parts of the jobs to compute the energy contribution of a job, whereas for EJ (a, b) the
complete processing time is considered.

After separating the contribution of a job into a free and fixed part and defining the
corresponding energies for a certain time interval, we can formalize the time-tabling edge-
finding consistency check and lower bound update.
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(a) Job 1, 3, and 5 add energy with
their free part within the time win-
dow [1, 7).
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(b) Job 1 and 2 contribute to the
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(c) Combining core profile and energy consumption of
the free parts lead to lower bound update for job 4.

Figure 1.9: This figure shows the lower bound update due to the time-tabling edge-finding propa-
gation algorithm for job 4 w.r.t. the time interval [1, 7) (Example 1.33). Jobs 1, 3, and 5 contribute
via the classical edge-finding argument with their free part (Figure (a)). Additionally, job 1 and
job 2 contribute with their cores (Figure (b)). These contributions imply a lower bound of 7 for
the start time variable belonging to job 4. The pattern indicates the time interval where job 4
cannot be scheduled (Figure (c)).

Lemma 1.31. Given a cumulative constraint (S, p, r, C) and an interval [a, b) with a < b.
Let us denote with J the set of jobs which need to be scheduled. The constraint is not
satisfiable if ET T

J (a, b) + EEF
J (a, b) > (b− a) · C.

Lemma 1.32. Given a cumulative constraint (S, p, r, C) and an interval [a, b) with a < b.
Let us denote with J the set of jobs which need to be scheduled. If for a job j it holds
that eEF

j (a, b) = 0 and

EEF
J (a, b) + ET T

J \{j}(a, b) + rj · (min{b, ectj} −max{a, estj}) > (b− a) · C,

the lower bound of the start time variable Sj can be bounded by

Sj ≥ b−
⌊

1
rj

(
(b− a) · C − EEF

J (a, b)− ET T
J \{j}(a, b)

)⌋
.

The requirement eEF
j (a, b) = 0 ensures that job j has no contribution to EEF

J (a, b). In
case of the core energy, we need to make sure that the core of job j is removed. This is
captured by ET T

J \{j}(a, b). The following example visualizes this lower bound update step.

Example 1.33. Recalling our running example (see Figure 1.5) and focusing on the time
window [1, 7), Figure 1.9 illustrates the lower bound update for job 4 using the time-tabling
edge-finding propagation algorithm. Since job 3 and 5 have an empty core, their energy
is completely captured by the energy consumption of the free parts (see Figure 1.9(a)).
On the other hand, job 2 only contributes to its core. Job 1, however, has a core and lies
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complete within the time interval [1, 7). Hence, its energy is split. The energy induced
by the core is part of the core profile. The remaining energy is added to the energy of
the free parts. Job 1 contributes its complete energy (see Figure 1.9(c)). The total energy
measured for the time window [1, 7) is 29 units:

EEF
{1,2,3,4,5}(1, 7) = 15 ET T

{1,2,3,5}(1, 7) = 14.

Having this, it follows that job 4 cannot start before time point 7. Note that this is a larger
lower bound than infered by the time-tabling and the edge-finding propagation algorithm
for this variable (see Examples 1.26 and 1.30).

The basic time-tabling edge-finding algorithm can be extended to incorporate even more
energy consumptions. Jobs which do not participate in EEF

J (a, b) since they do not lie
completely within the time interval [a, b) but overlap with the interval on the boundary
could potentially contribute with their free part. This contribution can be easily included
in the algorithm without increasing its worst case complexity of O(n2) where n denotes
the number of jobs. For more details about this extension and a complete analysis of the
time-tabling edge-finding propagation algorithm we refer to [Vil11, SFS13].

1.4.4 Optional jobs
One possible extension of the cumulative constraint allows for jobs to be optional. Jobs
can be processed by different resources and depending on the resources a job might have
different demands and processing times. If the decision is made that a job needs to be
processed on a certain resource, the assigned job needs be considered and it needs to be
ensured that the job is processed such the capacity of the resource is respected. The resource
allocation and scheduling problem introduced in Chapter 5 contains such characteristics.

An optional cumulative constraint which captures this extension can be defined formally
as follows. Given a finite set J = {1, . . . , n} of n ∈ N jobs. As in the cumulative constraint
case, each job j ∈ J has a release date Rj ∈ N and a due date Dj ∈ N∪{∞}. Furthermore,
each job has a resource demand rj ∈ N and a processing time pj ∈ N. The processing time
defines for how many consecutive time points for which a job is processed after it has started.
During the processing of a job it consumes at each time point the resource demand rj if it
is assigned to the resource. To capture the aspect of optional jobs, a binary variable xj for
each job is given. If xj is 1 the job is assigned to the resource and needs to be considered.
In case of xj equals 0 job j can be ignored. A resource provides a capacity C ∈ N which
is available during the whole time horizon. Jobs which are assigned to a resource need
to be scheduled to a feasible start point, such that for all points in time, the cumulative
resource demand is never larger than the capacity C provided by the resource. If Ŝj ∈ Tj

is a feasible start time of job j and x̂j chosen for job j, then the following conditions have
to hold: ∑

j∈J
1t∈[Ŝj ,Ŝj+pj)(t) rj · x̂j ≤ C for all t ∈ N (1.10)

where the indicator function is defined as 1M (x) = 1 if x ∈ M , and zero otherwise. The
tuple (x, S, p, r, C) defines an optional cumulative constraint uniquely. The j-element of
the vectors x, S, p, and r represent the information for job j ∈ J . In models we use the
notation

optcumulative(x, S, p, r, C).
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An optional cumulative constraint where all choice variables are fixed to one or zero can
be transformed into a cumulative constraint.

Known propagation algorithms for the cumulative constraint without optional jobs can
be easily adapted to the case where optional jobs are present [BF00a]. The basic idea is
as follows. We propagate all jobs that are known to execute on the resource with stan-
dard cumulative propagation (e.g., the propagation algorithms introduced in the previous
sections). This has the advantage that if the propagation algorithms for the cumulative
constraints are improved, the optional cumulative constraint directly benefits from this
improvement. In addition, for each job j that is still optional, we perform singleton arc-
consistency [DB97]. We assume that the job will execute on the resource and trigger
propagation.7 If the propagation reaches a dead-end, we can soundly conclude that the job
cannot execute on the resource and appropriately set the xj variable to zero. Otherwise, we
retain the pruned domain for the start time variable Sj variable if the optional cumulative
constraint is the only one locking the start time variable. In any case, the domains of all
other variables are restored. Note that, this propagation is stronger, but more costly, than
the propagation of cumulative constraints with optional jobs discussed in [Vil05].

7Singleton arc-consistency is similar but more general than the shaving technique in the scheduling liter-
ature [MS96].
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2 Conflict relaxations and linear relaxations
for cumulative constraints

The linear relaxation of a MIP, see Section 1.2.2, is one of the most important features
in computational mixed-integer programming. Any feasible solution for this relaxation
satisfies all linear constraints but might violate some of the integrality conditions. This
relaxation often provides a good lower bound on the optimal objective value of the corres-
ponding MIP. In addition, it is typically used to make branching decisions. In this chapter
we define the conflict relaxation. This relaxation plays an important role for conflict-driven
SAT solvers as it is dynamically tightened during the search due to the analysis of infeasible
sub-problems. It provides additional inferences to help pruning other sub-problems. SAT
solvers that exploit the conflict relaxation (i.e., conflict-directed clause learning (CDCL)
solvers [BHvMW09]) also use statistics based on this relaxation to make branching deci-
sions.

In this chapter, we focus on conflict relaxations and linear relaxations in the context of
cumulative constraints. In particular we analyze a special class of propagation algorithms
which we call energy-based propagation algorithms. The propagation algorithms introduced
in Section 1.4.3 belong to this class. We discuss how algorithms belonging to this class
contribute to the analysis of infeasible sub-problems and can be used to construct linear
relaxations for the cumulative constraint with optional jobs. Both contributions are based
on the same idea.

Contribution. In Section 2.1 we formally define energy-based propagation algorithms, a
class of propagation algorithms for cumulative constraints. These algorithms use specific
energy-based arguments to infer bound changes or to detect infeasibilities. For this class
of propagation algorithms we develop explanations (see Definition 2.6) for their inferences
(see Section 2.2.3), generalizing previously published explanations. These explanations can
be then used to generate conflict constraints during analysis of infeasible sub-problems.
The propagation algorithms introduced in Section 1.4.3 are an example of energy-based
propagation algorithms. For these algorithms we apply the developed concept for energy-
based propagation algorithms and present the implied explanations which are a superset
of previously published explanations.

For the cumulative constraint with optional jobs, we develop new linear relaxations in
Section 2.3.2. We prove that each propagation algorithm belonging to the class of energy-
based propagation algorithm implies a linear relaxation. This general concept comprises
the known linear relaxations for the cumulative constraint with optional jobs. In addition
we apply this method and present a new linear relaxation implied by the energetic reasoning
propagation algorithm.

Outline. This chapter is divided into four sections. In Section 2.1 we define the class of
energy-based propagation algorithms for cumulative constraints and show that the propa-
gation algorithms introduced in Section 1.4.3 belong to this class of propagation algorithms.
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Section 2.2 focuses on the conflict relaxation. We first recall, in Section 2.2.1, the general
concept of conflict analysis which is used to analyze infeasible sub-problems and return
conflict constraints that form a conflict relaxation. In addition we describe conflict-driven
search for binary variables. In Section 2.2.2 we adapt the conflict-driven search idea to
variables with integer domains. In Section 2.2.3 we develop explanations for energy-based
propagation algorithms. Explanations are needed during the conflict analyze to retrieve
conflict constraints. We apply the concept of explanations for energy-based propagation
algorithms to the propagation algorithms introduced in the previous chapter. We demon-
strate that the introduced explanations generalize known explanations for the considered
algorithms. Section 2.3 is dedicated to linear relaxation for a cumulative constraint with
optional jobs. We first recall, in Section 2.3.1, known linear relaxations for this structure.
In Section 2.3.2 we develop a method which constructs a linear relaxation for each propa-
gation algorithm belonging to the class of energy-based propagation algorithms. We show
that two previously published linear relaxations fit into this concept and apply this method
to develop a new linear relaxation based on the energetic reasoning propagation algorithm.
We close this chapter with Section 2.4 by summarizing the two concepts developed for the
conflict and the linear relaxation for energy-based propagation algorithms.

2.1 Energy-based propagation algorithms
In this section we define a class of propagation algorithms for the cumulative constraint
which we call energy-based propagation algorithms. In the following sections we develop
general methods w.r.t. the conflict relaxation and linear relaxation, respectively, for this
class of propagation algorithms.

Most propagation algorithms for the cumulative constraint are based on a volume argu-
ment to detect inconsistency or to infer domain changes. For a non-empty interval [a, b)
it is known how much energy is available. That is (b − a) · C where C denotes the finite
capacity of the cumulative constraint at each time point. For each job j a lower bound
ej(a, b) on the energy consumption within this interval is constructed. That means in any
feasible solution (that satisfies the variable domains which serve as input for the propaga-
tion algorithm), a job consumes at least this amount of energy in the interval [a, b). Using
purely the boundary of a job the lower bound ej(a, b) for a fixed interval [a, b) can be
bounded from above:

ej(a, b) ≤ e′
j(a, b) = max{0, min{b− a, pj , ectj −a, b− lstj}} · rj (2.1)

where ectj and lstj denote the earliest completion time and the latest start time of job j,
respectively, and pj and rj the processing time and resource demand. Note that e′

j(a, b) is
the lower bound for the energy consumption used by the energetic reasoning propagation
algorithm [BPN01].

Having for each job a lower bound for the energy consumption, a consistency check and
variable bound improvements can be performed by volume formulas.

Inconsistency check. An inconsistency in interval [a, b) is detected if the sum of the lower
bounds on the energy consumption for this interval ej(a, b) is larger than the available
energy: ∑

j∈J
ej(a, b) > (b− a) · C. (2.2)
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Domain change. An improved earliest start time due to interval [a, b) for a job j with
resource demand rj can be inferred if it is infeasible to schedule this job at its current
earliest start time. This means that the energy consumption in the interval [a, b) would
increase above the available energy. This can be formalized by the following two conditions.
First, there must not be an overload within the interval [a, b) if job j is ignored:∑

i∈J \{j}
ei(a, b) ≤ (b− a) · C. (2.3)

If this is not the case there is an inconsistency. Second, scheduling job j at its earliest start
time estj leads to an overload in the corresponding interval:∑

i∈J \{j}
ei(a, b) + rj · (min{b, ectj} −max{a, estj}) > (b− a) · C. (2.4)

These two conditions imply min{b, ectj} −max{a, estj} > 0. When these conditions hold,
the earliest start time for job j can be bounded from below by:

b−

⎢⎢⎢⎣ 1
rj

⎛⎝(b− a) · C −
∑

i∈J \{j}
ei(a, b)

⎞⎠⎥⎥⎥⎦ ≤ Sj . (2.5)

Symmetrical arguments can be used to bound the latest completion time of a job from
above.

The algorithms which follow this scheme differ in the computation of the lower bound for
the energy consumption of a fixed interval and the type of intervals which are considered.
The following definition states properties which subsume the energy-based propagation
algorithms.

Definition 2.1 (energy-based propagation algorithms). A propagation algorithm
for the cumulative constraint (as defined in Section 1.4.1) belongs to the class of energy-
based propagation algorithms if it uses for each job j a lower bound ej(a, b) on the energy
consumption for a fixed non-empty interval [a, b) which is not larger than

e′
j(a, b) = max{0, min{b− a, pj , ectj −a, b− lstj}} · rj (2.6)

and uses Inequality (2.2) and Inequality (2.5) (with Conditions (2.3) and (2.4)) to detect
an inconsistency or an lower bound on the earliest start time, respectively.

The propagation algorithms introduced in Section 1.4.3 belong to this class. In the
following we discuss how these algorithms fit into this class.

Time-tabling. The time-tabling propagation algorithm considers intervals of length one.
For each job j the core γj (see Section 1.4.3) is used to determine a lower bound for the
energy consumption within the considered unit interval. This lower bound is rj if the core
overlaps with the interval or zero, otherwise. The core profile ΓJ (t) (see Equation (1.3))
is used to capture a lower bound for the energy consumption for each point in time t:

ΓJ (t)
(1.3)

↓=
∑
j∈J

1γj (t) rj =
∑
j∈J

ej(t, t + 1) with ej(t, t + 1) =
{

rj if lstj ≤ t < ectj

0 otherwise.

Clearly, ej(t, t + 1) = e′
j(t, t + 1). Hence, this propagation algorithm belongs to the class of

energy-based propagation algorithms if the bound update is done w.r.t. Inequality (1.5).
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Edge-finding. For a fixed interval [a, b) the edge-finding propagation algorithm uses ej(a, b)
to compute a lower bound on the contribution of a job j for this interval. This energy lower
bound ej(a, b) is the overall energy requirement of a job j (demand multiplied by the pro-
cessing time) if the job needs to be executed entirely in the interval [a, b) in any case,
otherwise, it is zero:

ej(a, b) = ej(a, b)
(1.6)

↓=
{

pj · rj if [estj , lctj) ⊆ [a, b)
0 otherwise.

The intervals of interest are defined by the earliest start time and latest completion time
of each job. Note that ej(a, b) ≤ e′

j(a, b).

Time-tabling edge-finding. The time-tabling edge-finding propagation algorithm splits
each job into a fixed and a free part. For the fixed parts the cores of the jobs are used to
construct a lower bound on the energy consumption within a fixed interval [a, b):

eT T
j (a, b) =

∫ b

a
1γj∩[a,b)(t) dt · rj

where γj defines the core of job j. The lower bound used for the edge-finding propagation
algorithm is taken to bound the energy consumption for the free part:

eEF
j (a, b) =

{
pEF

j · rj if [estj , lctj) ⊆ [a, b)
0 otherwise

with pEF
j = pj − max{0, ectj − lstj}. See Section 1.4.3 for more details. For each job j,

the sum eT T
j (a, b) + eEF

j (a, b) is a lower bound on the whole energy consumption for this
job within interval [a, b). As for the edge-finding propagation algorithm, the intervals of
interest are defined by the earliest start time and by the latest completion time of each job.

The total energy contribution considered by the time-tabling edge-finding propagation
algorithm for any job j is not larger than e′

j(a, b) (see Equation (2.1)).

Lemma 2.2. Given an interval [a, b) with a < b and a job j with processing time pj > 0
and resource demand rj > 0, it holds that:

eT T
j (a, b) + eEF

j (a, b) ≤ e′
j(a, b).

Proof. Given an interval [a, b) with a < b and a job j with processing time pj and resource
demand rj > 0 if e′

j(a, b) = 0 it can be easily shown that eEF
j (a, b) = eT T

j (a, b) = 0. Hence,
it remains to be shown that the claim holds for e′

j(a, b) > 0. To prove this we perform a
case distinction over the elements of the minimum in Equation (2.6) defining e′

j(a, b).

Case e′
j(a, b) = (b − a) · rj: Hence, job j will be processed during the whole time inter-

val [a, b) in any case. It follows, lstj ≤ a, ectj ≥ b, and pj ≥ b− a. This implies:

eT T
j (a, b) = (b− a) · rj

In addition we know that

[a, b) ⊆ [lstj , ectj) ⊆ [estj , lctj)

If [lstj , ectj) = [estj , lctj) it follows that pEF
j = 0. Hence, eEF

j (a, b) = 0. If [lstj , ectj) ⊂
[estj , lctj) it follows that [a, b) ⊂ [estj , lctj). Hence, eEF

j (a, b) = 0 by definition which
proves the claim for this case.
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2.2 Conflict relaxation

Case e′
j(a, b) = pj · rj: Since pj · rj bounds eT T

j (a, b) + eEF
j (a, b) from above, the claim

holds.

Case e′
j(a, b) = (b−lstj)·rj: We assume that (b−lstj) < pj . Otherwise, (b−lstj) = pj and

Case 2 proves the claim. This assumption implies that b < lctj which gives [estj , lctj) ⊈
[a, b). It follows by definition eEF

j (a, b) = 0.
Further, we assume lstj > a. If lstj = a, then Case e′

j(a, b) = (b−a) ·rj proves the claim.
From which follows that,

γj ∩ [a, b) ⊆ [lctj , b).

This bounds eT T
j (a, b) from above with (b− lstj) · rj which proves the claim.

Case e′
j(a, b) = (ectj −a) · rj: Arguments symmetric to the previous case give the proof

this case.

Hence, this propagation algorithm is an energy-based propagation algorithm.

Energetic reasoning. The energetic reasoning propagation algorithm [BPN01] uses the
same intervals as the edge-finding propagation algorithm and the time-tabling edge-finding
propagation algorithm. For a fixed interval [a, b) it bounds the energy consumption of each
job by:

ej(a, b) = e′
j(a, b) = max{0, min{b− a, pj , ectj −a, b− lstj}} · rj

which equals Equality (2.6). Hence, the energetic reasoning propagation algorithm is an
energy-based propagation algorithm.

In the remainder of this chapter we develop general methods w.r.t. the conflict relaxation
and linear relaxation for the class of energy-based propagation algorithms.

2.2 Conflict relaxation
During a branch-and-bound tree search, infeasible sub-problems can occur. That means
the problem at a search node does not admit any feasible solutions. Infeasible sub-problems
can be analyzed to learn constraints which might help to subsequently prune the search
tree. These constraints need to be fulfilled by any feasible solution and therefore form
a relaxation of the original problem which we call the conflict relaxation. The technique
of analyzing infeasible sub-problems, called conflict analysis. It has been considered for
COP [SS77], SAT [MSS99], and MIP [Ach07a, SS06] and is synonymously known as nogood
learning. In addition, statistics about the distribution of variables in conflict constraints
can be used to drive the search. In the SAT community this is known as conflict-driven
search [MMZ+01]. For solving mixed-integer programs such statistics have been used in
combination with other statistics to decide how to branch [AB09].

For cumulative scheduling problems such as the resource-constrained project scheduling
problem (see Chapter 4) it has been shown by empirical studies [SFSW11, HS11, Sch12,
SFS13, SFSW13] that a conflict relaxation can be crucial to solve these problems efficiently.
A state-of-the-art approach to solve these problems is to combine propagation with conflict-
driven search. This approach solved a number of open instances of the Psplib [KS96, PSP].
In this dissertation, we do not reevaluate the importance of a conflict relaxation for the
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Jx2 ≥ 1K

Jx1 ≥ 1K

Jx3 ≥ 1K

Jx4 ≤ 0K

(a) Variables x1, x2, and x3
fixed to one imply that variable
x4 can be fixed to zero.

Jx2 ≥ 1K

Jx1 ≥ 1K

Jx3 ≥ 1K

Jx4 ≤ 0K

(b) Variables x1 and x3 fixed to
one imply that variable x4 can
be fixed to zero.

Jx2 ≥ 1K

Jx1 ≥ 1K

Jx3 ≥ 1K

Jx4 ≤ 0K

(c) Variables x2 and x3 fixed to
one imply that variable x4 can
be fixed to zero.

Figure 2.1: This figure illustrates snapshots of an implication graph. It shows three possible impli-
cations for the inference discussed in Example 2.3. The sufficient condition of an implication is called
reason (see Definition 2.4). In this case all three reasons are also explanation (see Definition 2.6).

resource-constrained project scheduling problem, we focus on the generalization of the
known explanations which are needed for the conflict relaxation in the context of energy-
based propagation algorithms.

In the following we recall the basis of the conflict analysis. In Section 2.2.2 we discuss the
idea of conflict-driven search for variables with integer domains. Finally in Section 2.2.3
we present how the propagation algorithms introduced in Section 1.4.3 for the cumulative
constraint contribute to the conflict analysis.

2.2.1 Background
We first discuss how conflict constraints are retrieved from infeasible sub-problems. Second,
we summarize how conflict constraints can be used to drive search.

Conflict analysis

The task of propagation algorithms is to infer variable domain restrictions. Therefore, these
algorithms typically take the current (local) variable domains and a subset of constraints
as input and return a smaller domain space. Hence, these algorithms infer bound changes
(see Definition 1.9). For a single bound change usually the inference can be made with
only a subset of the variable domains.

Example 2.3. Given binary variables x0, . . . , x4 and a knapsack constraint

x0 + x1 + x2 + 4 x3 + 6 x4 ≤ 10. (2.7)

If the variables x1, x2, and x3 are fixed to one, the constraint implies that variable x4
must be fixed to zero. This is the case since the first four variables consume at least
0 + 1 + 1 + 4 = 6 units of the knapsack capacity, leaving only 4 units for the last variable
which is less than the weight of x4. If this constraint is part of a larger COP which contains
more variables, the other variables are irrelevant for this bound change. In addition only a
subset of the variables belonging to the scope of the constraint might be needed. For the
inference in our example the bound change Jx4 ≤ 0K is already implied by the knapsack
constraint if variable x3 and one of the two variables x1 and x2 are fixed to one.

Which variable domain bounds imply which bound change can be depicted in an acyclic
directed graph in which each vertex corresponds to a bound change. Each directed arc (u, v)
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2.2 Conflict relaxation

in this graph states a necessary condition: the bound change u is necessary to infer bound
change v. All incoming arcs of a vertex v form a sufficient condition for the corresponding
bound change. Bound changes that were directly created by branching decisions have
no incoming arcs. They are the sources of the directed graph. The sinks of this graph
belong to the current (local) bound changes which have not been used yet to infer other
bound changes. We call this graph the implication graph.1 Figure 2.1 shows snapshots
of an implication graph which illustrate three possible implications for the bound change
discussed in Example 2.3. The sufficient condition of an implication is called reason since
it justifies the implied bound change. Formally a reason is defined as:

Definition 2.4 (reason). Given a COP = (X,C,D, f). A reason for a bound change Bi

for variable xi is a set of bound changes B such that these bound changes together with
the COP imply the bound change Bi. That is⋂

B̃∈B

B̃ ∩XCOP ⊆ Bi.

This means that adding the bound changes B of a reason to the COP causes all remaining
feasible solutions (if any) to lie in the halfspace defined by Bi.

Example 2.5 (continuing Example 2.3). Figure 2.1 shows three possible implications
for the bound change discussed in Example 2.3. The three reasons are:

Ba = {Jx1 ≥ 1K, Jx2 ≥ 1K, Jx3 ≥ 1K}
Bb = {Jx1 ≥ 1K, Jx3 ≥ 1K}
Bc = {Jx2 ≥ 1K, Jx3 ≥ 1K}

Each of these reasons together with the knapsack constraint (2.7) imply that the binary
variable x4 can be fixed to zero.

The reasons stated in Example 2.5 are called explanations since their bound changes
respect the (local) variable domains. In contrast,

B = {Jx0 ≥ 1K, Jx3 ≥ 1K}

is also a reason for the bound change Jx4 ≤ 0K. However, since the domain of variable x0
is not restricted in our example, this reason contains a bound change (Jx0 ≥ 1K) which is
not present at the time of propagation.

Definition 2.6 (explanation). An explanation is a reason (see Definition 2.4) with the
additional condition that the reason only uses bound changes which are not tighter than
the bound changes which are present during the inference.

The trivial reason B = {Bi} for a bound change Bi is not an explanation since this
single bound change Bi is tighter than the bound of the corresponding variable before the
propagation.

To construct an implication graph, each bound change which is not a branching decision
needs to be linked to an explanation. If a propagation algorithm detects an inconsistency,

1The term conflict graph is also often used [Ach07b, Ach07a].
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depth level

branchings

bound changes

1

Jx1 ≤ 2K

Jx4 ≥ 6K Jx2 ≥ 2K

Jx5 ≤ 2K

reason side

conflict side

2

Jx2 ≥ 3K

Jx4 ≥ 7K

Jx4 ≥ 8K

3

Jx3 ≤ 0K

Jx5 ≥ 2K

Figure 2.2: The figure illustrates an implication graph which could be at hand in case of an infeas-
ible sub-problem. The dotted line indicates a conflict cut which separates the artificial infeasible
vertex ( ) from the vertices representing the branching decisions. The conflict cut splits the vertices
in two partitions. The vertices belonging to the conflict side and the vertices belonging to the reason
side. This conflict cut leads to the conflict Jx5 ≤ 2K ∧ Jx4 ≥ 7K ∧ Jx3 ≤ 0K.

an artificial vertex is added which represents the infeasibility. The explanation provided
by the propagation algorithm forms a so-called initial explanation for the infeasibility. The
corresponding arcs are added to the implication graph. In case of an infeasible sub-problem
we have an implication graph at hand for which:

▷ each vertex (except the artificial infeasible vertex) represents a bound change,

▷ all sources belong to branching decisions,

▷ an artificial vertex exists which represents the infeasibility and is a sink in the directed
graph, and

▷ all incoming arcs of each vertex represent an explanation for the corresponding bound
change or infeasibility.

Example 2.5 already showed that explanations in general are not unique. Consequently,
the implication graph is not unique.

In the case of an infeasible sub-problem an implication graph is the basis of the conflict
analysis. Figure 2.2 illustrates an implication graph. Each cut separating the branching
vertices (all sources of the graph) from the artificial infeasible vertex is called a conflict cut.
Hence, a conflict cut is a subset of arcs and separates the graph into the reason side and the
conflict side. The reason side is the one containing the branching decisions. The artificial
infeasible vertex belongs to the conflict side. All bound changes belonging to the tail of the
arcs of a conflict cut form a conflict with the property that if these bounds are added to
the original problem the problem becomes infeasible. Therefore, a conflict constraint can
be represented as an intersection of bound changes:⋂

xi∈X1

Jxi ≥ aiK ∩
⋂

xi∈X2

Jxi ≤ biK
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2.2 Conflict relaxation

where X1 and X2 are subsets of the variable set X and it holds that adding these bound
changes to the (original) problem renders it infeasible. Hence, at least one of these bound
changes needs to be violated to achieve feasibility. Identical reasoning on a clause is used
to justify unit propagation in SAT [ZS96].

Conflict analysis aims to find conflict constraints which provide additional restrictions
to the search space. In practice the conflict cuts related to so-called unique implication
points [MSS99, ZMMM01] of the different branching levels are often used. Formally, a
unique implication point of a fixed branching level is a vertex in the implication graph
which was inferred in this branching level or in a later branching level with the property
that any path from the branching bound change to the artificial infeasible vertex needs to
pass through this particular vertex. In general a branching level can have multiple unique
implication points. The implication graph shown in Figure 2.2 has two unique implication
points for the last branching level which are the vertices representing the bound changes
Jx3 ≤ 0K and Jx5 ≥ 2K. In practice we are interested in those that are closest to the vertex
representing the infeasibility. These are called first unique implication points. For more
details we refer to [MSS99, ZMMM01, Ach07b, Ach07a].

Summarizing, in case of an infeasible sub-problem, an implication graph is the input for
the conflict analysis. This graph stores which bound changes imply which bound change.
To be able to construct such a graph, each bound change needs to be linked to an explana-
tion. An explanation is a set of bound changes with the property that adding these bound
changes to the original problem restricts the remaining feasible solutions (if any) to the
halfspace defined by the implied bound change (see Definition 2.6). In Section 2.2.3 we de-
velop explanations for the inferences provided by the energy-based propagation algorithms
introduced in Section 2.1.

Conflict-driven search (VSIDS)

The conflict constraints form a relaxation of the original problem that can be used to drive
the search. Assuming all variables are binary, the basic idea of conflict-driven search is to
select a variable which appears most frequently in conflict constraints. This means, we are
counting the number of times a binary variable appears with its lower bound (Jx ≥ 1K)
and with its upper bound (Jx ≤ 0K) in conflict constraints. This branching heuristic is
known as VSIDS (Variable State Independent Decaying Sum) [MMZ+01]. These statistics
are dynamically adapted such that newly detected conflicts have a larger impact compared
to older conflict constraints. By choosing a binary variable which appears in many conflict
constraints, the hope is that the conflict relaxation infers additional bound changes via unit
propagation of the single conflict constraints. In the 0-branch (1-branch) all conflicts which
contain the upper (lower) bound of the binary variable are redundant for the remaining
search sub-tree since the branching bound change violates for these conflict constraints a
bound change. Thereby the branching is done via variables which play a role in proving
infeasibility. The hope is that this heuristic keeps the search tree small. The statistic used
for this branching heuristic can be adjusted by also counting those bound changes which
appear in intermediate conflicts during the conflict analysis (see [GN07]). For more details
about conflict-driven search we refer to [MMZ+01, JPMSM08].

2.2.2 Adaptive conflict-driven search

In case of a binary variable, it is sufficient to count the number of lower and upper bounds
appearing in conflict constraints since the lower and upper bound values are unique. In
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Conflict relaxations and linear relaxations for cumulative constraints

addition there is no choice in splitting the problem if a binary variable is selected. The
problem is split into two sub-problems by fixing the binary variable to zero or to one.

However, for a variable with integer domain we need to decide how the variable domain
is split to create sub-problems. To generalize the idea of conflict-driven search for binary
variables to variables with integer domains we need to count how often a variable appears
as a lower or upper bound in combination with a certain bound value. Hence, we are
counting how often certain bound changes arise in conflict constraints. To adapt VSIDS
we select a bound change which appears most frequently in conflict constraints. For this
selection, we do not only discriminate between lower and upper bounds but also by the
bound value. The statistic we need maps each variable and domain value to the number of
times it appears as lower or upper bound in conflict constraints. We call this a value based
variable statistic and use it to generalize conflict-driven search for variables with integer
domains.

2.2.3 Energy-based explanations
In Section 2.2.1 we recalled the basic idea of the conflict analysis, which is used to exploit
infeasible sub-problems. The input of the conflict analysis is an implication graph. To be
able to construct this graph any inference needs to be linked to an explanation: a set of
bound changes which implies the inference, see Definition 2.6. Note that it is not required
that the explanation is the actual set of bound changes used during the propagation.
It is sufficient to provide any set of bound changes which imply the inference. In this
section we develop generic explanations for the inferences provided by any propagation
algorithm belonging to the class of energy-based propagation algorithms (see Section 2.1).
For the propagation algorithms introduced in Section 1.4.3, which belong to this class, we
apply these generic explanations and show that the resulting explanations include known
explanations for the corresponding propagation algorithm.

As presented above, the inference of energy-based propagation algorithms relies on vol-
ume arguments. For a fixed non-empty time interval [a, b), a lower bound ej(a, b) on the
energy consumption of each job j within this interval is used to estimate the total energy
consumption. See Section 2.1 for more details. An explanation is a reason with the ad-
ditional restriction that only bound changes are used which are not tighter than the ones
present during the propagation. However, we will show that it is sometimes possible to
identify a valid explanation that contains weaker bound changes than the ones present
during the propagation, strengthening the conflict constraint.

Before we present explanations, we analyze which bounds are needed to enforce a lower
bound ej(a, b) on the energy consumption of a fixed job j within a non-empty interval [a, b).

Lemma 2.7. Given an interval [a, b) with a < b, a job j with earliest start time estj and
latest start time lstj , a resource demand rj , and a processing time pj , if

0 < ej(a, b) ≤ e′
j(a, b) = max{0, min{b− a, pj , ectj −a, b− lstj}} · rj

then the bounds

JSj ≥ a + ej(a,b)
rj
− pjK ∩ JSj ≤ b− ej(a,b)

rj
K (2.8)

enforce that job j consumes at least ej(a, b) units of energy within the interval [a, b) and

JSj ≥ estjK ∩ JSj ≤ lstjK ⊆ JSj ≥ a + ej(a,b)
rj
− pjK ∩ JSj ≤ b− ej(a,b)

rj
K.
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Proof. Since 0 < ej(a, b) ≤ e′
j(a, b), it follows that min{b − a, pj , ectj −a, b − lstj} > 0.

Therefore,

a + ej(a,b)
rj
− pj ≤ a + e′

j(a,b)
rj
− pj ≤ a + (ectj −a)·rj

rj
− pj = ectj −pj = estj

and

b− ej(a,b)
rj
≥ b− e′

j(a,b)
rj
≥ b− (b−lstj)·rj

rj
= lstj .

This implies, that

JSj ≥ estjK ∩ JSj ≤ lstjK ⊆ JSj ≥ a + ej(a,b)
rj
− pjK ∩ JSj ≤ b− ej(a,b)

rj
K.

Finally, we prove the claimed energy consumption of job j within the interval [a, b). We
perform a case distinction.

Case ej(a, b) = (b− a) · rj: Hence, pj ≥ (b− a) and

JSj ≥ a + ej(a,b)
rj
− pjK ∩ JSj ≤ b− ej(a,b)

rj
K = JSj ≥ b− pjK ∩ JSj ≤ aK.

Therefore, job j is definitely processed during the whole interval [a, b). This implies that
job j consumes (b− a) · rj units of energy in the interval.

Case ej(a, b) = pj · rj: Hence, pj ≤ (b− a) and

JSj ≥ a + ej(a,b)
rj
− pjK ∩ JSj ≤ b− ej(a,b)

rj
K = JSj ≥ aK ∩ JSj ≤ b− pjK.

Job j is processed completely within the interval [a, b) requiring pj · rj units of energy.

Case ej(a, b) < min{(b− a), pj} · rj: Hence,

a + ej(a,b)
rj
− pj

ej(a, b) < p · rj

↓
< a < a + ej(b−a)

rj

ej(a, b) < (b − a) · rj

↓
< b

This implies, that if job j is scheduled at its earliest start time estj = a + ej(a,b)
rj
− pj , then

job j overlaps with the corresponding interval by ej(a,b)
rj

units. The following inequality
proves that the job j also overlaps by the same amount, if it is scheduled at its latest start
time lstj = b− ej(a,b)

rj
.

b− ej(a,b)
rj

+ pj

ej(a, b) < p · rj

↓
> b > b− ej(b−a)

rj

ej(a, b) < (b − a) · rj

↓
> a

Hence, job j overlaps with the interval [a, b) at least with ej(a,b)
rj

units and therefore requires
at least ej(a, b) units of energy.

This proves that in any case the claimed energy is consumed by job j.

In the following we present explanations for the inconsistency check and the domain
propagation. In addition we apply these generic explanations to the propagation algorithms
introduced in Section 1.4.3 and show that the known explanations for the corresponding
propagation algorithms can be understood as instantiations of the generic explanations.
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Inconsistency check

If an energy-based propagation algorithm detects an inconsistency w.r.t. an interval [a, b),
the cumulative lower bounds ej(a, b) of the energy consumption of each job j within the
interval is larger than the available energy (see Inequality (2.2)). The following theorem
characterizes explanations for this type of inference.

Theorem 2.8. Given a cumulative constraint (S, p, r, C) and an interval [a, b) with a < b,
let us denote by J the set of jobs which need to be scheduled. Assume an inconsistency
w.r.t. the energy-based propagation algorithm, that is

∑
j∈J ej(a, b) > (b − a) · C, where

ej(a, b) denotes the used lower bound on the energy consumption of job j within interval
[a, b). An explanation can be constructed from any subset Ω ⊆ J which satisfies the
necessary condition

∑
j∈Ω ej(a, b) > (b− a) · C. Then, the disjunction⋂

j∈Ω : ej(a,b)>0

(
JSj ≥ a + ej(a,b)

rj
− pjK ∩ JSj ≤ b− ej(a,b)

rj
K
)
. (2.9)

is an explanation for the inconsistency in interval [a, b).

Proof. Given are a cumulative constraint (S, p, r, C) and a subset of jobs Ω ⊆ J which
satisfies the necessary condition

∑
j∈Ω ej(a, b) > (b − a) · C. Such a subset needs to exist

because of the assumption that
∑

j∈J ej(a, b) > (b − a) · C. Hence, Ω = J satisfies the
necessary condition.

Lemma 2.7 proves that the lower and upper bound chosen in the Conflict (2.9) for a job j
with ej(a, b) > 0 are not tighter as those present at the detection of the inconsistency and
enforce that job j surely consumes at least ej(a, b) units of energy within the interval [a, b).
Hence, Conflict (2.9) forces the cumulative constraint to be infeasible since Ω satisfies the
necessary condition of the theorem. This proves that Conflict (2.9) is an explanation for
the inconsistency in interval [a, b).

In case the interval [a, b) which contains an inconsistency is known, an explanation can
be constructed in O(n) where n denotes the number of jobs which are in the scope of the
corresponding cumulative constraint. This assumes that the lower bound contribution for
a fixed job can be computed in O(1) which is the case for e′

j(a, b). A linear algorithm for
constructing an explanation can iterate over all jobs and add jobs to Ω until the sum of
lower bounds on the energy consumption is sufficient. Alternatively, one could first sort
the jobs w.r.t. their energy consumption. Sorting potentially decreases the number of jobs
needed for an explanation but increases the complexity to O(n log n). The lower and upper
bounds used for each job j ∈ Ω in Conflict (2.9) are the weakest possible bounds that imply
that the corresponding job j requires at least ej(a, b) units of energy within the interval
[a, b). These bounds may be looser than the bounds at the time that the inconsistency is
detected. We refer to Section 2.2.4 for a discussion about which explanation to choose.

Domain propagation

Assume that an energy-based propagation algorithm infers a lower bound for the earliest
start time estj of job j w.r.t. a non-empty interval [a, b). This implies that the following
precondition must have been satisfied∑

i∈J \{j}
ei(a, b) + rj · (min{b, ectj} −max{a, estj}) > (b− a) · C (2.10)
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with min{b, ectj} − max{a, estj} > 0. That means, if job j was scheduled at its earliest
start time, it would overlap with interval [a, b) and this would lead to an overload in the
considered interval. Consequently, the following lower bound can be deduced

b−

⎢⎢⎢⎣ 1
rj

⎛⎝(b− a) · C −
∑

i∈J \{j}
ei(a, b)

⎞⎠⎥⎥⎥⎦ ≤ Sj . (2.11)

See Section 2.1 for more details. An explanation for this inference needs to imply that it
is infeasible to schedule job j at its earliest start time (Inequality (2.10)) and that enough
energy is present such that the earliest start time of job j can be sufficiently bounded from
below. That is: ∑

i∈J \{j}
ei(a, b) ≥ (b− a) · C − (b− est′

j) · rj . (2.12)

where est′
j denotes the inferred lower bound for the start time of job j. Generally speaking,

to avoid the overload, job j needs to request less energy in the interval [a, b) than if it were
scheduled at its earliest start time. It holds that

(b− est′
j) < min{b, ectj} −max{a, estj} (2.13)

which implies that Inequality (2.11) is satisfied if Inequality (2.12) is satisfied. The following
theorem describes explanations for this type of inference.

Theorem 2.9. Given a cumulative constraint (S, p, r, C) and an interval [a, b) with a < b,
let us denote by J the set of jobs which need to be scheduled. Further, let est′

j be the lower
bound of start time variable Sj of job j. Assume this bound has been deduced by an energy-
based propagation algorithm using ei(a, b) as lower bound on the energy consumption of
job i ∈ J within interval [a, b). Hence, Inequality (2.11) holds. An explanation for this
inference can be constructed from any subset Ω ⊆ J \ {j} which satisfies the necessary
condition ∑

i∈Ω
ei(a, b) ≥ (b− a) · C − (b− est′

j) · rj (2.14)

Let Ω be such a subset. Then the corresponding explanation has the form:⋂
i∈Ω : ei(a,b)>0

(
JSi ≥ a + ei(a,b)

ri
− piK ∩ JSi ≤ b− ei(a,b)

ri
K
)
∩ JSj ≥ a + (b− est′

j)− pj + 1K.

(2.15)

Proof. Given a cumulative constraint (S, p, r, C), an interval [a, b) with a < b, and a
start time variable Sj with an earliest start time est′

j > estj that has been inferred by an
energy based propagation algorithm via Inequality (2.11). Further, let Ω ⊆ J \ {j} be a
subset of jobs which satisfies the necessary Condition (2.14). Such a subset exists since
the theorem assumes that the bound change was made by an energy-based propagation
algorithm. Hence, Ω = J satisfies the necessary condition.

From Lemma 2.7 follows that⋂
i∈Ω : ei(a,b)>0

(
JSi ≥ a + ei(a,b)

ri
− piK ∩ JSi ≤ b− ei(a,b)

ri
K
)
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Conflict relaxations and linear relaxations for cumulative constraints

is an explanation which forces a load of at least
∑

i∈Ω ei(a, b) within in the interval [a, b).
It remains to be shown that

JSj ≥ estjK ⊆ JSj ≥ a + (b− est′
j)− pj + 1K

and that it is infeasible to schedule job j at its earliest start time estj = a+(b−est′
j)−pj +1.

For job j:

a + (b− est′
j)− pj + 1

(2.13)
< a + min{b, ectj} −max{a, estj} − pj + 1
≤ a + ectj −a− pj + 1
≤ estj +1.

Since all values are integer numbers, it follows that a + (b− est′
j)− pj + 1 ≤ estj . Hence,

JSj ≥ estjK ⊆ JSj ≥ a + (b− est′
j)− pj + 1K,

which shows that the Disjunction (2.15) is an explanation.
Scheduling job j at its earliest start time as suggested by Explanation (2.15), which is

a + (b − est′
j) − pj + 1, implies that job j overlaps with interval [a, b) with (b − est′

j +1)
units. Hence,

∑
i∈Ω

ei(a, b) + (b− est′
j +1) · rj

rj > 0
↓
>

∑
i∈Ω

ei(a, b) + (b− est′
j) · rj

(2.14)
↓
≥ (b− a) · C.

This proves an overload within interval [a, b) if job j is scheduled at a + (b− est′
j)− pj + 1.

Therefore, Explanation (2.15) is sufficient to prove the validity of the lower bound update
made by the propagation algorithm.

If the interval [a, b) that was responsible for the inference is known, an explanation can
be constructed in linear time in the same fashion as for the inconsistency case. If the
energy contributions of all jobs are first sorted to reduce the number of jobs being part
of an explanation, the complexity increases to O(n log n). The lower and upper bounds
used for each job j ∈ Ω in Conflict (2.15) are the weakest possible bounds that imply that
the corresponding job j requires at least ej(a, b) units of energy within the interval [a, b).
These bounds may be looser than the bounds at the time that the inference took place.
We refer to Section 2.2.4 for a discussion about which explanation to choose.

Applying the generic explanations

In Section 2.1 we showed that the propagation algorithm time-tabling, edge-finding, time-
tabling edge-finding, and energetic reasoning belong to the class of energy-based propaga-
tion algorithms.

Time-tabling. For a fixed interval [t, t + 1) the following lower bound on the energy
consumption for a job j is used:

ej(t, t + 1) =
{

rj if lstj ≤ t < ectj

0 otherwise.

Lemmas 2.10 and 2.11 state explanations for the inconsistency case and domain update
case, respectively, of this propagation algorithm.
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2.2 Conflict relaxation

Lemma 2.10. Let us be given a cumulative constraint (S, p, r, C) and denote with J the
set of jobs which need to be scheduled. An explanation for an overload due to the core
profile at time point t, that is ΓJ (t) > C, can be constructed from any subset Ω ⊆ J which
satisfies the necessary condition ΓΩ(t) > C. Then, the disjunction:⋂

j∈Ω : t∈γj

(
JSj ≥ t− pj + 1K ∩ JSj ≤ tK

)
. (2.16)

is an explanation.

Proof. Follows from Theorem 2.8 using for a fixed interval [t, t + 1) and the following lower
bound on the energy contribution of job j within in the considered interval:

ej(t, t + 1) =
{

rj if lstj ≤ t < ectj

0 otherwise.

Using a = t and b = t + 1 the explanation can be reformulated as:⋂
j∈Ω : t∈γj

(
JSj ≥ t− pj + 1K ∩ JSj ≤ tK

)
=

⋂
j∈Ω : ej(a,b)>0

(
JSj ≥ a− pj + rj

rj
K ∩ JSj ≤ b− rj

rj
K
)

=
⋂

j∈Ω : ej(a,b)>0

(
JSj ≥ a− pj + ej(a,b)

rj
K ∩ JSj ≤ b− ej(a.b)

rj
K
)

Lemma 2.11. Given a cumulative constraint (S, p, r, C), let us denote with J the set
of jobs which need to be scheduled. Further, let est′

j be the lower bound implied by
Inequality (1.4) for start time variable Sj of job j. We define t = est′

j −1. If estj < est′
j <

estj +pj , an explanation of this lower bound change can be constructed from any subset
Ω ⊆ J \ {j} which satisfies the necessary condition ΓΩ(t) > C − rj . Then, the disjunction⋂

i∈Ω : t∈γi

(
JSi ≥ t− pi + 1K ∩ JSi ≤ tK

)
∩ JSj ≥ est′

j −pjK. (2.17)

is an explanation.

Proof. Follows from Theorem 2.9 using

ej(t, t + 1) =
{

rj if lstj ≤ t < ectj

0 otherwise

for a fixed interval [t, t + 1). From a = t, b = t + 1, and est′
j = b it follows:

est′
j −pj = a− b + 1 + est′

j −pj = a + (b− est′
j)− pj + 1.

Hence, the explanation can be reformulated as:⋂
i∈Ω : t∈γi

(
JSi ≥ t− pi + 1K ∩ JSi ≤ tK

)
∩ JSj ≥ est′

j −pjK

=
⋂

j∈Ω : ej(a,b)>0

(
JSj ≥ a− pj + ej(a,b)

rj
K ∩ JSj ≤ b− ej(a.b)

rj
K
)
∩ JSj ≥ a + (b− est′

j)− pj + 1K.
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Conflict relaxations and linear relaxations for cumulative constraints

The two lemmas formulate explanations for the time-tabling algorithm that are known
from the literature [SFSW11]. The proofs, however, show that these explanations can be
derived from the general concept of energy based propagation algorithms.

Edge-finding, edge-finding time-tabling, and energetic reasoning. The three propaga-
tion algorithms edge-finding, time-tabling edge-finding, and energetic reasoning differ in
the used lower bound for the energy consumption of job j for a fixed interval. Since
these lower bounds are in the interval [0, e′

j(a, b)] for any job j, Theorem 2.8 and The-
orem 2.9 provide explanations for the inconsistency check and the domain update, re-
spectively. These explanations match previously published explanations for the respective
algorithms [SFSW11, SFS13].

Optional jobs

The propagation algorithms used when there exist optional jobs rely on the propagation
algorithms without optional jobs. In Section 1.4.4 we introduced two algorithms. One
collects all jobs which are assigned to the cumulative resource (i.e., if the corresponding
binary variable has been fixed to one). For these jobs, the standard propagation algorithms
of the cumulative constraint are called. The second algorithm aims at proving that jobs
which are not assigned to the cumulative resource yet, cannot be assigned without an
inconsistency. In the following we discuss an explanation for the first algorithm.

If an inconsistency or a bound update is infered by one of the propagation algorithms dis-
cussed in Section 1.4.3 for the cumulative constraint without optional jobs, an explanation
can be constructed by extending the explanation for the inference algorithm. To receive
an explanation for the cumulative constraint with optional jobs we add all binary variables
which are fixed to one. Hence, we add the lower bound change of the corresponding binary
variables. This explanation can be strengthened by adding only those binary variables to
the explanation for which the corresponding jobs are required for the explanation of the
inference algorithm. Therefore, we can reuse the explanation for the individual propagation
algorithms of cumulative constraints.

2.2.4 Discussion

We introduced generic explanations for propagation algorithms which belong to the class of
energy-based propagation algorithms. These generic explanations capture known explana-
tions for the time-tabling, edge-finding, time-tabling edge-finding, and energetic reasoning.
For all algorithms belonging to the class of energy-based propagation algorithms the same
algorithm can be used to construct explanations. In the following we briefly discuss:

▷ How can we diversify the set of explanations?

▷ Which explanation to choose?

How can we diversify the set of explanations?

As mentioned before, the explanation used for conflict analysis does not need to be the
same as the reason used for propagation. Certain propagation algorithms use weaker lower
bounds during propagation which results from the fact that, for those lower bounds, prop-
agation algorithms are known which have a smaller worst case complexity. The complexity
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2.2 Conflict relaxation

job j pj rj estj lctj ej(1, 7) e′
j(1, 7)

1 4 1 2 7 4 4
2 5 1 1 7 5 5
3 7 2 0 7 0 12
4 3 2 2 12 0 0

Table 2.1: The table gives for four jobs the processing time pj , the resource demand rj , the earliest
start time estj , the latest completion time lctj , the energy used by the edge-finding propagation
algorithm for the time interval [1, 7) denoted with ej(1, 7), and the energy used by the energetic
reasoning propagation algorithm for the same time interval e′

j(1, 7).

for constructing an explanation for an energy-based propagation algorithm, however, is
independent of the lower bounds used to detect the inconsistency or domain propagation.

Example 2.12. Consider four jobs J = {1, 2, 3, 4} with the setup given in Table 2.1,
a cumulative capacity C = 2, and a time interval [1, 7). The edge-finding propagation
algorithm (see Section 1.4.3) bounds the energy consumption of a job j for an interval [a, b)
from below by

ej(a, b) =
{

pj · rj if [estj , lctj) ⊆ [a, b)
0 otherwise.

That gives the following lower bound on the total energy consumption:

EJ (1, 7) =
∑
j∈J

ej(1, 7) = 4 + 5 + 0 + 0 = 9.

Using Inequality (1.8) we can bound the start time variable S4 of job 4 from below with 6
since

S4 ≥ b−
⌊

1
rj

((b− a) · C − EJ (a, b))
⌋

= 7−
⌊1

2 ((7− 1) · 2− 9)
⌋

= 6.

Theorem 2.9 implies that the subset of jobs Ω = {1, 2} can be used to construct an expla-
nation for the bound change JS4 ≥ 6K using the energy consumption bound ej(1, 7):

JS1 ≥ 1K ∩ JS1 ≤ 3K ∩ JS2 ≥ 1K ∩ JS2 ≤ 2K ∩ JS4 ≥ 0K.

For this example this is the only explanation if we restrict ourselves to the energy con-
sumption used by the edge-finding propagation algorithm. If we consider the energy used
by the energetic reasoning propagation algorithm

e′
j(a, b) = max{0, min{b− a, pj , ectj −a, b− lstj}} · rj ,

we can construct an explanation from the subset Ω = {3}

JS3 ≥ 0K ∩ JS3 ≤ 1K ∩ JS4 ≥ 0K.

This is also a valid explanation for the bound change S4 ≥ 6.
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Conflict relaxations and linear relaxations for cumulative constraints

The necessary condition in Theorem 2.8 and Theorem 2.9 uses ej(a, b) as a lower bound
on the energy contribution for a job j within interval [a, b). These lower bounds match
the lower bounds used by the propagation algorithm during propagation. This restriction
can be relaxed. In addition to the selection of a subset of jobs, the energy contribution
can be selected. For each job j with e′

j(a, b) > 0, an energy contribution ej can be chosen
with 0 < ej ≤ e′

j(a, b). If the selected energy contributions are still sufficient for the
necessary condition, the theorems prove explanations for the inconsistency check and the
bound change. This gives a much larger set of explanation to choose from.

Which explanation to choose?

The implication graph can be constructed on demand in a bottom-up manner as it is
done in the constraint based solver SCIP. This means that the implication graph is freshly
constructed starting from the artificial infeasible vertex and explanations for inferences are
added in the reverse order they were made during the tree search. One advantage of this
approach is that, at the moment an explanation for a certain inference is requested, parts
of the implication graph are already known. Therefore, one may search for an explanation
which is a minimal extension of the implication graph, in the sense that, the selected
explanation adds as few new vertices to the implication graph as possible. In addition the
lazy construction of the implication graph allows global information which was not present
during the propagation to be taken into account. For our computational experiments in
Chapter 4 and Chapter 5 we always construct explanations which yield a minimal extension.

Our generalized concept of explaining inference made by energy-based propagation al-
gorithms leads to the following idea: when constructing an explanation, one might use
different, potentially weaker lower bounds for the energy consumption of a job w.r.t. a time
interval, than the lower bound which was used for the inference. Firstly, that increases
the number of explanations to choose from. Secondly, it helps to find explanations which
require a small number of jobs. Both might consecutively lead to a smaller search tree
being generated and therefrom to an improved solver performance. However, preliminary
computational studies [HS11, Sch12] with different explanations indicated that the impact
for solving resource-constrained project scheduling problems is marginal. We do not present
computational results on this topic as part of this dissertation, but see this as a potential
direction of future research.

2.3 Linear relaxations of optional jobs
For the cumulative constraint as defined in Section 1.4.1 little is known about linear re-
laxations using the start time variables. In [HY02] valid inequalities are presented which
are applicable on the boundary of the efficient horizon (see Definition 1.19). In this section
we focus on the cumulative constraint with optional jobs as introduced in Section 1.4.4.
We first recall in Section 2.3.1 known linear relaxations and put these relaxations in the
context of existing propagation algorithms for the cumulative constraint. As a result we
develop in Section 2.3.2 new relaxations which can be constructed from any energy-based
propagation algorithm (see Section 2.1).

2.3.1 Background
In the literature there are two relaxations proposed for the cumulative constraint with op-
tional jobs. Here we label them as the single relaxation [YAH10] and the edge-finding relax-
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2.3 Linear relaxations of optional jobs

ation [Hoo04, Hoo05a, Hoo07]. For each optcumulative constraint, the former constructs
a single linear constraint whereas the latter potentially adds several linear constraints to the
linear relaxation. The basic idea of these relaxations is to analyze the aggregated energy
of the jobs as compared to the available energy. The energy of a job j is the product of the
processing time and the resource demand and needs to be considered if the corresponding
binary decision variable xj is one. If the cumulative energy of a set of jobs is larger than
the available energy, not all jobs can be processed on a resource. This is the same reasoning
the edge-finding propagation algorithm uses for cumulative constraints (see Section 1.4.3)
and explains our chosen name. In the following we formally recall these two relaxations.

Single relaxation

For each optcumulative constraint a single knapsack constraint is constructed which
bounds the total energy (demand times processing time) required by the potentially as-
signed jobs by the available energy [YAH10]. The available energy is given by the time
interval ranging from the earliest start time to the latest completion time of all jobs times
the resource capacity. Formally, for an optcumulative constraint the knapsack constraint:∑

j∈J
pjrj xj ≤ C · (max

j∈J
{Dj} −min

j∈J
{Rj}) (2.18)

is added to linear relaxation. Note that this linear constraint is redundant if the available
energy is larger than the total energy required by all jobs. In that case, it does not forbid
any subset of jobs to be placed on the resource.

Edge-finding relaxation

The edge-finding relaxation is inspired by the edge-finding propagation algorithm for the
cumulative constraint. This propagator reasons about the required energy of the individual
jobs. For a non-empty time interval [a, b), the energy of all jobs which have to be processed
in that interval is aggregated. If the resulting total energy is larger than the available
energy an inconsistency is discovered (see Section 1.4.3 for more details). The same idea
is used to detect sets of jobs which cannot be placed at the same time on a resource. The
basic idea to construct a linear relaxation is to collect all sets of jobs for which the edge-
finding propagation algorithm may yield an infeasibility. For these jobs, a linear knapsack
constraint is added to the linear relaxation which ensures that this job combination is not
assigned to the resource. Since jobs are only considered if they are definitely to be processed
within a certain time interval, a time window [a, b) is only of interest if a matches an earliest
start time job and b a latest completion time of a job. This gives potentially O(|J |2) linear
constraints per optcumulative constraint. The edge-finding relaxation is formulated as
follows:∑

j∈J
ej(a, b) xj ≤ C · (b− a) ∀(a, b) ∈ {R1, . . . , Rn} × {D1, . . . , Dn} : a < b (2.19)

ej(a, b) =
{

pj · rj if [Rj , Dj) ⊆ [a, b)
0 otherwise.

(2.20)

To avoid of adding inequalities which are dominated by others for a single optcumulative
constraint, in [Hoo04, Hoo05a, Hoo07] a cubic algorithm (w.r.t. the number of jobs) is
presented which detects non-dominated inequalities for a resource. This reduces the number
of added inequalities.
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Conflict relaxations and linear relaxations for cumulative constraints

Note, that the single relaxation (see Constraint (2.18)) is one of the linear constraints
in the edge-finding relaxation and if all jobs have the same time window the edge-finding
relaxation is identical to the single relaxation.

2.3.2 Energy-based linear relaxations
The basic idea used to construct a linear relaxation via the edge-finding propagation algo-
rithm can be generalized to be applicable for all propagation algorithms which belong to
the class of energy-based propagation algorithm.

An energy-base propagation algorithm as defined in Section 2.1 uses a lower bound
ej(a, b) for the energy consumption of job j within the interval [a, b) for each job j and
fixed non-empty interval [a, b). These lower bounds are used to detect inconsistencies when
the sum of lower bounds is larger than the available energy:∑

j∈J
ej(a, b) > (b− a) · C.

If this is the case, clearly not all jobs can be processed on the corresponding resource
and a non-optional cumulative constraint would detect infeasibility. For a cumulative con-
straint with optional jobs, these circumstances can be used to construct a linear knapsack
constraint which can be added the linear relaxation:∑

j∈J
ej(a, b) xj ≤ C · (b− a). (2.21)

As a result each energy-based propagation algorithm implies a linear relaxation for cu-
mulative constraints with optional jobs:∑

j∈J
ej(a, b) xj ≤ C · (b− a) ∀(a, b) ∈ {R1, . . . , Rn} × {D1, . . . , Dn} : a < b. (2.22)

These linear relaxations can be used for Benders decomposition approaches where the sub-
problem contains an optcumulative constraint. This is the case for the allocation and
scheduling problem considered in Chapter 5.

Not all of these linear constraints will be helpful. Some of them will be redundant and
do not need to be added to the linear relaxations. A basic algorithm for constructing a
linear relaxation is as follows. Run the corresponding consistency check of the energy-based
propagation algorithm assuming that all jobs are assigned to the resource. If the algorithm
detects an infeasibility (overload) w.r.t. to a time interval [a, b), a linear knapsack constraint
of the form of Inequalities 2.21 is added to the linear relaxation. Instead of stopping the
consistency check, continue to detect further time intervals which are overloaded. This
simple algorithm has the same worst case complexity as the corresponding algorithm of the
energy-based propagation algorithm which checks for inconsistencies and avoids to adding
obviously redundant linear constraints. It can be executed for example after the presolving
phase to construct a linear relaxation of a cumulative constraints with optional jobs which
can be added to a linear relaxation of a COP.

This concept allows us to develop a new linear relaxation for the cumulative constraint
with optional jobs by using the the energetic reasoning propagation algorithm [BPN01].
In Section 2.1 we showed that this propagation algorithm is an energy-based propagation
algorithm. It uses the following lower bound for each job j and interval [a, b) to bound the
energy consumption of job j within this interval

e′
j(a, b) = max{0, min{b− a, pj , ectj −a, b− lstj}} · rj .
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This leads to a linear relaxation for a cumulative constraint with optional jobs:∑
j∈J

e′
j(a, b) xj ≤ C · (b− a) ∀(a, b) ∈ {R1, . . . , Rn} × {D1, . . . , Dn} : a < b. (2.23)

In Chapter 5 we use this linear relaxation for the cumulative constraint with optional
jobs within a logic-based Benders decomposition approach, a mixed-integer programming
approach, and a constraint integer programming approach for a resource allocation and
scheduling problem.

2.4 Summary
In this chapter we discussed relaxations for cumulative constraints as defined in Section 1.4.
We focused on the conflict relaxation and the linear relaxation. For both relaxations we
developed a general concept to construct explanations and linear constraints, respectively,
which work for any propagation algorithm which belongs to the class of energy-based
propagation algorithms. This class was defined in Section 2.1.

In Section 2.2.3 we developed general explanations which can be applied for any inference
made by a propagation algorithm belonging to the class of energy-based propagation algo-
rithms. These general explanations rely on the observation that all these algorithms use a
lower bound on the energy consumption of a fixed job j within a fixed interval whereas the
volume formulas used for inference are the same (see Section 2.1). For particular algorithms
these general explanations are identical to previously published explanations. The added
value of this chapter lies in the generalization to a whole class of propagation algorithms.

For the linear relaxation of cumulative constraints with optional jobs, we used the same
observation as for the conflict relaxation and showed how to construct a linear relaxation
from any propagation algorithm belonging to the class of energy-based propagation algo-
rithms, see Section 2.3.2. This general concepts captures known linear relaxations for this
structure. In addition we presented a new linear relaxation which is a corollary of our
concept using the energetic reasoning propagation algorithm.

The concepts used for the conflict relaxation and for the linear relaxation are tightly
related. They rely on the same observation that energy-based propagation algorithms use
a lower bound on the energy consumption for fixed job j and a fixed interval. The different
lower bounds and intervals result in different linear relaxations for cumulative constraints
with optional jobs and different explanations for the inferences made by an energy-based
propagation algorithm. This gives a variety of explanations and linear relaxations to choose
from. In general it cannot be judged which of these is best w.r.t. solving particular instances
as that depends on, among other things, the solving system where these techniques are
integrated.
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3 Presolving reductions and dual reductions
for cumulative constraints

In this chapter we present one of the main contributions of this dissertation. Inspired by the
importance of a presolving phase [AW13] in the context of mixed-integer programming, we
develop several presolving steps for the cumulative constraint in the context of constraint
programming.

Before search, the presolving phase attempts to make the subsequent tree search faster

▷ by using primal heuristics to find feasible solutions [Ber06, Ber14],

▷ by gathering structural information that can be used to guide the tree search [AR10,
Sal14], and

▷ by reformulating the problem by detecting redundant constraints and fixing variables
as well as strengthening variable bounds and constraints [Sav94].

Redundant constraints can improve the model due to a different propagation though these
constraints. It is not clear if removing them completely from the model is helpful. However,
knowing which constraints are redundant can be used to speed-up the search. For example
these constraints do not need to be checked if they are satisfied by a potential solution.
In the case of redundant linear constraints, it will speed-up the process of calculating the
linear relaxation if these constraints are not added to it.

In case of the cumulative constraint, the worst case complexity of most propagation
algorithms depends on the number of jobs assigned to the corresponding resource (see
Section 1.4.3). One goal is to shrink this number during the presolving phase, potentially
speeding the propagation algorithms later during the search and possibly leading to free
variables that can be fixed globally. Besides reformulating the cumulative constraints, it is
also of interest to use presolving to contribute to the sources of global information which
may be used by the remaining constraints and propagation algorithms to lead to further
model reductions and algorithmic efficiencies.

In the following, we present several presolving steps which decrease the number of jobs
assigned to a resource and tighten the variable domains. We not only combine the global
structures within a single cumulative constraint, but also present methods which reason
about a set of cumulative constraints. Furthermore, we show how techniques which were
previously developed for specific scheduling problems can be generalized using the concept
of global structures, making these algorithms applicable for any COPs containing cumula-
tive constraints.

Contribution. This chapter is dedicated to generic presolving techniques for the cumu-
lative constraint and contains the following contributions. In Section 3.3 we adapt the
notions of variable locks and variable bounds to the cumulative constraint. In addition,
we generalize known problem specific presolving techniques for the cumulative constraint,
thus, making them available within a general purpose solver through the use of globally
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available structures, e.g., the variable bound graph. In Section 3.4, we apply the concept of
dual reductions described in Section 1.7 for generic COPs and present several dual reduc-
tions for the cumulative constraint. These reductions are applicable to a single cumulative
constraint, but are also generalized to a set of cumulative constraints. Section 3.5 states
presolving methods for the cumulative constraint with optional jobs. These methods rely
on presolving techniques for the cumulative constraint without optional jobs.

Previously published. The results presented in this part are joint work with Jens Schulz
and J. Christopher Beck. Parts of them were previously published in the following papers:

1. Stefan Heinz and J. Christopher Beck, Reconsidering mixed integer programming and
MIP-based hybrids for scheduling, in Integration of AI and OR Techniques in Constraint
Programming for Combinatorial Optimization Problems (CPAIOR 2012), N. Beldiceanu,
N. Jussien, and E. Pinson, eds., Lectures Notes in Computer Science 7298, Springer, 2012,
pp. 211–227.

2. Stefan Heinz, Jens Schulz, and J. Christopher Beck, Using dual presolving reductions
to reformulate cumulative constraints, Constraints 18, no. 2 (2013), pp. 166–201.

3. Stefan Heinz, Wen-Yang Ku and J. Christopher Beck, Recent improvements using
constraint integer programming for resource allocation and scheduling, in Integration of AI
and OR Techniques in Constraint Programming for Combinatorial Optimization Problems,
C. Gomes and M. Sellmann, eds., Lecture Notes in Computer Science, Springer, 2013.

Paper 2 generalizes the concept of dual reductions – which is well known for MIPs – to
COPs. We applied this idea to the cumulative constraint and showed that for resource-
constrained project scheduling problems, these reductions lead to a reduction of the model
size (w.r.t. the number of non-fixed variables) after the presolving phase. This paper
contains a subset of the techniques discussed in this chapter for the cumulative constraint.
In Papers 1 and 3 we sketched presolving ideas for the cumulative constraint with optional
jobs. The reformulated constraints tend to deliver a stronger linear relaxation.

Outline. This chapter is organized as follows: in Section 3.1 we introduce an algorithm
which projects an arbitrary variable bound graph to a precedence graph. This precedence
graph is needed as input for several presolving techniques presented later. A decomposition
technique for splitting a single cumulative constraint into several cumulative constraints
without losing any structural information is discussed in Section 3.2. The contribution of
cumulative constraints to the global pools of variable locks and variable bounds is presented
in Section 3.3. Additionally, we discuss the detection of disjunctive constraints (cumulative
constraints with a resource capacity of one) and we generalize known problem specific pre-
solving techniques for the cumulative constraints to be applicable in general purpose solver
featuring a cumulative constraint. In Section 3.4 we present dual reduction techniques
which are based on the variable locks and the variable bound graph. We first focus on sin-
gle cumulative constraints and generalize these results to a set of cumulative constraints.
Section 3.5 is dedicated to the cumulative constraint with optional jobs. We develop pre-
solving methods for this type of constraint. We close this chapter by summarizing the
presented presolving techniques in Section 3.6.
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3.1 Projecting variable bounds to the cumulative structure

S1

S2

p1−c
b−1

(a) b > 1

S1

S2

p1−c
b−1

(b) 0 < b < 1

S1

S2

p1−c
b−1

(c) b < 0

Figure 3.1: Illustrating Lemma 3.2 and Lemma 3.3. The boundary of the precedence constraint
S1 + p1 ≤ S2 is visualized by a dashed line ( ). The border of the variable bounds condition
b · S1 + c ≤ S2 is displayed by a solid line ( ). The filled area ( ) shows the feasible region
where the variable bound condition implies the precedence constraint which depends on the variable
bound coefficient b.

3.1 Projecting variable bounds to the cumulative structure

Some of the presolving steps we discuss in the following require the knowledge of precedence
conditions between jobs stating that a job can only start after another one is finished. Such
a structure can be provided by the user or can be given implicitly via other constraints. In
this section we discuss the use of the variable bound graph (see Section 1.3.1) to discover
such precedence relationships between jobs. We use the variable bound graph to construct
such a precedence graph.

In order to detect precedence conditions, we need a fixed processing time for each job
which is associated with a start time variable. These processing times can be retrieved
from the cumulative structure. Having these, we iterate through the arcs of the variable
bound graph and check if a variable bound condition implies a precedence constraint of
interest. Doing this for all variable bound conditions, we construct a precedence graph.

Consider a variable bound condition between two decision variable S1 and S2 of the form
b ·S1 + c ≤ S2. In case the variable bound coefficient b is one and the variable constant c is
larger or equal to the processing time considered for S1, we detect a precedence constraint.
The following lemma formalizes this.

Lemma 3.1. Let S1 and S2 be the start time variables for two jobs and p1 the processing
time for the first one. If there exists a variable bound condition of the form b · S1 + c ≤ S2
with b = 1 and c ≥ p1, then the second job cannot start before the first job is finished.
That is, S1 + p1 ≤ S2.

Proof. S1 + p1

b = 1
↓= b · S1 + p1

p1 ≤ c
↓
≤ b · S1 + c ≤ S2.

The following two lemmas justify the cases where the variable bound coefficient is not
equal to one.

Lemma 3.2. Let S1 and S2 be the start time variables of two jobs and p1 the processing
time for the first one. If there exists a variable bound condition of the form b · S1 + c ≤ S2
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Input: Variable bound graph Dv = (S, Av) with variable bound coefficient mapping
b : Av → R, variable bound constant mapping c : Av → R, and a mapping
p : S → N which assigns to each start time variable a processing time.

Output: Precedence graph Dp = (S, Ap).
Ap ← ∅;
foreach a ∈ Av do

Spred ← tail(a);
if b(a) = 1 and c(a) ≥ p(Spred) then ◁ Lemma 3.1

Ap = Ap ∪ {a};
else if b(a) > 1 and Spred ≥ p(Spred)−c(a)

b(a)−1 then ◁ Lemma 3.2
Ap = Ap ∪ {a};

else if b(a) < 1 and Spred ≤ p(Spred)−c(a)
b(a)−1 then ◁ Lemma 3.3

Ap = Ap ∪ {a};

Algorithm 1: Using the global source of variable bounds to construct a precedence graph. See
Section 1.3.1 for the definition of the variable bound graph Dv = (S, Av).

with b > 1 and the start time variable S1 is bounded from below by p1−c
b−1 , then job 2 does

not start before the first job is finished. That is, S1 + p1 ≤ S2.

Proof. To prove the lemma we need to show that S1 + p1 ≤ S2 always holds. Figure 3.1(a)
illustrates this setup.

p1 − c

b− 1 ≤ S1

(b − 1) > 0
↓⇔ p1 − c ≤ (b− 1)S1 ⇔ S1 + p1 ≤ b · S1 + c ≤ S2

Lemma 3.3. Let S1 and S2 be the start time variables for two jobs and p1 the processing
time for the first one. If there exists a variable bound condition of the form b · S1 + c ≤ S2
with b < 1 and the start time variable S1 is bounded from above by p1−c

b−1 , then job 2 does
not start before the first job is finished. That is, S1 + p1 ≤ S2.

Proof. To prove the lemma we need to show that S1 + p1 ≤ S2 always holds. Figure 3.1(b)
and 3.1(c) illustrate this setup for 0 < b < 1 and b < 0, respectively.

p1 − c

b− 1 ≥ S1

(b − 1) < 0
↓⇔ p1 − c ≤ (b− 1)S1 ⇔ S1 + p1 ≤ b · S1 + c ≤ S2

Algorithm 1 summarizes the construction of a precedence graph using the availability of
the variable bounds. Thereby, the variable bound graph Dv = (S, Av) (see Section 1.3.1)
is scanned and a precedence graph Dp = (S, Ap) is constructed. The following theorem
formalizes conditions for a variable bound to imply a precedence constraint. We close this
section with an example.

Theorem 3.4. Let S1 and S2 be the start time variables for two jobs and p1 the processing
time for the first one. A variable bound condition of the form b · S1 + c ≤ S2 implies the
precedence condition with S1 + p1 ≤ S2 if one of the following conditions is satisfied:
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(b) Resultant precedence graph

Figure 3.2: The figure displays a variable bound graph (a) and the implied precedence graph (b).
Each arc of the variable bound graph is equipped with a tuple (b, c) stating the variable bound
coefficient b and variable bound constant c (Example 3.6).

(i) b = 1 and c ≥ p1,

(ii) b > 1 and S1 ≥ p1−c
b−1 , and

(iii) b < 1 and S1 ≤ p1−c
b−1 .

Proof. Follows from Lemma 3.1, Lemma 3.2, and Lemma 3.3.

Remark 3.5. In Chapter 4 we consider resource-constrained project scheduling problems
which contain a precedence graph. For these problems the variable bounds graph cap-
tures all precedence conditions (variable bounds with variable bound coefficient of one).
For resource-constrained project scheduling problems without generalized precedence con-
ditions, the precedence graph which results from Algorithm 1 includes the one given as
input.

Example 3.6. Figure 3.2(a) depicts a variable bound graph for six variables. Each arc
is equipped with a tuple (b, c) which represents the variable bound coefficient b and the
variable bound constant c. For example, the arc between variable 1 and 2 represents a
variable bound coefficient b = 5 and a variable bound constant c = 2. Hence, the variable
bound reads 5 · S1 + 2 ≤ S2. The variables have the following domains and corresponding
processing times:

variable 1 2 3 4 5 6

lower bound 1 2 2 3 2 3
upper bound 5 5 8 12 7 8
processing time 3 2 1 2 4 1

Using Algorithm 1, the resulting precedence graph is shown in Figure 3.2(b). The arcs
(2, 3) and (4, 6) cannot be mapped into a precedence condition.

Algorithm 1 tries to map a single variable bound condition to a precedence condition. The
construction of a precedence graph, however, is not limited to this. Any source of globally
valid information, which implies that a certain job needs to be finished before another can
start, is usable. Figure 3.3 illustrates the detection of an additional precedence condition.
Instead of trying to find an arc-to-arc mapping between the variable bound graph and
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1 2 3
(1, 2) (1, 2)

(a) Variable bound graph

1 2 3

(b) Resulting precedence graph

Figure 3.3: Figure (a) visualizes a variable bound graph. The vertices display the variables and
an arc is label with a tuple (b, c) giving the variable bound coefficient b and the variable bound
constant c. If for all variables a processing time of 3 is assumed, the implied precedence graph is
shown in Figure (b).

the precedence graph, a path-to-arc mapping can be considered. None of the arcs stated
in Figure 3.3(a) imply a precedence condition if a processing time of 3 is assumed for all
jobs. The path starting in vertex 1 and ending in vertex 3, however, implies a precedence
condition between vertex 1 and 3. The exploitation of this observation is left for future
work.

3.2 Decomposing a cumulative constraint
Figure 3.4 reprints a visualization of the effective horizon (see Definition 1.19) for Exam-
ple 1.20. It shows a possibility of decomposing a cumulative constraint into two independent
cumulative constraints. For the three jobs of Example 1.20, the unit capacity cannot be
violated at time t = 7 since only job 3 can potentially be processed there. Hence, the
resource with unit capacity can be modeled using two cumulative constraints with unit ca-
pacity where the first one contains jobs 1 and 3 and the second jobs 2 and 3. The following
lemma formalizes this decomposition.

Lemma 3.7. Given a set of jobs J , each j ∈ J with resource demands rj and processing
time pj , that have to be scheduled on a resource with capacity C, if there exists a time
point t ∈ H within the effective horizon such that∑

j∈J
1[estj ,lctj)(t) rj ≤ C,

then this resource restriction is decomposable into two resource constraints by splitting the
set of jobs into J1 = {j ∈ J : estj ≤ t} and J2 = {j ∈ J : lctj ≥ t}.

Proof. We are given a set of jobs J with resource demands rj and processing times pj

which need to be placed on a resource with capacity C. Assume there exists a time point
t ∈ H which satisfies the condition of the lemma. Let J1 and J2 be the decomposition
suggested by the lemma. To prove the lemma we show that the original constraint and both
constraints resulting from the decomposition allow for the same set of feasible solutions.

First, let Ŝ be a feasible solution for the original constraint. Since J1 and J2 are (proper)
subsets of J and the two resource restrictions have the same capacity as the original one,
it follows that Ŝ is a feasible assignment for both constraints of the decomposition.

Second, let Ŝ be a feasible assignment for both constraints formed by the decomposition.
The resource restriction belonging to J1 has the same hmin as the original one and ensures
that the resource capacity of the original constraint is not violated within the time window
[hmin, t). Analogously the second condition related to J2 ensures that the capacity is not
exceeded within the time window [t, hmax). Since by definition J1 and J2 contain all
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hmin hmax
H

Figure 3.4: Reprinting Figure 1.4(b). Each shown job has demand of one. If a resource capacity
of one is assumed the effective horizon is H = [4, 10).

jobs which can potentially be processed within the time window [hmin, t) and [t, hmax),
respectively, it follows that Ŝ is a feasible assignment for the original constraint as well.

Let us note that the sets J1 and J2 are not disjoint in general but J1 and J2 are both
proper subset of J which is a result of the condition required for the time point t.

Remark 3.8. A cumulative constraint can be soundly decomposed in the same fashion as
stated in Lemma 3.7 even if for the chosen time point, the condition of the lemma is not
satisfied. In this case, the reformulations can lead to a weaker formulation since some of
the structure is lost and inference might get weaker. This, however, is not the case if the
condition regarding the chosen time point is satisfied.

3.3 Gathering structural information
Baptiste and Le Pape [BP00] analyzed resource-constrained project scheduling problems
and discussed techniques to add redundant disjunctive constraints (cumulative constraints
with capacity one) to strengthen the propagation during search. Thereby, they basically
perform a presolving phase to collect useful information. To do this they did not only
consider the structure of cumulative constraints, but also the existence of precedence con-
straints between jobs. These are special variable bounds where the variable bound coef-
ficient is one (see Lemma 3.1). Schulz [Sch12] followed the idea of combining these two
structures and presented methods to generated precedence constraints to improve the prop-
agation in the subsequent tree search.

In Section 1.3, we discussed available sources of globally valid structures and indicated
their usefulness for solving MIPs efficiently within a constraint-based system like SCIP. In
this section, we show how the cumulative constraint contributes to these sources. Further-
more, we discuss a realization of the problem specific techniques presented in [BP00, Sch12]
using the notion of global sources, making these methods available for any COPs containing
cumulative constraints.

3.3.1 Exploiting variable locks
In Section 1.3.2 we discussed the notion of variable locks which have to be set by each
constraint. These locks form a source of global information. In this section we explore the
way a cumulative constraint contributes to this source.

For linear inequalities the variable locks are independent of the variable domain. They
only depend on the sign of the coefficient (see Example 1.14). Therefore, the variable locks
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Figure 3.5: Illustration of Lemma 3.9 and Lemma 3.10. If the effective horizon is given by
[hmin, hmax) = [4, 10), all shown job are irrelevant, either because they do not overlap with the ef-
fective horizon (job 1 and 2) or because they are always processed throughout the complete effective
horizon (job 3).

only change if a variable is removed from a linear constraint or the sign of the coefficient
flips. This is not the case for the cumulative constraint. Here, the variable domains play
an important role.

In general, a cumulative constraint must lock each start time variable in both directions
since shifting a job in any direction may result in an infeasibility. In such a case, none of
the dual reductions described in Section 1.3.2, can be applied for the variables belonging
to a cumulative constraint since the locks are strictly greater than zero. We define and
justify situations in which a cumulative constraint can omit variable locks for a start time
variable since the constraint is monotonically decreasing or increasing in this start time
variable (see Definition 1.11). We restrict ourselves to the down-locks. All results stated
can be symmetrically transformed to the up-locks. For the up-locks we state a corollary
and omit a proof.

We start by detecting irrelevant jobs (“completely free” start time variables). A job
is called irrelevant for a cumulative resource (constraint) if an arbitrary assignment to
its start time does not influence the assignment of any remaining jobs in that constraint.
Such a job can be removed from the scope of the corresponding cumulative constraint.
Definition 1.13 formalized this for an arbitrary constraint. Since the removed variable does
not have to be locked by the constraint, the rest of the constraints in the problem gain
dual information through the reduced number of locks. Figure 3.5 shows examples. The
following two lemmas state this situation formally.

Lemma 3.9. Given a cumulative constraint C = (S, p, r, C), a start time variable Sj does
not need to be locked in any direction if lctj ≤ hmin, estj ≥ hmax, rj = 0, or pj = 0.

Proof. The first two cases follow directly from the definition of hmin and hmax. In these
two cases the job has no overlap with the effective horizon at all. Job 1 and 2 in Figure 3.5
illustrate this situation. The last two cases are obvious since the corresponding job requires
zero energy.

The previous lemma considers the situation where a job does not require any energy
within the effective horizon. Now, we regard the case where a job must be processed
throughout the effective horizon.

Lemma 3.10. Given a cumulative constraint C = (S, p, r, C), a start time variable Sj

does not need to be locked in any direction if lstj ≤ hmin and ectj ≥ hmax.
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Figure 3.6: Illustration of Lemma 3.11. Shifting the corresponding job earlier would only relax the
situation within the effective horizon H = [hmin, hmax) since the energy which needs be scheduled
is reduced.

Proof. The conditions for the start time variable states that the corresponding job must
start before or at the beginning of the effective horizon and must end after or at the end
of the effective horizon. Job 3 in Figure 3.5 illustrates that situation. Independently of the
actual start time of the job, it consumes its resource demand throughout the whole effective
horizon. The start time assigned to the job does not impact the feasibility of any other
variable assignments w.r.t. this cumulative constraint. Hence, no locking is required.

Note that in both cases, the cumulative constraint is monotonically decreasing and in-
creasing in variable Sj (see Definition 1.11). In case of Lemma 3.9 the corresponding
start time variable can be removed from the scope of the cumulative constraint without
any further adjustment. Due to the definition of the effective horizon, it follows that the
corresponding job has a demand which is not larger than the capacity of the cumulative re-
source. For Lemma 3.10, however, the capacity of the corresponding cumulative constraint
needs to be decreased by the demand of the removed job. Doing this might result in an
infeasibility if the remaining demand is larger than the remaining capacity.

For jobs processed around hmin or hmax, we may be able to omit the down-lock or up-
lock, respectively. Consider the situation that a job j has a latest start time lstj ≤ hmin.
Depending on its processing time, this job could run either completely before the effective
horizon or overlapping the effective horizon. In the latter case, we know that it overlaps with
the effective horizon in a way such that hmin is included, see Figure 3.6 for an illustration.
In this case moving the start time of this job earlier, out of the effective horizon H will
always be feasible w.r.t. this constraint. Therefore, the cumulative constraint can omit the
down-lock since it is monotonically decreasing w.r.t. that start time variable.

Lemma 3.11. Given a cumulative constraint C = (S, p, r, C), if lstj ≤ hmin, then the
start time variable Sj does not need a down-lock w.r.t. C.

Proof. We are given a cumulative constraint C = (S, p, r, C) and assume that, for start time
variable Sj , the latest start time is lstj = Dj − pj ≤ hmin. To prove that the cumulative
constraint C does not need to down-lock Sj , we have to show that, for any two assignments
S1 and S2 to the start time variables with S1 being a feasible assignment for C, S1

i = S2
i

for i ̸= j, and S1
j > S2

j , it follows that S2 is a feasible assignment (see Definition 1.12).
Per definition of the assignment for the start time variables, S2

i is a feasible (partial)
solution for the cumulative constraint C for all i ̸= j. In case S2

j < hmin−pj we know by
the definition of hmin that S2 is a feasible assignment since job j is processed completely
before the effective horizon. Thus, let us consider the remaining case S2

j ≥ hmin−pj .
Then, since lstj ≤ hmin, it follows that S2

j < S1
j ≤ hmin. Hence, hmin ≤ S2

j +pj < S1
j +pj .
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Therefore. for all t ∈ [hmin, min{S2
j + pj , hmax}) we know that job j is also processed

using the assignment S1. Hence, S2 is a feasible assignment.

Corollary 3.12. Given a cumulative constraint C = (S, p, r, C), if ectj ≥ hmax, then the
start time variable Sj does not need a up-lock w.r.t. C.

Example 3.13. If we recall Example 1.20 and assume that all three jobs have a processing
time of 2 (see Figure 3.4), then for job 1 the down-lock and for job 2 the up-lock can be
omitted. This follows, since lst1 = 4 = hmin and ect2 = 10 = hmax.

3.3.2 Retrieving disjunctive constraints

Baptiste and Le Pape [BP00] presented a technique for resource-constrained project schedul-
ing problems to detect redundant disjunctive constraints which potentially increase the
propagation during the search. Using the concept of global sources and in particular the
source of variable bounds (see Section 1.3.1), we sketch how this problem specific technique
can be made available for any COP solver. Inspired by this idea we suggest a modified
version to discover potentially useful disjunctive constraints.

The basic idea of Baptiste and Le Pape [BP00] is to create an incompatibility graph
where each vertex represents a job and an edge is added if the corresponding two jobs
cannot be processed in parallel. Baptiste and Le Pape [BP00] use three sources of global
information to infer edges: the variable domains, the precedence constraints, which are
naturally given for resource-constrained project scheduling problems, and the demands of
the jobs w.r.t. available cumulative capacities. Each clique in an incompatibility graph
corresponds to a set of jobs which cannot be processed in parallel. Hence, for such a set of
jobs, a disjunctive constraint can be posted, stating that any two jobs are not processable
in parallel. To avoid too many disjunctive constraints, Baptiste and Le Pape [BP00] search
heuristically for a maximum clique. Further, they suggest to run this procedure multiple
times, first considering the jobs for each individual cumulative constraint and then once
taking all available cumulative constraints into account. Hence, at most the number of
cumulative constraints plus one additional disjunctive constraints are created.

In Section 3.1, we discussed the construction of a precedence graph using the variable
bound graph as input. Doing this allows us to apply the technique introduced by Baptiste
and Le Pape [BP00] directly for any COPs containing cumulative constraints and variable
bound structures. Basically, we project the variable bound structure into the cumulative
structure and retrieve a precedence graph. This serves as input to discover disjunctive
constraints.

We propose a slightly different way to detect disjunctive constraints by using the same
three sources. Instead of searching for a disjunctive constraint for each cumulative con-
straint, we propose to search for a disjunctive constraint for each job. The idea is to
construct for each job j ∈ J an incompatibility graph to find a disjunctive constraint
which most likely infers bound changes for the corresponding start time variable Sj . To
do that we assign to each node in the incompatibility graph, which represents a job, its
processing time as weight, and search (heuristically) for a maximum weight clique [PX94].
While the maximum weighted clique problem is NP-hard [GJ79], for small instances, as it
is in our case, it is relatively quick to compute a good solution.
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Let us be given a set of jobs J , each job j with a processing time pj , release date Rj , due
date Dj , as well as a non-overlapping graph G = (V, E)1 induced by the processing times
and the cumulative structures (see Definition 1.22). Using these processing times and the
variable bound structure, we build Dp = (J , Ap)2, the transitive closure of the precedence
graph, retrieved from Algorithm 1. For a fixed job j, we create an incompatibility graph
Gc = (J ′, Ec) with J ′ ⊆ J as follows. The vertex set J ′ is given by:

J ′ = {j} ∪ {i ∈ J \ {j} | ji ∈ E} ⊆ J .

Hence, we only consider jobs that cannot overlap due to the non-overlapping graph G.
This means that the sum of demands of job j and any job in J ′ \ {j} with respect to a
cumulative condition is larger than the available capacity. We explicitly ignore those jobs
which cannot be processed in parallel due to the precedence graph or the variable domains.
These structures are already efficiently captured in the corresponding linear constraints and
variable domains. Note that this selection is also applied in a similar fashion by Baptiste
and Le Pape [BP00]. The edge set Ec for our construction is defined as:

Ec = {{i, j} ⊆ J ′ | ij ∈ E ∨ (i, j) ∈ Ap ∨ (j, i) ∈ Ap ∨ lcti ≤ estj ∨ lctj ≤ esti}.

We add an edge if an overlapping conflict exists w.r.t. one of the global sources. These
are the non-overlapping structure of the cumulative constraints, the precedence structure
implied by the variable bound graph, and the variable lower and upper bounds. Due to the
construction of Gc, the vertex j has an edge to all other vertices. Therefore, j is always part
of a maximum clique since its weight, given by the processing time of the corresponding
job, is positive.

Remark 3.14. The construction of the edge set Ec is not limited to these three sources.
Any information which is available and implies that two jobs cannot be processed in parallel
is valid and can be used for expanding the edge set.

In a second step, we weight the vertices of Gc, each with the processing time of the
corresponding job. The idea is find a set of conflict jobs with as much energy as possible
in the potentially created disjunctive constraints where all jobs have a demand of one.
Thereby, hoping that such a disjunctive constraint infers more. Using this weight function
we compute a maximum weighted clique. This clique gives a set of start time variables
which are pairwise in conflict with respect to being processed in parallel. This set is a
candidate for creating a disjunctive constraint.

For all start time variables, we use this procedure to compute a set of jobs where each
job pair cannot be processed in parallel. Before we create the disjunctive constraints, we
filter duplicates and detect sets which are subset of others. Subsets can arise due to the
fact that in the first step we restrict the vertices of the incompatibility graph depending
on the chosen job j. The filtering can be realized in the same fashion as it is done for
detecting duplicate SAT clauses [Blo70]. After the cleanup phase we are left with sets of
jobs which have a non-empty relative complement in both directions. That is, if A and B
are two of these sets with A ̸= B then A \B ̸= ∅ and B \A ̸= ∅. For these sets we create

1The non-overlapping graph G = (V, E) is an undirected graph. The edge set E contains vertex sets of
size two. For an edge of an undirected graph {i, j} ∈ E we use the shorter notation ij ∈ E.

2The precedence graph Dp = (J , Ap) is a directed graph. Ap is a set of ordered pairs of vertices. For an
arc (directed edge) of an directed graph we use the notation (i, j) ∈ Ap.
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Figure 3.7: Illustration of Example 3.15. Figure (a) depicts the transitive closure of the precedence
graph shown in Figure 3.2(b). Figure (b) displays a non-overlapping graph. For variable 4 the
incompatibility graph is shown in Figure (c).

disjunctive constraints (cumulative constraint with unit demands and capacity) using the
given processing times. Hence, each of these constraints is tailored to a particular job and
we add at most as many disjunctive constraints as there are jobs.

Example 3.15 (Continuing Example 3.6). Example 3.6 illustrates the construction
of a precedence graph using the global source of variable bounds and processing times.
Continuing this example, we demonstrate the construction of an incompatibility graph for
detecting disjunctive structures. Figure 3.7(a) shows the transitive closure of the prece-
dence graph from Example 3.6. In addition Figure 3.7(b) presents a non-overlapping graph
assuming the same processing time as for the construction of the precedence graph. Using
these two graphs as input and choosing variable 4, the vertex set J ′ of the incompatibility
graph contains the vertices, 3, 4, and 5. Figure 3.7(c) states the incompatibility graph.
Hence for the clique Q = {3, 4, 5} a disjunctive constraint can be added.

Remark 3.16. For disjunctive constraints this method can be used to lift jobs into the
scope of a constraint. All jobs of a disjunctive constraint form a clique in the non-
overlapping graph.

We close this section with a brief discussion of the usefulness of redundant disjunctive
constraints. Most of the propagation algorithms for the cumulative constraint rely on
energy arguments, i.e., they compare the available energy with the energy required by the
jobs. For disjunctive constraints there is no remaining capacity when a job is processed.
Therefore, the hope is that these constraints help to infer domain reductions early in the
search.

3.3.3 Retrieving variable bounds

In the following, we analyze a possible contribution of the cumulative constraint to the
variable bound graph which we introduced as a source of global information in Section 1.3.1.
Thereby, we are not only using the cumulative constraints together with lower and upper
bounds of the variables, as we did for the variable locks. In case of exploring variable
bounds, we additionally consider the variable bounds which are already known, using the
same three sources as in the previous section.

The idea is similar to the one discussed above. We create an incompatibility graph
and search for a maximum (weighted) clique. This time the construction of the vertex
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set is customized to detect useful variable bounds. Let J be a set of jobs, each job j
with a release date Rj , a due date Dj , and a processing time pj . G = (J , E) is a non-
overlapping graph which is induced by the cumulative constraints, and Dp = (J , Ap) the
transitive closure of the precedence graph resulting from the variable bound structure (see
Section 3.1). The non-overlapping graph and the precedence graph depend on the given
processing times. Instead of constructing an incompatibility graph for each job, we run this
procedure for each arc of the transitive closure of the precedence graph (i.e., for each pair
of jobs (i, j) ∈ Ap, for which a directed path from job i to job j in the implied precedence
graph exists). We aim to compute a lower bound on the distance between the finishing time
of job i and the start time of job j. This results in a variable bound conditions which can
be added as a linear constraint to the model and into the global pool of variable bounds.
The latter makes this information available for other algorithms.

The vertex set of the incompatibility graph Gc = (J ′, Ec) for the pair of jobs (i, j) ∈ Ap

is a subset of J and defined as:

J ′ = {k ∈ J \ {i, j} | [(i, k) ∈ Ap ∧ (k, j) ∈ Ap] ∨ [lcti ≤ estk ∧ lctk ≤ estj ]}.

For constructing this vertex set we only consider the precedence conditions (implied by
the variable bounds) and the variable domains. This set differs from that created in the
previous section where only the cumulative structure was used. The idea is to collect all
jobs which have to be processed between job i and job j. For finding such jobs we first
use the transitive closure of the implied precedence graph and collect all jobs which are a
direct successor of job i and a direct predecessor of job j. Second, we use the domains of
the corresponding start time variables. Hence, each job k ∈ J ′ which can only start after
job i is finished and has to be finished before job j (potentially) starts is added. Note that
the vertex set can be empty (J ′ = ∅).

Remark 3.17. The vertex set contains all jobs which are definitely processed between job i
and job j. We consider the induced precedence graph and the domains of the start time
variables to detect such jobs. Any other source which also implies that a particular job
needs be processed between job i and job j is valid to expand this vertex set.

Edges are added between jobs which cannot be processed in parallel. This is done in the
same fashion as in the previous section by utilizing the three sources of global information:
two jobs are in conflict w.r.t. a cumulative constraint, i.e., the non-overlapping graph G
contains an edge; a variable bound condition implies a precedence constraint; the feasible
time windows do not overlap. Hence,

Ec = {ij ⊆ J ′ | ij ∈ E ∨ (i, j) ∈ Ap ∨ (j, i) ∈ Ap ∨ lcti ≤ estj ∨ lctj ≤ esti}.

Again, the construction of the edge set is not limited to these three sources. Any other
source implying that two jobs cannot run in parallel would be valid to use (see Remark 3.14).

Having this incompatibility graph Gc = (J ′, Ec) for a pair of jobs (i, j), each clique Q ⊆
J ′ defines a set of jobs which need to be processed in sequence, between jobs i and j.
Hence, the sum of processing times of jobs belonging to a clique, define a lower bound on
the distance between the finish time of job i and the start time of job j. Formally we have

Si + pi +
∑
k∈Q

pk ≤ Sj .
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Figure 3.8: Illustration of Example 3.18. Figure (a) depicts the transitive closure of the precedence
graph shown in Figure 3.2(b). Figure (b) displays a non-overlapping graph. For variable pair (1, 5)
the incompatibility graph is shown in Figure (c).

In order to find a clique which implies the largest lower bound, we weight each vertex with
the processing time pj of the corresponding job and search for a maximum weight clique.

Example 3.18 (Continuing Example 3.6). Considering the precedence graph implied
by the variable bound structure of Example 3.6 and the non-overlapping graph used in
Example 3.15, we construct the incompatibility graph for the variable pair (1, 5). Fig-
ure 3.8(a) and Figure 3.8(b) state the transitive closure of the precedence graph and the
non-overlapping graph, respectively. The vertex set of the incompatibility graph for the
variable pair (1, 5) is J ′ = {2, 3, 4}. The corresponding jobs can only start after job 1
is finished and have to be completed before job 5 starts. Figure 3.8(c) illustrates the
incompatibility graph. The clique Q = {2, 3, 4} implies the following variable bound:

S1 + 3 +
∑
k∈Q

pk ≤ S5 ⇔ S1 + 8 ≤ S5.

Schulz [Sch12] used a similar idea in the context of resource-constrained project schedul-
ing. He collects for a pair of jobs (i, j) all jobs which need to be processed between job i
and job j using the precedence graph. For these jobs he proposes three different condi-
tions to generate a lower bound on the time between the end job i and the start of job j.
The first one uses a volume argument w.r.t. a particular cumulative capacity C. Another
method computes a lower bound for a preemptive schedule of these jobs w.r.t. a particular
cumulative condition. The last one uses a non-overlapping condition of two jobs w.r.t.
the cumulative constraint, assumes that one job proceeds the other and vice versa, and
computes for both assumptions the longest paths between job i and job j in the modified
precedence graph. The minimum length of the two paths defines a lower bound as well.
These three techniques can be applied for any COPs which contain cumulative constraints
and variable bound structures by using the projection of the variable bounds presented in
Section 3.1. Furthermore, the variable domains can be used to extend the set of jobs which
need to be processed between job i and job j.

For resource-constrained project scheduling problems such redundant variable bound
conditions can lead to an increase of the dual bound, i.e., the lower bound for the makespan.
This might lead to an earlier optimality detection.

3.3.4 Strengthening variable bounds
In the previous section we discussed the detection of variable bound conditions. This sec-
tion treats the strengthening of existing variable bounds using the cumulative condition.
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A cumulative constraint implies a non-overlapping graph (see Definition 1.22). This graph
captures the information that certain jobs cannot be processed in parallel since their cu-
mulative resource demand is larger than the available capacity. We will show how this
information can be used to strengthen existing variable bound conditions.

Lemma 3.19. Let S1 and S2 be the start time variables for two jobs and p1 and p2 the
corresponding processing times. If the cumulative structure implies that the two jobs
cannot be processed in parallel and there exists a variable bound condition of the form
S1 + c ≤ S2 with −p2 < c < p1, the variable bound condition can be strengthened to
S1 + p1 ≤ S2.

Proof. If the variable bound condition S1+c ≤ S2 with −p2 < c < p1 is tight (meaning S1+
c = S2), it follows that job 1 and 2 overlap regardless of the actual start time assignment.
This violates the cumulative structure since the jobs cannot be processed in parallel. Since
c > −p2, there is no chance that job 2 finishes before job 1 starts. Hence, job 2 can
only start after job 1 is finished. That results in a stronger variable bound condition:
S1 + p1 ≤ S2.

For the classical resource-constrained project scheduling problem instances, containing
only precedence conditions which state that certain jobs cannot be started before others
are finished, this presolving technique does not apply. In case of the resource-constrained
project scheduling problems with generalized precedence conditions, however, this tech-
nique can strengthen the model (see Chapter 4).

3.4 Dual reductions
In Section 3.3.1, we stated conditions under which the cumulative constraint is monotoni-
cally decreasing or increasing for a given start time variable (see Definition 1.11) and hence
provides dual information via the variable locks. In this section, we use the knowledge of
the variable locks within the cumulative constraint to infer dual reductions. We first present
results for a single cumulative constraint and then generalize these to sets of cumulative
constraints.

3.4.1 Single cumulative constraint
The variable locks define the number of constraints that “block” the shifting of a certain
variable toward its lower or upper bound. A constraint can easily detect if it is the only
one locking a certain variable by checking whether the corresponding locking number ζ−

or ζ+ is one. Within the cumulative constraint, this information can be used to fix certain
start time variables, based on a dual argument. If the cumulative constraint is the only
one locking the start time variable down, the best bound of the variable w.r.t. the objective
function is the lower bound (the objective function is monotonically non-decreasing in that
variable), and fixing it to its lower bound results in a completion time before hmin, this
variable can be dual fixed to its lower bound. Figure 3.9 illustrates this situation.

Lemma 3.20. Given a cumulative constraint C = (S, p, r, C), fixing a start time variable
Sj with corresponding demand rj ≤ C to its earliest start time (lower bound), that is
JSj ≤ estjK, is dual feasible if the following conditions are satisfied:

(i) ectj ≤ hmin,
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hmin hmax

1 3 5 7 9 11

C

t

est ect lst lct

Figure 3.9: Illustration of Lemma 3.20. Fixing the start time variable to its earliest start time est
results in a situation where this job does not influence the effective horizon H.

(ii) only the cumulative constraint C down-locks Sj , and

(iii) the objective function f is monotonically non-decreasing in Sj .

Proof. From the first condition, fixing the start time variable to its earliest start time means
that the job finishes before hmin. Hence, by the definition of hmin, the assigned start time
cannot lead to an infeasibility of the cumulative constraint.

By the definition of a variable lock, since only the cumulative constraint has down-locked
this variable, none of the other constraints can be violated by fixing the start time variable
to its earliest start time.

The third condition states that the objective function is monotonically non-decreasing
in the start time variable Sj . Therefore, fixing it to the earliest start time (lower bound)
is the best thing to do w.r.t. the objective function.

Hence, if the problem is feasible, there exists an optimal solution with job j starting at
its earliest start time (JSj ≤ estjK).

After fixing the variable to its earliest start time it follows that lctj ≤ hmin. Hence this
job is irrelevant and can be removed from the constraint (see Lemma 3.9).

Corollary 3.21. Given a cumulative constraint C = (S, p, r, C), fixing a start time variable
Sj with corresponding demand rj ≤ C to its latest start time (upper bound), that is
JSj ≥ lstjK, is dual feasible if the following conditions are satisfied:

(i) lstj ≥ hmax,

(ii) only the cumulative constraint C up-locks Sj , and

(iii) the objective function f is monotonically non-increasing in Sj .

Remark 3.22. Lemma 3.20 generalizes the “immediate scheduling rule” introduced by
Baptiste and Le Pape [BP00] for resource-constrained project scheduling problems.

If the earliest start time of a job is smaller than hmin but the earliest completion is not,
the previous lemma is not applicable even if the last two conditions hold. The following
example illustrates such a situation.

Example 3.23. Given two jobs with unit demand and a resource with unit capacity. The
first job has a release date of 1, a due date of 11, and a duration of 5. The second job is
released at time 4, runs for 2 time steps, and has to be completion before time 7. Figure 3.10

64



3.4 Dual reductions
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Figure 3.10: Illustrating job alignment of Example 3.23. Fixing job 1 to its earliest start time
(lower bound) results in an infeasibility due to an overload at time point 5.

displays that situation. Fixing the first job to its earliest start time is not feasible since
the second job cannot be processed anymore. However, fixing the second job to its earliest
start time of 4 and the first job to it latest start time of 6 yields a feasible assignment for
this resource.

In a setup as in the previous example, it is not possible to fix the start time variable
of job 1 but it is dual feasible to remove some values from the domain of the start time
variable. In the example, values 2, 3, and 4 can be removed from the domain of the start
time variable belonging to job 1. Figure 3.11 depicts that statement and the following
lemma formalizes it.

Lemma 3.24. Given a cumulative constraint C = (S, p, r, C) and a start time variable Sj ,
adding the constraint

JSj ≤ estjK ∪ JSj ≥ hmin +1K (3.1)

is dual feasible if the following conditions are satisfied:

(i) only the cumulative constraint C down-locks Sj , and

(ii) the objective function f is monotonically non-decreasing in Sj .

Proof. Given a cumulative constraint C = (S, p, r, C) and a start time variable Sj which
satisfies the conditions of the lemma, if the proposed domain reduction does not remove
any feasible solution of constraint C, it is valid. Therefore, assume there exists a feasible
assignment S1 for constraint C which violates Constraint (3.1), i.e., that estj < hmin and
S1

j ∈ {estj +1, . . . , hmin}. Due to Lemma 3.11 we know if JSj ≤ hminK holds, the down-
lock of Sj by the cumulative constraint C can be omitted. Hence, the assignment S2 with
S2

i = S1
i for i ̸= j and S2

j = estj (shifting job j to its earliest start time), is feasible for
constraint C. Due to Condition (i), shifting the job earlier does not result in a violation of
other constraints since all other constraints did not down-lock variable Sj . Condition (ii)
ensures that this shift does not increase the objective value, meaning, f(S2) ≤ f(S1).
Hence, the proposed domain reduction is dual feasible.

Note that in case of estj ≥ hmin, Constraint (3.1) is redundant. Hence, only for a start
time variable with a lower bound smaller than hmin, can a dual reduction be deduced. In
this case, the Constraint (3.1) defines a domain hole for the start time variable.
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hmin hmax
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hmin +1

Figure 3.11: Illustration of Lemma 3.24. Fixing the start time variable to a value greater than
the earliest start time and smaller than or equal to hmin is dual dominated by fixing the start time
variable to its earliest start time.

Corollary 3.25. Given a cumulative constraint C = (S, p, r, C) and a start time vari-
able Sj , adding the constraint

JSj ≥ lstjK ∪ JSj ≤ hmax−pj − 1K

is dual feasible if the following conditions are satisfied:

(i) only the cumulative constraint C up-locks Sj , and

(ii) the objective function f is monotonically non-increasing in Sj .

Due to the special structure of resource-constrained project scheduling problem (without
generalized precedence constraints and with all jobs having the same release date) it is
known that for an optimal schedule at any point in time at least one job is processed.
If this is not be the case, the schedule cannot be optimal since shifting all jobs, that are
scheduled directly after the time point where no job is running, by one to an earlier start
time results in a feasible solution which has a smaller makespan. This is possible since all
resources have a constant capacity and only precedence conditions are given which state
that certain jobs can only be started after others are finished. This observation lead to
the branching idea schedule-or-postpone [PCVG94, BPN01]. The idea is to fix a job to
its earliest start time (lower bound) and search for a feasible solution. After backtracking
to the level where this decision was taken, the job is ignored (postponed) until its lower
bound is updated via constraint propagation. By using the variable locks, it is possible to
discover schedule-or-postpone situations where the minimum time by which a job can be
postponed if it is not schedule at its earlier start time can be precomputed. Again, this is
applicable within an arbitrary COP.

Theorem 3.26. Given a cumulative constraint C = (S, p, r, C) and a start time vari-
able Sj , let us denote with J the set of jobs which need to be scheduled and define
ect = mini∈J \{j} ecti. Adding the constraint

JSj ≤ estjK ∪ JSj ≥ ectK (3.2)

is dual feasible if the following conditions are satisfied:

(i) only the cumulative constraint C down-locks Sj and

(ii) the objective function f is monotonically non-decreasing in Sj .
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Proof. Given a cumulative constraint C = (S, p, r, C) and a start time variable Sj which
satisfies the conditions of the theorem, we assume for job j that estj < ect, otherwise,
nothing has to be shown since Constraint (3.2) would be redundant.

Let S1 be a feasible solution which violates Constraint (3.2). This implies

estj < S1
j < ect = min

i∈J \{j}
ecti .

To prove the theorem we have to show that S2 with S2
i = S1

i for all i ∈ J \{j} and S2
j = estj

is a feasible solution with f(S2) ≤ f(S1). The latter follows directly from Condition (ii),
stating that the objective function is monotonically non-decreasing in start time variable Sj .
Condition (i) ensure that shifting the start time variable Sj to an earlier start time does
not affect the feasibility of the remaining constraints. Therefore, it remains to prove that
S2 is a feasible assignment for the cumulative constraint C. From the observation

estj = S2
j < S1

j < ect with ect = min
i∈J \{j}

ecti

it follows that for all jobs i ∈ J \{j} the earliest completion time ecti is strictly larger than
the start time of job j w.r.t. S1. This means that none of these jobs is completed before
job j starts. Hence, there is no job running at any time point t < S1

j which does not run
at time point S1

j , more precisely:

1[S1
i ,S1

i +pi)(t) ≤ 1[S1
i ,S1

i +pi)(S
1
j ) ∀i ∈ J \ {j}, t < S1

j

Since 1[S1
j ,S1

j +pj)(t) = 0 for t < S1
j and 1[S1

j ,S1
j +pj)(S1

j ) = 1 it follows that

∑
i∈J

1[S1
i ,S1

i +pi)(t) ri + rj ≤
∑
i∈J

1[S1
i ,S1

i +pi)(S
1
j ) ri ≤ C ∀t < S1

j

Therefore, the load at time point t < S1
j is at least rj smaller than the load at start point

S1
j of job j. This allows job j to be moved to any earlier start time without violating

constraint C. Hence, S2 is a feasible assignment for the cumulative constraint C which
proves the theorem.

Note that if estj ≥ hmax, job j can be removed from the cumulative constraint (see
Lemma 3.9). If Sj with estj ≥ mini∈J \{j} ecti, Constraint (3.2) is redundant.

Corollary 3.27. Given a cumulative constraint C = (S, p, r, C) and a start time vari-
able Sj , let us denote with J the set of jobs which need to be scheduled and define
lst = maxi∈J \{j} lsti. Adding the constraint

JSj ≥ lstjK ∪ JSj ≤ lst−pjK

is dual feasible if the following conditions are satisfied:

(i) only the cumulative constraint C up-locks Sj and

(ii) the objective function f is monotonically non-increasing in Sj .
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Example 3.28 (continuing Example 3.23). As we observed before, Lemma 3.24 states
that it is dual feasible to remove the values 2, 3, and 4 from the domain of the start time
variable belonging to job 1. That means that job 1 starts at its earliest start time of 1 or
not before time point 5 = hmin +1. Theorem 3.26 additionally eliminates the value 5 from
the domain of the start time variable since

ect = min
i∈J \{j}

ecti = ect2 = 6.

For this setup, Theorem 3.26 results in more domain reductions than Lemma 3.24. Fur-
thermore, the lemma and the theorem prove that job 2 can be fixed to its earliest start
time of 4. Hence the only feasible assignment is to start job 2 at its earliest start time and
job 1 at its latest start time.

Remark 3.29. Theorem 3.26 is not a generalization of Lemma 3.24 since in general for a
given job j it does not hold that hmin < mini∈J \{j} ecti. Theorem 3.26 does not consider
the available capacity of the cumulative constraint, whereas Lemma 3.24 does via the usage
of hmin. This observation also holds for a disjunctive constraint, where the capacity is fixed
to one.

So far we have only considered variable locks as a source to infer dual reductions. If we
additionally consider the variable bounds, we can find further reductions. Therefore, we
follow the same idea as before. We create a precedence graph using the global variable
bound structure as input for Algorithm 1. For the resource-constrained project scheduling
problems we observed that for an optimal schedule, at any point in time at least one job
is processed. This observation can be made applicable for general COPs containing a
cumulative structure. It follows that at least one of the source jobs in the precedence graph
(meaning it has no predecessor) has to start at its earliest start time (lower bound). The
following theorem formalizes this dual reduction for any COPs.

Theorem 3.30. Given a cumulative constraint C = (S, p, r, C) and a precedence graph
Dp = (J , Ap) where J denotes the set of jobs which need to be scheduled, let J ′ ⊆ J and
ect = maxi∈J ′ ecti. Adding the constraint⋃

j∈J ′

JSj ≤ estjK (3.3)

is dual feasible if the following conditions are satisfied:

(i) ∀j ∈ J \ J ′ ect ≤ max{hmin, estj} or ∃i ∈ J ′ with (i, j) ∈ Ap,

(ii) only the cumulative constraint C down-locks the start time variables Sj with j ∈ J ′,
and

(iii) the objective function f is monotonically non-decreasing for all start time variables
belonging to the jobs in J ′.

Proof. Given a cumulative constraint C = (S, p, r, C), we denote with J the set of jobs
which need to be scheduled. Let J ′ ⊆ J be a subset which satisfies the assumptions of
the theorem. In case ect ≤ hmin the claim follows directly from Lemma 3.20 since all jobs
belonging to J ′ can be processed before the effective horizon starts. Therefore, we assume
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ect > hmin. Assumption (ii) ensures that “shifting” any job belonging to J ′ to the left
(an earlier start time) does not introduce any infeasibility w.r.t. the remaining constraints.
W.r.t. the optimality, Assumption (iii) safeguards that the assignment to an earlier start
time does not worsen the objective value. Let us be given a feasible assignment S1 for
C which violates Condition (3.3), i.e., none of the jobs belonging to J ′ is assigned to its
earliest start time. Let j ∈ J ′ be a job which has the smallest completion time w.r.t. the
assignment S1. That is, j ∈ argmini∈J ′(S1

i + pi). Showing that the assignment S2 with
S2

i = Si for all i ∈ J \ {j} and Sj = estj is feasible proves the theorem.
The jobs J \ J ′ can be partitioned into two sets:

J 1 = {i ∈ J \ J ′ | ect ≤ esti}
J 2 = {i ∈ J \ J ′ | ∃k ∈ J ′ : (k, i) ∈ Ap}.

These sets are not disjoint in general. Due to the selection of job j, we know that all jobs
belonging to J 2 do not start before job j finishes in the assignment S1. This is enforced by
the existence of a precedence condition and the fact that job j has the smallest completion
time. Assigning job j to an earlier start time does not change this. All jobs belonging to
J 1 start after the earliest completion time of job j. Hence starting job j at its earliest
start time does not conflict with these jobs at all. It remains to show that moving job j to
its earlier start time does not affect the jobs J ′ \ {j}. We use the same argumentation as
in the proof of Theorem 3.26. Since job j has by definition the smallest completion time
within J ′, none of the jobs in J ′ \ {j} are completed before S1

j + pj in assignment S1.
Hence, for all t < S1

j it holds:∑
i∈J

1[S1
i ,S1

i +pi)(t) ri + rj ≤
∑
j∈J

1[S1
i ,S1

i +pi)(S
1
j ) ri ≤ C.

This proves that during the time window [estj , S1
j ) at least rj resource capacity is available.

Thus, assigning job j to its earliest start time does not conflict with J ′. Therefore, S2 is
a feasible assignment for constraint C which proves the theorem.

The theorem proves that at least one of the jobs belonging to J ′ can be scheduled at its
current earliest start time (lower bound). Thereby, the Conditions (ii) and (iii) ensure that
the proposed dual reduction is valid with respect to the remaining constraints of an COP
and the objective function. Condition (i) is more involved: it ensures that all jobs which
do not belong to J ′ can never be assigned in a way such that the dual reduction is invalid.
Therefore, it is required that for each job i ∈ J \ J ′, there either exists a precedence
condition between a job belonging to J ′ and job i or has a start time that is larger or equal
to the largest earliest completion time of the jobs in J ′. Basically, the globally available
information ensures that the posted constraint is valid.

In resource-constrained project scheduling problems with generalized precedence con-
straints (including RCPSP instances) only the artificial start time variable, which represents
the makespan, is not monotonically non-decreasing w.r.t. the objective function (the objec-
tive coefficient is one). All other variables which are at most down-locked by the cumulative
constraints are candidates for being part of J ′. In the special case of resource-constrained
project scheduling problems these candidates also satisfy Condition (i) of Theorem 3.30.
See Chapter 4 for a formal definition of this problem class.

Remark 3.31. A special case of Theorem 3.30 is the situation which is covered by Lemma 3.20.
This is, the set of jobs J ′ contains a single job j with ect = ectj ≤ hmin.
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3.4.2 Set of cumulative constraints
The previous section considered the case of a single cumulative constraint. All results are
generalizable for a set of cumulative constraints. We denote with hmin(C) the first potential
violated time point for a given cumulative constraint C. The following corollaries map the
results for a single cumulative constraint to multiple cumulative constraints.

Corollary 3.32 (Generalization of Lemma 3.20). Given a set C of cumulative con-
straints that have a start time variable Sj in their scope, fixing a start time variable Sj to
its earliest start time, that is JSj ≤ estjK, is dual feasible if the following conditions are
satisfied:

(i) ectj ≤ hmin(C) for all C ∈ C,

(ii) only cumulative constraints C ∈ C down-lock Sj , and

(iii) the objective function f is monotonically non-decreasing in Sj .

Corollary 3.33 (Generalization of Lemma 3.24). Given a set C of cumulative con-
straints that have a start time variable Sj in their scope, let B be the smallest time
point where at least one of the cumulative constraints is potentially violated, i.e., B =
minC∈C hmin(C). Adding the constraint

JSj ≤ estjK ∪ JSj ≥ B + 1K

is dual feasible if the following conditions are satisfied:

(i) only cumulative constraints C ∈ C down-lock Sj , and

(ii) the objective function f is monotonically non-decreasing in Sj .

Corollary 3.34 (Generalization of Theorem 3.26). Given a set C of cumulative con-
straints that have a start time variable Sj in their scope, let us denote by J (C) the set of jobs
which need to be scheduled w.r.t. constraint C and define ect = minC∈C mini∈J (C)\{j} ecti.
Adding the constraint

JSj ≤ estjK ∪ JSj ≥ ectK

is dual feasible if the following conditions are satisfied:

(i) only cumulative constraints C ∈ C down-lock Sj , and

(ii) the objective function f is monotonically non-decreasing in Sj .

Corollary 3.35 (Generalization of Theorem 3.30). Given a set C of cumulative con-
straints and a precedence graph Dp = (J , Ap) where J denotes the set of jobs which need
to be scheduled, let J ′ ⊆ J and ect = maxC∈C maxi∈J ′ ecti. Adding the constraint⋃

j∈J ′

JSj ≤ estjK

is a dual feasible if the following conditions are satisfied:

(i) ∀j ∈ J \ J ′ holds ect ≤ max{hmin, estj} or ∃i ∈ J ′ with (i, j) ∈ Ap,
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(ii) only cumulative constraints C ∈ C down-lock the start time variables Sj with j ∈ J ′,
and

(iii) the objective function f is monotonically non-decreasing for all start time variables
belonging to the jobs in J ′.

Note that the used earliest completion time ect in the previous corollary depends on the
cumulative constraints since these constraints define the processing time which is needed
to compute the earliest completion time of job w.r.t. to a cumulative constraint.

3.5 Optional jobs
In this section we present presolving steps for the cumulative constraint with optional
jobs as defined in Section 1.4.4. Most of the presolving steps introduced in this section
are inspired by the resource allocation and scheduled problem which will be considered in
Chapter 5 in which jobs have to be assigned to machines and all jobs are assigned to the
same machine need to be scheduled with respect to a cumulative constraint. In Section 2.3
we presented linear relaxations for this type of constraint, shrinking the time windows of
each job and removing irrelevant jobs from the scope of the constraint leads to potentially
tighter linear relaxation (see Inequations (2.18), (2.19), and (2.23)).

All presolving steps introduced for the cumulative constraint without optional jobs can be
applied to the case with optional jobs. To do this we assume that all potentially scheduled
jobs are assigned to a resource. Due to the monotonicity of the inference performed, any
redundant jobs detected under the all-jobs assumption remain redundant when a subset of
jobs is assigned to a resource. That means, we can detect:

▷ situations where a cumulative constraint with optional jobs can be decomposed
(Lemma 3.7);

▷ irrelevant jobs which can be removed from the scope of the constraint (Lemma 3.9
and Lemma 3.10);

▷ start time variables for which the down-lock or up-lock can be omitted (Lemma 3.11
and Corollary 3.12);

▷ start time variables which can be dual fixed to its earliest start time (Lemma 3.20)
or latest start time (Corollary 3.21);

▷ start time variables for which certain domain values can be omitted (Lemma 3.24 and
Corollary 3.25);

▷ schedule-or-postpone situations (Theorem 3.26 and Corollary 3.27).

In case the start time variables are only in the scope of a single cumulative constraint
with optional jobs and do not contribute to the objective function, we can define a condition
which implies that the constraint is redundant and leads to dual fixings. We assume (as
before) that all potentially scheduled jobs are assigned to the resource. If the resultant sin-
gle cumulative constraint has a feasible solution, the corresponding cumulative constraint
with optional jobs is redundant because, independently of the assigned subset of jobs to
the resource, a feasible schedule exists and the start time variables are only constrained
by this single cumulative constraint with optional jobs. Any feasible solution of the re-
sultant cumulative constraints is a feasible partial assignment for the whole underlying
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Table 3.1: Overview of the dual reductions w.r.t. the effective horizon for a start time variable Sj

which is in the scope of a (single) cumulative constraint.

Condition Dual reduction Reference

lctj ≤ hmin∨ estj ≥ hmax remove variable from scope 3.9
lstj ≤ hmin∧ ectj ≥ hmax remove variable from scope 3.10
lstj ≤ hmin omit down-lock for Sj 3.11
ectj ≤ hmin JSj ≤ estjK 3.20
estj < hmin JSj ≤ estjK ∪ JSj ≥ hmin +1K 3.24
ectj ≥ hmax omit up-lock for Sj 3.12
lstj ≥ hmax JSj ≥ lstjK 3.21
lctj > hmax JSj ≥ lstjK ∪ JSj ≤ hmax−pj − 1K 3.25

problem. That allows the dual fixing of the start time variables to the solution values
of a feasible solution which was computed under the all-jobs assumption. The variable
locks (see Definition 1.12) allow us to identify such cumulative constraint with optional
jobs where the start time variables are only in the scope of this constraint. Note that the
binary choice variables can appear in other constraints and are allowed to contribute the
objective function. The constraint integer programming formulations (Model 5.5) used for
the resource allocation and scheduled problem which is considered in Chapter 5 contains
such cumulative constraints with optional jobs.

3.6 Summary

We started the chapter by presenting the construction of a precedence graph using the
global source of variable bounds (Algorithm 1). The precedence graph captures the infor-
mation that certain jobs can only start if others are finished. This projection of the variable
bound graph using the cumulative structure is used within several presolving techniques
subsequently presented. Secondly, we analyzed the contribution of the cumulative con-
straint to the pools of global information, such as the variable locks and variable bounds.
In the main part we developed two types of dual reductions: one which analyzes the setup
w.r.t. the effective horizon, a concept we introduced in this dissertation, and the other which
infers schedule-or-postpone situations. The effective horizon is also used to decompose a
cumulative constraint (Lemma 3.7).

Table 3.1 gives an overview of the dual reductions w.r.t. the effective horizon. These
reductions deal with jobs which are processed near the boundary of the effective horizon.
Overall, if a start time variable Sj is only down-locked (up-locked) by one cumulative
constraint, the objective function is monotonically non-decreasing (non-increasing) in Sj ,
and the feasible time window of job j is overlapping with hmin (hmax), at least one of these
results is applicable. In Table 3.1 column “Condition” states the additional assumptions
for the start time variable Sj . Column “Dual reduction” summarizes the implied dual
reduction and the last column refers to the corresponding theorem, lemma, or corollary.
Note that the conditions w.r.t. the variable locks and objective function are not required for
the first two cases (Lemma 3.9 and Lemma 3.10) and the first case of hmin (Lemma 3.11)
and hmax (Corollary 3.12), respectively.
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3.6 Summary

Table 3.2: Overview of dual reductions related to schedule-or-postpone for a start time variable Sj

which is in the scope of a (single) cumulative constraint, let ect = mini∈J \{j} ecti and lst =
maxi∈J \{j} lsti.

Condition Dual reduction Reference

estj < ect JSj ≤ estjK ∪ JSj ≥ ectK 3.26
lctj > lst JSj ≥ lstjK ∪ JSj ≤ lst−pjK 3.27

The effectiveness of these results can be classified w.r.t. the remaining problem as fol-
lows. Lemma 3.9 and 3.10 yield the strongest results since in both cases a variable is
removed from the scope of a constraint. As this variable is not locked by that particu-
lar constraint anymore, dual information is provided to the remaining constraints. Then
follows Lemma 3.11 and Corollary 3.12 which state a condition such that one of the two
locks (down or up) can be omitted. Finally, the weakest result is given by the remaining
lemmas and corollaries which require several additional conditions to be applicable. Note
that these results are generalized w.r.t. a set of cumulative constraints (see Corollary 3.32
and 3.33).

Table 3.2 summarizes the schedule-or-postpone results for a single cumulative constraint.
The columns are labeled in the same way as in Table 3.1 and the same additional conditions
need to hold. Theorem 3.26 and Corollary 3.27 define requirements to discover schedule-or-
postpone situations for a single start time variable within an arbitrary COP. Theorem 3.30
formalizes assumptions for a set of start time variable and proves that at least one of them
can be fixed to its earliest start time.
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4 Solving resource-constrained project
scheduling problems

In the previous chapter we developed presolving techniques for cumulative constraints.
These techniques are applicable to any COP that contains cumulative constraints. In
this chapter we present a computational study which evaluates the impact of these pre-
solving reductions for resource-constrained project scheduling problems [BDM+99]. The
goal of resource-constrained project scheduling problems is to schedule jobs on (renewable)
resources subject to precedence constraints such that the resource capacities are never ex-
ceeded and the latest completion time of all jobs is minimized. The cumulative constraint
can be used to model renewable resources.

We use the constraint integer programming solver SCIP [Ach07b, Ach09] for our com-
putational study. The following techniques are utilized to solve instances of resource-
constrained project scheduling problems:

▷ during presolving, we use techniques discussed in Chapter 3 for cumulative con-
straints to reformulate the problem, more precisely the decomposition of cumulative
constraints (Section 3.2), collecting structural information (Section 3.3), and dual
reduction techniques (Section 3.4);

▷ during tree search, we apply the domain propagation algorithms time-tabling, edge-
finding, and edge-finding time-tabling (see Section 1.4.3);

▷ infeasible sub-problems are analyzed to retrieve a conflict relaxation, therefore, the
explanations introduced in Section 2.2.3 are used for inferences of cumulative con-
straints;

▷ the conflict relaxation is used to make branching decisions (see Section 2.2.2).

Contribution. This chapter contributes an extensive computational study of resource-
constrained project scheduling problems using the constraint integer programming solver
SCIP. Thereby, we focus on three topics:

▷ We evaluate the importance of the different propagation algorithms available for
cumulative constraints for resource-constrained project scheduling problems.

▷ We analyze the impact of a presolving phase.

▷ We present results which compare SCIP against a state-of-the-art solver for resource-
constrained project scheduling problems.

Previously published. The computational study for the impact of a presolving phase is
joint work with Jens Schulz and J. Christopher Beck. Parts of these results were previously
published in the following paper:

▷ Stefan Heinz, Jens Schulz, and J. Christopher Beck, Using dual presolving reductions
to reformulate cumulative constraints, Constraints 18, no. 2 (2013), pp. 166–201.
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Outline. This chapter is organized as follows. First we formally define the class of
resource-constrained project scheduling problems in Section 4.1. In Section 4.2 we discuss
the experimental setup which includes the computational environment, the considered test
sets, and implementation details. The importance of the different propagation algorithms
for resource-constrained project scheduling problems is evaluated in Section 4.3. The dual
reductions for the cumulative constraint, which we discussed in Chapter 3, are considered in
Section 4.4. Section 4.5 compares SCIP to a state-of-the-art solver for resource-constrained
project scheduling problems. Finally, we conclude in Section 4.6 with a discussion.

4.1 Problem definition
Resource-constrained project scheduling problems with generalized precedence constraints
are defined by a finite set J = {1, . . . , n} of non-preemptive jobs and a finite set R =
{1, . . . , m} of renewable resources. Each resource k ∈ R has a bounded capacity Ck ∈
N. Every job j has a processing time pj ∈ N and resource demands rjk ∈ N for each
resource k ∈ R. Note that the resource demand for certain job-resource combinations can
be zero. The start time of a job is constrained by its predecessors, given by a precedence
graph D = (J , A) and the distance function ∆ : A → Z. An arc (i, j) ∈ A represents a
“start-to-start” precedence relationship between two jobs. If ∆ij > 0, job j cannot start
less than ∆ij time units after job i started. If ∆ij ≤ 0, job j can start at most |∆ij | time
units before job i starts. In case ∆ij = pi, we have the common precedence condition
stating that job i must be finished before job j starts. The goal is to schedule all jobs
with respect to resource capacities and precedence constraints, such that the makespan,
i.e., the latest completion time of all jobs, is minimized. Instances which contain only
common precedence conditions are called resource-constrained project scheduling problems
(RCPSPs). In the case that generalized precedence conditions are present, we call these
instances of the RCPSP/max problem.

A standard constraint programming model is the following:

min max
j∈J

(Sj + pj)

subject to Si + ∆ij ≤ Sj ∀ (i, j) ∈ A

cumulative(S, p, r.k, Ck) ∀ k ∈ R
Sj ∈ N ∀ j ∈ J .

The decision variable Sj for each job j defines the start time of the corresponding job and is
bounded from below by zero. The objective function minimizes the maximum completion
time of all jobs, i.e., the makespan. The linear constraints ensure that all precedence rela-
tionships are satisfied. Finally, the cumulative constraints enforce the capacity restrictions
of the resources. Since the objective function is not linear, the above model is not a CIP.
To retrieve a CIP we introduce an artificial variable which we minimize and bound from
below by the completion time of all jobs. This results in the following model:

min Sn+1

subject to Sj + pj ≤ Sn+1 ∀ j ∈ J
Si + ∆ij ≤ Sj ∀ (i, j) ∈ A

cumulative(S, p, r.k, Ck) ∀ k ∈ R
Sj ∈ N ∀ j ∈ J .
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4.2 Experimental setup

There exist different MIP modeling approaches for the cumulative structure. For exam-
ple, a time-indexed formulation which goes back to Pritskers et al. [PWW69, QS94], a flow-
based formulation [AMR03], and a recently introduced event-based formulation [KALM11].
A computational study of these three models is presented in [KALM11]. None of these mod-
els, however, is competitive to current state-of-the-art approaches for this type of schedul-
ing problems. One state-of-the-art approach is to combine propagation with conflict-driven
search [SFSW11]. In particular, linear relaxations are not used. This is also the approach
realized within SCIP. Hence, SCIP is used as a CP solver by disabling the linear program-
ming relaxation.

Before we present our computational study, we discuss some aspects of the CIP model
w.r.t. the global structures of variable bounds and variable locks. These are the two global
structures which we combine with the cumulative structure within our presolving tech-
niques. The linear constraints that describe the precedence conditions have a variable
bound structure since the predecessor job bounds the start time of the successor job from
below. As a result, the globally available variable bound graph contains the complete prece-
dence graph of the resource-constrained project scheduling problem, allowing access to this
information at any point during solving. The objective function of the CIP model contains
only the artificial variable Sn+1. All other decision variables have an objective coefficient
of zero. This implies that the objective function is monotonically increasing and decreasing
in Sj for all j ∈ J . The linear constraints which bound the artificial variable from below
need to up-lock the start time variable Sj , whereas the artificial variable receives several
down-locks (see Definition 1.12). For the linear constraints that describe the precedence
relationships, each of the two start time variables is locked in one direction: for the prede-
cessor, an up-lock is added and the successor gets a down-lock. Thus, start time variables
belonging to jobs which do not have any predecessor do not receive any down-locks from
the linear constraints. Only the cumulative constraints might need to down-lock these vari-
ables (see Section 3.3.1). Hence, the dual reductions for the cumulative constraint present
in Section 3.4 are applicable.

4.2 Experimental setup
For our experiments, we use the constraint integer programming solver SCIP [Ach07b,
Ach09]. In this section we introduce the chosen test sets and give some more details on
SCIP and its application to resource-constrained project scheduling.

4.2.1 Test sets
For our experiments, we consider two test sets: RCPSP and RCPSP/max. In the following
we introduce the selected instances for both classes and note the structural differences
between them.

RCPSP test set

We use resource-constrained project scheduling problems with standard precedence con-
straints, for short RCPSPs. That is, for all (i, j) ∈ A, ∆ij = pi. If (i, j) ∈ A and (j, i) ∈ A,
then the instance is trivially infeasible. Therefore, usually only one of these two arcs is
present. The RCPSP is a suitable problem class to apply the dual reductions from Sec-
tion 3.4 since there exist start time variables that have no down-locks (or have no up-locks)
except, possibly, from the cumulative constraints.
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Solving resource-constrained project scheduling problems

We use the problem instances of the Psplib [KS96, PSP]. This library contains four
categories, differing by the number of jobs to be scheduled: 30, 60, 90, or 120 jobs. The
first three categories contain 480 instances each, the final one has 600 instances for a total
of 2040 instances. Each category is clustered in classes of 10 instances and so there are
48 classes for the first three categories and 60 classes for the last category. Each instance
contains four cumulative constraints.

Additionally, we use the pack instances [BP00, ADN08, HS11] which have the same type
of precedence conditions. This test set contains 55 instances which are highly cumulative,
meaning that the available resource capacity is much larger than the resource demands of
the jobs. Hence, many jobs can be executed in parallel. This structure is not favorable
for our dual reductions since the effective horizon is in most cases given by the smallest
earliest start time and the largest latest completion time of all jobs.

These two sets together contain 2095 instances.

RCPSP/max test set

We also consider resource-constrained project scheduling problems with generalized prece-
dence constraints (RCPSP/max). Informally, such a constraint represents a minimum or
a maximum time that must elapse between the start of two jobs. In case both types exist
for a pair of start time variables, down- and up-locks have to be placed on both variables.
Therefore, we expect RCPSP/max to be less suitable for our dual reductions.

We select problem instances from the Psplib [KS96, PSP]. There are 12 test sets avail-
able. All instances have five cumulative constraints and differ in the number of jobs. The
test sets are testsetc and testsetd each with 540 instances having 100 jobs; ubo10,
ubo20, ubo50, ubo100, ubo200, ubo500, and ubo1000 each with 90 instances and 10, 20,
50, 100, 200, 500, and 1000 jobs, respectively; and j10max, j20max, and j30max each with
270 instances and 10, 20, and 30 jobs. In total there are 2520 instances.

4.2.2 Cumulative constraint handler

Within SCIP, constraints are implemented by constraint handlers in a similar fashion to
Simpl [YAH10]. The cumulative constraint handler provides a variety of propagation
algorithms and linear relaxations (see [BHL+10, BHS11, HS11]). We use the time-tabling
propagation algorithm [LL82, KS99], perform an over-load checking via edge-finding [Nui94,
Vil09a], run the edge-finding propagator, and the time-table edge-finding propagator [Vil11,
SFS13]. Section 1.4.3 briefly describes these propagation algorithms and their realization
within SCIP. In Section 4.3 we analyze the usefulness of these propagation algorithms for
the resource-constrained project scheduling problems.

For our purposes, we extended the existing cumulative constraint handler. We imple-
mented the presolving reductions discussed in Chapter 3 except the domain reduction stated
in Theorem 3.30. In SCIP, variable domains are realized via single intervals and so domain
holes cannot be represented. Therefore, the dual reductions presented in Lemma 3.24, The-
orem 3.26, Corollary 3.33, and Corollary 3.34 are implemented via a probing step. This
means, we discover such situations and tentatively try both branches. If one branch leads
to an infeasibility we apply the other branch as a domain reduction.
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4.2.3 Primal heuristics

In addition to the default SCIP components including the extended cumulative constraint
handler, which are used with their default settings, we added a primal heuristic based on
a fast list scheduling algorithm [LW92, MSSU03, KH06]. This primal heuristic is suitable
for the RCPSP instances but not for the RCPSP/max instances and is executed during the
presolving phase to find “good” feasible solutions.1

4.2.4 Parameters settings

SCIP is designed to solve problems by using a linear programming (LP) relaxation and so
the default parameters are tuned under the assumption that (many) LP relaxations will
be solved during search. In our case we do not solve a linear programming relaxation
and, therefore, run the solver as a pure CP solver resulting in a much better performance
for cumulative scheduling instances. Consequently, we used the predefined CP parame-
ter settings2 of SCIP as base settings for solving resource-constrained project scheduling
problems. That implies that all features mentioned in Section 4.2.2 are enabled.

For MIPs, the LP relaxation is used (among other techniques) to guide the search. The
binary and integer variables which have a fractional value in the LP solution (usually)
form the candidate set from which a variable is selected for branching. Furthermore, the
fractional values of these variables define the branching point for the selected variable.
As a result of omitting the LP relaxation, this information are not available. The CP
setting of SCIP, therefore, relies on a SAT-style conflict-driven search [MMZ+01]: conflicts
which result from the analysis of infeasible sub-problems drive the search. We refer to
Section 2.2.2 for more details.

The availability of a primal solution has an impact on the performance of the solver. In
the case of resource-constrained project scheduling problems, any primal solution bounds
the makespan variable from above and the precedence conditions propagate this bound to
all other start time variables, leading to smaller domain sizes for the decision variables. Such
pruning might also introduce cores for the corresponding jobs, see Section 1.4.3. Concerning
the dual reductions we discussed in the previous chapter, smaller variable domains tend to
be beneficial. To partly control performance variability arising through primal heuristics,
we run most of our experiments with three different base settings corresponding to our
expectations of worst, reasonable, and best-case situations for our techniques. Our base
settings, summarized in Table 4.1, are as follows:

▷ no-primal: All primal heuristics including the list scheduling heuristic are disabled.
As a result, during the presolving phase, no primal solution is available and so the
start time variables are unbounded for the RCPSP/max test sets and only bounded
by the sum of all processing times for the RCPSP test sets. Such wide domains reduce
the opportunities to make inferences.

▷ default: SCIP runs with its default primal heuristics plus our problem specific
scheduling heuristic.

1This primal heuristic is available within the “Scheduler” example of SCIP.
2In the interactive shell of SCIP, the CP solver settings can be set (and viewed) using the com-

mand set emphasis cpsolver. The method SCIPsetEmphasis(scip, SCIP_PARAMEMPHASIS_CPSOLVER,
TRUE) does the same in the SCIP callable library.
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Table 4.1: List and description of the used settings. As basis we are using the CP emphasis setting
provided by SCIP. In addition we apply one of the base settings listed in this table.

setting description

no-primal all primal heuristics are disabled
default enable the scheduling heuristic
bounded in addition to default the value of the best known feasible solution is

provided as objective limit

▷ bounded: In addition to the default settings, the start time domains are bounded
by the objective value of the best known solution3 for each instance. This condi-
tion substantially reduces the start time domains and increases the potential to find
domain reductions during the presolving phase. The solver will only find solutions
which have an objective value better than the provided best known value. If the given
solution value matches the optimal solution value, the problem is infeasible.

4.2.5 Computational environment
All experiments were performed on Intel Xeon Core 3.20 GHz computers (in 64 bit mode)
with 12 MB cache, running Linux, and 48 GB of main memory. We used SCIP version
3.0.1.4. For each instance we enforced a time limit of 1800 seconds.

4.3 Propagation algorithms
In Section 1.4.3 we discussed the propagation algorithms which are available in SCIP 3.0.1.4.
In the following, we analyze the impact of these algorithms w.r.t. resource-constrained
project scheduling problems. We examine the usefulness of each propagator for the RCPSP
and for RCPSP/max.

In addition to the base settings described above, we enable and disable different propa-
gation algorithms. First, we enable all propagation algorithms: time-tabling, edge-finding,
and time-tabling edge-finding. Each algorithm performs a consistency check and tries to
tighten variable domains. Second, we only enable the cheapest (w.r.t. worst case complex-
ity) propagation algorithm. This is time-tabling. In addition to these two cases we run two
more experiments. We enable one of the other two propagation algorithms edge-finding
and time-tabling edge-finding in addition to the time-tabling algorithm. If a propagator is
enabled it performs the consistency check and tries to shrink the variable domains. Note
that all features mentioned in Section 4.2.2 are enabled.

Tables 4.3 and 4.5 present a summary of the overall results for RCPSP and RCPSP/max,
respectively. For each base setting (no-primal, default, bounded) and test set we state
the number of solved instances (column “opt”), the number of instances for which a feasible
solution was found (column “feas”), and the shifted geometric mean4 for the number of
search “nodes” and running “time” (in seconds) with shift s = 100 and s = 10, respectively.
This ensures that outliers do not have a huge impact on the measures. Shifting similarly
reduces the bias of easy instances, those solved in less than s = 10 seconds or requiring

3For the RCPSP instances we used the ones given in the Psplib [KS96, PSP] whereas for the RCPSP/max
instances we considered the primal solutions in [SFSW13].

4The shifted geometric mean of values t1, . . . , tn is
( ∏

(ti + s)
)1/n − s, with shift s.
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4.3 Propagation algorithms

Table 4.2: Number of instances which are easy and hard for the individual test sets of RCPSP.
An instance is easy if all settings (see Table 4.3) solve an instance in less than one second. Hard
instances are those which are not solved by any setting.

test set j30 j60 j90 j120 pack total

evaluate 43 72 88 167 51 421
easy 437 359 315 125 1 1237
hard 0 49 77 308 3 437

total 480 480 480 600 55 2095

fewer than s = 100 search nodes. The first column “propagation” shows which propagators
are enabled.

We removed those instances from the evaluation which are extremely easy or extremely
hard to solve. Therefore, we follow the idea presented in [AW13]: We exclude instances
for being too easy if they are solved by all settings in less than one second. Instances
are declared as hard if none of the settings is able to solve them within the given time
limit. Tables 4.2 and Table 4.4 state for the individual test sets belonging to RCPSP and
RCPSP/max, respectively, the number of easy and hard instances. Any instance which
does not belong to the hard instances was solved by at least one setting. Therefore, these
tables give an overview on the number of instances which are solvable within the time limit.

4.3.1 RCPSP
In case of the RCPSP instances we have a basis of 2095 instances. From these 1237 are
easy and 437 instances are hard leaving 421 instances for the evaluation. Table 4.2 presents
the number of easy and hard instances for the individual test sets of the RCPSPs.

Given the number of instances which are part of the evaluation, Table 4.3 states the
results for different propagation settings.

Test set j30. Independently of the chosen setting, for the j30 test set, all instances can
be solved. Thereby, 437 instances out of 480 belong to the easy class, leaving 43 instances
for the evaluation. As expected, the time-tabling algorithm alone needs the most search
nodes. Running at least one of the expensive propagation algorithms in addition decreases
the search nodes by a factor of more than two. Regarding the running time, the best
result w.r.t. the overall running time for each base setting is observed with the use of
the time-tabling algorithm together with time-tabling edge-finding. Providing the optimal
solution value does not decrease the overall running time drastically, independently of the
propagation setting.

Test sets j60, j90, and j120. For the three test sets j60, j90, and j120, the results are
similar. The best setting w.r.t. the overall performance, independent of the base setting
(no-primal, default, and bounded), is to only use time-tabling and to disable both
edge-finding and time-tabling edge-finding. The only exception is for the bounded setting
for j120 where the time-tabling and time-tabling edge-finding combination is almost 1
second (in shifted geometric mean) faster than the time-tabling setting. Applying any of
the two propagation algorithms (edge-finding and time-tabling edge-finding) in addition
to time-tabling often leads to a decrease in the number of search nodes. This, however,
does not pay off w.r.t. the overall running time (except for j120 in case of the bounded
base setting). The number of solved instances varies only slightly within each base setting.
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Table 4.3: Impact of the individual propagation algorithms which are available in SCIP w.r.t.
RCPSP. For each base setting we state the number of instances solved (“opt”), the number of
instances for which a feasible solution was found (“feas”), and the shifted geometric mean for the
number of “nodes” and running “time” in seconds. Easy and hard instances are omitted from the
evaluation (see Table 4.2).

no-primal default bounded

propagation test set opt feas nodes time opt feas nodes time opt feas nodes time

◦ time-tabling

j30 43 43 11125.4 7.7 43 43 10606.0 7.5 43 43 6264.7 6.4
j60 71 72 21086.6 21.8 71 72 20155.0 21.7 72 72 5562.4 14.5
j90 82 88 7399.7 17.1 81 88 5946.7 16.4 87 88 677.3 10.4
j120 152 167 10940.6 17.4 150 167 9514.1 17.0 166 167 527.7 6.5
pack 14 51 3814565.0 1063.9 13 51 4113772.9 1092.0 14 51 3880417.1 1062.7

RCPSP 362 421 23049.6 31.8 358 421 20778.2 31.4 382 421 3387.8 20.6

◦ time-tabling
◦ edge-finding

j30 43 43 4433.9 9.1 43 43 4249.4 9.1 43 43 2043.8 7.9
j60 68 72 16232.5 40.8 69 72 16897.0 42.5 71 72 4259.1 25.7
j90 78 88 7620.2 29.7 77 88 5732.6 28.1 82 88 600.1 14.8
j120 150 164 9647.4 30.4 149 167 8977.9 31.3 163 167 292.5 6.6
pack 49 51 2897.7 7.7 50 51 2544.6 7.2 50 51 210.9 4.6

RCPSP 388 418 8029.6 25.1 388 421 7260.1 25.2 409 421 673.1 10.4

◦ time-tabling
◦ time-tabling

edge-finding

j30 43 43 4192.5 6.7 43 43 4292.5 6.8 43 43 2291.7 6.0
j60 71 72 16700.8 27.9 71 72 16437.6 29.2 71 72 4325.8 18.9
j90 79 88 8003.9 22.8 79 88 6157.3 22.3 85 88 613.3 12.4
j120 151 166 9832.6 22.8 152 167 9466.9 23.3 164 167 286.8 5.6
pack 49 51 2882.6 6.4 50 51 2455.7 6.8 50 51 202.1 4.1

RCPSP 393 420 8162.7 18.9 395 421 7466.7 19.2 413 421 679.7 8.5

◦ time-tabling
◦ edge-finding
◦ time-tabling

edge-finding

j30 43 43 4433.9 9.2 43 43 4249.4 9.1 43 43 2043.8 7.9
j60 67 72 16227.8 40.8 69 72 16893.4 42.5 71 72 4259.1 25.7
j90 78 88 7628.8 29.6 77 88 5727.7 28.0 82 88 600.1 14.8
j120 150 164 10557.7 31.2 149 167 8976.4 31.3 163 167 292.6 6.6
pack 49 51 2898.6 7.7 50 51 2545.0 7.2 50 51 211.0 4.6

RCPSP 387 418 8324.6 25.4 388 421 7258.2 25.1 409 421 673.2 10.4

Having the best known objective value available for bounding the start time variable leads
to the best performance, as expected. In case of enabling the time-tabling algorithm alone
431, 402, and 291 instances are solved for j60, j90, and j120, respectively (including the
easy instances which are solved by all settings).

Test set pack. The picture changes for the pack instances. For this test set it is crucial
to use at least one of the expensive propagation algorithms edge-finding and time-tabling
edge-finding in order to achieve small running times and a large number of solved instances.
With at least one of them enabled in addition to time-tabling, we can solve 49 and 50
instances compared to 13 and 14 if only the time-tabling algorithm is used (ignoring the
one easy instance). In the case of the time-tabling setting, the additional knowledge of
a “good” or even optimal solution does not help. The overall performance is basically
constant. This changes if edge-finding or time-tabling edge-finding are added to the set of
propagators. Knowing the optimal solution value reduces the required search nodes by a
factor of 10 and the overall running time by approximately 50%.

Summary. For all of the test sets, the three different base setting, no-primal, default,
and bounded, lead to the same conclusion. This indicates that the issue of random noise
reported in [HSB13] for the same solver appears to have been reduced.
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Figure 4.1: Performance diagram for the 2095 RCPSP instances w.r.t. the different propagation
settings (the default base setting is used). Showing the number of instances solved within a
certain time. The time-tabling setting is dotted ( ), the time-tabling and edge-finding setting is
dashed ( ), the time-tabling and time-tabling edge-finding setting is solid ( ), and the time-
tabling, edge-finding, and time-tabling edge-finding settings is densely dotted ( ). Note that
the performance results for time-tabling and edge-finding and time-tabling, edge-finding, and time-
tabling edge-finding are very similar.

Figure 4.1 presents a performance diagram for the default base setting. It visualizes the
number of solved instances within a certain time for the four different propagator settings
(see Table 4.3). Note that the two settings which enable the edge-finding propagator
perform very similarly. The setting enabling the time-tabling and time-tabling edge-finding
propagation algorithm leads to best performance w.r.t. this measure. It solves the largest
number of instances within a fixed running time window. In contrast, the time-tabling
propagator by itself solves the fewest number of instances. This difference, however, results
mainly from the performance of these two settings for the pack instances. For these
instances the time-tabling and time-tabling edge-finding setting dominates the time-tabling
setting by far (see Table 4.3).

For the test sets j60, j90, and j120, the results suggest, independently of the base
setting, that the expensive propagation algorithms edge-finding and time-tabling edge-
finding should be discarded. Enabling either of these algorithms often leads (as expected)
to a decrease in the number of search nodes but an increase in the overall running time.
The additional time spend in each search node for performing these algorithms does not pay
off. For j30 the running time decreases slightly if time-tabling edge-finding is performed in
addition to time-tabling. The number of solved instances is constant within the three base
settings.

The insignificance of edge-finding and time-tabling edge-finding, stands in marked con-
strast with results presented for other solvers. In [Vil11, SFS13] results are discussed which
indicate that time-tabling edge-finding is valuable for these problems. Even more, it is
argued that this propagation algorithm is responsible for solving instances which had not
been solved before. At the moment we are not able to give a proper reason for this dis-
agreement. It could be due to a different implementation of the propagation algorithms
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Table 4.4: Number of instances which are easy and hard for the individual test set of RCPSP/max.
An instances is easy if all settings (see Table 4.5) solve an instances in less than one second. Hard
instances are those which are not solved by any settings.
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evaluate 0 11 29 150 176 0 0 15 39 72 71 57 620
easy 270 259 241 366 354 90 90 73 40 0 0 0 1783
hard 0 0 0 24 10 0 0 2 11 18 19 33 117

total 270 270 270 540 540 90 90 90 90 90 90 90 2520

and the corresponding explanations or the tree search used. In Section 4.5 we compare our
solver to the one presented in [SFS13].

For the pack instances it seems to be crucial to use at least one of the expensive algo-
rithms edge-finding and time-tabling edge-finding as this lead to much better performance
compared to the time-tabling setting.

Overall, the results suggest using only the time-tabling propagation algorithm for RCPSP
instances which are not highly cumulative. For instances which are highly cumulative (pack
test set) it seems to be valuable to use one of the more expensive (w.r.t. the worst case
complexity) propagation algorithms, edge-finding or time-tabling edge-finding. Since dis-
advantages are small if time-tabling edge-finding is enabled with the time-tabling algorithm
for instances which are not highly cumulative and the advantages for the highly cumulative
instances are huge, the results suggest enabling time-tabling and time-tabling edge-finding
for these instances as the default setting. This leads for the whole test set to the best
performing w.r.t. the overall running time and the number of solved instances across all
three base settings as indicate in Figure 4.1.

4.3.2 RCPSP/max

The RCPSP/max test set contains 2520 instances. Of these, 1783 instances are easily
solvable by all settings in less than one second. Only 117 instances cannot be solved by any
parameter setting and are classified as hard. This leaves 620 instances for the evaluation.
Table 4.4 states the number of easy and hard instances for the different test sets. For the
test sets j10max, ubo10, and ubo20 all instances fall into the easy category. Therefore,
these sets are completely excluded from the analysis. The summarized results are given in
Table 4.5. Before we analyze the results for different test sets, we want to point out, that
the results for the no-primal and default base settings are very similar due to the fact
that none of the primal heuristics, even the one we added to the heuristic pool, finds a
primal solution for any of the instances. Differences which arise result in most cases from
the primal heuristics, which are performed unsuccessfully, influencing statistical measures
which lead once in a while to a (slightly) different search.

Test sets j20max and j30max. Most of the instances belonging to j20max and j30max
are part of the easy class: 259 for j20max and 241 for j30max. For both test sets none
of the instances are hard. Hence, only 11 and 29 instances for j20max and j30max, re-
spectively, remain for the evaluation. The results suggest to use time-tabling together with
time-tabling edge-finding. Doing this gives the best overall performance for all three base

84



4.3 Propagation algorithms

Table 4.5: Impact of the individual propagation algorithms which are available in SCIP w.r.t.
RCPSP/max. For each base setting we state the number of instances solved (“opt”), the number
of instances for which a feasible solution was found (“feas”), and the shifted geometric mean for
the number of “nodes” and running “time” in seconds. Easy and hard instances are omitted from
the evaluation (see Table 4.4). In particular test sets j10max, ubo10, and ubo20 are completely
omitted since all instances of these test sets are easy.

no-primal default bounded

propagation test set opt feas nodes time opt feas nodes time opt feas nodes time

◦ time-tabling

j20max 11 11 40089.2 18.4 11 11 40089.2 18.5 11 11 30373.5 17.5
j30max 20 28 95813.7 82.5 20 28 95692.8 82.7 20 28 71159.9 79.8
testsetc 150 139 8425.8 16.3 150 139 8401.2 16.3 150 139 2345.4 11.5
testsetd 171 168 4555.7 11.4 171 168 4557.5 11.4 175 168 1233.3 8.3
ubo50 13 13 10726.7 26.4 13 13 10722.9 26.5 13 13 4726.2 23.8
ubo100 37 34 1556.7 8.3 37 34 1556.4 8.3 38 34 337.4 5.9
ubo200 72 62 527.5 3.5 72 62 527.5 3.5 72 62 44.1 1.1
ubo500 70 60 1202.1 24.7 70 60 1202.1 24.8 71 60 216.4 8.3
ubo1000 49 47 1190.0 222.1 49 47 1190.1 221.6 57 47 25.0 52.6

RCPSP/max 593 562 3963.4 21.2 593 562 3960.6 21.2 607 562 1015.6 12.9

◦ time-tabling
◦ edge-finding

j20max 11 11 318.3 0.7 11 11 318.3 0.7 11 11 148.6 0.7
j30max 29 28 3970.6 8.0 29 28 3970.6 7.9 29 28 1603.9 5.7
testsetc 137 139 6920.2 39.2 137 139 6898.2 39.2 139 139 2026.8 26.6
testsetd 163 168 3191.0 22.8 164 168 3191.6 22.8 165 168 850.8 15.4
ubo50 15 13 3820.7 25.7 15 13 3820.7 25.6 14 13 1747.8 21.5
ubo100 38 34 986.2 9.9 38 34 986.4 9.8 38 34 227.7 6.7
ubo200 71 62 507.0 8.9 71 62 507.0 8.8 72 62 40.4 2.4
ubo500 68 60 1277.3 98.2 68 60 1277.1 98.1 70 60 208.9 22.6
ubo1000 36 45 1039.4 586.7 36 45 1039.0 584.8 48 47 25.4 63.8

RCPSP/max 568 560 2437.5 38.5 569 560 2435.1 38.5 586 562 599.7 19.3

◦ time-tabling
◦ time-tabling

edge-finding

j20max 11 11 307.3 0.6 11 11 307.3 0.6 11 11 140.7 0.5
j30max 29 28 3585.1 5.0 29 28 3585.1 4.9 29 28 1346.3 3.1
testsetc 144 139 7021.2 26.0 144 139 6999.5 26.1 146 139 2101.5 18.7
testsetd 170 168 3626.9 16.0 170 168 3626.8 16.0 171 168 881.0 11.2
ubo50 15 13 4061.3 15.7 15 13 4061.3 15.9 15 13 1642.3 14.3
ubo100 38 34 1184.3 8.0 38 34 1184.2 8.0 38 34 232.1 5.1
ubo200 72 62 524.3 5.8 72 62 524.3 5.8 72 62 40.3 1.7
ubo500 69 60 1296.6 46.6 69 60 1296.5 46.5 70 60 208.0 14.2
ubo1000 43 46 1092.5 320.3 43 46 1092.5 320.8 52 47 25.4 58.6

RCPSP/max 591 561 2647.7 25.8 591 561 2645.7 25.8 604 562 617.7 14.3

◦ time-tabling
◦ edge-finding
◦ time-tabling

edge-finding

j20max 11 11 318.3 0.7 11 11 318.3 0.7 11 11 148.6 0.7
j30max 29 28 3970.6 8.0 29 28 3970.6 8.0 29 28 1603.9 5.7
testsetc 137 139 6920.9 39.2 137 139 6897.5 39.2 139 139 2026.6 26.5
testsetd 164 168 3190.9 22.8 163 168 3191.5 22.8 165 168 850.6 15.4
ubo50 15 13 3820.7 25.8 15 13 3820.7 25.8 14 13 1748.0 21.6
ubo100 38 34 986.4 9.8 38 34 986.3 9.8 38 34 227.7 6.7
ubo200 71 62 507.1 8.9 71 62 507.1 8.9 72 62 40.4 2.4
ubo500 68 60 1277.2 98.2 68 60 1277.1 98.2 70 60 208.9 22.6
ubo1000 35 45 1038.5 585.6 36 45 1039.4 586.7 48 47 25.4 63.8

RCPSP/max 568 560 2437.5 38.5 568 560 2435.9 38.5 586 562 599.7 19.3

85



Solving resource-constrained project scheduling problems

settings w.r.t. the running time and all instances are solved. Applying only the time-tabling
algorithm leads to an increase in the number of search nodes compared to all other settings.
For the test set j20max, 9 instances are no longer solved. Providing the optimal solution
value to bound the start time variables from above results in the best performance (as
expected) for all propagation settings. The number of search nodes is often halved.

Test sets testsetc and testsetd. For the test sets testsetc and testsetd, 150 and
179 instances out of 540 are neither easy nor hard. The best performance is achieved for
all of the three base settings if only the time-tabling propagation algorithm is enabled.
Adding either of the other two propagation algorithms leads to a decrease in the number
of search nodes that is not matched by a decrease in the overall running time. In addition,
the number of solved instances also decreases. All three base settings solve in total 516
instances of the testsetc, including easy instances, if the propagation algorithms are
restricted to time-tabling. In case of testsetd, 529 instances are solved if the best bound
is provided.

The ubo test sets. The ubo test sets have different number of jobs which need to be
scheduled. They vary from 10 to 1000 jobs. For the test sets which have less than or equal
to 100 jobs, it is beneficial to enable the propagation algorithms time-tabling and time-
tabling edge-finding. For the test sets which contain more than 100 jobs, the additional
time-tabling edge-finding propagator leads to an increase in the overall running time. In
any case the edge-finding propagator does not improve the performance at all. If we bound
the start time variables from above via the best known solution value, the best performance
is achieved. The overall performance improves drastically in many cases.

Summary. The three base settings, no-primal, default, and bounded lead to the
same conclusion for the individual test sets. This indicates that the random noise which
was reported in [HSB13] is reduced.

Figure 4.2 depicts a performance diagram for the default base setting. It visualizes the
number of solved instances, within a certain time, for the four different propagator settings
(see Table 4.5). Note that the two settings which enable the edge-finding propagator
perform very similarly. Using time-tabling leads to a slightly better performance (w.r.t.
this measure) compared to the setting which enables the time-tabling and the time-tabling
edge-finding propagation algorithm. It consistently solves a few more instances within a
fixed time limit.

For the test set j20max and j30max, it is important to enable at least one of the expensive
propagation algorithms edge-finding and time-tabling edge-finding besides the time-tabling
algorithm. This leads to a huge decrease in the number of search nodes and an increase in
the number of solved instances. For the other test sets, it seems to be reasonable to run
the time-tabling algorithm alone as adding the time-tabling edge-finding algorithm leads
to slightly worse results. For the whole test set, the results indicate that the time-tabling
by itself is the best setting if the instances contain many jobs. This result holds w.r.t. the
number of solved instances and overall running time. This setting is closely followed by a
combination of time-tabling and time-tabling edge-finding.
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Figure 4.2: Performance diagram for the 2520 RCPSP/max instances set w.r.t. the different prop-
agation settings. Showing the number of instances solved within a certain time. The time-tabling
setting is dotted ( ), the time-tabling/edge-finding setting is dashed ( ), the time-tabling/time-
tabling edge-finding setting is solid ( ), and the time-tabling/edge-finding/time-tabling edge-
finding settings is densely dotted ( ). Note that the performance results for time-tabling/edge-
finding and time-tabling/edge-finding/time-tabling edge-finding are very similar.

4.3.3 Overall summary
For both test sets, the three different base settings lead to the same conclusion w.r.t. the
importance of the propagation algorithms which are available in SCIP. The results suggest
omitting the edge-finding propagation algorithm completely independently of the test sets
RCPSP and RCPSP/max. For those cases where the time-tabling algorithm alone is the
most beneficial setting, adding time-tabling edge-finding leads to a slight increase in the
running time and a few instances are no longer solved. Overall, however, it seems to be
reasonable to enable time-tabling and time-tabling edge-finding. For the total RCPSP test
set, this setting gives the largest number of solved instances and the best overall running
time for all three base settings. For RCPSP/max, this combination is slightly inferior to
the time-tabling alone.

Finally, we want to point out, that the insignificance of the edge-finding algorithm for
these instances is surprising and contradictory to results achieved with other solvers running
in different environments [Vil11, SFS13]. This should be further investigated.

4.4 Dual reductions
The study in [HSB13] presented an extensive computational study for the dual reduction
techniques. The authors showed that for certain problem classes, a reduction of the prob-
lem, w.r.t. the number of variables can be achieved when dual reduction techniques are
applied. However, there was no clear conclusion concerning the overall performance im-
pact. The main issue was that the search suffered from too much random noise exacerbated
by the strong dependence on the primal bound. We invested some effort to overcome this
issue. In this section we rerun the experiments of [HSB13] utilizing a proper conflict-driven
search (see Section 2.2.2).
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To allow for comparison to the results presented in [HSB13] we perform exactly the same
series of experiments. These experiments are set up to get an impression of the utilization
of dual presolving steps, targeting the following questions:

1. How often are dual reductions made?

2. Does a primal solution increase the number and impact of the dual reductions?

3. Do the reductions increase the number of fixed variables after presolving?

4. How do these reductions contribute to the overall performance of the solver?

Therefore, we are using the base settings no-primal, default, and bounded and run
the solver with and without dual reductions for the cumulative constraint handler. Re-
garding the propagation algorithm, we enabled time-tabling and time-tabling edge-finding
for consistency checks and variable domain reductions.

The results are presented in Tables 4.6–4.10. The first three tables state results w.r.t.
the presolving phase. Tables 4.9 and 4.10 show the overall impact of the presolving steps
on problem solving performance.

For RCPSP/max instances, typically no primal solution is found during the presolving
phase, hence, the results for the no-primal setting are similar to the default setting.
As already mentioned, differences arise due to side effects of unsuccessfully running primal
heuristics. Primal heuristics influence statistical measures which are used for branching.

For the pack instances (part of the RCPSP test set), none of the dual reductions were ap-
plicable during presolving. As expected, the highly cumulative structure of these instances
results, in most cases, in an effective horizon that is equivalent to the interval defined by
the smallest earliest start time and the largest latest completion time over all jobs. Hence,
none of the dual reductions is applicable.

In the following, we present our results in detail.

4.4.1 Applicability of dual reductions

Table 4.6 presents information about the number of inferences made by each implemented
presolving reduction in the base setting (no-primal, default, bounded). The first col-
umn “test set” states the name of test set. The remaining columns display the following
information for each setting, that is no-primal, default, and bounded. The first column
“inst” is the percentage of problem instances where at least one reduction was made. The
percentage is taken w.r.t. all instances of the test set, including the pack instances. There
are 2095 and 2520 instances for the RCPSP and RCPSP/max test sets, respectively. The
second column prints the “total” number of times the presolving reduction was applied.
The remaining columns display, for those instances for which the reduction was applied at
least once, the maximum (“max”) number of times it was applied for a single instance, the
average (“avg”) number, and the standard deviation (“var”). If no reductions were found
for the whole test set we print “–”. Note that the total number of times a reduction is
applied depends on the “size” of the reduction. The solver may solve an instance during
the presolving phase via a small number of large domain reductions whereas in another
case the solver may make more, smaller reductions but yet fail to solve the problem in
the presolving phase. So while the number of reductions made is indicative of whether the
conditions required for inference occur, in general a smaller total number for one setting
compared to another does not mean that this setting performs less total inference.
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Table 4.6: This table summarizes the appearance of the different presolving reductions.
no-primal default bounded

test set inst total max avg var inst total max avg var inst total max avg var

Constraint decompositions (Lemma 3.7)
RCPSP 0.0% – – – – 14.0% 775 11 2.6 2.1 16.8% 1685 53 4.8 5.8
RCPSP/max 6.3% 1205 64 7.6 9.5 6.3% 1205 64 7.6 9.5 33.6% 11022 592 13.0 28.9

Irrelevant variables due to no overlap with the effective horizon (Lemma 3.9)
RCPSP 67.0% 51363 324 36.6 64.9 58.9% 18579 194 15.1 19.2 37.5% 21286 364 27.1 45.5
RCPSP/max 26.3% 17484 616 26.4 49.5 26.3% 17484 616 26.4 49.5 44.1% 192732 10849 173.5 487.4

Irrelevant variables due to an overlap with the effective horizon (Lemma 3.10)
RCPSP 0.0% – – – – 1.8% 56 4 1.5 0.8 4.7% 248 20 2.5 3.1
RCPSP/max 0.4% 19 4 2.1 1.1 0.4% 19 4 2.1 1.1 11.7% 887 44 3.0 4.6

Variable lock adjustments (Lemma 3.11)
RCPSP 0.0% – – – – 17.7% 2420 64 6.5 7.2 20.3% 4241 118 10.0 13.5
RCPSP/max 3.9% 908 67 9.3 13.1 3.9% 908 67 9.3 13.1 33.5% 12474 431 14.8 28.8

Dual fixings due to a single constraint (Lemma 3.20, Lemma 3.24, and Theorem 3.26)
RCPSP 48.6% 9955 80 9.8 14.5 34.8% 3839 58 5.3 5.6 21.0% 3212 59 7.3 7.9
RCPSP/max 10.4% 570 31 2.2 2.7 10.4% 570 31 2.2 2.7 17.0% 839 18 2.0 1.7

Dual fixings due to a set of constraints (Corollary 3.32, Corollary 3.33, and Corollary 3.34)
RCPSP 64.0% 16975 86 12.7 20.3 48.4% 3869 24 3.8 3.4 28.0% 1633 19 2.8 2.4
RCPSP/max 21.4% 2845 45 5.3 7.2 21.4% 2845 45 5.3 7.2 22.8% 2924 46 5.1 5.3

All dual reductions
RCPSP 85.1% 78293 409 43.9 78.2 66.9% 29538 227 21.1 25.9 40.7% 32305 444 37.9 58.9
RCPSP/max 29.1% 23031 673 31.4 58.9 29.1% 23031 673 31.4 58.9 49.9% 220878 11614 175.7 497.6

Before we start to discuss the individual dual reductions and their impact, we provide a
first comparison to the results presented in [HSB13]. There we collected the same statistics
with an earlier version of the solver. The results for the base setting no-primal are
very similar. Some of the dual reductions are now applied more often, especially for the
RCPSP/max test sets. The same holds for the base settings default and bounded
regarding the test set RCPSP/max. However, for the test set RCPSP it seems that the
picture changes in case of default and bounded, most importantly for the irrelevant
variable detection and dual fixings. Here the number of instances where these reductions
are applicable is smaller than in our previous results [HSB13]. Analyzing this carefully
revealed that now many instances are solved during the first presolving round when a
“good” solution is given. Even better, the primal reductions made by the propagation
algorithms are sufficient to prove optimality. As a result the dual reduction algorithms
are not called at all. In the previous results these instances where also solved during the
presolving phase. Often it took, however, several rounds of presolving to finally prove
optimality. Hence, our dual reduction algorithms where successfully called. Taking general
improvement of the used solver into account the results presented here still have the same
flavor as before.

Decomposition

In case of the decomposition (see Lemma 3.7), the availability of a primal solution appears
essential. A “good” primal solution bounds the start time variables from above, leading
to further domain reductions by the propagation algorithms. Shrinking the feasible time
window of jobs further increases the applicability of other dual reductions that move jobs
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out of the effective horizon, increasing the chance of finding points in time within the
effective time horizon where the capacity is never exceeded. The overall applicability of
Lemma 3.7 is, however, small compared to the total number of instances. For the RCPSP
test set only 14% and 17% of the instances are affected in case of the default and bounded
setting, respectively. For the RCPSP/max test set 6%, 6%, and 33% of the instances are
reformulated if the no-primal, default, and bounded setting is applied.

Compared to the results presented in [HSB13] this dual reduction was more often applied
here, especially for the RCPSP/max test set. A reason for that is that we added a presolving
step which searches for redundant disjunctive constraints (see Section 3.3.2).

Irrelevant jobs

Irrelevant jobs are those that run completely before or after the effective horizon (Lemma 3.9)
or have to be processed during the entire effective horizon (Lemma 3.10). The first type of
irrelevant jobs appears quite often for the RCPSP test set, independent of the experimental
setting: on average up to 36 start time variables are irrelevant over the whole set of cumu-
lative constraints. Note that a start time variable that is irrelevant for several cumulative
constraints is counted once for each of these cumulative constraints.

For the RCPSP/max test set, our experimental results indicate that this reduction is
applicable to fewer instances in case of the base setting no-primal and default. For
the bounded case, however, a higher percentage of instances are affected compared to the
RCPSP instances. On instances where this dual reduction is applicable, there is substantial
inference. On one instance in the bounded condition, 10849 reductions were triggered.

Knowing a “good” or even an optimal solution decreases the number of identified irrele-
vant jobs for the RCPSP test set. This heavily differs from the results presented in [HSB13].
In [HSB13] the number of identified irrelevant jobs increased if a “good” or even an optimal
solution was given. A careful analysis of this issue revealed the following. Many instances
which are solved during the presolving phase are solved within the first presolving round
before the detection of irrelevant jobs is conducted.

For the RCPSP/max test set, the availability of a “good” primal solution increases the
success of detecting irrelevant jobs. This increase is again related to the more narrowly
bounded start time variables. In those instances where the reduction is applicable, the
average number of applications is low compared to the maximum. The variance is moderate
compared to the maximum, indicating that most of the instances have a similar number of
irrelevant jobs and only for a few instances the particular reduction can be applied heavily.
Note that the high percentage of irrelevant variables per constraint is not induced by the
decomposition since the percentage is already high in the setting no-primal, where no
decomposition takes place for the RCPSP instances and only a few for the RCPSP/max
problems.

The second type of irrelevant jobs (Lemma 3.10) only occurs (in these test sets) if a
cumulative constraint is decomposed. These irrelevant jobs can be seen as an inference
arising from the decomposition. The results are similar to those presented in [HSB13].

Variable locks

The results for removing variable locks (Lemma 3.11) are similar to those for decomposition
(Lemma 3.7). It is essential to have a “good” primal solution to trigger this propagation.
Otherwise, the time window of a job is too large compared to its processing time, dramat-
ically reducing the possibility of removing a variable lock because the condition that the
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latest start time of a job is smaller than hmin is unlikely to be satisfied. A closer look
at the instances reveals that the applicability of this reduction is not necessarily related
to those instances where a decomposition of a cumulative constraint takes place. In most
cases, a decomposition leads to variable lock deletions. However, there are instances where
locks are removed even though no decomposition was found.

Comparing these results to the one presented in [HSB13] shows an increase in the num-
ber of times this technique is applicable. This, however, does not follow from the newly
introduced presolving step which adds redundant disjunctive constraints to increase prop-
agation (see Section 3.3.2). Since these disjunctive constraints are redundant, they do not
need to be checked for feasibility. Within SCIP, this implies that these constraints do not
lock any of their variables. The increase in the number of times this dual reduction was
applied is a result of the stronger primal reductions we are now doing compared to the
results in [HSB13].

Dual fixings

The applicability of the dual fixing conditions (Lemma 3.20, Lemma 3.24, Theorem 3.26,
Corollary 3.32, Corollary 3.33, and Corollary 3.34) seems to be (almost) independent of
having a primal solution for the RCPSP/max test sets. In our previous results [HSB13] this
also held for the RCPSP instances. Due to the heavy increase in the number of instances
which are now solved trivially in the first presolving round if a “good” or even optimal
solution is given, the percentage of instances where this technique is applied is smaller for
the base setting default and bounded compared to previously published results.

These reductions, the ones related to a single cumulative constraint (Lemma 3.20, Lemma
3.24, and Theorem 3.26) and the ones related to multiple cumulative constraints (Corol-
lary 3.32, Corollary 3.33, and Corollary 3.34), are applicable quite often for the RCPSP
test set when no feasible solution is known (no-primal). Note that within our implemen-
tation the single constraint dual fixing is done first, followed by the set-based version. As
a consequence, the reductions stated for a set of cumulative constraints are those that the
single constraint algorithm could not find because more than one cumulative constraint
locked a particular variable. The total number of dual fixings from these two algorithms is
therefore the sum of the corresponding numbers in the two rows. Similar to the irrelevant
variable results, these reductions are less effective for the RCPSP/max test set.

The single constraint case is applicable for almost half of the RCPSP test set in case of
the no-primal base setting and fixes on average almost 10 variables. For RCPSP/max,
reductions are found on more than 10% of instances with an average of 2 variable fixings
independently of the base setting. Performing dual fixings on sets of constraints further
increases the number of fixed variables during presolving by up to almost 13 variables on
average for the RCPSP test set and 5 variables for the RCPSP/max test set. Hence, much
smaller problems, in terms of the number of variables, remain after presolving. We evaluate
this in more detail below.

It is notable that considering a set of cumulative constraints increases the applicability
of the dual reductions. These fixings cannot be made by propagating a single constraint.
In SCIP this type of propagation algorithm is natural since constraints of one type are
all known to the corresponding constraint handler for that constraint type. Integrated
reasoning about sets of constraints of the same type is similar to what is done in Simpl
[YAH10] but does not seem to have been otherwise investigated in the CP literature.
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Summary

These results show that there are instances within the test sets of the Psplib that are easily
solvable via dual reductions. For example, the maximum value for the applied dual fixings
(Table 4.6) shows that for some instances almost all variables are fixed during presolving.
Furthermore, knowing a primal solution is helpful since it bounds the start time variables
from above leading to situations where instances are trivially solvable in the first presolving
round without applying our dual reduction algorithms. This explains the decrease in the
number of instances which are affected by our dual reductions for the RCPSP instances
where a primal solution is known during the presolving phase (default and bounded)
compared to previous results published in [HSB13].

Overall, the introduced presolving steps result in inferences for 85% of the instances for
the base setting no-primal and the RCPSP test set. For the default and bounded
case this percentage is 66% and 40% for this particular test set. The number of irrelevant
variables per constraint is 9 on average (recall that these instances have 4 cumulative
constraints) and the number of dual fixings is more than 6 (combining the dual fixings due
to a single and a set of constraints). For the test set pack, none of the dual reductions
was successfully applied. This is not surprising since these instances are highly cumulative:
many jobs can be processed in parallel since their resource demands are small compared
to the available resource capacity. This results in an effective horizon which matches the
interval given by the smallest start time and the latest completion time of all jobs.

As expected, for the RCPSP/max test set, the reductions are not as effective. Still these
reductions do arise in 28% of the instances if there is no primal solution and 47% of the
instances if an objective limit (bounded) is given. In both cases, on average up to 5
variables are dual fixed. Overall, the dual reductions are more often applied compared to
the results presented in [HSB13] due to stronger primal reductions.

4.4.2 Presolving impact
The introduced presolving steps are applicable quite often for the RCPSP test set and arise
frequently for the RCPSP/max test set. Applicability, however, does not mean that these
reductions provide any new information or solving power. Therefore, Tables 4.7 and 4.8
present, for each test set of RCPSP and RCPSP/max, respectively, information about the
number of additional variables fixed after presolving due to our proposed dual presolving
steps, compared to when there are no cumulative constraint dual reductions. Recall that
SCIP has a number of default presolving techniques [Ach07b] and so these experiments test
whether our new techniques actually result in more inference than what SCIP is already
capable of in presolving. The columns in the tables have the same meaning as in Table 4.6.
The issue that instances are solved trivially in the first presolving round does not affect
these because we measure the presolving impact after presolving is completed. Thereby, it
does not matter in which presolving round an instance is solved. The results shown here
are similar to the previously stated [HSB13].

RCPSP

If no primal solution is available (no-primal), the new dual reduction propagation algo-
rithms are able to shrink the problem size for a great portion of the instances. Fixings
occur in 367, 429, and 456 instances of the test set with 30, 60, and 90 jobs, respectively,
containing 480 instances each. For the test set with 120 jobs the problem size is addition-
ally reduced for 530 instances out of 600. For the first three test sets, the average number
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Table 4.7: Effect for the 2095 RCPSP instances of the introduced presolving steps w.r.t. the
number of additional variables that are fixed during the presolving phase. We omit the pack test
set because no additional variables were fixed.

no-primal default bounded

test set inst total max avg var inst total max avg var inst total max avg var

30 jobs 76.5% 4636 31 12.6 13.1 48.5% 1052 31 4.5 4.8 16.2% 378 31 4.8 7.2
60 jobs 89.4% 8935 61 20.8 25.3 60.2% 1570 31 5.4 4.8 17.1% 304 61 3.7 6.8
90 jobs 95.0% 13197 91 28.9 37.4 65.2% 2167 73 6.9 7.1 20.2% 385 91 4.0 9.5
120 jobs 88.3% 2801 32 5.3 4.6 87.7% 2750 35 5.2 4.6 52.3% 1353 102 4.3 8.3

RCPSP 85.1% 29569 91 16.6 25.3 65.0% 7539 73 5.5 5.4 27.3% 2420 102 4.2 8.2

of additionally fixed variables is around one third of the total number of variables. For
the largest test set we have an average of 5.3 variables fixed. The maximum number of
additionally fixed variables indicates that there is at least one instance within each of the
sets j30, j60, and j90 for which all variables are fixed due to dual reductions.

However, if a primal solution is known, the number of instances with additional fixed
variables after the presolving phase is smaller compared to the case where no primal solution
is known. The reason for this can be seen in Table 4.9 which is discussed below in more
detail. If no primal solution is available and the dual reductions are omitted, none of
the 2095 instances is solved during the presolving phase. Existence of a primal solution
increases the number of instances solved in presolving (even if the dual reductions are
disabled). For all such instances, the number of unfixed variables after presolving is zero
and, hence, it is not possible to fix additional variables. Taking this into account, we can
conclude that when a “good” primal solution is known, the dual presolving steps are able
to fix on average between 3 and 6 additional variables.

RCPSP/max

The impact of the dual reductions differs over the different test subsets. For testsetc and
testsetd, we see a similar impact as for the RCPSP instances. With no primal solution
(no-primal), 254 and 216 instances of testsetc and testsetd (each set contains 540 in-
stances), respectively, are additionally reduced. On average 7 and 6 additional variables are
fixed. If a primal solution is available (bounded case), we observe the same phenomenon
as for the RCPSP instances: the number of instances with additional fixings decreases. For
these two test sets, the reason is not due to instances solved during the presolving phase
(see Table 4.10) but it is related. Due to the presence of a primal bound, the domains of
the start time variables are reduced, triggering propagation algorithms which find many of
the fixings. Hence, the dual reductions provide only a small number of additional fixings.

For the test sets j10, j20, and j30 (each having 270 instances), a negligible number of
instances (37, 14, and 10, respectively) are affected when no primal solution is given. For
these few instances only one variable is additionally fixed. If a primal bound is given, the
number of affected instances decreases again and the average number of fixed variables
increases by a small amount for j10 and j30 and decreases by a small amount for the other
test set j20.

For the ubo test sets (each of 90 instances) the impact is also negligible. Only between
0 and 12 instances are influenced by dual reductions, independent of the setting. For these
few instances, only 1 to 5 variables are additionally fixed in average. There is one outlier
in test set ubo1000 where the dual reductions lead to solve one additional instance.
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Table 4.8: Effect for the 2520 RCPSP/max instances of the introduced presolving steps w.r.t. the
number of additional variables that are fixed during the presolving phase.

no-primal default bounded

test set inst total max avg var inst total max avg var inst total max avg var

j10max 13.7% 61 5 1.6 1.0 13.7% 61 5 1.6 1.0 4.1% 28 11 2.5 3.0
j20max 5.2% 19 3 1.4 0.6 5.2% 19 3 1.4 0.6 5.6% 20 3 1.3 0.6
j30max 3.7% 15 3 1.5 0.8 3.7% 15 3 1.5 0.8 1.1% 7 3 2.3 0.9
testsetc 47.0% 1791 59 7.1 8.6 47.0% 1791 59 7.1 8.6 5.7% 156 61 5.0 11.1
testsetd 40.0% 1337 60 6.2 8.5 40.0% 1337 60 6.2 8.5 7.2% 116 17 3.0 3.5
ubo10 13.3% 17 2 1.4 0.5 13.3% 17 2 1.4 0.5 1.1% 1 1 1.0 0.0
ubo20 7.8% 11 2 1.6 0.5 7.8% 11 2 1.6 0.5 4.4% 12 7 3.0 2.3
ubo50 1.1% 1 1 1.0 0.0 1.1% 1 1 1.0 0.0 3.3% 7 5 2.3 1.9
ubo100 1.1% 1 1 1.0 0.0 1.1% 1 1 1.0 0.0 6.7% 31 21 5.2 7.2
ubo200 2.2% 2 1 1.0 0.0 2.2% 2 1 1.0 0.0 4.4% 10 6 2.5 2.1
ubo500 0.0% – – – – 0.0% – – – – 1.1% 2 2 2.0 0.0
ubo1000 0.0% – – – – 0.0% – – – – 1.1% 1001 1001 1001.0 0.0

RCPSP/max 22.0% 3255 60 5.9 8.1 22.0% 3255 60 5.9 8.1 4.7% 1391 1001 11.7 91.3

Summary

For both test sets, the tables show that the introduced presolving steps provide additional
domain filtering: substantially more for the RCPSP test set than for RCPSP/max. Since
the worst case complexity of the standard propagation algorithms and the subsequently
required search depend on the number of jobs, these reductions indicate the potential for
a speed-up in problem solving. If such a speed-up can be observed is analyzed in the next
section.

4.4.3 Overall impact

In Tables 4.9 and 4.10, we present results that indicate the impact of the introduced
presolving steps w.r.t. the overall performance. For these computations, we enforced a
time limit of 1800 seconds for each instance. We applied the predefined CP settings (see
Section 4.2.4 for more details) and enabled the propagation algorithms time-tabling and
time-tabling edge-finding. For each test set and setting, we report several results for the
case the dual reductions were omitted (“without dual reductions”) and the dual reductions
were applied (“with dual reductions”). First we state, in column “inst”, the percentage of
instances for which at least one of the dual reductions was applied. Second we print in
column “solved” the number of instances that were solved and proved optimal within the
time limit. The next two columns “pres” and “root” show the number of instances that
were solved in the presolving phase and during root node processing of the search tree:
the number of instances solved within the presolving phase is included in the root node
number. Finally, we state the number of instances that are solved after 1 second, 1 minute,
5 minutes, and 10 minutes. We do not report any aggregated run-time measures since the
number of instances that are solved quickly and the ones that are not solved at all dominate
the results. Instead we show performance diagrams w.r.t. the running times (logarithmic
scale). We only depict a result if at least one algorithm took longer than one second to
solve the instance and at least one algorithm solved the instance within the given time
limit. The corresponding number of instances is stated in the title of each figure. Hence,
we omitted trivial and unsolvable instances.
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Table 4.9: Impact of the dual reductions on the overall performance for the 2095 instances of
RCPSP. The performance diagrams compare the running time for using the dual reductions (with
dual reductions) and omitting them (without dual reductions) for the three base setting no-primal,
default, and bounded (see Table 4.1).

without dual reductions with dual reductions

setting inst solved pres root 1 sec 1 min 5 min 10 min solved pres root 1 sec 1 min 5 min 10 min

no-primal 85.1% 1428 0 0 1231 1387 1408 1418 1427 360 360 1218 1387 1405 1415
default 66.9% 1043 12 24 848 1005 1025 1034 1047 15 32 837 1002 1025 1038
bounded 40.6% 509 221 221 428 473 490 497 510 231 231 427 472 491 496
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RCPSP

Table 4.9 shows the results for the 2095 instance of the RCPSP test set. It is notable that in
case no primal solution (no-primal) is available, the dual reductions provide enough infor-
mation that 360 instances are solved directly in the presolving phase. For the base setting
default and bounded 3 and 10 instances are additionally solved during the presolving
phase if dual reductions are allowed.

Overall, 4 and 1 additional instances are solved within the time limit in case of the
default setting and bounded setting. For the no-primal setting the dual setting fails
to solve 1 instance that is solved when the dual reductions are omitted. The performance
figures are not in favor of either of the two settings. From these results, it is not possible to
conclude that either condition is dominating. They indicate that for the overall performance
the dual reductions are neutral.

RCPSP/max

The results for the overall impact of the dual reductions for the RCPSP/max test set
are given in Table 4.10. Here we get the same picture as for the RCPSP instances: the
performance figures and numbers in the table do not indicate that one of the settings
is favorable. The dual reductions have a neutral impact on the overall performance for
RCPSP/max instances.

Summary

Overall, a few instances are additionally solved within the time limit using the dual reduc-
tions. This number of instances, however, is small compared to the size of the test sets.
Overall, the impact of the dual reductions w.r.t. running time can be seen as neutral, inde-
pendent of the setting. This result is consistent with the fact that only a few jobs (between
1 and 6) are additionally fixed using the default setting. On the positive side, given that
we have removed feasible (or even optimal) solutions from the solution space due to the
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Table 4.10: Impact of the dual reductions on the overall performance for the 2520 instances of
RCPSP/max. The performance diagrams compare the running time for using the dual reductions
(with dual reductions) and omitting them (without dual reductions) for the three base setting
no-primal, default, and bounded (see Table 4.1).

without dual reductions with dual reductions

setting inst solved pres root 1 sec 1 min 5 min 10 min solved pres root 1 sec 1 min 5 min 10 min

no-primal 28.7% 723 132 132 687 717 723 723 723 132 132 688 719 723 723
default 28.7% 723 132 199 690 717 723 723 723 132 200 688 719 722 723
bounded 47.2% 1162 740 740 1083 1148 1158 1160 1162 741 741 1079 1148 1157 1160
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dual reductions, the overall results show that the solver is still able to solve most of the
instances as before.

Without a primal solution during the presolving phase (no-primal), the dual reductions
allow for solving 360 instances in the presolving phase that could not be solved in the
presolving phase before.

4.5 Comparision to state-of-the-art solvers

In the remainder of this chapter, we compare our implementation against a state-of-the-
art solver for RCPSP and RCPSP/max. We choose a solver which improved the best
known results for instances of the Psplib recently [SFS13, SFSW13]. The authors5 of
these papers provided two executables which they used for their recent experiments. Their
solver is called lazy clause generator (LCG) and works in a similar fashion as SCIP for
cumulative scheduling instances. As the name of the solver states, clauses are generated
lazily during the search. Therefore, a SAT relaxation is created which is fed with all bound
changes and their explanations. If an infeasibility is reached, a SAT-based conflict analysis
is performed and conflict clauses are created and added to the relaxation. For a more
detailed description of the solver we refer to [FS09].

Note that we received two different problem specific solvers. One for the RCPSP instances
and one for the RCPSP/max instances. Having these executables allows us to compare LCG
and SCIP within the same environment.

For the comparison we run both solvers in the same environment and applied a time limit
of 1800 seconds. In case of SCIP we used the predefined CP settings (see Section 4.2.4
for more details) and enabled the propagation algorithms time-tabling and time-tabling
edge-finding. On top of that we applied our dual reduction steps during the presolving
phase.

5Thanks to Andreas Schutt and Peter Stuckey for providing the executables and helping the understand
the solver output.
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Table 4.11: Comparison of the performance of SCIP and LCG for the 2095 RCPSP instances. In
addition to these two solvers we state the results for the virtual best solver (VBS). We present two
sets of results which differ in the instances which are removed from the evaluation since they are
declared to be hard.

(a) An instances is declared to be hard if both solvers hit the time limit and fail to solve this instance.

SCIP LCG VBS
test set total easy hard opt feas nodes time opt feas nodes time opt feas nodes time

j30 480 438 0 42 42 2893.5 6.9 42 42 4311.6 1.5 42 42 2255.5 1.2
j60 480 344 43 86 93 8578.0 30.5 93 93 6494.1 8.6 93 93 5163.8 8.3
j90 480 240 78 154 162 878.4 8.7 161 162 1033.7 4.5 162 162 561.7 3.8
j120 600 107 314 170 179 5193.0 15.9 165 179 5711.6 12.7 179 179 2298.4 6.5
pack 55 2 3 49 50 2437.3 7.0 16 50 1696254.2 571.8 50 50 2202.1 5.2

RCPSP 2095 1131 438 501 526 2960.1 13.6 477 526 5927.9 14.6 526 526 1743.8 5.3

(b) If at least one solver does not solve an instances, this instance is seen to be hard. In other words, only
instances which are solved by both solvers are part of the evaluation.

SCIP LCG VBS
test set total easy hard opt feas nodes time opt feas nodes time opt feas nodes time

j30 480 438 0 42 42 2893.5 6.9 42 42 4311.6 1.5 42 42 2255.5 1.2
j60 480 344 50 86 86 5402.7 19.7 86 86 4074.2 4.0 86 86 3197.0 3.8
j90 480 240 87 153 153 542.9 4.6 153 153 660.0 2.2 153 153 344.7 1.9
j120 600 107 337 156 156 3189.5 9.1 156 156 2369.6 3.1 156 156 1276.3 2.5
pack 55 2 38 15 15 5765.8 11.0 15 15 342628.7 37.7 15 15 4885.4 6.6

RCPSP 2095 1131 512 452 452 2009.5 8.9 452 452 2176.4 3.4 452 452 1116.3 2.5

Table 4.11 and Table 4.12 present the summarized results for RCPSP and RCPSP/max,
respectively. For each test sub-set we state first the number of “total” instances belonging
to the test set, followed by the columns showing the number of instances which are “easy”
and “hard”. An instance is classified as easy if both solvers solve this instance in less than
one second. For each test set we present two result tables which differ in the definition
which instances are considered to be hard. First we declare an instance to be hard if both
solvers fail to solve this instance. Second we additionally add an instance to the hard class
if at least one solvers fails to solve this instance. Instance which do not belong to the easy
and hard class are part of the evaluation and aggregated measures are reported.

For each solver (SCIP and LCG) we state the number of instances solved to proven
optimality (column “opt”), the number of instances for which a feasible solution was found
(column “feas”), and the shifted geometric mean for the search “nodes” and running “time”
in seconds. Again we shift the time by 10 seconds and the search nodes by 100. In addition
to the individual results for the solvers, we present the results for the so-called virtual best
solver (VBS). This means that for each instance we choose the solver which performs best
w.r.t. the running time. For the VBS we state the same measures as for the two solvers.

RCPSP

SCIP solves 1632 instances (1131 easy instances and 501 instances which belong to the
instances under investigation) of 2095 instances, while LCG solves 1608 instances (including
the 1131 easy instances). Both solvers together prove optimality for 1656 instances. The
number of instances which are solved differs only slightly and the additional instances
solved by the virtual best solver is small as well. This indicates that the two solvers have
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Figure 4.3: Performance diagram for the 2095 RCPSP test set comparing the two solvers SCIP
and LCG. The result for SCIP is depict by a solid line ( ). The LCG result is shown as a dotted
line ( ).

a similar performance. Regarding the overall performance, LCG is faster by a factor of
more than 2. For the complete test set SCIP need 8.9 seconds compared to 3.4 seconds (in
shifted geometric mean) in case we only consider the instances which are solved by both
solvers (Table 4.11(b)). Both solvers are able to find a feasible solution for each instance.

For the individual test set, SCIP performs much better for the pack instances, solving
51 of 55 instances. LCG is able to prove optimality for 18 instances. For the 15 instances
which are solved by both solvers, SCIP needs almost a factor of 60 fewer nodes. This gives
a factor of more than 3 for the overall running time by which SCIP is faster than LCG.
Only one instances is solved by LCG where SCIP fails.

Both solvers are able to solve all instances which contain 30 jobs (test set j30). From 480
instances, belonging to this test set, 438 are easy and can be solved by both solvers in less
than one second. For the remaining 42 instances SCIP need only two thirds of the search
nodes (in shifted geometric mean) compared to LCG. The number of search nodes visited
by SCIP is only slightly larger compared to the virtual best solver. This indicates that
SCIP needs consistently fewer search nodes to solve these instances. W.r.t. the running
time this does not pay off as LCG is a factor of 4 faster than SCIP.

For the test sets j60 and j90, LCG solves a few more instances within the given limit
than SCIP: 7 instances for each test set. Again LCG is clearly faster than SCIP. The results
of the virtual best solver show that the instances solved by SCIP are a proper sub-set of
those solved by LCG.

For the instances where 120 jobs need to be scheduled, SCIP solves 277 instances where
LCG solves 272 instances. SCIP is able to succeed on 5 more instances than LCG. The
VBS results shows that both solvers fail on instances where the other succeeds. Again LCG
is a factor of 3 faster on those instances which both solvers solve (Table 4.11(b)).

Obviously, SCIP tends to need more time per search node which could be a reason for
trailing slightly behind LCG in the number of solved instances for the test sets j60 and j90.
On the other hand, SCIP dominates on the pack test set. The version of LCG we used
features both propagation algorithms time-tabling and time-tabling edge-finding, the same
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Table 4.12: Comparison of the performance of SCIP and LCG for the 2520 RCPSP instances. In
addition to these two solvers we state the results for the virtual best solver (VBS). We present two
sets of results which differ in the instances which are removed from the evaluation since they are
declared to be hard.

(a) An instances is declared to be hard if both solvers hit the time limit and fail to solve this instance.

SCIP LCG VBS
test set total easy hard opt feas nodes time opt feas nodes time opt feas nodes time

j10max 270 259 0 11 9 22.5 1.0 11 9 49.3 1.0 11 9 21.0 1.0
j20max 270 251 0 19 15 106.9 1.0 19 15 1316.1 1.8 19 15 103.9 1.0
j30max 270 226 0 44 36 1022.4 3.2 40 36 7948.2 21.2 44 36 882.3 2.1
testsetc 540 322 9 188 199 4238.2 26.8 209 199 3422.5 7.6 209 199 2468.3 7.3
testsetd 540 323 0 201 212 2748.7 17.7 217 212 2673.0 5.1 217 212 1793.3 4.9
ubo10 90 87 0 3 2 17.4 1.0 3 2 35.9 1.0 3 2 14.5 1.0
ubo20 90 89 0 1 1 48.0 1.0 1 1 26.0 1.0 1 1 26.0 1.0
ubo50 90 67 1 21 19 2835.5 19.4 22 19 5266.9 12.9 22 19 2471.1 12.2
ubo100 90 25 6 53 48 1116.3 13.2 59 48 2899.2 9.5 59 48 989.9 8.4
ubo200 90 0 17 72 63 567.7 6.8 73 63 1266.4 6.1 73 63 468.0 3.9
ubo500 90 0 19 69 61 1375.6 49.3 70 61 2028.1 30.9 71 61 841.2 24.4
ubo1000 90 0 29 43 45 1259.1 485.3 58 58 2702.4 78.9 61 58 722.1 78.4

RCPSP/max 2520 1649 81 725 710 1855.2 24.7 782 723 2635.3 11.1 790 723 1257.0 9.1

(b) If at least one solver does not solve an instances, this instance is seen to be hard. Meaning only instances
which are solved by both solvers are part of the evaluation.

SCIP LCG VBS
test set total easy hard opt feas nodes time opt feas nodes time opt feas nodes time

j10max 270 259 0 11 9 22.5 1.0 11 9 49.3 1.0 11 9 21.0 1.0
j20max 270 251 0 19 15 106.9 1.0 19 15 1316.1 1.8 19 15 103.9 1.0
j30max 270 226 4 40 32 1112.4 3.5 40 32 4005.3 10.8 40 32 947.0 2.3
testsetc 540 322 30 188 178 2297.7 13.8 188 178 1839.4 3.1 188 178 1330.0 2.8
testsetd 540 323 16 201 196 1759.9 9.9 201 196 1779.8 2.5 201 196 1162.9 2.3
ubo10 90 87 0 3 2 17.4 1.0 3 2 35.9 1.0 3 2 14.5 1.0
ubo20 90 89 0 1 1 48.0 1.0 1 1 26.0 1.0 1 1 26.0 1.0
ubo50 90 67 2 21 18 2091.3 14.2 21 18 3868.9 8.6 21 18 1807.3 8.0
ubo100 90 25 12 53 42 533.0 4.1 53 42 1386.3 2.8 53 42 480.6 2.0
ubo200 90 0 18 72 62 524.3 5.8 72 62 1151.0 5.2 72 62 429.8 3.1
ubo500 90 0 22 68 60 1335.9 43.7 68 60 1671.1 25.5 68 60 803.1 21.2
ubo1000 90 0 50 40 40 2541.0 243.3 40 40 1510.0 45.5 40 40 1224.6 45.5

RCPSP/max 2520 1649 154 717 655 1331.6 14.0 717 655 1670.3 6.1 717 655 896.2 4.9

propagation algorithms which are enabled in SCIP. Therefore, these results are surprising
since the dual reductions we developed do not lead to any additional reduction on the pack
instances.

Finally, Figure 4.3 shows a performance diagram for both solvers. This diagram visualizes
the number of solved instances within a fixed time limit. The figure suggest that SCIP
dominates LCG w.r.t. this measure. This domination, however, results from the different
performance on the pack instances.

RCPSP/max

Overall SCIP solves 2374 of 2520 instances where LCG is able to solve 57 more instances.
The results of the virtual best solver (VBS) show that SCIP solves 8 instances which are
not solved by LCG. Regarding the search nodes, SCIP tends to need slightly fewer nodes
than LCG. As for the RCPSP instances, this does not lead to a better overall performance.
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Figure 4.4: Performance diagram for the 2520 RCPSP/max instances comparing the two solvers
SCIP and LCG. The result for SCIP is depict by a solid line ( ). The LCG result is shown as
a dotted line ( ).

LCG is factor of more than 2 faster than SCIP. SCIP needs 14 seconds where LCG only
requires 6.1 seconds (in shifted geometric mean) for those instances which are solved by
both solvers (see Table 4.12(b)).

Most of the instances belonging to j10max, j20max, and j30max are easy and none of
them are hard. For the evaluation, 11, 19, and 44 instances are left for j10max, j20max,
and j30max, respectively. SCIP is able to solve all 810 instances. LCG hits the time limit
on 4 instances belonging to j30max. For these three test sets SCIP does not only need
fewer search nodes it also is faster in the overall performance.

Only 9 instances of the test set testsetc are found to be hard. The remaining 531
instances are solvable with LCG. For the test set testsetd all 540 instances are solved by
LCG. SCIP proves optimality for 510 and 524 within the time limit of 1800 seconds for the
instances belonging to testsetc and testsetd, respectively. For these instances LCG is
more than a factor 3 faster than SCIP.

For the ubo test sets we have a similar picture as for the j60 and j90 test sets. SCIP
trails slightly behind LCG w.r.t. the number of solved instances. For the test sets ubo10,
ubo50, ubo100, ubo200, and ubo500, SCIP has a better overall performance than LCG.

Analyzing the results of SCIP reveals that several instances which have a large number
of jobs hit the time limit during the presolving phase. This is due to the presolving
steps which search for redundant disjunctive constraints (see Section 3.3.2) and redundant
variable bounds (see Section 3.3.3). These consume too much time. This needs to be
evaluated more carefully and should be adjusted in future releases.

Finally, Figure 4.4 shows a performance diagram for both solvers. This diagram visualizes
the number of solved instances within a fixed time limit. This figure indicates that SCIP
tends to be (slightly) slower w.r.t. the overall performance compared to LCG.
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4.6 Summary

Summary

The comparison to state-of-the-art solvers for RCPSP and RCPSP/max indicate that our
general purpose implementation is competitive to problem specific solvers. For the pack
instances which are part of the RCPSP test base, SCIP is even superior to LCG. For
the remaining instances belonging to this class, LCG is faster w.r.t. the running time but
can only solve a few more instances than SCIP. Taking the complete RCPSP test set into
account SCIP is able to solve 24 more instances than LCG. A similar picture is indicated by
the results for the RCPSP/max instances. Again there are test sets where SCIP dominates
LCG and vice versa. For this type of problem LCG solves few more instances than SCIP.
In any case SCIP can be considered as state-of-the-art solver for cumulative scheduling
problems.

Overall, SCIP tends to use fewer search nodes compared to LCG which does not pay
off w.r.t. the overall performance. The comparison shows that SCIP spends much more
time within a search node than LCG. Since we do not have access to the implementation
of LCG we only can provide some high-level technical explanations for this difference.
These explanations should be taken with care since we are currently not able to analyze
the corresponding impact on the overall running time. SCIP is designed to solve problems
through the heavy use of an LP relaxation. In the case of cumulative scheduling we disabled
this feature completely. However, the corresponding infrastructure needs to be maintained,
requiring time during the traversal of the search tree. In addition SCIP is not limited in
the way of the traversing the search tree. As a result, data structures are required to be
able to “jump” through the tree, particularly for the conflict analysis. In contrast LCG
performs conflict-directed clause learning (CDCL) [BHvMW09] allowing for much more
efficient data structures for the search tree and conflict analysis. This could be a reason for
LCG needing less time per node. Again these high-level arguments have to be taken with
care as they are not based on empirical results.

4.6 Summary

In our first series of experiments, we evaluated the impact of the different propagation algo-
rithms which are available in SCIP (see Section 1.4.3) w.r.t. their importance for resource-
constrained project scheduling problems. The edge-finding propagation algorithm in its
implementation in SCIP is not important at all. Disabling this algorithm leads to a better
performance for both test sets (RCPSP and RCPSP/max). This is surprising since in the
literature [Vil11, SFS13] it is reported that this algorithm is crucial to solve some of the
instances of the Psplib. In a much milder way the same observation was made for the
time-tabling edge-finding algorithm. Enabling this algorithm with the basic time-tabling
propagator leads to a slight performance loss. For the complete RCPSP test set, however,
the largest number of instances is solved with time-tabling and time-tabling edge-finding
together across all three base settings: no-primal, default, and bounded.

In a second set of experiments, we evaluated the impact of different dual reductions for
resource-constrained project scheduling problems, utilizing variable locks and the effective
horizon. These two related concepts can be exploited to create dual reduction techniques
for cumulative constraints. Our first experiment shows that these reductions often occur for
RCPSP instances and less frequently for the RCPSP/max problems. The results further
show that our approach is able to find additional variable fixings during the presolving
phase (Tables 4.7 and 4.8). In particular, for RCPSP instances with 30, 60, and 90 jobs
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about 33% of the variables are additionally fixed, in contrast to disabling the proposed dual
reductions. For the RCPSP instances from Psplib, between 20% and 30% of the variables
per cumulative constraint are irrelevant and can be removed from the scope of the constraint
(Table 4.3). This provides a theoretical speed-up as the worst case complexity of the search
depends exponentially on the number of jobs and the worst case complexity of standard
propagation algorithms depends heavily on the number of job.

However, removing feasible solutions from the solution space can have negative conse-
quences as it may be more difficult for the solver to find any feasible solutions at all. This
effect is well-known in CP where it has been shown that symmetry breaking constraints can
conflict with variable ordering heuristics [Kiz04]. Similarly, Borrett and Tsang [BT01] ob-
serve that reformulating a model can have a negative impact depending on the algorithms
used. The results in Tables 4.9 and 4.10, however, indicate that there is no overall increase
in solving time for the investigated instances: the dual reductions are neutral w.r.t. the
overall running time.

Our results show that several instances of the RCPSP test set are easily solvable even
without the presence of a primal solution which bounds the makespan variable from above.
For these instances, our dual reduction techniques safely (w.r.t. completeness) fix start time
variables to their lower bound. For highly cumulative instances, such as the pack instances,
these techniques do not apply since many jobs can be executed in parallel and exceed the
capacity when running together: the effective time horizon cannot be tightened. Our dual
reduction techniques, therefore, provide a better understanding of easy and hard instances.
These techniques are able to remove, in some sense, the easy part from a cumulative
constraint.

From a broader perspective and despite the significant work in CP on symmetry breaking,
the use of presolving and dual reductions is not yet a standard component of constraint
solvers. In contrast, for MIP solvers, presolving techniques are crucial for state-of-the-art
performance. Our experimental results show that between 27% and 85% (depending on the
settings) of the RCPSP instances could be additionally reformulated during presolving and
sometimes to the point of solving the problem to optimality without search (see Table 4.7).
For the RCPSP/max test set between 4% and 22% of the instances are further reformulated
(see Table 4.8). We believe that these numbers alone indicate that presolving and dual
techniques are exciting directions and opportunity for constraint solving research.

Finally, we compared the capability of SCIP, as a cumulative scheduling solver, against
a problem specific state-of-the-art implementation. The results clearly showed that SCIP
can be considered as a state-of-the-art solver for resource-constrained project scheduling
problems in its standard version as well as with generalized precedence constraints.
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5 Solving resource allocation and scheduling
problems

In this chapter we consider scheduling problems with optional jobs. That means in a first
phase the decision if a job will be processed on a particular resource needs to be made.
Whereas, in a second phase all jobs assigned to the same resource have to be assigned
start times. We restrict ourselves to a resource allocation and scheduling problem in a
basic version: given a finite set of jobs, for each job a (renewable) resource has to be
selected where the job gets processed. A job has different costs, resource demands, and
processing times (which are non pre-emptable) for the different resources. The goal is to
assign each job to a resource such that for each resource a feasible schedule exists and the
assignment cost is minimized. A state-of-the-art approach to solve such problems is a logic-
based Benders decomposition (LBBD) [Hoo04, Hoo05a, Hoo07, CCH13] that decomposes
the problem into an assignment problem and a scheduling problem. In a first phase an
assignment of jobs to resources is constructed which minimizes the assignment cost. In a
second phase the assignment is checked for feasibility w.r.t. the scheduling constraints. If it
is feasible, an optimal solution is found. Otherwise, a Benders cut is created which is added
to the assignment problem to forbid the assignment. Then the algorithm returns to the first
phase. It has been shown [Hoo05b, Hoo05a, Hoo07, CCH13] that this approach performs
orders of magnitude better than a constraint programming approach or a mixed-integer
programming model.

In this chapter we utilize the linear relaxation constructed for the cumulative constraint
with optional jobs in Section 2.3 and present an improved LBBD approach and mixed-
integer programming approach. As a third approach we develop a constraint integer pro-
gramming model which takes advantage of the cumulative constraint with optional jobs.
For each of these approaches we show computational results to identify the strengths and
weakness of the different formulations. Finally, we compare the three approaches.

Contribution. In this chapter we present the following contributions for the resource allo-
cation and scheduling problems. In Section 5.3 we use the linear relaxation for the cumu-
lative constraint with optional jobs, developed in Section 2.3, for an improved sub-problem
relaxation in a LBBD approach. Empirical results show that the improved sub-problem
relaxation is the best choice. It is inexpensive to compute and does not lead to a slow down.
In Section 5.4 we discuss mixed-integer programming formulations for the problem under
investigation. We recall an model for this problem and analyze its behavior for modern
MIP solvers. As a result we suggest an extended model which is superior to previously
known models. For the considered test instances, the extended MIP formulation gives a
speed-up factor of almost five compared to the basic MIP model. In Section 5.5 we present
a constraint integer programming model which use the cumulative constraint with optional
jobs.

Previously published. Parts of the results presented in this chapter are joint work with
J. Christopher Beck and Wen-Yang Ku. Some results were previously published in one of
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the following papers:

1. Stefan Heinz and J. Christopher Beck, Reconsidering mixed integer programming and
MIP-based hybrids for scheduling, in Integration of AI and OR Techniques in Constraint Pro-
gramming for Combinatorial Optimization Problems, N. Beldiceanu, N. Jussien, and E. Pin-
son, eds., Lectures Notes in Computer Science 7298, Springer, 2012, pp. 211–227.

2. Stefan Heinz Wen-Yang Ku and J. Christopher Beck, Recent improvements using
constraint integer programming for resource allocation and scheduling, in Integration of AI
and OR Techniques in Constraint Programming for Combinatorial Optimization Problems,
C. Gomes and M. Sellmann, eds., Lecture Notes in Computer Science 7874, Springer, 2013,
pp. 12–27.

In Paper 1 we presented a first set of CIP models for the resource allocation and schedul-
ing problem. We compared these models to existing MIP and CP formulations. In addi-
tion we conducted experiments using a logic-based Benders decomposition approach. The
results indicated that the CIP models are promising. Further, even the MIP approach
produced convincing results w.r.t. finding high-quality solutions. A disadvantage of this
paper is that we did not use the best known relaxation for the LBBD approach. In Paper 2
we not only used a stronger sub-problem relaxation for the LBBD approach, but we also
introduced a first version of an extended mixed-integer programming formulation which
showed much better results than the previously used MIP model in the literature. Parts of
the implementation were done by Wen-Yang Ku.

Outline. This chapter is organized as follows. In Section 5.1 we formally define the class
of resource allocation and scheduling problems that are considered in this chapter. For each
of the three approaches we discuss in this chapter, we present a computational study. The
experimental setup which includes the computational environment and the considered test
sets is presented in Section 5.2. We recall a logic-based Benders decomposition approach for
this problem class in Section 5.3. We then take advantage of the linear relaxation developed
in Section 2.3 for the cumulative constraint with optional jobs to present an improved LBBD
approach. In Section 5.4 we present a mixed-integer programming approach. We first recall
an existing model for this problem class and analyze its weaknesses. With this knowledge
we develop an extended formulation for the resource allocation and scheduling problem. A
CIP approach is presented in Section 5.5. A comparison of the three approaches is given
in Section 5.6.

5.1 Problem definition

We study a basic allocation and scheduling problem which can be formalized as follows.
Given a finite set of jobs J = {1, . . . , n} and a finite set of renewable resources R =
{1, . . . , m}, each job j must be assigned to exactly one resource k at an assignment cost cjk.
Each job j has a release date, Rj , and a due date, Dj , which define a time window within
which the job has to be processed. Each resource k ∈ R has a bounded capacity Ck ∈ N.
Every job j has processing times pjk ∈ N and resource demands rjk ∈ N which both depend
on the resource k ∈ R. A feasible solution is an assignment where each job is placed on
exactly one resource and a start time is assigned to each job such that no resource exceeds
its capacity at any point in time. The goal is to find an optimal solution, that is, a feasible
solution which minimizes the total resource assignment cost.
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5.2 Experimental setup

This problem class has been studied by a number of researchers over the past twenty years
[Hoo00, JG01, Hoo05a, BP06, Tho01, Bec10, HB12a]. Mainly, LBBD approaches where
presented and improved. In addition, a restricted version of the problem was considered
where all jobs have a unit demand and all resources have a unit capacity. We showed
in [HKB13] that instances of this restricted version are easily solvable with an LBBD,
MIP, or CIP approach. Therefore, we do not consider this restriction in this dissertation.

5.2 Experimental setup

In this section we introduce the test instances which we use to analyze the performance of
the different approaches for the resource allocation and scheduling problem. The compu-
tational environment for these experiments is described below.

5.2.1 Test sets

For our evaluation of the different models we are using the instances introduced in [Hoo04,
Hoo05a, Hoo07]. In these papers four different test sets were introduced which we call
testsetc, testsete, testsetde, and testsetdf. These test sets have different charac-
teristics which we discuss in the following.

Test set testsetc. The test set testsetc was introduced in [Hoo04]. Here, all jobs have
the same release and due date. The set contains 195 problem instances with the number of
resources ranging from two to four and the number of jobs from 10 to 38 in steps of two. The
maximum number of jobs for the instances with three and four resources is 32 while for two
resources the maximum number of jobs is 38. For each problem size, we have five instances.
The resource capacity is 10 and the job demands are generated with uniform probability
on the integer interval [1, 9].1 See [Hoo04, Hoo05a] for further details w.r.t. generation of
instances and the appendix of [HB12b] for further problem instance characteristics. These
instances were also used in [Hoo07, Bec10, HB11, HB12a, HKB13, CCH13].

Test set testsete. As for test set testsetc, all jobs in testsete have the same release
and due date. These instances differ in the number of resources which range from 2 to 10.
The number of jobs is fixed to five times the number of resources. In addition to these
nine resource job combinations there is one which has 2 resources and 12 jobs. For each
resource job combination five instances are available. These instances are again randomly
generated. For more details we refer to [Hoo04, Hoo05a]. Overall this test set contains 50
instances. It was considered for example in [Hoo07, CCH13]

Test set testsetde. In [Hoo07] testsetde was introduced. Here the release dates are
the same whereas the due dates are different. All instance have 3 resources and differ in
the number of jobs which need to be scheduled. The number of jobs range from 10 to 28
in steps of two. This gives ten resource job combinations. Each combination contains five
randomly generated instances. For more details we refer to [Hoo07].

1In [Hoo04, Hoo05a] it is claimed that the demands are generated with uniform probability on the integer
interval [1, 10]. Checking all 195 instances revealed that the demands 1 to 9 are uniformly distributed
but the demand 10 never appears.
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Table 5.1: Characteristics of the four test set we use for our experiments. Overall there are 335
instances.

test set release dates due dates |R| |J | inst

testsetc same same 2,3,4 10, 12, . . . , 38 195
testsete same same 2,3,. . . ,10 5|R| 50
testsetde same differ 3 10, 16, . . . , 28 50
testsetdf differ differ 3 14, 16, . . . , 28 40

Test set testsetdf. In [Hoo07] testsetdf was also introduced. Here, release and due
dates vary. All instance have 3 resources and differ in the number of jobs which need to be
scheduled. The number of jobs range from 14 to 28 in steps of two. This gives eight resource
job combinations with each combination containing 5 randomly generated instances. For
more details we refer to [Hoo07].

Table 5.1 summarizes the different characteristics of the four test sets. For each test set
we state if the “release dates” of all jobs are the same or different. The same for the “due
dates”. Columns |R| and |J | states the range of the number resources and number of jobs,
respectively. The last column “inst” show the number of instances which are part of the
corresponding test set. Overall 335 instances are part of the evaluation.

5.2.2 Computational environment

Below we present different approaches for solving the previously introduced allocation and
scheduling problems. All experiments are performed on Intel Xeon Core 3.20 GHz comput-
ers (in 64 bit mode) with 12 MB cache, running Linux, and 48 GB of main memory. For
the different approaches we used different solvers. For the details about these, we refer to
the corresponding sections.

5.3 Logic-based Benders decomposition

Logic-based Benders decomposition (LBBD) is a problem decomposition technique that
generalizes Benders decomposition [Ben62, Geo72, Ben05]. It was first used in [HY95] and
later formally defined in [HO03].

In this section we recall the idea of Benders decomposition and its generalization LBBD
and restate a LBBD approach for the resource allocation and scheduling problem.

5.3.1 Background

The idea of Benders decomposition was introduced in 1962 to solve for example mixed-
integer programs via decomposition [Ben62]. In that case, the decision variables are de-
composed into two disjoint classes S1 and S2. This decomposition needs to satisfy that any
assignment to the variables belonging to S1 implies that for the remaining problem dual
multipliers are defined. This is the case if the reduced problem, after fixing the variables
belonging to S1, is a continuous linear or nonlinear program. Hence, in case of a mixed-
integer program, variables which need to be integral always belong to S1. Having such a
decomposition of the decision variables, the partitioning procedure works as follows. The
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master problem, consisting of the decision variables S1 and constraints which are only de-
fined via these variables, is solved to optimality. This problem is a relaxation of the original
problem and so if the master problem is infeasible, the original problem is infeasible and
the algorithm terminates. Otherwise, let c⋆ be the optimal value of the master problem.
An optimal solution is used to initialize the sub-problem. All variables belonging to S1
are fixed to the value they have in the optimal solution of the master problem. The dual
problem of the resulting sub-problem (which is assumed to exist) is solved. If the optimal
value of the dual sub-problem matches c⋆, it is proven that the current optimal solution
of master problem (for the S1 variables) and the dual sub-problem (for the S2 variables)
solve the original problem and the algorithm stops. Otherwise, the dual multipliers of
the dual sub-problem are used to construct a so-called Benders cut which eliminates at
least the used optimal solution from the master problem. Note that the Benders cut only
contains variables which belong to S1. This cut is added to the master problem and the
procedure repeats until one of the two stopping criteria is reached, i.e., the master prob-
lem is infeasible or the optimal value of the master problem equals the optimal value of
the sub-problem. This decomposition idea can use any partition of the original decision
variables as long as the assumption w.r.t. the sub-problem is satisfied. Strong performance
of this decomposition, however, is usually only achieved if the problem under investigation
has a structure which suggests a decomposition of the variables (e.g., the matrix has block
structure). For more details and a formal definition we refer to [Ben62, Geo72, Ben05].

The Benders decomposition approach requires that for the resulting sub-problem (af-
ter the primary variables are fixed) dual multipliers are defined. In [HY95, HO03] this
restriction is relaxed. It is generalized to the assumption that the sub-problem can be
logically analyzed: that it is possible to construct a Benders cut which removes the used
optimal master solution from the master problem via a constraint. This generalization to
logical analyzable sub-problems led to the name Logic-based Benders decomposition. In the
next section we discuss how this approach can be applied to solve resource allocation and
scheduling problems as has already been done in several papers [HO03, Hoo04, Hoo05b,
Hoo05a, Hoo07, Bec10, CCH13].

5.3.2 Model

Logic-based Benders decomposition (LBBD) is a problem decomposition technique. Con-
ceptually, some of the variables and constraints of a global problem model are removed,
creating a master problem whose solution (in the case of minimization) forms a lower-
bound on the globally optimal solution. The extracted problem components form one or
more sub-problems where each sub-problem is an inference dual [HO03]. Based on a master
problem solution, each sub-problem is solved, deriving the tightest bound on the master
problem cost function that can be inferred from the current master problem solution and
the constraints and variables of the sub-problem. If a bound produced by a sub-problem
is not satisfied by the master problem, a Benders cut is introduced to the master problem.
For global convergence, the cut must remove the current master problem solution from the
feasibility space of the master problem without removing all globally optimal solutions. To
achieve good algorithmic performance, the cut should remove a number of feasible master
problem solutions that can be inferred to violate the bound of a sub-problem. For models
where the sub-problems are feasibility problems, it is sufficient to solve the sub-problem
to feasibility or generate a cut that removes the current master problem solution if the
sub-problem is infeasible w.r.t. the master problem solution.
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min
∑
k∈R

∑
j∈J

cjk xjk

s.t.
∑
k∈R

xjk = 1 ∀j ∈ J (5.1)

Sub-problem relaxation for resource k ∀k ∈ R (5.2)∑
j∈J ′

(1− xjk) ≥ 1 ∀k ∈ R ∀J ′ ∈ Bk (5.3)

xjk ∈ {0, 1} ∀j ∈ J ∀k ∈ R

Model 5.1: Master problem model of a LBBD approach for the resource allocation and scheduled
problem. Constraint (5.2) is a placeholder for a potential linear relaxation of the individual sub-
problems. Bk ⊆ 2J is a subset of the power set of J representing the conflict sets (Benders cuts)
for resource k.

cumulative(S, p, r.k, Ck)
Sj ∈ {Rj , . . . , Dj − pjk} ∀ j ∈ J ′ ⊆ J

Model 5.2: Sub-problem for resource k ∈ R. The index set J ′ contains those job indices which
are assigned to resource k. The vectors S, p, and r.k are restricted to J ′.

The resource allocation and scheduling problem which we investigate in this chapter
suggests a natural decomposition. In a first step, jobs are assigned to resources and in a
second step, jobs are scheduled. After the jobs are assigned to resources the remaining
problem decomposes into several independent single-machine feasibility scheduling prob-
lems since there are no inter-job constraints. Therefore, the problem can be split into a
master problem which is an assignment problem and sub-problems which are single cumu-
lative scheduling problems. If all sub-problems are feasible, the assignment found by the
master problem is valid for all resources and the corresponding cost is the global minimum.
Otherwise, each infeasible sub-problem generates a Benders cut involving a set of jobs that
cannot be feasibly scheduled.

Model 5.1 presents the master problem as an integer program. The binary decision
variable xjk is one if and only if job j is assigned to resource k. The objective function
minimizes the total assignment cost. Equations (5.1) ensure that each job is placed on
exactly one resource. Constraints (5.2) are a placeholder for a linear relaxation for each
resource (sub-problem) which might be added to the master problem. Inequalities (5.3)
present the Benders cuts which are added iteratively to the master problem. Model 5.2
shows a sub-problem. For each job j ∈ J ′ ⊆ J which is placed on resource k, we have
an integer start time variable Sj . The cumulative constraint ensures that the resource
capacity Ck is not exceeded for any time step.

Experiments with LBBD models have shown that two aspects of the formulation are
crucial for achieving good performance: the inclusion of a relaxation of each sub-problem
in the master problem and a strong, but easily calculated Benders cut [Hoo07].
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Sub-problem relaxation

The sub-problems are single-machine scheduling problems which are modeled each with
a single cumulative constraint. The set of jobs which need be scheduled is given by a
master problem solution. More generally, we have a single-machine scheduling problem
with optional jobs where the job assignment is determine by a master problem solution.
For such a structure we recalled two existing linear relaxations in Section 2.3 which we
label as the single relaxation (Inequality (2.18)) and the edge-finding relaxation (Inequal-
ity (2.19)). In addition we showed that each energy-based propagation algorithm (see
Definition 2.1) for the cumulative constraint implies a linear relaxation for the cumulative
constraint with optional jobs. As a result of that we proposed the energetic reasoning
relaxation (Inequality (2.23)). Each of these three relaxations can be added to the master
problem. In Section 5.3.3 we present a computational study to show the impact of these
linear relaxations.

Benders cut

Besides the sub-problem relaxation which is added to the master problem it is also impor-
tant to create “good” Benders cuts. Given that in our case the sub-problems are feasibility
problems without any visibility to the global optimization function, a Benders cut is a no-
good constraint preventing the same set of jobs from being assigned to the resource again
if the corresponding sub-problem is infeasible. Therefore, the cut will take the form:

∑
j∈J ′

(1− xjk) ≥ 1

where J ′ ⊆ J contains the indices of jobs which cannot be scheduled together on resource k.
This constraint forces that at least one of the assigned jobs needs to be removed from the
assignment for resource k. A strengthened cut can be produced by finding a subset of J ′

that also cannot be feasibly scheduled on resource k. Hooker [Hoo07] suggests a greedy
procedure to find a minimal infeasible set by removing each job, one by one, from J ′ and
resolving the sub-problem. If the sub-problem is still infeasible the corresponding job can
be removed from the infeasible set, otherwise it stays in the set and the greedy procedure
continues. In addition to that, we suggest a sorting step before this greedy procedure
starts. Jobs are sorted w.r.t. their flexibility. A job which is fixed (meaning the start time
variable is fixed) is not flexible w.r.t. its placement in the time dimension. On the hand a
job which has a resource demand which matches the resource capacity is not flexible w.r.t.
the resource capacity dimension. To measure this flexibility we compute for each job j and
resource k the following value:

flex(k, j) = (Dj −Rj) · Ck

pjkrjk
.

The numerator gives the complete area where job j can be placed. This is divided by
the energy of job j. A larger value indicates a more flexible job. In case of an infeasible
sub-problem, all jobs J ′ are sorted in a non-increasing order w.r.t. this flexibility measure.
This order defines, the order jobs are tested to be removable from J ′. Note if all jobs have
the same release and due date, jobs with a smaller energy are checked first.
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Table 5.2: Comparing different sub-problem relaxations added to the master problem.
norelax single edge-finding energetic

test set easy hard eval opt mast sub total opt mast sub total opt mast sub total opt mast sub total

testsetc 15 12 168 128 91.8 70.2 193.7 168 1.7 12.6 14.1 168 1.7 12.6 14.1 168 1.7 12.6 14.1
testsete 7 0 43 38 55.5 16.8 71.9 43 9.9 2.0 11.4 43 9.9 2.0 11.3 43 9.9 2.0 11.2
testsetde 26 0 24 24 4.6 5.8 9.0 24 2.4 4.0 5.6 24 2.1 3.3 4.8 24 1.8 3.1 4.3
testsetdf 18 0 22 22 0.7 3.1 3.5 22 0.8 2.9 3.4 22 0.7 1.9 2.5 22 0.8 1.7 2.4

all 66 12 257 212 55.0 39.2 101.1 257 2.7 8.6 11.6 257 2.7 8.3 11.3 257 2.7 8.3 11.2

5.3.3 Computational results

In this section we present computational results for the LBBD approach applied to the
resource allocation and scheduling problem presented in Section 5.1. The goal is to analyze
the importance of the sub-problem relaxation and the impact of the Benders cut strength-
ening technique. For these evaluations we use the four test sets introduced in Section 5.2.1:
testsetc, testsete, testsetde, and testsetdf. Table 5.1 gives an overview of the
different characteristics.

We realized the LBBD approach in the SCIP framework (version 3.0.1.5). That means
that the master problem, which is a MIP, and the sub-problems, which are CPs, are solved
with the same solver. For the master problem we use the default parameter settings of
SCIP and SoPlex version 1.7.1 to solve the linear programming relaxations. For the sub-
problems which are single cumulative constraints we run SCIP in CP mode.2 Thereby,
all techniques which are presented in Chapter 3 except the domain reduction stated in
Theorem 3.30 are enabled. See Section 4.2.2 for more details. We also tried IBM ILOG
CP Optimizer version 12.5 for solving the sub-problems. This leads, however, to a smaller
number of solved instances and a slightly worse performance compared to the SCIP solver.

All experiments were executed in the computational environment described in Sec-
tion 5.2.2. In addition we enforced a time limit of 2 hours for each instance.

Sub-problem relaxation

To analyze the importance of the sub-problem relaxation which is placed in the master
problem, we perform four different experiments. In a first experiment we omit any relax-
ation, i.e., the master problem only consists of the assignment problem. This experiment is
called norelax. Second, we add the basic single constraint knapsack relaxation (Inequal-
ity (2.18)) for each sub-problem. We refer to this experiment as single. Finally, we use
the more involved relaxations which create for each sub-problem and any reasonable time
window a linear knapsack constraint. Thereby, we distinguish between the relaxation which
is based on the idea of the edge-finding propagation algorithm (Inequality (2.19)) and the
energetic reasoning propagation algorithm (Inequality (2.23)). See Section 2.3 for more
details. We refer to these experiments as edge-finding and energetic, respectively. In
all four experiments the Benders cuts are strengthened with the greedy procedure described
above.

Table 5.2 presents a summary of the computational results for the four test sets (testsetc,
testsete, testsetdf, and testsetdf). For each experiment we present the following

2In the interactive shell of SCIP, the CP solver settings can be set (and viewed) using the com-
mand set emphasis cpsolver. The method SCIPsetEmphasis(scip, SCIP_PARAMEMPHASIS_CPSOLVER,
TRUE) does the same in the SCIP callable library.
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information. The first column states the test set where “all” refers to all 335 instances.
The columns “easy” and “hard” show the number of instances which are easy and hard.
An instances is deemed to be easy if all four setups solve it in less than one second. An
instance is assigned to the hard category if all four experimental conditions reached the
time limit of 2 hours, i.e., none of the experiments can solve this instance. The instances
which belong to one of these classes are removed from the evaluation. The column “eval”
states the number of instances which are part of the evaluation. The sum of “easy”, “hard”,
and “eval” instances equals the number of instances of the corresponding test set. For the
instances which are part of the evaluation we present the number of instances which are
solved to proven optimality (column “opt”) and the shifted geometric mean3 with a shift
of 10 seconds of the time spend in the master problem (column “mast”) and in the sub-
problems (column “sub”). Finally, we state the overall running time in shifted geometric
mean with the same shift in column “total”. All time measurements are given in seconds
and for each instance we assume a minimum running time of 0.5 seconds. Instances which
are part of the evaluation and hit the time limit are included with 7200 second in the
calculation of the shifted geometric means.

In total there are only 12 instances which cannot be solved by any settings. These 12 hard
instances belong to testsetc. All other 323 instances are solvable by those runs which
include a sub-problem relaxation in the master problem. The setup which does not add
any sub-problem relaxation to the master problem (norelax) only solves 278 instances
(66 easy instances and 212 instances of the evaluation instances). Hence, all other setups
solve 45 instances more that the norelax experiment. W.r.t. the overall performance
the energetic relaxation is slightly better than the single constraint and edge-finding
relaxations. This results from the test sets where jobs have different release or due dates:
testsetde and testsetdf. Recall that in testsetc and testsete all jobs have the same
release and due dates resulting in similar behavior for the settings single, edge-finding,
and energetic.

The three experiments where we added a sub-problem relaxation to the master formu-
lation outperform the version without any sub-problem relaxation (norelax) by a factor
of almost 9 in shifted geometric mean. The latter needs 101.1 seconds in shifted geo-
metric mean per instance whereas the single constraint relaxation, the edge-finding
relaxation, and the energetic relaxation solve an instance in 11.6 seconds, 11.3 seconds,
and 11.2 seconds, respectively. This is not surprising since in the norelax experiment
the master problem “wildly” constructs assignments for the jobs in the beginning without
any knowledge of the sub-problems. During the solving process, the Benders cuts eventu-
ally add information to the master problem which provide knowledge of the sub-problem
structures.

In the case of the norelax experiment, most of the running time is spent in the master
problem (except for the two smaller test sets testsetde and testsetdf). One could
conclude that the missing sub-problem relaxations in the master problem is the reason.
This could imply several iterations between the master problem and the sub-problems to
solve these problems. For the experiments where a sub-problem relaxation is provided for
the master problem only the instances belonging to testsete spend the larger amount of
time in the master problem. We analyze this observation in more detail for the individual
test sets: Tables 5.3–5.6 present detailed results for the four individual test sets. Each test
set contains instances which differ in the number of available machines and the number
of jobs which need to be placed. For each job-machine combination there are 5 instances.

3The shifted geometric mean of values t1, . . . , tn is
( ∏

(ti + s)
)1/n − s, with shift s.
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Table 5.3: Comparing different sub-problem relaxations which are added to the master problem
w.r.t. the 195 instances of testsetc. Note that the job-machine combination with 4 machines and
10 jobs is omitted since all 5 instances belong to the easy category.

norelax single

|R| |J | easy hard eval opt mast sub total opt mast sub total

2 10 1 0 4 4 0.5 1.4 1.5 4 0.5 0.5 0.6
12 3 0 2 2 0.5 1.7 2.0 2 0.5 0.5 0.6
14 2 0 3 3 0.5 2.0 2.2 3 0.5 0.5 0.5
16 0 0 5 5 0.6 3.5 3.9 5 0.5 0.7 0.7
18 0 0 5 5 3.7 12.0 15.6 5 0.5 1.6 1.6
20 0 0 5 5 1.4 8.8 10.0 5 0.5 0.7 0.7
22 0 0 5 5 25.3 69.5 104.6 5 0.5 17.2 17.3
24 0 0 5 5 22.0 350.3 380.9 5 0.5 30.9 31.0
26 0 0 5 4 771.8 1366.8 2546.8 5 0.5 30.3 30.4
28 0 0 5 2 567.8 2441.3 5796.7 5 0.5 13.4 13.5
30 0 1 4 0 – – – 4 0.5 623.1 623.1
32 0 3 2 0 – – – 2 0.5 34.2 34.2
34 0 2 3 0 – – – 3 0.5 242.0 242.0
36 0 4 1 0 – – – 1 0.5 8.9 8.9
38 0 1 4 0 – – – 4 0.5 93.3 93.3

3 10 2 0 3 3 0.5 1.1 1.2 3 0.5 0.5 0.6
12 0 0 5 5 0.5 1.6 1.7 5 0.5 0.5 0.6
14 0 0 5 5 0.9 3.8 4.7 5 0.5 0.6 0.7
16 0 0 5 5 3.1 6.5 9.4 5 0.9 0.9 1.6
18 0 0 5 5 14.7 14.7 29.0 5 3.0 1.5 4.2
20 0 0 5 5 15.9 19.7 35.3 5 0.6 1.0 1.4
22 0 0 5 5 38.4 32.0 70.5 5 0.7 1.4 1.9
24 0 0 5 4 302.7 65.1 411.1 5 2.2 3.7 5.3
26 0 0 5 5 625.0 127.8 793.7 5 1.3 35.4 36.9
28 0 0 5 4 3381.7 440.7 3958.3 5 0.5 23.6 23.9
30 0 0 5 0 – – – 5 4.0 174.9 178.7
32 0 1 4 0 – – – 4 23.1 317.5 323.6

4 12 2 0 3 3 0.5 1.0 1.1 3 0.5 0.5 0.5
14 0 0 5 5 0.7 2.3 2.8 5 0.6 0.7 1.0
16 0 0 5 5 0.5 2.6 3.0 5 0.5 0.6 0.8
18 0 0 5 5 4.0 8.7 12.5 5 0.9 0.9 1.7
20 0 0 5 5 5.3 12.3 17.5 5 0.6 0.9 1.4
22 0 0 5 5 46.5 25.7 72.8 5 1.1 1.0 1.9
24 0 0 5 5 114.9 39.0 159.2 5 4.5 4.2 8.6
26 0 0 5 3 1990.3 103.1 2148.7 5 6.3 6.3 12.1
28 0 0 5 3 2113.9 152.6 2431.5 5 1.3 7.7 9.2
30 0 0 5 2 3331.7 129.9 3513.0 5 12.9 22.7 49.8
32 0 0 5 1 5186.9 202.9 5423.9 5 1.2 84.6 85.5

testsetc 15 12 168 128 91.8 70.2 193.7 168 1.7 12.6 14.1

The first two column “|R|” and “|J |” indicate this combination. For the five instances
belonging to such a combination we state the same information as for the whole test set in
Table 5.2. When a model did not solve any instances of a given size, we use ‘–’ instead of
7200 for the running time. If all five instances of a job-machine combination are categorized
as easy we omit this row in the table.

Test set testsetc. Table 5.3 presents the results for testsetc. Because all jobs in the test
set have the same release and due date, the single knapsack constraint relaxation is equiv-
alent to the edge-finding and energetic relaxation and all three experiments produce
the same results. Therefore, we omit the results for the edge-finding and energetic
relaxations in Table 5.3.

Independently of the sub-problem relaxation used, the performance gets better in terms
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Table 5.4: Comparing different sub-problem relaxations which are added to the master problem
w.r.t. the 50 instances of testsete.

norelax single

|R| |J | easy hard eval opt mast sub total opt mast sub total

2 10 3 0 2 2 0.5 1.0 1.1 2 0.5 0.5 0.6
2 12 3 0 2 2 0.6 2.6 3.0 2 0.5 0.8 0.9
3 15 1 0 4 4 0.8 2.3 2.8 4 0.5 0.7 0.9
4 20 0 0 5 5 6.1 5.2 10.0 5 2.1 1.3 2.9
5 25 0 0 5 5 1.6 5.8 7.1 5 0.5 0.8 0.9
6 30 0 0 5 5 2.7 6.4 8.8 5 0.8 1.0 1.7
7 35 0 0 5 5 43.4 19.5 66.4 5 5.7 2.3 8.1
8 40 0 0 5 4 239.6 34.5 292.4 5 42.5 3.7 46.6
9 45 0 0 5 2 2932.9 77.5 3065.8 5 98.2 4.8 104.0
10 50 0 0 5 4 1001.7 69.6 1103.0 5 18.3 3.3 21.4

testsete 7 0 43 38 55.5 16.8 71.9 43 9.9 2.0 11.4

of the overall running time and number of solved instances if more machines are available.
In case of norelax the approach fails completely if two or three machines are available
and more than 28 jobs need to be placed, i.e., none of the 5 instances belonging to such a
job-machine combination is solved within the time limit. In contrast, if four machines are
provided the norelax experiment is able to solve instances with 32 jobs. When a relaxation
is added we observe a much better performance. As for the norelax experiment, in case
of two and three machines the model starts failing to solve larger instances (11 instances
and 1 instance, respectively). In case of of four machines are available, all instances are
solvable. Overall, the version (single) which places a sub-problem relaxation into the
master problem is more than one order of magnitude faster than the version which starts
without any sub-problem relaxation. The norelax experiment requires 193.7 seconds in
shifted geometric mean whereas the single setup only needs 14.1 seconds.

As a first result, we can observe (as expected) that a sub-problem relaxation which
is added to the master problem substantially improves the performance of this approach.
Since all jobs have the same release and due date in this test set which of the three (single,
edge-finding, and energetic) relaxations is used does not matter. The results for two
machines indicate that the main issue when using a relaxation is to solve the sub-problems.
Independently of the number of jobs, the time needed by the master problem can be
neglected. This also holds for the 11 instances which are not solved. The reason for failing
lies in the sub-problems. One of the sub-problems which needs to be solved consumes all
the provided running time and 7 out of the 11 instances fail already in the first iteration.
That means, the first assignment suggested by the master problem cannot be proved to be
feasible or infeasible. This already shows the main disadvantage of the LBBD approach
for this type of problem and was already observed and discussed [Bec10]. If the solution
process gets stuck in one of the sub-problems the run returns without any feasible solution.
For three and four machines the results also show that the time spend to solve the sub-
problems dominates the time spend for solving the master problem. For both models, the
master and the sub-problem, the time required increases with the number of jobs which
need to be scheduled. However, the time needed for the sub-problems increases faster than
the time consumed by the master problem.

Test set testsete. In testsete all jobs have the same release and due date (as for
testsetc) but the number of machines and jobs increase up to 10 and 50, respectively.
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Table 5.5: Comparing different sub-problem relaxations which are added to the master problem
w.r.t. the 50 instances of testsetde. Note that the job-machine combination with 3 machines and
16 jobs is omitted since all 5 instances belong to the easy category.

norelax single edge-finding energetic

|R| |J | easy hard eval opt mast sub total opt mast sub total opt mast sub total opt mast sub total

3 10 4 0 1 1 0.5 1.0 1.1 1 0.5 0.7 1.0 1 0.5 0.6 0.7 1 0.5 0.5 0.6
3 12 4 0 1 1 0.5 1.3 1.5 1 0.5 1.1 1.5 1 0.5 0.5 0.5 1 0.5 0.5 0.5
3 14 2 0 3 3 0.5 1.2 1.3 3 0.5 0.7 0.9 3 0.5 0.6 0.7 3 0.5 0.5 0.6
3 18 3 0 2 2 0.5 1.8 2.0 2 0.5 1.0 1.3 2 0.5 0.6 0.8 2 0.5 0.5 0.6
3 20 1 0 4 4 0.5 1.6 1.7 4 0.5 1.2 1.3 4 0.6 0.8 1.1 4 0.5 0.7 0.8
3 22 3 0 2 2 0.5 2.9 3.2 2 0.5 2.1 2.5 2 0.6 1.4 1.9 2 0.5 1.2 1.6
3 24 2 0 3 3 0.5 3.4 3.5 3 0.5 3.0 3.2 3 0.5 2.9 3.1 3 0.5 2.8 3.0
3 26 0 0 5 5 5.3 12.5 17.0 5 6.3 9.9 15.5 5 5.3 7.9 13.1 5 4.9 7.3 11.9
3 28 2 0 3 3 69.2 29.4 109.5 3 9.0 12.9 21.6 3 7.0 11.4 18.3 3 5.0 10.4 15.3

testsetde 26 0 24 24 4.6 5.8 9.0 24 2.4 4.0 5.6 24 2.1 3.3 4.8 24 1.8 3.1 4.3

Table 5.4 presents the computational results. Again the results for the single constraint
relaxation (single), edge-finding relaxation, and energetic relaxation are similar since
all jobs have the same release and due date. Therefore, we restrict ourselves to the single
and norelax results for the analysis.

The version which adds a sub-problem relaxation to the master problem (single) solves
all 50 instances. In contrast, the version without a sub-problem relaxation fails on 5
instances. Overall the single version is a factor of more than 6 faster than the norelax
version w.r.t. to the overall running time in the shifted geometric mean.

In the norelax condition most of the running time is spent in the master problem
compared to time consumed by the sub-problems. More precisely, in the shifted geometric
mean, 55.5 seconds are spent in the master problem whereas the sub-problems consume
only 16.8 seconds. The same picture is observed for the single version. Here, however, the
difference is not as large as for the norelax setup. Note that this is different to the results
for testsetc, where the master problems are smaller w.r.t. to the number of variables and
constraints.

Test set testsetde. The instances belonging to testsetde all have three machines avail-
able and the number of jobs which need to be scheduled ranges from 10 to 28 in steps
of two. The release dates are the same but the due dates differ. This implies that the
edge-finding relaxation and energetic relaxation (potentially) differ from the single
constraint relaxation. Table 5.5 states the summarized computational results.

All four setups (norelax, single, edge-finding, and energetic), even the one with-
out any sub-problem relaxation in the master model, solve all 50 instances. The time spent
in the master problem and the sub-problems increases in a similar fashion if more jobs need
to be scheduled. The best performance is achieved by the experiment which adds the en-
ergetic relaxation to the master model. An instance is solved in 4.3 seconds in the shifted
geometric mean. The edge-finding relaxation and single relaxation needs 4.8 seconds
and 5.6 seconds, respectively. As expected the version without any sub-problem relaxation
(norelax) is the slowest. It consumes 9.0 seconds in the shifted geometric mean. It is
surprising that norelax is only a factor of 2 slower than the energetic relaxation.

Test set testsetdf. Finally, Table 5.6 states the results for testsetdf. Again all in-
stances have three machines. In contrast to all other test set, the jobs differ in their release
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Table 5.6: Comparing different sub-problem relaxations which are added to the master problem
w.r.t. the 40 instances of testsetdf. Note that the job-machine combination with 3 machines and
16 jobs is omitted since all 5 instances belong to the easy category.

norelax single edge-finding energetic

|R| |J | easy hard eval opt mast sub total opt mast sub total opt mast sub total opt mast sub total

3 14 4 0 1 1 0.5 1.2 1.3 1 0.5 1.1 1.1 1 0.5 0.9 1.1 1 0.5 0.9 1.1
3 18 2 0 3 3 0.5 2.0 2.3 3 0.5 1.8 2.0 3 0.6 1.4 1.8 3 0.6 1.2 1.6
3 20 2 0 3 3 0.6 2.0 2.4 3 0.5 1.6 1.9 3 0.5 1.4 1.7 3 0.5 1.3 1.6
3 22 0 0 5 5 0.5 2.3 2.5 5 0.6 2.3 2.6 5 0.6 1.6 2.0 5 0.7 1.5 1.9
3 24 1 0 4 4 0.7 5.1 5.8 4 1.0 4.8 5.8 4 1.4 3.6 4.9 4 1.5 3.4 4.8
3 26 3 0 2 2 2.1 10.1 11.9 2 3.3 9.9 12.7 2 1.2 2.4 3.7 2 1.2 1.9 3.2
3 28 1 0 4 4 0.5 1.8 1.9 4 0.5 1.7 1.8 4 0.5 1.5 1.7 4 0.6 1.5 1.8

testsetdf 18 0 22 22 0.7 3.1 3.5 22 0.8 2.9 3.4 22 0.7 1.9 2.5 22 0.8 1.7 2.4

and due dates. This potentially leads to a different sub-problem relaxation for the single
constraint relaxation, edge-finding relaxation, and energetic relaxation. As for test-
setde, all setups are able to solve all 40 instances. For this test set there is almost no
difference between the version without any relaxation (norelax) and the single constraint
relaxation (single) indicating that the single constraint relaxation does not remove any
feasible solutions of the pure assignment problem. The best performance again is achieved
with the energetic relaxation which solves an instances in 2.4 seconds in shifted geomet-
ric mean. The other three experiments are slightly slower. The edge-finding relaxation
requires 2.5 seconds, the single constraint relaxation needs 3.4 seconds, and the version
without a relaxation consumes 3.5 seconds.

Summary. The results clearly indicate that it is important to add a sub-problem relax-
ation to the master problem. W.r.t. the instances under investigation it makes almost no
difference if the single constraint relaxation (single) is used or one of the more involved
relaxations (edge-finding or energetic). The overhead to construct these relaxations is
negligible for these instances. The additional constraints in the master model do not lead
to an increase in the time spend for solving it. Since the energetic relaxation dominates
the edge-finding relaxation and single constraint relaxation w.r.t. the performance, it is
reasonable to construct and use the energetic relaxation by default.

Benders cut strengthening

In the following we are focusing on the Benders cuts which are added to the master problem
in case a sub-problem is infeasible. We perform two experiments. In one we construct the
Benders cut directly from the suggested assignment of the master problem if the sub-
problem is infeasible. In a second experiment we use the strengthening technique discussed
in Section 5.3.2. We refer to these experiments as pure and strengthened, respectively.
In both cases we use the energetic relaxation for adding a linear sub-problem relaxation to
the master problem. Table 5.7 present the results for the four test set testsetc, testsete,
testsetde, and testsetdf. As before, for each test set we state the number of “easy”
and “hard” instances as well as the number of instances which are part of the evaluation
(column “eval”). For both experiments (pure and strengthened) we give the number
of instances solved to optimality (of the instances which are under evaluation) and three
time measures. These are the running time spend in the master problem (column “mast”),
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Table 5.7: Impact of the Benders cut strengthening technique.
pure strengthened

test set easy hard eval opt mast sub total opt mast sub total

testsetc 74 10 111 109 7.0 25.8 38.1 109 2.3 27.8 31.4
testsete 17 0 33 32 57.9 2.7 61.4 33 14.1 2.5 16.2
testsetde 32 0 18 16 15.8 2.8 18.2 18 2.3 4.1 5.8
testsetdf 18 0 22 22 12.8 3.2 15.0 22 0.8 1.7 2.4

all 141 10 184 179 13.5 13.9 35.3 182 3.7 14.4 20.0

the sub-problems (column “sub”), and for solving the whole problem (column “total”). For
the time measures we use the shifted geometric mean with a shift of 10 seconds.

First of all we want to note that the pure setting is able to solve two instances which are
not solvable with the strengthened setting. These two instances belong to testsetc and
have 2 machines and 32 jobs. Having a closer look reveals that in the strengthened case
the solver gets stuck in a sub-problem, i.e., the provided running time to solve this particular
sub-problem is not enough to prove that the sub-problem is feasible or infeasible. Due to
the different Benders cuts in case of the pure experiment, the master problem produces
different machine assignments. As a result the solver is able to evaluate the feasibility
or infeasibility for the assignments suggested by the pure version. Overall, however, the
pure setting solves 320 instances where the strengthened setup proves optimality for
323 instances.

The results summarized in Table 5.7 indicate that it is worthwhile to use the strength-
ening technique for the Benders cuts. Over all instances, we observe a speed-up of more
than 50%. In case of the pure Benders cuts, an instances takes 35.3 seconds in the shifted
geometric mean whereas the strengthened version only needs 20.0 seconds. For some of the
individual test sets the speed ups are even larger. For the testsetdf, the results show a
speed-up of a factor more than 6. Overall, we can say that the strengthening technique
leads to consistently better results.

Summary

The results indicate that the LBBD approach is an effective method for the instances
under investigation. Increasing the number of machines favors this approach since the
problem decomposes into more sub-problems. Adding a sub-problem relaxation to the
master problem leads to substantially better results. For all test instances we have almost
a speed-up factor of 9 when comparing the version without any sub-problem relaxation to
the one adding a sub-problem relaxation which is based on the energetic reasoning idea (see
Table 5.2). Regarding the Benders cuts, it pays off to invest additional time to strengthen
these cuts. For all instances we observe a speed-up of 50% when doing this (see Table 5.7).
Figure 5.1 visualizes these aspects in a diagram. It shows the number of solved instances
within a certain time for three LBBD setups. These are:

▷ The norelax experiment (Table 5.2) is shown as a dotted line ( ). It adds no
sub-problem relaxation to the master problem and does not strengthen the Benders
cuts.

▷ The pure experiment (Table 5.7) is printed as a dashed line ( ). Here we add the
energetic reasoning relaxation but do not strengthen the Benders cuts.
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Figure 5.1: Diagram for the 335 resource allocation and scheduling instances and the three LBBD
setups, showing the number of instances solved within a certain time. The version without a sub-
problem relaxation and without Benders cut strengthening (norelax) is dotted ( ), the setting
with energetic sub-problem relaxation and without Benders cut strengthening is dashed ( ),
and the LBBD setup with energetic sub-problem relaxation and Benders cut strengthening is
solid ( ).

▷ The energetic experiment (Table 5.2) and the strengthened experiment (Ta-
ble 5.7) which are the same are depicted as a solid line ( ). They use the energetic
reasoning relaxation of each sub-problem in the master problem and the Benders cuts
are strengthened.

The two versions which include a relaxation of the sub-problem in the master problem
perform best. Strengthening the Benders cuts gives a small additional speed-up and results
in few more instances being solved.

The experiments presented in this section also reveal one of the biggest disadvantages
of LBBD. If one of the sub-problems is not solvable, the solution process gets stuck. In
this particular case it returns without any feasible solution. We also observe that there are
instances which are solvable with one setting and are not solved with another where the
unsolvabilty is a result of this sub-problem issue. As suggested in [Bec10] it is of interest
to generate several (different) optimal solutions for a particular master problem. If one
optimal solution shows a weak performance w.r.t. to the sub-problems another optimal
solution can be tried.

Overall, a sub-problems relaxation should be added to the master problem and it is
worthwhile additional effort for strengthen the Benders cuts.

5.3.4 Conclusions
In this section, we discussed a LBBD approach for the resource allocation and scheduling
problem which we analyze in this part of the dissertation. Such an approach was previously
used in several others papers [HO03, Hoo04, Hoo05b, Hoo05a, Hoo07, Bec10, CCH13].
In the approach, the machine assignment problem is decoupled from the single machine
scheduling problems. In a first phase (the master problem) a job-machine assignment is
created. This assignment is checked in a second phase where sub-problems are solved
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to see if it is feasible for the individual machines. If the assignment is feasible for all
machines, the approach terminates. Otherwise a Benders cut is created for each machine
failing to schedule the assigned jobs. These cuts are added to the master problem and the
extended master problem is solved to produce the next job-machine assignment candidate
(see Section 5.3.2).

We discussed three different sub-problem relaxations which can be placed into the master
problem (Section 5.3.2). Two of them (single and edge-finding) were previously known.
We developed a sub-problem relaxation (energetic) which is based on the energetic rea-
soning propagation algorithm for the cumulative constraint. In case of the Benders cut
created if a machine fails to schedule the assigned jobs, we recalled a strengthening idea
for these cuts. The basic idea is to greedily remove jobs from the infeasible assignment
as long as the shrunken assignment is still infeasible. We introduced a sorting of the jobs
before the greedy approach is started (see Section 5.3.2) to retrieve stronger Benders cuts.
Finally, we conduced an empirical study to analyze the importance of the sub-problem re-
laxations and Benders cut strengthening approach. The results strongly suggest to use our
new developed energetic sub-problem relaxation together with the strengthened Benders
cuts. In Section 5.6 we compare the best LBBD approach with a MIP and CIP method.

5.4 Mixed-integer programming

Despite the success of constraint programming for scheduling, the much wider penetration
of mixed-integer programming (MIP) technology into business applications means that
many practical scheduling problems are being addressed with MIP, at least as an initial
approach. Furthermore, there has been impressive and well-documented improvements in
the power of generic MIP solvers over the past decade [KAA+11, AW13]. In this section
we present a set of MIP models for the resource allocation and scheduling problem.

5.4.1 Background

The performance of MIP solvers depends on, besides other things, the chosen model. For
the resource allocation and scheduling problem, which includes cumulative scheduling com-
ponents, there exist several ways to model these structures with linear constraints: a time-
indexed formulation which goes back to Pritskers et al. [PWW69, QS94], a flow-based
formulation [AMR03], and an event-based formulation [TG96, Hoo07, KALM11]. The
time-indexed models do not scale w.r.t. the time horizon whereas the flow-based and event-
based formulations do. In practice, however, the time-indexed formulation gives much
better results w.r.t. overall performance.

In this work we restrict ourselves to the time-indexed formulation. We recall a basic
MIP model for the resource allocation and scheduling problem that is used in the literature
to compare other approaches (like LBBD) against a MIP approach for these type of prob-
lems [HO03, Hoo04, Hoo05a, Hoo05b, HB12a, CCH13]. This basic model, however, is not
tractable for modern MIP solvers which mainly rely on variable branching to implement
the search. Discovering this drawback we introduced a second model which is an extended
formulation [Bal05, VW10, CCZ13] of the first one, inspired by the master problem of
the LBBD approach (see Section 5.3.2). We presented a variation of such an extended
formulation in [HKB13].

In the next section, we present a standard model which is used in the literature for
the allocation and scheduling problem. After discussing a disadvantage of this model for
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min
∑
k∈R

∑
j∈J

∑
t∈Tjk

cjk yjkt

s.t.
∑
k∈R

∑
t∈Tjk

ykjt = 1 ∀j ∈ J (5.4)

∑
j∈J

∑
t′∈Tjkt

rjk yjkt′ ≤ Ck ∀k ∈ R ∀t ∈
⋃

j∈J
Tjk (5.5)

yjkt ∈ {0, 1} ∀j ∈ J ∀k ∈ R ∀t ∈ Tjk

Model 5.3: Basic integer programming model for the resource allocation and scheduling problem
with Tjk = {Rj , . . . , Dj − pjk} and Tjkt = {t− pjk + 1, . . . , t} ∩ Tjk.

modern MIP solvers, we develop an extended formulation to partly overcome this particular
disadvantage. In Section 5.4.3 we conduct a computational study which compares the two
models. Doing this carefully indicates that our newly introduced model leads to a much
better performance compared to the previously used model.

5.4.2 Models

In this section we first recall a MIP model which is frequently used in the literature for
the resource allocation and scheduling problem to compare a MIP approach against other
methods. We analyze this model and discuss how a disadvantage can be overcome by using
the concept of extended formulations [Bal05, VW10, CCZ13] to reformulate this model.

Basic model

One way to model resource restrictions, as they arise in the resource allocation and schedul-
ing problem, via linear constraints, is to use a time-indexed formulation [PWW69, QS94].
Thereby, for each time point, each job, and each resource a binary variable is introduced.
Then sums over appropriate subsets of these variables control that resource capacity is
respected at any point in time. This idea is used in several papers [HO03, Hoo04, Hoo05a,
Hoo05b, HB12a, CCH13] for the resource allocation and scheduling problem to construct
a MIP model. A binary decision variable, yjkt, is created which is equal to 1 if and only if
job j starts at time t on resource k. Model 5.3 utilizes these decision variables to realize
a MIP model. Constraints (5.4) ensure that each job starts exactly once on one resource
while Constraints (5.5) enforce the resource capacities on each resource at each time-point.
The objective realizes the minimization of the assignment cost. This is a compact time-
indexed formulation which has at most |J ||R||T | variables and |J | + |R||T | constraints
with T =

⋃
j∈J

⋃
k∈R Tjk. For a resource k and job j the set Tjk defines all feasible start

points of job j on resource k.
State-of-the-art MIP solvers mainly search via variable branching. That means, that

in our case, a binary variable is selected which has a fractional value in the corresponding
linear programming relaxation solution. Two sub-problems are created. In one sub-problem
this binary variable is fixed to zero in the other it is forced to be one. Such a branching
leads to an unbalanced search tree for Model 5.3, independently of the chosen variable
because the “one” branch, which decides that a certain job starts on a fixed resource at a
certain time, implies many other binary variables must be zero via Constraints (5.4). This
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min
∑
k∈R

∑
j∈J

cjk xjk

s.t.
∑
k∈R

xjk = 1 ∀j ∈ J (5.6)

∑
t∈Tjk

ykjt = xjk ∀j ∈ J ∀k ∈ R (5.7)

∑
j∈J

∑
t′∈Tjkt

rjk yjkt′ ≤ Ck ∀k ∈ R ∀t ∈
⋃

j∈J
Tjk (5.8)

xjk ∈ {0, 1} ∀j ∈ J ∀k ∈ R
yjkt ∈ {0, 1} ∀j ∈ J ∀k ∈ R ∀t ∈ Tjk

Model 5.4: An extended formulation of Model 5.3 for the resource allocation and scheduling
problem with Tjk = {Rj , . . . , Dj − pjk} and Tjkt = {t− pjk + 1, . . . , t} ∩ Tjk.

decision reduces the remaining problem by one job. The “zero” branch, however, has in
general no additional implications. It just removes one time point on one resource as a
feasible start-time for a single job. This is a much smaller problem reduction compared to
the “one” branch. The “one” branch also forces the job assignment cost to be accounted
for in the LP relaxation whereas the “zero” branch in most cases leaves the dual bound
unchanged. In the following section we discuss a way to (partly) resolve this branching
issue.

An extended formulation

The basic model (Model 5.3) does not allow for a balanced variable branching. One way
to resolve such an issue is to construct an extended formulation that introduces additional
variables that allow the more precise modeling of certain structures of a problem. For
example, extended formulations are often considered for a particular problem to create a
formulation with polynomially many linear constraints that describes the convex hull of all
feasible solutions. Such a formulation is called compact [CCZ13]. This concept is also used
to handle and/or eliminate symmetry between different solutions or to provide variables
which allow for better branching. The latter case is the one we want to achieve here. For
more details about extended formulations we refer to [Bal05, VW10, CCZ13].

Inspired by the logic-based Benders decomposition approach for this problem, we intro-
duce for each job and resource an additional binary variable. These variables allow us to
model the job-machine assignment independently of the scheduling decision as it is done
in the master problem of the LBBD method (see Model 5.1). Let xjk be a binary decision
variable which is one if and only if job j is assigned to resource k and zero otherwise. Note
that such a decision completely ignores the time dimension of the problem. Having these
decision variables and the yjkt which are one if and only if job j is processed by resource k
and starts at time-point t, Model 5.4 states an extended formulations for the basic model.
As in the basic model, Constraints (5.8) ensure that the resource capacities are not exceeded
at any point in time. The job-machine assignment is controlled by Equalities (5.6). These
specify that each job is placed on exactly one machine. The newly introduced decision
variables xjk are linked via Constraints (5.7) to the yjkt variables. This linking couples the
job-machine assignment with the resource restrictions. The objective function minimizes
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the total job assignment cost. This model has |J ||R| additional variables and constraints
compared to the basic Model 5.3.

The additional decision variables xjk allow for a more balanced branching. Fixing such
a decision variable to one introduces the same cost as fixing one of the corresponding yjkt

variables to one since the cost only depends on the job-machine assignment. On the other
hand, fixing an xjk for a job j and resource k to zero is equivalent to fixing several yjkt to
zero (see Constraints (5.7)). In addition, such a fixing potentially introduces an increase
in the dual bound since it is clear that one of the other resources needs to handle this job.
MIP solvers will most likely prefer to branch on the newly introduced decision variables
because search heuristics [BGG+71] are based at least partially on the estimated increment
in the dual bound.

Having the xjk variables available, the sub-problem relaxations which we discussed in
Section 5.3.2 for the LBBD approach can be added to the problem as well. The linear con-
straints of these energy-based linear relaxations (see Section 2.3.2), however, are redundant
for the linear relaxation of Model (5.4). That is, a suitable linear combination of the linear
constraints of Model 5.4 dominates each of the linear constraints of these relaxations. To
prove this claim we first recall the definition of e′

jk(a, b) for a non-empty interval [a, b), a
job j, and resource k:

e′
jk(a, b) = max{0, min{b− a, pjk, ectjk−a, b− lstjk}} · rjk.

e′
jk(a, b) computes the energy a job j contributes surely on resource k to the time win-

dow [a, b) if it is assigned to this resource. Note that the earliest completion time ectjk

and the latest start time lstjk of job j depend on resource k since the processing time is
resource dependent. From Definition 2.1 it follows that e′

jk(a, b) bounds the energy used by
an energy-based propagation algorithm and therefore for an energy-based linear relaxation
from above. Hence, it is sufficient to prove our claim for e′

jk(a, b). We show that the linear
constraints of the energetic reasoning relaxation, which use e′

jk(a, b), are redundant. The
energetic reasoning relaxation for a resource k is given as:∑

j∈J
e′

jk(a, b) xjk ≤ Ck(b− a) ∀(a, b) ∈ {R1, . . . , Rn} × {D1, . . . , Dn} : a < b. (5.9)

For more details about this relaxation and two others we refer to Section 2.3 and Sec-
tion 5.3.2. To prove our claim, we show that for any resource k and non-empty interval [a, b)
the corresponding energetic reasoning linear constraint is dominated by the unit sum of
Constraints (5.8) over the time points t ∈ [a, b) ∩ Z. The following theorem states that
formally.

Theorem 5.1. For all resources k ∈ R, and all pairs (a, b) ∈ {R1, . . . , Rn}× {D1, . . . , Dn}
with a < b it holds:∑

j∈J
e′

jk(a, b)xjk ≤
b−1∑
t=a

∑
j∈J

∑
t′∈Tjkt

rjkyjkt′ ≤ Ck(b− a).

Before we prove the theorem we prove the following lemma.

Lemma 5.2. For all jobs j ∈ J , all resources k ∈ R, and all pairs (a, b) ∈ {R1, . . . , Rn} ×
{D1, . . . , Dn} with a < b it holds:

b−1∑
t=a

∑
t′∈Tjkt

yjkt′ ≥ max{0, min{b− a, pjk, ectjk−a, b− lstjk}} · xjk. (5.10)
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Proof. We consider two cases. First, we assume ectjk ≤ a or lstjk ≥ b. This implies that
job j can potentially be processed completely before or after the time window [a, b). Second,
we assume ectjk > a and lstjk < b. In this case job j overlaps with the time interval [a, b)
independently of the selected start point. Both cases capture all possibilities.

Case 1: If ectjk ≤ a (lstjk ≥ b), job j can be processed completely before (after) the
time interval [a, b). In any case, the minimum at the right-hand side of Inequality (5.10)
is non-positive since ectjk−a ≤ 0 or b − lstjk ≤ 0. Hence, the maximum evaluates to 0.
The binary decision variables yjkt′ are non-negative which implies that the left-hand side
is greater than or equal to zero. This proofs that Inequality (5.10) holds if ectjk ≤ a or
lstjk ≥ b.

Case 2: If ectjk > a and lstjk < b, job j contributes at least partly to the time window
[a, b). First, we evaluate the right-hand side of Inequality (5.10). Since ectjk > a and
lstjk < b, it follows that the minimum is strictly positive. Hence, the maximum computation
can be ignored. This implies that the right-hand side evaluates to

min{b− a, pjk, ectjk−a, b− lstjk} · xjk.

Now we analyze for each t ∈ Tjk how often the binary decision variable yjkt appears in
the left-hand side of Inequality (5.10). This is equivalent to analyzing for each t ∈ Tjk

which sets Tjkt′ with t′ ∈ [a, b) ∩ Z contain t. For each t ∈ Tjk it holds:

{t} ⊆ Tjk max{a,t} ∩ · · · ∩ Tjk min{b−1,t+pjk−1}.

Hence, t is part of at least min{b− 1, t + pjk − 1}−max{a, t}+ 1 many sets. This number
can be bounded from below by taking the minimum over all possible combination of the
subtraction:

min{b− 1, t + pjk − 1} −max{a, t}+ 1
≥ min{b− 1− a + 1, t + pjk − 1− t + 1, t + pjk − 1− a + 1, b− 1− t + 1}
= min{b− a, pjk, t + pjk − a, b− t}.

This can be further bounded from below. We know that t ∈ Tjk = {Rj , . . . , Dj − pjk}
which implies that t ≥ Rj = ectjk−pjk and t ≤ Dj − pjk = lstjk:

min{b− a, pjk, t + pjk − a, b− t}
≥ min{b− a, pjk, ectjk−a, b− lstjk}.

Each binary decision variable yjkt appears at least min{b− a, pjk, ectjk−a, b− lstjk} times
in the left-hand side of Inequality (5.10):

b−1∑
t=a

∑
t′∈Tjkt

yjkt′ ≥
∑

t∈Tjk

min{b− a, pjk, ectjk−a, b− lstjk} · yjkt

Using Inequality (5.7) we substitute the sum of binary decision variables yjkt with xjk:
b−1∑
t=a

∑
t′∈Tjkt

yjkt′ ≥ min{b− a, pjk, ectjk−a, b− lstjk} · xjk.

This matches the right-hand side and proves that Inequality (5.10) holds for all job j with
ectjk > a or lstjk < b.
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Having this lemma, we prove Theorem 5.1.

Proof of Theorem 5.1. The theorem claim two inequalities:

∑
j∈J

e′
jk(a, b)xjk

(1.)
↓
≤

b−1∑
t=a

∑
j∈J

∑
t′∈Tjkt

rjkyjkt′

(2.)
↓
≤ Ck(b− a).

The second inequality follows from the unit sum of Constraints (5.8) over the time points
t ∈ {a, . . . , b− 1}.

To prove the first inequality we use Lemma 5.2. Lemma 5.2 states that for all jobs j ∈ J
it holds:

b−1∑
t=a

∑
t′∈Tjkt

yjkt′ ≥ max{0, min{b− a, pjk, ectjk−a, b− lstjk}} · xjk.

The resource demands of each job are non-negative. Multiplying the above inequality with
the resource demand rjk of job j for resource k gives:

b−1∑
t=a

∑
t′∈Tjkt

rjkyjkt′ ≥ max{0, min{b− a, pjk, ectjk−a, b− lstjk}} · rjk · xjk

= e′
jk(a, b) xjk.

If we take the sum over all jobs and rearrange the summands, we get:

b−1∑
t=a

∑
j∈J

∑
t′∈Tjkt

rjkyjkt′ ≥
∑
j∈J

e′
jk(a, b)xjk.

This matches and proves the first inequality of Theorem 5.1.

We proved that any linear constraint which is part of the energetic reasoning relaxation
for cumulative constraint with optional jobs (Constraints (5.9)) is satisfied if the linear
relaxation of Model 5.4 is satisfied. Since the energetic reasoning relaxation is at least as
strong the edge-finding relaxation and single relaxation, it follows that none of these linear
constraints belonging to one of these relaxations improve the linear relaxation of Model 5.4.
Hence, they are redundant w.r.t. the linear relaxation.

Adding Constraints (5.9) to the model, however, might still have a positive effect. These
constraints can lead to some domain reductions which would otherwise not happen. In the
next section we analyze this empirically.

5.4.3 Computational results
In this section we compare the performance of different MIP models. We focus on the
basic model (Model 5.3) and the extended formulation (Model 5.4). For the extended
formulation we consider two models: one as is given by Model 5.4 and another for which
we add the redundant Constraints (5.9). We refer to these models as basic, extended,
and extended+(5.9), respectively. In our previous work [HKB13] we consider an extended
formulation together with the redundant constraint provided by the edge-finding relaxation
for each resource (see Constraints (2.19)). For the evaluation we are using the instances
presented in Section 5.2.1. These are 335 instances in total which are divided into four test
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Table 5.8: Comparing three MIP models using IBM ILOG Cplex with default parameter settings
and allowing for a single thread.

basic extended extended+(5.9)
test set easy hard eval opt nodes time opt nodes time opt nodes time

testsetc 46 28 121 73 125092.5 557.2 77 99593.9 508.1 120 7565.5 70.0
testsete 14 0 36 23 81203.0 451.0 24 62959.1 412.5 36 8914.7 83.6
testsetde 27 0 23 23 1591.8 28.3 23 1907.4 25.0 23 656.0 11.8
testsetdf 21 0 19 19 123.0 1.8 19 136.5 1.9 19 83.2 1.5
all 108 28 199 138 38370.4 266.3 143 32712.7 245.0 198 4128.4 48.9

sets (testsetc, testsete, testsetdf, and testsetde). Each test set has a different
characteristic w.r.t. the release dates and due dates of the jobs, the available resources, and
the number of jobs which need to be scheduled. An overview of these characteristics can
be found in Table 5.1.

For solving these MIP models we use IBM ILOG Cplex version 12.5.1.0. All exper-
iments were executed in the computational environment described in Section 5.2.2. For
each instance we enforced a time limit of 2 hours and allow for a single thread. The restric-
tion to a single thread results from the fact that we are comparing these results to other
approaches in Section 5.6 and the solver used for the other approaches is limited to a single
thread. All other parameters are kept at their default values unless otherwise specified. In
the end of this section, we briefly discuss the performance of the used solver running on 8
threads.

Preliminary results

Table 5.8 presents the results for the three models (basic, extended, and extended+(5.9))
and the four test sets. For each test set we state first the number of “easy” and “hard”
instances. An instance is classified as “easy” if all three MIP models lead to a running
time which is smaller than one second. If all three models fail to solve an instance, this
instance is deemed to be “hard”. Instances which belong to one of these two categories
are removed from the evaluation. Therefore, column “eval” states the number of instances
which take part in the evaluation. Hence, the sum of “easy” instances, “hard” instances,
and “eval” instances equals the total number of instances belonging to the corresponding
test set. For the instances which belong to the evaluation we state for each model the
number of instances solved to proven optimality (column “opt”) and the shifted geometric
mean4 for the number of visited search “nodes” and the overall running “time” in seconds.
We applied a shift s = 100 for the number of search nodes and a shift s = 10 seconds for
the overall running time. For the running time we assume a minimum running time of 0.5
seconds and instances which hit the time limit of 2 hours contribute with 7200 seconds to
the shifted geometric mean to the overall running time if they are part of the evaluation
set.

These results indicate that the additional decision variables lead to a small speed-up and
5 additionally solved instances. More precisely, the basic model needs 266.3 seconds in
shifted geometric mean and solves 246 instances (108 easy and 138 instances which are
under investigation) whereas the extended formulation (extended) requires 245.0 seconds
and proves optimality for 251 instances. Adding the redundant constraints to the extended
formulation (extended+(5.9)) results in a speed-up of factor larger than 5 and solves in

4The shifted geometric mean of values t1, . . . , tn is
( ∏

(ti + s)
)1/n − s, with shift s.
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Table 5.9: Comparing three MIP models using IBM ILOG Cplex where any aggregation during
the presolving phase is disabled and only a single thread is allowed.

basic extended extended+(5.9)
test set easy hard eval opt nodes time opt nodes time opt nodes time

testsetc 48 22 125 72 133257.7 615.5 116 10329.9 98.0 121 9404.0 102.3
testsete 14 0 36 23 81315.1 435.4 35 7301.8 72.7 36 6823.6 67.7
testsetde 28 0 22 22 1754.9 28.0 22 872.2 12.8 22 789.2 18.6
testsetdf 20 0 20 20 132.1 1.8 20 62.3 1.6 20 53.1 1.7
all 110 22 203 137 41009.8 284.0 193 4935.8 59.9 199 4527.7 62.6

total 306 instances. These are 55 instances more than the extended formulation and 60
instances compared to the basic model. Table 5.8 shows that these observations also holds
for the four individual test sets.

Overall, these results indicate that the additional decision variables in the extended
formulation (extended) result in a moderate speed-up. Adding constraints for which we
proved that they do not improve the linear relaxation of the extended formulation, however,
leads to a much better performance, which is surprising.

Detailed results

Analyzing the results more carefully reveals that the used solver removes the additional vari-
ables of the extended formulation (Model 5.4) during the presolving phase via aggregations.
This transforms the problem back into basic model (Model 5.3). Therefore, the addition-
ally added variables are not available for a more balanced branching during the tree search
which was the main reason for introducing them. The differences in performance between
these two models (basic and extended) mainly result from inferences being made via
the additional variables before they are removed. This gives slightly smaller models (w.r.t.
the number of variables) before the main search starts. Adding the redundant constraints
to the extended formulation (extended+(5.9)) prevents the solver from deleting the ad-
ditional decision variables. First, the solver does not discover that the Constraints (5.9)
are redundant and as a consequence, the solver does not eliminate the additional variables.
Due to this observation it is not clear if the additional decision variables or the redundant
constraints are the reason for the observed speed-up. To stop the solver deleting these
decision variables from the solving space we forbid any aggregation within the presolving
phase5 and rerun the experiments. Note this also prevents that any other aggregations
from being made.

Table 5.9 presents the results where we forced that the newly introduced variables are
not removed during the presolving phase. We state for each test set and model the same
measures as in Table 5.8.

We verified that the additional variables are not removed via an aggregation from the
search space. This allows for an interpretation w.r.t. the importance of the additional
variables and the redundant Constraints (5.9). These results provide a different picture
compared to the preliminary results and go along with our expectation.

Overall there are 22 instances which cannot be solved by any of the three experiments
(22 hard instances), all in testsetc. Hence, 313 instances from 335 instances are solved
within the time limit of 2 hours by at least one of the three models (basic, extended,

5To forbid any aggregation in IBM ILOG Cplex the parameters CPX_PARAM_AGGIND needs be set to 0. In
the interactive shell that can be achieved via the command sequence “set preprocessing aggregator 0”.
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and extended+(5.9)). 110 instances belong to the easy category. These instances are
solvable in less than one second by all three models. This gives in total of 203 instances
which take part in the evaluation. All instances which are solved by the basic model are
also solved by the two extended formulation. The largest number of instances solved by
a single model is 309 (110 easy instances and 199 instances of the evaluation set) and is
achieved by the extended formulation which contains the additional redundant constraints
(extended+(5.9)). This model fails only on 26 instances. These are 4 instances more
than the number of instances which belong to the hard category. Hence, these 4 instances
are solved by the extended formulation (extended) and are not solved by the extended
formulation with additional constraints (extended+(5.9)).

The basic model requires 284.0 seconds in shifted geometric mean and solves in total 247
instances (110 easy instances and 137 instances which take part in the evaluation). The
extended formulation (extended) proves optimality for 303 instances and consumes 59.9
seconds in shifted geometric mean. This gives a speed-up of a factor of 4.7 and results
in 56 instances being solved additionally. The number of search nodes is reduced by a
factor of 8.3 between these two models. This indicates that the larger model (Model 5.4)
takes approximately a factor of two more time for each search node. Adding the redundant
constraints to the extended formulation (extended+(5.9)) does not give any additional
speed-up but allows for solving 6 more instances.

Overall, the two extended formulations give significantly better results than the basic
model for the resource allocation and scheduling problem. The performance improvement
can be attributed to the additionally variables. The additional redundant constraints do
not lead to a better run-time performance but allow for solving some additional instances.

In the following we analyze the four individual test sets (testsetc, testsete, test-
setde, and testsetdf) in more detail. Tables 5.10–5.13 present, therefore, detailed results
for the four test sets. Each test set contains instances which differ in the number of available
machines and the number of jobs which need to be placed. For each job-machine combina-
tion there are 5 instances. The first two column “|R|” and “|J |” indicate this combination.
For the five jobs belonging to such a combination we state the same information as for the
whole test set in Table 5.9. That is the number of “easy” and “hard” instances, the number
of instances which are part of the evaluation (column “eval”), and for each experiment the
number of solved instances (column “opt”), the shifted geometric mean with a shift of 100
for the visited search “nodes”, and the shifted geometric mean with a shift of 10 seconds for
the overall running “time”. For clarity, when a model did not solve any instances of a given
size, we use ‘–’ instead of 7200 for the running time. If all five instances of a job-machine
combination are categorized as easy we omit the row in the table.

Test set testsetc. Table 5.10 states the results for testsetc. This test set has 195
instances with all jobs having the same release and due date. That implies that the number
of additionally redundant Constraints (5.9) for the third experiment equals the number of
available resources. Except in our previous work [HKB13] all other papers [HO03, Hoo04,
Hoo05a, Hoo05b, HB12a, CCH13] consider only the basic model. The results shown here
for this model go along with the results presented earlier by other authors.

Overall only 22 instances are categorized as hard. Thus, for 173 instances there exists
at least one experiment which solves these instances. 48 instances are seen as easy, i.e., all
three approaches solve these instances in less than one second. This leaves 125 instances
for the evaluation.
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Table 5.10: Comparing three MIP models w.r.t. the 195 instances of testsetc. Note that all
job-machine combinations with 10 and 12 jobs and the combination with 4 machine and 14 jobs are
omitted since all 5 instances belong to the easy category. Any aggregation during the presolving
phase is disabled and only a single thread is allowed.

basic extended extended+(5.9)
|R| |J | easy hard eval opt nodes time opt nodes time opt nodes time
2 14 4 0 1 1 14252.0 3.4 1 327.0 0.5 1 513.0 0.5

16 1 0 4 4 2348.8 3.9 4 1255.9 3.5 4 911.8 2.6
18 0 0 5 5 33614.4 82.4 5 1607.2 5.8 5 2071.7 13.6
20 0 0 5 4 59719.3 214.2 5 1043.7 5.8 5 980.7 6.7
22 0 0 5 2 275665.4 1532.7 5 69663.7 607.1 5 91281.4 949.9
24 0 1 4 2 149758.6 806.4 3 31535.1 238.5 4 8459.2 126.3
26 0 1 4 2 868228.8 3107.6 4 37391.1 225.2 3 73804.3 670.8
28 0 1 4 3 267748.3 570.9 4 10541.5 78.1 4 11596.9 102.6
30 0 2 3 2 379622.9 1099.9 3 10417.9 83.0 3 14406.2 84.9
32 0 1 4 2 485380.2 2949.1 4 11817.9 151.6 4 13256.3 164.3
34 0 1 4 1 313513.2 1831.8 4 19491.0 274.7 3 43893.2 825.4
36 0 3 2 2 34373.3 195.8 2 13581.5 145.3 2 48522.2 424.9
38 0 2 3 0 – – 2 203291.2 3375.5 3 107382.9 2095.0

3 14 4 0 1 1 1728.0 1.4 1 50.0 0.8 1 105.0 1.0
16 1 0 4 4 4660.9 8.0 4 1350.9 2.4 4 1595.8 2.1
18 0 0 5 5 59837.7 123.2 5 1868.9 10.0 5 1800.6 10.8
20 0 0 5 4 85848.2 197.0 5 3735.8 26.3 5 3655.6 42.1
22 0 0 5 3 499757.4 1334.6 5 3167.9 25.0 5 7767.4 34.7
24 0 0 5 3 376821.9 1555.7 5 14040.2 109.6 5 9940.4 102.7
26 0 1 4 0 – – 1 384894.2 2324.9 4 94079.4 944.1
28 0 2 3 2 360939.4 1894.7 3 17664.4 161.4 3 4746.7 23.6
30 0 0 5 0 – – 4 76211.8 904.4 4 107766.9 1370.7
32 0 2 3 0 – – 3 72245.7 582.8 3 77707.9 730.4

4 16 3 0 2 2 1170.0 1.8 2 306.3 0.8 2 198.3 1.0
18 0 0 5 5 2781.8 6.3 5 294.2 1.3 5 410.4 1.6
20 0 0 5 5 32133.9 63.2 5 1752.3 6.5 5 1604.1 6.8
22 0 0 5 5 24365.3 69.6 5 2573.1 12.9 5 1620.1 13.1
24 0 1 4 2 629413.9 3559.2 4 12219.5 73.8 4 12114.6 105.0
26 0 1 4 0 – – 4 107933.8 577.8 4 65934.5 491.9
28 0 0 5 1 503431.2 3331.2 5 48067.4 393.9 5 21687.0 284.1
30 0 1 4 0 – – 3 130007.7 1442.7 3 77287.9 1106.4
32 0 2 3 0 – – 1 165619.6 3245.8 3 85448.9 1225.5

testsetc 48 22 125 72 133257.7 615.5 116 10329.9 98.0 121 9404.0 102.3

The basic model (basic) solves 72 instances of the 125 instances under investigation.
This gives a total of 120 instances including the 48 easy instances. For the basic model it
is observed that the running time increases rapidly with the number of jobs which need to
be scheduled. For 2 machines the basic model fails on all 5 instances which have 38 jobs.
In case of 3 and 4 machines this already happens for 26 jobs.

The two extended formulations solve 116 and 121 instances of the 125 evaluation in-
stances, respectively. Including the easy instances this gives 164 instances for the extended
formulations extended and 169 instances for the extended formulation with the additional
Constraints (5.9). The extended formulation extended is capable of solving at least one
instance of each job-machine combination whereas extended+(5.9) solves at least 2 out of
5 instances for each job-machine combination. The overall running time increases if more
jobs need to be scheduled (as expected) but the increase is much slower than for the basic
model.

The basic model requires 615.5 seconds in shifted geometric mean to solve the instances
under investigation. The two extended formulations need 98.0 seconds and 102.3 seconds,
respectively. This gives a speed-up of more than a factor of 6 in shifted geometric mean.
A similar picture can be observed for the number of search nodes. Here, the difference is
almost a factor of 13.

Overall, the additional decision variables allow for a better performance of the used MIP
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Table 5.11: Comparing three MIP models w.r.t. the 50 instances of testsete. Note that the
job-machine combinations with 2 machines and 10 and 12 jobs are omitted since all 5 instances
belong to the easy category. Any aggregation during the presolving phase is disabled and only a
single thread is allowed.

basic extended extended+(5.9)
|R| |J | easy hard eval opt nodes time opt nodes time opt nodes time
3 15 3 0 2 2 865.5 2.0 2 189.9 0.7 2 80.6 0.8
4 20 0 0 5 5 7444.0 16.4 5 733.9 4.3 5 1199.9 4.9
5 25 1 0 4 4 16356.0 42.5 4 1981.0 6.1 4 2815.7 6.3
6 30 0 0 5 5 13642.4 44.5 5 1357.8 9.5 5 1603.5 10.0
7 35 0 0 5 3 311619.2 1539.3 5 12492.6 86.3 5 9346.5 80.6
8 40 0 0 5 1 551991.8 3294.5 5 23252.0 198.3 5 18124.0 169.2
9 45 0 0 5 0 – – 5 80676.4 926.0 5 55259.3 699.6
10 50 0 0 5 3 444394.9 3437.6 4 57332.8 501.5 5 44726.2 484.1
testsete 14 0 36 23 81315.1 435.4 35 7301.8 72.7 36 6823.6 67.7

solver IBM ILOG Cplex. The additional redundant constraints do not give an additional
speed-up but result in a few additionally solved instances. Both extended formulation
seems to be more tractable for MIP solvers compared to the basic model.

Test set testsete. This set contains 50 instances. As for the instances of testsetc,
all jobs have the same release and due date. This gives for each machine one additional
(redundant) constraint for the third experiment. In this test set the number of machines
and jobs increases up to 10 and 50, respectively. Table 5.11 states the detailed results.

Each instances can be solved by at least one model. Hence, the hard category contains
zero instances. 14 instances belong to the easy category. This leaves 36 instances for the
evaluation. The basic model solves 23 instances and fails on 13 instances. The extended
formulation extended proves optimality for 35 of the 36 evaluation instances and hits the
time limit on one of the largest instances. In total this model solves 12 instances more
than the basic model. The extended formulation with additional redundant constraints is
capable of solving all instances. W.r.t. the running time, the basic model is a factor of
6 slower than the two extended formulations. The basic model consumes 435.4 seconds
in shifted geometric mean whereas the extended formulations need 72.7 seconds and 67.7
seconds, respectively. For this test set the shifted geometric mean for the extended for-
mulation with additional redundant constraints is slightly smaller than for the extended
formulation extended. This is not only a result of the additional solved instance as Ta-
ble 5.11 indicates. Regarding the “exponential blow up”, the results for all three models
indicate that the running time increases if more jobs need to be scheduled until the we hit
50 jobs. All three models show a better performance for 50 jobs compared to 45 jobs. It is
not clear why this is the case and needs to be analyzed in the future. Note that the same
observation was made for the LBBD approach (see Table 5.4). For the basic model the
increase factor is much larger than for the two extended formulations.

Overall, the additional variables are the main reason for the much better performance of
the extended formulations. The additional constraints, however, give an additional small
improvement.

Test set testsetde. In contrast to the two previous test sets, the instances of testsetde
have the same release date but differ in their due dates. Therefore, the additional redundant
constraints used in the third experiment can be more than one per resource. In total this
test set has 50 instances. Table 5.12 presents the results for these instances.
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Table 5.12: Comparing three MIP models w.r.t. the 50 instances of testsetde. Note that all
job-machine combinations with less than 20 jobs are omitted since all 5 instances belong to the
easy category. Any aggregation during the presolving phase is disabled and only a single thread is
allowed.

basic extended extended+(5.9)
|R| |J | easy hard eval opt nodes time opt nodes time opt nodes time
3 20 1 0 4 4 40.8 1.0 4 66.1 1.3 4 60.6 1.4
3 22 2 0 3 3 259.7 2.1 3 117.9 1.6 3 87.5 1.4
3 24 0 0 5 5 1344.4 21.0 5 822.9 6.8 5 1033.8 26.4
3 26 0 0 5 5 8151.4 54.8 5 1815.7 16.6 5 1033.2 20.3
3 28 0 0 5 5 11167.3 136.9 5 5139.1 60.0 5 5376.8 66.5
testsetde 28 0 22 22 1754.9 28.0 22 872.2 12.8 22 789.2 18.6

Table 5.13: Comparing three MIP models w.r.t. the 40 instances of testsetdf. Note that all
job-machine combinations with less than 20 jobs are omitted since all 5 instances belong to the easy
category.

basic extended extended+(5.9)
|R| |J | easy hard eval opt nodes time opt nodes time opt nodes time
3 20 4 0 1 1 1.0 1.0 1 1.0 1.0 1 1.0 1.1
3 22 0 0 5 5 82.8 1.1 5 49.0 1.2 5 38.8 1.1
3 24 0 0 5 5 244.7 1.3 5 127.6 1.2 5 119.9 1.4
3 26 1 0 4 4 44.6 1.2 4 9.2 1.4 4 36.2 1.5
3 28 0 0 5 5 242.5 3.8 5 90.6 2.5 5 40.4 3.1
testsetdf 20 0 20 20 132.1 1.8 20 62.3 1.6 20 53.1 1.7

All 50 instances can be solved within the 2 hours time limit by all three models. There-
fore, the class of hard instances is empty. 28 instances (more than a half of the instances)
belong to the easy category. That means, all three experiments solve these instances in
less than one second. This leaves 22 instances which belong to the evaluation set. For
these instances the basic model needs 28.0 seconds in shifted geometric mean. The two
extended formulations use 12.8 seconds and 18.6 seconds, respectively. The extended
model is, therefore, a factor of 2.2 faster than the basic model. The additional redundant
constraint lead to a slow down compared to the extended experiment. This indicates that
the additional constraints do not lead to important reductions if at all.

For this test set the additional variables xjk give a speed-up of more than a factor of 2.
The redundant constraints however additionally slow down the solving process. For all
three experiment we can observe an increase in the running times if more jobs need to be
scheduled.

Test set testsetdf. The last test set testsetdf contains 40 instances. These instances
have different release and due dates resulting in potentially more than one redundant
constraint for each resource in the third experiment. Table 5.13 summarizes the results for
these instances.

20 instances of this test set are categorized as easy. This leaves 20 instances for the
evaluation since all models are able to solve all 40 instances. All three experiments lead to
similar results. The basic models requires 1.8 seconds in shifted geometric mean whereas
the two extended formulations need 1.6 seconds and 1.7 seconds, respectively. For this test
set the additional decision variables do not improve the overall performance. To generate
results which allow for more interpretation, larger instances are required.
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Table 5.14: Comparing three MIP models using IBM ILOG Cplex where any aggregation during
the presolving phase is disabled and the number of available threads vary from one to eight.

basic extended extended+(5.9)
setting easy hard eval opt nodes time opt nodes time opt nodes time

1 thread 108 10 217 139 46616.4 330.3 195 6160.5 78.7 201 5676.5 82.0
8 threads 108 10 217 161 66985.0 214.4 206 8146.7 50.5 209 6357.0 44.0

Using parallel tree search

The conducted experiments restricted the solver to a single thread. This allows for a later
comparison to other approaches (see Section 5.6). It has, however, been standard for the
past 10 years for commercial MIP solvers to use multiple cores. Table 5.14, therefore,
presents results where the solver is not restricted to a single thread. We reran our ex-
periments and allowed the solver to take all eight cores available in our computational
environment. As before we disabled all aggregations in the presolving phase to ensure
that the additional decision variables are not removed. In Table 5.14 we compare the
single thread and eight threads results for all three models. Thereby, the easy and hard
instances are categorized w.r.t. all six experiments. The remaining columns present the
same measures as in the previous tables in this section. The number of hard instances
drops from 22 to 10 compared to the single thread results (see Table 5.9). Hence, for 325
of the 335 instances there exists at least one model which solves this instance with one
or eight threads. The eight thread results are consistently better than the single thread
results. For each model more instances are solved within the time limit and the overall
running time drops. The observed speed-up for the different models is less than a factor
of 2. The extended formulation with additional constraints (extended+(5.9)) leads to the
best performance using eight threads. With this model the solver succeeds on 209 instances
in 44.0 seconds (shifted geometric mean). Including the easy instances this amounts to 317
solved instances.

Summary

The computational study showed that the performance of a MIP approach heavily depends
on the chosen model. Between the basic model (Model 5.3) which is widely used in the
literature and the extended formulation (Model 5.4) there is a factor of almost 5 w.r.t.
the overall running time in favor for the extended formulation (see Table 5.9). Figure 5.2
visualizes the performance of the three models basic, extended, and extended+(5.9).
It states the number of solved instances within a certain time for each model. The basic
model is depicted with a dotted line ( ). The performance of the extended model is
shown as dashed line ( ). The results for the extended+(5.9) is given in a solid line
( ). The two extended formulations lead to a much better performance of the chosen
MIP solver. The extended formulation which contains the redundant constraints trails a
little bit w.r.t. the performance in the beginning but eventually solves a few more instances
than the extended formulation given in Model 5.4.

Until now we only analyzed the performance of the MIP models w.r.t. the time to solve
the instances to proven optimality. MIP solvers are known to produce feasible solutions
with a small optimality gap even in those cases where an instance is not solved. Analyzing
the results of all instance 335 instances w.r.t. this aspect reveals that the largest gap for the
basic model is 3.2% whereas for the two extended formulation a maximum gap of 2.3% is
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Figure 5.2: Diagram for the three MIP models on the 335 allocation and scheduling instances,
showing the number of instances solved within a certain time. The basic model is dotted ( ),
the extended model is dashed ( ), and extended+(5.9) model is solid ( ).

observed. This shows that even for those instances which are not solved within the 2 hours
time limit high-quality solutions are constructed. In Section 5.6, where we compare the
MIP approach against a LBBD and a CIP approach, we take a closer look at the solution
quality when an instance is not solved to proven optimality.

Overall, the extended formulation with the additional redundant constraints can be seen
as the model to be chosen among the three analyzed models.

5.4.4 Conclusions

In this section we analyzed different MIP models for the resource allocation and schedul-
ing problem. One is a basic formulation (Model 5.3) which is used in literature [HO03,
Hoo04, Hoo05a, Hoo05b, HB12a, CCH13] for this problem. This compact model, however,
is not tractable for modern MIP solvers which mainly perform variable branching (see
Section 5.4.2). To overcome this issue we developed an extended formulation (Model 5.4).

In the previous section we presented two sets of experiments to empirically study the per-
formance w.r.t. the different models. These experiments clearly showed that computational
results have to be interpreted with care. More precisely computational results do not prove
anything. They only give a hint or indicate that a certain hypothesis might be true. Our
first series of experiments (Table 5.8), for example, could be misleading. Without a deeper
analysis of these results, the shown numbers strongly indicate that the extended formula-
tion is only useful if redundant constraints are added. The additional decision variables
which we added to achieve a more balanced branching do not have much impact w.r.t. the
performance. After a more careful analysis of the actual solver behavior we discovered that
the solver converts the extended formulation into the basic model, removing the additional
variables which are introduced to achieve a more balanced branching. In our second series
of experiments, we ensured that the additional decision variables are not removed from the
problem. This allows for an interpretation of the results w.r.t. the impact of the additional
variables. We observed a speed-up of almost a factor of 5 for the extended formulation
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compared to the basic model (Table 5.9). Adding additional redundant constraints does
not give any additional speed-up but does lead to a few more solved instances.

We demonstrated that the developed extended formulation is currently superior to the
basic model w.r.t. the overall performance. The extended formulation with additional re-
dundant constraints should be preferred when comparing other approaches for this problem
against a MIP approach. We refer to Section 5.6 where such a comparison is presented.

5.5 Constraint integer programming
In the previous two sections, we discussed an LBBD and a MIP approach for the resource
allocation and scheduling problem. The LBBD approach takes advantage of the problem
structure and manually decomposes the problem into a master problem and several sub-
problem (see Sections 5.3). The MIP approach relies on the power of modern MIP solvers.
Therefore, the complete problem is modeled as a MIP and a state-of-the-art solver is used.
To some extent these two approaches can be seen as two extremes. The MIP approach
relies on a black box solver whereas the LBBD approach uses a manual decomposition to
solve this type of problems. The CIP approach we discuss in this section is in that sense a
hybrid approach. We use a CIP solver which is capable of automatically taking advantage
of the structure present in the problem without a manual decomposition.

5.5.1 Background
Constraint integer programming (CIP) was introduced by Achterberg in 2004 [Ach04,
Ach07b, Ach09]. This paradigm builds a foundation for different problem classes, namely,
mixed-integer programming (MIP), constraint programming (CP), and satisfiability testing
(SAT). The basic concept is to combine solving techniques from the different fields and pro-
vide a solid framework for hybrid approaches. This hybridization allows for more structural
approaches than linear constraints in MIP and clauses in SAT, combined with powerful low-
level sophisticated solving techniques from MIP and SAT such as the linear programming
relaxation and conflict analysis, respectively. Achterberg indicated the strength of the hy-
brid approach on a class of chip design verification instances [Ach07b, ABW07, Ach09]. It
was shown that for certain problem classes the more structural CIP approach is superior
to MIP and SAT methods. Furthermore, he indicated that this more general concept does
not lose to much compared to pure MIP solvers for MIP instances. In this section we use
this approach to tackle the resource allocation and scheduling problem.

5.5.2 Model
In this section we introduce the basic CIP model used to solve resource allocation and
scheduling problems. This model is a concatenation of the master problem and the sub-
problems of the LBBD approach with the difference that we use the cumulative constraint
with optional jobs instead of the cumulative constraint since the job resource assignments
are not made a priori. Model 5.5 states the basic CIP model. For each job j and resource k
we have a binary decision variables xjk which is one if and only if job j is assigned to
resource k and zero otherwise. Equation (5.11) ensures that each job is assigned to exactly
one resource. In addition to the binary decision variables, for each job j and resource k, we
have an integer start time variable Sjk which defines the starting point of job j on resource k
if job j is assigned to resource k. The binary decision variables and the start time variables
are used together with the cumulative constraint with optional jobs to ensure that the

132



5.5 Constraint integer programming

min
∑
k∈R

∑
j∈J

cjk xjk

s.t.
∑
k∈R

xjk = 1 ∀j ∈ J (5.11)

optcumulative(S·k, x·k, p·k, r·k, Ck) ∀k ∈ R (5.12)
Rj ≤ Sjk ≤ Dj − pjk ∀j ∈ J , ∀k ∈ R
xjk ∈ {0, 1} ∀j ∈ J , ∀k ∈ R
Sjk ∈ Z ∀j ∈ J , ∀k ∈ R

Model 5.5: Basic constraint integer programming model for the resources allocation and scheduling
problem.

capacity of each resource is not exceeded, see Constraints (5.12). Having an individual
start time variable for each job and resource, allows for inferences on the start time of a
job depending on a potential assignment to the corresponding resource.

During the solving process the cumulative constraint with optional jobs contributes to
the different algorithm components such as presolving, propagation, conflict analysis, linear
relaxation, and primal heuristics. Therefore, all the techniques which are discussed in the
previous chapters are utilized.

Presolving. Before the tree search starts, presolving detects and removes redundant con-
straints and variables. In case of the cumulative constraint with optional jobs, one can
shrink the time windows of each job and remove irrelevant jobs from the scope of the
constraint since this leads to potentially tighter linear relaxation (see Section 2.3). In par-
ticular, we use the dual reduction techniques developed in Chapter 3 that are able to remove
redundant jobs from the cumulative constraint with optional jobs. Additionally, we can
detect redundancy of a cumulative constraint with optional jobs. We refer to Section 3.5
for more details.

Propagation. Propagation (also known as node presolving) takes place in each search
node and tries to infer bound changes from the branching decision. In case of the cumula-
tive constraint with optional jobs we collect jobs which are assigned to a resource and apply
the cumulative propagator (see Section 1.4.3). For the remaining jobs, we run singleton arc
consistency to detect jobs which can no longer be feasibly scheduled and fix the correspond-
ing binary decision variable to zero. In addition, if all resource assignment variables for a
given resource are fixed, we try to solve the remaining individual cumulative constraint by
itself, triggering a backtrack if no such solution exists. The same data structure used in
presolving (see Chapter 3), can be used to perform this detection in a sound and general
manner. In contrast to LBBD, these local sub-problems do not need to be solved. If a
solution is found or the problem is proven infeasible, the global search space is reduced.
However, if they are not solved, the main search continues.

Conflict analysis. If a search node is detected to be infeasible, conflict analysis can be
used to analyze the infeasibility and retrieve conflict constraints. These conflict constraints
restrict the remaining search space. For more details we refer to Section 2.2.1. In order to
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find restrictive conflict constraints it is important that for each inference made, an explana-
tion algorithm exists which constructs an explanation for the inference (see Definitions 2.6).
For the cumulative constraint we developed explanations for inferences made by energy-
based propagation algorithms. We showed that these explanations can made available for
the corresponding propagation algorithms for cumulative constraint with optional jobs. If
an explanation is required during the analysis of an infeasible sub-problem, we use the
explanations discussed in Section 2.2.3.

Linear relaxation. As for the LBBD and MIP approaches the cumulative constraint with
optional jobs can provide a linear relaxation. We utilize the linear relaxations discussed
in Section 2.3. In the following section we compare different linear relaxations w.r.t. their
impact of solving resource allocation and scheduling problems.

Primal heuristic. Inspired by the clique structure of the problem (i.e., each job has to be
assigned to one resource), we implemented a general purpose primal heuristic that assigns
jobs to resources and solves the resulting decomposed scheduling problems. In MIP and
CIP, a clique structure refers to a sets of binary variables that must sum up to at most
one. This structure is easily detectable within a model and can be used within a fix-and-
propagate heuristic. For more details we refer to [GBHW15].

5.5.3 Computational results

In this section we present a computational study to analyze the performance of the basic
CIP model (Model 5.5) for the resource allocation and scheduling problem. We focus on
the linear relaxation for the cumulative constraint with optional jobs which we discussed
in Section 2.3. For the experiment we use the four test sets introduced in Section 5.2.1.
These are testsetc, testsete, testsetde, and testsetdf. Table 5.1 gives an overview
of the different characteristics of these sets.

We perform three experiments to analyze the importance of the linear relaxation for the
cumulative constraint with optional jobs. In a first experiment, we omit a linear relaxation:
the cumulative constraint with optional jobs does not place any linear constraint into the
model. We call this experiment norelax. Second, we add the basic single constraint
knapsack relaxation (Inequality (2.18)) for each cumulative constraint with optional jobs.
We refer to this experiment as single. Finally, we use the more involved relaxation which
creates for each cumulative constraint with optional jobs and any reasonable time window
a linear knapsack constraint. Thereby, we consider the relaxation which is based on the
idea the energetic reasoning propagation algorithm (Inequality (2.23)), see Section 2.3 for
more details. We refer to these experiments as energetic. In all three experiments a time
limit of 2 hours is enforced for each instance.

We realized the CIP approach in the SCIP framework (version 3.0.1.5). Therefore, we ex-
tended the constraint based framework with the required constraint handler for cumulative
constraints with optional jobs. This constraint handler features all algorithmic components
discussed for the CIP approach in this dissertation. The LP relaxations which need to be
solved during the branch-and-bound algorithm, are solved with SoPlex version 1.7.1. All
parameters are kept at their default values.

Table 5.15 presents the overall results for each test set w.r.t. to the three experiments
(norelax, single, and energetic). The first column (“test set”) states the test set name
where the last line gives a summary for all instances of the four test sets. The following
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Table 5.15: Comparing three CIP models using SCIP with default parameter settings.
norelax single energetic

test set easy hard eval opt nodes time opt nodes time opt nodes time
testsetc 20 17 158 142 5663.0 171.3 155 3876.6 36.8 153 5032.4 42.4
testsete 9 2 39 39 2487.6 71.8 37 7525.4 73.6 36 11487.2 82.8
testsetde 28 0 22 22 232.7 11.8 22 398.9 9.8 22 396.6 9.3
testsetdf 18 0 22 22 38.6 3.3 22 63.7 2.4 22 75.5 1.7
all 75 19 241 225 2676.6 93.5 236 2632.1 32.1 233 3376.4 35.8

three columns labeled with “easy”, “hard”, and “eval” show the number of instances which
are categorized as easy and hard and the ones which are used to compute aggregated
measures. An instance is classified as “easy” if all three experiments lead to a running
time which is smaller than one second. If all three experiments fail to solve an instance,
this instance is “hard”. Instances which belong to one of these two categories are removed
form the evaluation. Column “eval” states the number of instances which take part in the
evaluation. Hence, the sum of “easy” instances, “hard” instances, and “eval” instances
equals the total number of instances belonging to the corresponding test set. For the
instances which belong to the evaluation we state for each model the number of instances
solved to proven optimality (column “opt”) and the shifted geometric mean6 for the number
of visited search “nodes” and the overall running “time” in seconds. We applied a shift
s = 100 for the number of search nodes and a shift s = 10 seconds for the overall running
time. For the running time we assume a minimum running time of 0.5 seconds and instances
which hit the time limit of 2 hours contribute with 7200 seconds to the shifted geometric
mean for the overall running time if they are part of the evaluation set.

Overall, only 19 instances are classified as hard where 17 belong to the largest test set
testsetc and 2 to test set testsete. 75 instances are easy since all three experiments
solved these instances in less than a second. That leaves 241 instances for the evaluation.
The experiment single which places a single knapsack constraint for each cumulative con-
straint with optional jobs into the linear relaxation solves 236 instances from the 241 base
set. That are 3 more than the energetic experiment where each cumulative constraint
with optional jobs puts a set of linear constraints into linear relaxation. The experiment
which omits any linear relaxation for the cumulative constraint with optional jobs solves
only 225 instances in total.

Adding a single knapsack constraint as relaxation for each cumulative constraint with
optional jobs to the linear relaxation of the whole problem (single experiment) performs
best w.r.t. running time. It takes 32.1 seconds in shifted geometric mean. Slightly slower is
the energetic relaxation. This experiment needs 35.8 seconds in shifted geometric mean.
Slower by almost a factor of 3 is the experiment which does not add any representation
of the cumulative constraint with optional jobs to the linear relaxation. It requires 93.5
seconds.

Interestingly, the picture is different when analyzing the required search nodes. The
norelax experiment and single experiment need 2676.6 and 2632.1 search nodes in
shifted geometric mean, respectively. The energetic setup uses 3376.4 search nodes.
This increase of the number of search nodes in case of the energetic experiment is re-
flected in the increase of the solving time compared to the single experiment. In case
of the norelax experiment that is not the case. The norelax takes almost a factor of
3 more time compared to the single experiment but visits basically the same number of

6The shifted geometric mean of values t1, . . . , tn is
( ∏

(ti + s)
)1/n − s, with shift s.
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search nodes. Analyzing this carefully reveals that adding no relaxation for the cumulative
constraint with optional jobs to the linear relaxation results in linear relaxation solutions
which often satisfy all integrality conditions. That implies that this solution suggests a job
resource assignment. In such a case each cumulative constraint with optional jobs needs to
evaluate if the assigned jobs can be scheduled. This, however, takes time. In case we are
adding a linear relaxation for each cumulative constraint with optional jobs to the linear
relaxation, the resulting relaxation solutions are not that often integral. Many integral
solutions that violate the resource constraints are now already forbidden in the relaxation
so that this expensive check is not performed as often.

In the following we analyze the individual tests set in more detail. Therefore, Tables 5.16–
5.19 present detailed results for the four individual test sets. Each test set contains instances
which differ in the number of available machines and the number of jobs which need to be
placed. For each job-machine combination there are 5 instances. The first two columns
“|R|” and “|J |” indicate this combination. For the five jobs belonging to such a combination
we state the same information as for the whole test set in Table 5.15. That is the number
of “easy” and “hard” instances, the number of instances which are part of the evaluation
(column “eval”), and for each experiment the number of solved instances (column “opt”)
and the shifted geometric mean with a shift of 100 for the search “nodes” and a shift 10
seconds for running “time”. For clarity, when a model did not solve any instances of a given
size, we use ‘–’ instead of 7200 for the running time. On the other hand if all five instances
of a job-machine combination are categorized as easy we omit this row in the table.

Test set testsetc. Test set testsetc is the largest test set with 195 instances. A charac-
teristic of this test set is that all jobs have the same release and due date. In the presolving
phase this changes. New lower bounds and upper bounds are imposed on the start time
variables such that after the presolving phase it does not hold anymore that all jobs have
the same release and due date. As a results we observe different behavior for the single
experiment and energetic experiment due the different linear relaxation used. Table 5.16
presents the results for this test set in detail.

In total there are 17 instances classified as hard since all three experiments fail to solve
them within the 2 hours time limit. 20 instances are easy since all three experiments
solve these instances in less than a second. Hence, 158 instances out of 195 instances are
part of the evaluation. 13 of the hard instances belong to the instances which have two
machines, 3 belongs to the instances with 3 machines, and one instance to the instances
with 4 machines.

The single experiment solves 155 instances. These are 2 more instances than for the
energetic experiment which adds potentially several linear constraints to the linear re-
laxation for each cumulative constraints with optional jobs. The smallest number of solved
instances is achieved by the experiment which does not add any constraint for the cumu-
lative constraint with optional jobs to the linear relaxation. This experiment (norelax)
solves 142 instances.

W.r.t. the running times, we observe the same order as for the number of solved instances.
The single experiment performs best with an aggregated time of 36.8 seconds. A little
bit slower is the energetic experiment which finishes with 42.4 seconds. The experiment
which does not add any constraint to the linear relaxation (norelax) requires 171.3 seconds
which is more than a factor 4 slower than the other two experiments.

In case of the number of search nodes the picture is slightly different. We still get the
same order: single requires 3876.6 search nodes, energetic uses 5032.4 search nodes, and
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Table 5.16: Comparing three CIP models (which differ in the used LP relaxation) w.r.t. the 195
instances of testsetc. Note that the job-machine combination with 4 machines and 10 jobs is
omitted since all 5 instances belong to the easy category.

norelax single energetic
|R| |J | easy hard eval opt nodes time opt nodes time opt nodes time
2 10 3 0 2 2 27.6 1.2 2 37.4 0.5 2 58.0 0.5

12 3 0 2 2 40.9 2.2 2 33.9 1.0 2 40.6 1.0
14 1 0 4 4 105.5 3.3 4 18.6 0.9 4 12.4 0.8
16 0 0 5 5 299.7 5.7 5 159.9 1.5 5 160.3 1.3
18 0 0 5 5 869.2 17.3 5 450.2 4.2 5 465.0 3.0
20 0 0 5 5 771.1 23.7 5 277.4 2.1 5 272.2 2.1
22 0 0 5 5 92583.3 492.8 5 68512.7 216.6 5 94927.7 248.8
24 0 1 4 4 74525.5 492.0 4 41371.6 167.0 4 33916.9 145.3
26 0 1 4 4 333090.6 1909.0 4 204310.6 551.1 4 242628.6 493.0
28 0 1 4 4 62221.9 1677.4 4 4883.8 40.4 4 7090.8 58.9
30 0 2 3 3 140165.3 3578.9 3 1382.7 25.0 2 9562.7 103.9
32 0 3 2 0 – – 2 168183.3 254.6 2 201784.1 240.7
34 0 2 3 2 175617.6 3443.5 2 36844.8 349.6 2 48105.3 637.2
36 0 2 3 0 – – 3 31954.3 78.8 3 14253.1 67.7
38 0 1 4 1 45858.3 4541.7 3 529645.4 732.2 4 467178.6 415.6

3 10 4 0 1 1 18.0 1.0 1 22.0 0.5 1 12.0 0.5
12 1 0 4 4 45.9 1.7 4 52.7 0.7 4 84.6 0.6
14 0 0 5 5 76.3 4.2 5 116.4 1.2 5 55.1 0.8
16 0 0 5 5 338.7 11.2 5 626.1 2.8 5 601.6 2.6
18 0 0 5 5 1212.6 32.7 5 2177.2 6.7 5 1995.7 5.6
20 0 0 5 5 947.1 32.5 5 845.3 5.0 5 762.6 2.8
22 0 0 5 5 2098.0 80.8 5 1556.5 9.0 5 2191.2 9.1
24 0 0 5 5 16878.0 397.5 5 5635.8 23.0 5 8472.0 20.3
26 0 0 5 5 43983.3 861.3 5 79194.2 180.9 5 63960.8 289.0
28 0 0 5 5 83900.8 1415.0 5 20657.4 164.3 5 62750.3 493.5
30 0 1 4 1 76426.6 5379.2 3 305148.5 867.7 3 376826.1 1108.7
32 0 2 3 1 227123.4 6688.6 3 716991.9 2290.2 2 1252978.7 4006.7

4 12 3 0 2 2 17.9 1.0 2 4.0 0.5 2 5.9 0.5
14 0 0 5 5 70.3 3.3 5 102.3 1.4 5 159.8 1.2
16 0 0 5 5 86.7 4.2 5 158.9 2.0 5 227.4 1.9
18 0 0 5 5 454.8 13.9 5 388.5 3.1 5 1067.1 4.0
20 0 0 5 5 574.8 23.4 5 602.2 4.4 5 790.0 3.9
22 0 0 5 5 3169.2 56.6 5 954.7 6.7 5 1966.4 6.8
24 0 0 5 5 10305.4 168.4 5 11252.1 47.1 5 15894.9 53.4
26 0 0 5 5 26088.6 374.5 5 16801.0 47.0 5 29678.3 71.5
28 0 0 5 5 65873.1 767.6 5 6286.7 36.1 5 10232.7 50.7
30 0 0 5 4 191297.6 2819.6 5 53458.5 264.6 5 84986.6 367.6
32 0 1 4 3 621854.8 5599.4 4 179721.5 726.6 3 488455.4 980.4

testsetc 20 17 158 142 5663.0 171.3 155 3876.6 36.8 153 5032.4 42.4

norelax has 5663.0 search nodes in shifted geometric mean. The factors between these
three experiments, however, are different compared to the factors between the running
times. The increase in time and search nodes from the single experiment to the energetic
experiment is basically the same factor, but from the single experiment to the norelax
experiment we only have a factor slightly smaller than 1.5 for the search nodes whereas we
have a factor larger than 4 for the running time. As pointed out in the previous section,
the reason for that comes from the overhead of checking potential solutions for a single
cumulative constraint with optional jobs.

For all three experiments, the number of search nodes needed and the running time
increases (as expected) if more jobs need to be scheduled. This is independent of the
available number of machines. The number of instances which are categorized as hard,
however, decreases with the number of available machines.

Overall, the single experiment gives the best results. It solves the highest number of
instances and requires the smallest running time.
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Table 5.17: Comparing three CIP models (which differ in the used LP relaxation) w.r.t. the 50
instances of testsete.

norelax single energetic
|R| |J | easy hard eval opt nodes time opt nodes time opt nodes time
2 12 3 0 2 2 81.9 4.0 2 80.7 0.8 2 136.7 0.7
3 15 1 0 4 4 84.6 4.6 4 182.8 1.6 4 278.9 2.0
4 20 0 0 5 5 276.9 10.2 5 692.0 6.5 5 1134.7 7.4
5 25 0 0 5 5 215.9 12.5 5 273.6 3.6 5 459.0 4.7
6 30 0 0 5 5 571.7 20.0 5 2068.1 11.7 5 3936.5 13.7
7 35 0 0 5 5 4936.0 87.7 5 28192.3 100.4 5 39081.2 113.4
8 40 0 0 5 5 24030.1 348.7 4 191942.9 821.0 4 231303.8 768.5
9 45 0 1 4 4 123934.2 1432.1 3 762579.6 3124.3 3 901795.3 3460.5
10 50 0 1 4 4 63238.7 793.0 4 162859.1 695.4 3 446625.0 1218.0
testsete 9 2 39 39 2487.6 71.8 37 7525.4 73.6 36 11487.2 82.8

Test set testsete. Table 5.17 states the detailed results for test set testsete. This test
set contains 50 instances and has the same property concerning release and due dates of the
jobs as testsetc: all jobs have the same release and due dates. The characteristic of this
test set, however, differs for the number of available machines and jobs, which increases up
to 10 and 50, respectively.

Even though all jobs have the same release and due dates the result for the single
experiment differs from the result for the energetic experiment. This is the case since
presolving infers lower and upper bounds for the start time variables. As a result the
presolved model has different release and due dates for the jobs. Since these dates are used
to create the linear relaxation for the cumulative constraint with optional jobs, the two
experiments have different relaxations.

In total there are 9 instances classified as easy and 2 instances as hard. That leaves 39
instances for the evaluation. The 2 hard instances belong to the two largest instance classes
with 9 and 10 machines.

Surprisingly, the best performance w.r.t. the overall running time is given by the nore-
lax experiment. It solve 39 instances with an aggregated time of 71.8 seconds. norelax
solves 2 instances more than the single experiment which takes 73.8 seconds and 3 in-
stances more than the energetic experiment which requires 82.6 seconds. Analyzing
this more carefully reveals that the available primal heuristics perform much better in the
norelax experiment compared to other two experiments. For these instances it seem to
be beneficial if good primal solutions are present early in the search as more search nodes
can then be pruned before processing.

As before, the time spent per search node is much larger for the norelax experiment
compared to the two other experiment. In total the norelax experiment uses 2487.6 search
nodes in shifted geometric mean. This number is increased by a factor larger than three
in the single experiment while it takes only slightly more running time than norelax.
The energetic setup needs a factor of 4.6 more search nodes compared to the norelax
experiment.

Until the second largest problem class (9 machines and 45 jobs) the required search nodes
and the running time increase as expected for all three experiments when the problems get
larger. For the largest problem class (10 machines and 50 jobs), however, we observe that
the number of search nodes and the running time are much smaller than for the second
largest problem class. It is not clear why this is the case and needs to be analyzed in
the future. Note that the same observation was made for LBBD and MIP approach, see
Table 5.4 and see Table 5.11, respectively.
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Table 5.18: Comparing three CIP models (which differ in the used LP relaxation) w.r.t. the 50
instances of testsetde. Note that the job-machine combination with 3 machines and 10 and 12
jobs is omitted since all 5 instances belong to the easy category.

norelax single energetic
|R| |J | easy hard eval opt nodes time opt nodes time opt nodes time
3 14 3 0 2 2 13.0 0.7 2 23.4 0.9 2 29.9 0.8
3 16 4 0 1 1 18.0 1.7 1 47.0 1.4 1 23.0 0.8
3 18 3 0 2 2 67.7 2.4 2 105.8 2.7 2 152.7 1.6
3 20 1 0 4 4 44.3 2.7 4 88.7 2.0 4 105.4 1.5
3 22 3 0 2 2 37.1 3.7 2 191.8 5.0 2 169.2 3.6
3 24 2 0 3 3 54.4 7.9 3 185.7 8.5 3 93.3 17.5
3 26 0 0 5 5 648.7 28.3 5 1085.1 18.7 5 1612.4 17.9
3 28 2 0 3 3 4578.6 75.1 3 7309.3 53.9 3 4729.9 36.9
testsetde 28 0 22 22 232.7 11.8 22 398.9 9.8 22 396.6 9.3

Overall, the norelax experiment and the single experiment show the best performance
for this test set. For larger instances the norelax experiment seems to be slightly superior
to the single experiment. One reason for the strong performance of the norelax exper-
iment is the poor performance of the primal heuristics in case we add linear constraints
to the linear relaxation of the problem for each cumulative constraint with optional jobs
(as we do for the single experiment and energetic experiment). This should be further
analyzed and overcome in the future.

Test set testsetde. Test set testsetde contains 50 instances which all have three ma-
chines available and the number of jobs range from 14 to 28 in steps of two. The release
dates for all jobs are the same, but the due dates differ. As a result we get different linear
relaxations with the experiments single and energetic. Table 5.18 shows the computa-
tional results.

All three experiments are able to solve all 50 instances to optimality. Hence, none of
the instances is categorized as hard. 28 instances are categorized as easy since all three
experiments can solve them in less than one second. The remaining 22 instances are part
of the evaluation.

The best performance w.r.t. time is achieved by the energetic experiment with a shifted
geometric mean of 9.3 seconds, closely followed by the single experiment with 9.8 seconds.
Slowest is the norelax experiment which takes 11.8 second in shifted geometric mean. In
case of the search nodes the picture is different again. The norelax experiment which
takes the most time requires the smallest number of nodes. It needs 232.7 search nodes in
shifted geometric mean. The other two experiments, single and energetic, visit 398.9
and 396.6 search nodes, respectively. Hence, the norelax experiment spends much more
time per node than the single and energetic experiment.

If the number of jobs increases, the required search nodes and the running time increase
as well. The increase in time is, however, moderate. For the larger job-machine combination
all three experiment are well below 100 seconds in shifted geometric mean.

Overall, the best performance is achieved by the two experiments which add a relaxation
for each cumulative constraint with optional jobs to the linear relaxation. Between these
two experiments neither can be declared the clear winner.

Test set testsetdf. The final test set testsetdf contains 40 instances. All instances have
three machines available and the jobs range from 14 to 28 in steps of 2. These instances
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Table 5.19: Comparing three CIP models (which differ in the used LP relaxation) w.r.t. the 40
instances of testsetdf. Note that the job-machine combination with 3 machines and 14 and 16
jobs is omitted since all 5 instances belong to the easy category.

norelax single energetic
|R| |J | easy hard eval opt nodes time opt nodes time opt nodes time
3 18 2 0 3 3 30.2 2.4 3 52.1 1.8 3 69.4 1.6
3 20 3 0 2 2 20.5 1.2 2 32.8 1.1 2 44.0 0.9
3 22 0 0 5 5 30.6 2.5 5 53.5 2.0 5 60.8 1.2
3 24 1 0 4 4 66.9 6.9 4 112.7 4.9 4 159.5 3.2
3 26 2 0 3 3 50.2 3.4 3 77.2 2.0 3 51.1 0.9
3 28 0 0 5 5 32.4 3.2 5 53.2 2.2 5 69.6 2.1
testsetdf 18 0 22 22 38.6 3.3 22 63.7 2.4 22 75.5 1.7

have different release and due dates. This results in different linear relaxations used in the
single and energetic experiments. Table 5.19 summarizes the results for these instances.

Each experiment solves all 40 instances to optimality. Hence, none of the instances
belong to the hard category. 18 instances are categorized as easy since each setup can solve
them in less than one second. That leaves 22 instances for the evaluation.

The best performance w.r.t. the running time is achieved by the energetic experiment
which adds several linear constraints to the linear relaxation for each cumulative constraint
with optional jobs. It requires 1.7 seconds in shifted geometric mean. The single and
norelax experiment need 2.4 and 3.3 seconds, respectively.

W.r.t. the search nodes we get the same picture as before. The norelax experiment
requires many fewer search nodes compared to the other two experiments. The norelax
experiment processes 38.6 search nodes in shifted geometric mean whereas the single and
energetic experiments visit 63.7 and 75.5 search nodes, respectively.

For this test set we cannot observe that the running time and the number of search nodes
increase if more jobs need to be placed. All job-machine combination result in similar
performance numbers. Except for the job-machine combination where 24 jobs need to be
scheduled, which needs more running time and more search nodes in all three experiments.

Overall, all three experiments deliver a good performance on this test set.

5.5.4 Conclusions
In this section we compared three different linear relaxations for the cumulative constraints
with optional jobs used within a CIP model for the resource allocation and scheduling prob-
lem. The computational study indicates that adding a linear relaxation of these constraints
to the linear relaxation of the problem pays off. For almost all test sets (except testsetde)
more or the same number of instances are solved within the time limit. Figure 5.3 visual-
izes the performance of the three experiments norelax, single, and energetic. It states
the number of solved instances within a certain time for each experiment. The norelax
experiment is depicted with a dotted line ( ). The performance of the single experiment
is shown as dashed line ( ). The results for the energetic experiment is given in a solid
line ( ). The two experiments single and energetic solve consistently more problems
in a given running time than norelax. The difference, however, gets smaller as the time
increases. Between the two experiments single and energetic the first one is always
slightly ahead of the other.

In the case an instance is not solved to optimality, the CIP approach is able to deliver
feasible solutions. All four test sets contain in total 335 instances. The norelax exper-
iment solved 300 instances to proven optimality. From the remaining 35 instances, this
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Figure 5.3: Diagram for the three CIP models (which differ in the used LP relaxation) on the 335
allocation and scheduling instances. It shows the number of instances solved within a certain time.
The norelax model is dotted ( ), the single model is dashed ( ), and energetic model is
solid ( ).

setup failed on 13 instances to find a feasible solution or to proved that the problem is
infeasible. Hence, for 22 instances we stop with a feasible solution available. The other two
experiments single and energetic solve 311 and 308 instances, respectively. Both setups
failed on 11 instances to construct a feasible solution or to prove that the corresponding
instances are infeasible.

In the following section we compare the CIP approach with a LBBD and MIP method
which we both discussed in the previous two sections.

5.6 Comparison

In the previous sections we presented computational studies for three approaches to tackle
resource allocation and scheduling problems. We focused on a LBBD approach (see Sec-
tion 5.3), a MIP approach (see Section 5.4), and a CIP approach (see Section 5.5). In this
section, we compare the performance of these three approaches. Note that we use the same
test sets and the same computational environment as our previous work [HB12a] allowing
for a direct comparison of the results.

For each of the approaches we select one of the best setups. For the LBBD approach, this
is the energetic sub-problem relaxation and the Benders cut strengthening technique. For
the MIP approach we choose the extended+(5.9) model which is an extended formulation
with the redundant energetic relaxation added for better propagation. We avoid any
aggregations during the presolving phase as discussed in Section 5.4.3. In case of the
CIP approach we use the single constraint relaxation for the cumulative constraints with
optional jobs.

We compare the three approaches on the same four test set as before (see Section 5.2.1)
using the same time limit of 2 hours. We use two measures to compare these 3 approaches.
One is an aggregated running time to solve all instances and the other the solution quality
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Table 5.20: Comparing a LBBD approach, a MIP approach, and a CIP approach for resource
allocation and scheduling problems.

LBBD MIP CIP
test set easy hard eval opt nodes time opt nodes time opt nodes time

testsetc 40 5 150 143 15.5 26.1 129 11544.6 148.6 135 10549.4 75.4
testsete 11 0 39 39 24.0 12.8 39 5072.2 56.7 35 12124.3 106.9
testsetde 24 0 26 26 17.8 3.9 26 549.1 14.5 26 290.7 7.9
testsetdf 15 0 25 25 24.8 2.1 25 41.5 1.5 25 55.8 2.2
all 90 5 240 233 18.1 17.0 219 4615.4 75.6 221 4802.7 51.9

in cases an instance is not solved to optimality. For the used solvers and more details about
the approaches we refer to corresponding sections.

5.6.1 Computational results

Table 5.20 states the summarized results for the three approaches and all four test sets
(testsetc, testsete, testsetde, and testsetdf). For each approach we present the
following information. The first column states the test set where “all” refers to all 335
instances. The columns “easy” and “hard” show the number of instances which are easy
and hard. As before, an instances is seen to be easy if all three approaches solve this
instance in less than one second. An instance is assigned to the hard category if all three
approaches hit the time limit of 2 hours, i.e., none of them can solve this instance. The
instances which belong to one of these classes are removed from the evaluation. The column
“eval” states the number of instances which are part of the evaluation. The sum of “easy”,
“hard”, and “eval” instances equals the number of instances of the corresponding test set.
For the instances which belong to the evaluation we state for each approach the number
of instances solved to proven optimality (column “opt”) and the shifted geometric mean7

for the number of visited search “nodes” and the overall running “time” in seconds. We
applied a shift s = 100 for the number of search nodes and a shift s = 10 seconds for the
overall running time. For the running time we assume a minimum running time of 0.5
seconds and instances which hit the time limit of 2 hours contribute with 7200 seconds to
the shifted geometric mean of the overall running time if they are part of the evaluation
set.

Overall there are 5 instances which cannot be solved by any of the used approaches.
These instances belong to testsetc. From the remaining instances there are 90 instances
categorized as easy since all three approaches solve these instances in less than one second.
That leaves 240 instances for the evaluation. None of the approaches is able to solve all
of these instances. The LBBD approach performs best w.r.t. proving optimality. It is
able to solve 233 instances, followed by the CIP approach with 221 instances and the MIP
approach which solves 219 instances. Hence, the LBBD approach solves 12 instances more
than the CIP approach and 14 instances more than the MIP approach.

When taking the running time in shifted geometric mean as our measure, we get the same
order. The best overall running time is achieved by the LBBD approach with 17.0 seconds,
followed by the CIP approach with 51.9 seconds, and the MIP approach with 75.6 seconds.
In [Hoo04, Hoo05a, CCH13] it is reported that the LBBD approach is orders of magnitudes
faster than the MIP approach. Our results show a different picture because we selected an
extended formulation as MIP model which differs from the previously used model. It uses

7The shifted geometric mean of values t1, . . . , tn is
( ∏

(ti + s)
)1/n − s, with shift s.
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Table 5.21: Comparing an LBBD approach, a MIP approach, and a CIP approach w.r.t. the 195
instances of testsetc. Note that several job-machine combination are omitted since all 5 instances
belong to the easy category.

LBBD MIP CIP
|R| |J | easy hard eval opt nodes time opt nodes time opt nodes time
2 12 4 0 1 1 6.0 0.5 1 184.0 0.5 1 22.0 1.6

14 3 0 2 2 3.0 0.5 2 148.8 0.5 2 38.5 1.0
16 1 0 4 4 2.5 0.8 4 911.8 2.6 4 228.4 1.7
18 1 0 4 4 3.2 1.8 4 3511.4 18.8 4 740.6 5.4
20 1 0 4 4 3.2 0.8 4 1854.7 8.7 4 424.7 2.6
22 0 0 5 5 4.5 17.2 5 91281.4 949.9 5 68512.7 216.6
24 0 0 5 5 3.2 30.8 4 19879.4 291.4 4 79575.8 361.5
26 0 0 5 5 1.8 30.2 3 108010.8 1081.5 4 409206.5 925.0
28 0 0 5 5 1.6 13.5 4 23795.2 248.6 4 17924.1 125.9
30 0 0 5 4 3.8 1018.0 3 55070.4 526.3 3 34454.8 284.6
32 0 1 4 2 1.5 553.7 4 13256.3 164.3 2 766702.9 1371.2
34 0 1 4 3 1.2 572.9 3 43893.2 825.4 2 128161.6 750.9
36 0 2 3 1 1.0 975.3 2 86695.6 1099.0 3 31954.3 78.8
38 0 1 4 4 1.0 94.1 3 138622.1 2853.7 3 529645.4 732.2

3 14 2 0 3 3 10.3 0.7 3 79.2 0.7 3 139.0 1.6
16 1 0 4 4 22.2 1.8 4 1595.8 2.1 4 881.0 3.3
18 0 0 5 5 34.2 4.2 5 1800.6 10.8 5 2177.2 6.7
20 0 0 5 5 11.1 1.5 5 3655.6 42.1 5 845.3 5.0
22 0 0 5 5 19.4 1.9 5 7767.4 34.7 5 1556.5 9.0
24 0 0 5 5 23.8 5.4 5 9940.4 102.7 5 5635.8 23.0
26 0 0 5 5 28.1 36.8 4 127007.4 1419.8 5 79194.2 180.9
28 0 0 5 5 10.9 24.1 3 26746.6 277.6 5 20657.4 164.3
30 0 0 5 5 34.3 176.8 4 107766.9 1370.7 3 558026.2 1327.4
32 0 0 5 4 57.4 603.8 3 109265.7 1830.1 3 878579.2 3622.7

4 14 2 0 3 3 14.6 1.2 3 56.7 0.5 3 123.9 2.0
16 0 0 5 5 7.2 0.7 5 68.1 0.7 5 158.9 2.0
18 0 0 5 5 19.3 1.8 5 410.4 1.6 5 388.5 3.1
20 0 0 5 5 14.3 1.5 5 1604.1 6.8 5 602.2 4.4
22 0 0 5 5 16.2 1.9 5 1620.1 13.1 5 954.7 6.7
24 0 0 5 5 42.9 8.7 4 27051.2 253.0 5 11252.1 47.1
26 0 0 5 5 43.1 12.1 4 109549.3 845.2 5 16801.0 47.0
28 0 0 5 5 14.4 9.2 5 21687.0 284.1 5 6286.7 36.1
30 0 0 5 5 36.8 49.7 3 121184.5 1611.2 5 53458.5 264.6
32 0 0 5 5 19.0 85.9 3 173367.9 2492.0 4 362364.1 1152.4

testsetc 40 5 150 143 15.5 26.1 129 11544.6 148.6 135 10549.4 75.4

the same improved relaxation as we use in the LBBD approach. This model is not able
to produce the same performance as the LBBD approach on the selected instances but is
clearly not orders of magnitudes slower. We observe a factor of less than 4.5 comparing
the LBBD and MIP approach using the running time as measure.

In the following we analyze the performance of the different approaches for the individual
test sets in more detail, including the solution quality in cases an instance is not solved to
proven optimality.

Test set testsetc. Table 5.21 states the results for testsetc. This test set has 195
instances. A characteristic of these instances is that all jobs have the same release and due
date.

In total there are 5 instances categorized as hard since none of the three approaches can
solve these instances within the time limit of 2 hours. These instances belong to the class
of instances which have 2 machines. There are 40 instances in the easy category since all
approaches solve these instances in less than one second. That leaves 150 instances for the
evaluation.

The best performance w.r.t. running time and number of solved instances is achieved
by the LBBD approach. It solves 143 of the evaluation instances and needs an aggregated
time of 26.1 seconds. The MIP approach solves 129 instances (14 instances less than the
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Figure 5.4: Diagram for the three approaches: LBBD, MIP, and CIP on the 195 allocation and
scheduling instances of testsetc. It displays the number of instances for which a solution with a
given optimality gap or better was found. The LBBD approach is dotted ( ), the MIP approach
is dashed ( ), and CIP approach is solid ( ).

LBBD approach) and the CIP is capable to solve 135 instances (8 instances less than the
LBBD approach). Comparing the time measure, the MIP and CIP approach are almost a
factor 6 and 3 slower than the LBBD approach, respectively.

For the MIP and CIP approach it can be observed that in general the running time and
the required number of search nodes clearly increase if more jobs need to be scheduled.
For the LBBD approach the increase in the running time can also be seen but in a much
smaller manner. Interestingly, there are job-machine combinations with 2 machines where
MIP or CIP approach dominates the other approaches.

Figure 5.4 visualizes the primal-dual gap for the three approaches on all 195 instances.
The primal-dual gap is defined as the primal bound minus the dual bound divided by the
primal bound. The figure displays the number of instances for which a solution with a
given primal-dual gap or better was found. The LBBD approach is dotted ( ), the MIP
approach is dashed ( ), and CIP approach is solid ( ). Note that the LBBD approach is
designed to only find optimal solutions. In cases where an instance is not solved to proven
optimality the approach does not provide any feasible solution. In contrast the MIP and
CIP approach delivers feasible suboptimal solutions. The figure shows that even in those
cases where the LBBD approach is the only one that solves an instance, the other two
approaches are able to provide high quality solutions. The MIP approach finds a feasible
solution or proves infeasibility for all instances. The largest primal-dual gap is 2.3%. The
CIP approach fails for 10 instances to find a feasible solution or prove infeasibility. For one
instance the primal-dual gap is 63.6%. For the remaining 174 instances the primal-dual
gap is at most 2.2%.

Overall, the LBBD approach gives the best performance considering the running time to
proven optimality. The other approaches also show a reasonable performance and are able
to solve instances which are not solved by the LBBD approach. Taking the primal-dual
gap into account, the MIP approach dominates the other approaches. It finds high quality
solutions for all instances or proves infeasibility. The LBBD and CIP approach fail to find a
feasible solution for 12 and 10 instances, respectively. We conclude that the MIP approach
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Table 5.22: Comparing an LBBD approach, a MIP approach, and a CIP approach w.r.t. the 50
instances of testsete. Note that the job-machine combination with 2 machines and 10 jobs is
omitted since all 5 instances belong to the easy category.

LBBD MIP CIP
|R| |J | easy hard eval opt nodes time opt nodes time opt nodes time
2 12 4 0 1 1 22.0 1.0 1 274.0 0.9 1 112.0 1.2
3 15 2 0 3 3 10.8 1.0 3 48.8 0.7 3 279.4 2.0
4 20 0 0 5 5 20.3 2.8 5 1199.9 4.9 5 692.0 6.5
5 25 0 0 5 5 9.1 0.9 5 1388.2 4.9 5 273.6 3.6
6 30 0 0 5 5 12.1 1.7 5 1603.5 10.0 5 2068.1 11.7
7 35 0 0 5 5 28.9 7.8 5 9346.5 80.6 5 28192.3 100.4
8 40 0 0 5 5 41.1 46.0 5 18124.0 169.2 4 191942.9 821.0
9 45 0 0 5 5 46.5 103.6 5 55259.3 699.6 3 816834.1 3692.5
10 50 0 0 5 5 23.1 21.1 5 44726.2 484.1 4 258827.3 1112.8
testsete 11 0 39 39 24.0 12.8 39 5072.2 56.7 35 12124.3 106.9

Table 5.23: Comparing an LBBD approach, a MIP approach, and a CIP approach w.r.t. the 50
instances of testsetde. Note that the job-machine combination with 3 machines and 10 and 12
jobs is omitted since all 5 instances belong to the easy category.

LBBD MIP CIP
|R| |J | easy hard eval opt nodes time opt nodes time opt nodes time
3 14 4 0 1 1 13.0 0.7 1 63.0 0.6 1 28.0 1.1
3 16 4 0 1 1 9.0 0.6 1 1.0 0.5 1 47.0 1.4
3 18 3 0 2 2 5.5 0.6 2 3.0 0.6 2 105.8 2.7
3 20 1 0 4 4 9.0 0.8 4 60.6 1.4 4 88.7 2.0
3 22 2 0 3 3 12.4 1.2 3 87.5 1.4 3 112.1 3.3
3 24 0 0 5 5 6.7 1.9 5 1033.8 26.4 5 89.2 4.8
3 26 0 0 5 5 40.2 11.9 5 1033.2 20.3 5 1085.1 18.7
3 28 0 0 5 5 28.3 7.8 5 5376.8 66.5 5 1249.8 21.0
testsetde 24 0 26 26 17.8 3.9 26 549.1 14.5 26 290.7 7.9

Table 5.24: Comparing an LBBD approach, a MIP approach, and a CIP approach w.r.t. the 40
instances of testsetdf. Note that the job-machine combination with 3 machines and 16 jobs is
omitted since all 5 instances belong to the easy category.

LBBD MIP CIP
|R| |J | easy hard eval opt nodes time opt nodes time opt nodes time
3 14 4 0 1 1 27.0 1.1 1 1.0 0.5 1 6.0 0.5
3 18 2 0 3 3 24.3 1.6 3 1.7 0.7 3 52.1 1.8
3 20 2 0 3 3 25.3 1.6 3 4.2 0.8 3 28.0 1.0
3 22 0 0 5 5 20.4 1.9 5 38.8 1.1 5 53.5 2.0
3 24 1 0 4 4 54.0 4.8 4 167.1 1.6 4 112.7 4.9
3 26 1 0 4 4 17.6 1.9 4 36.2 1.5 4 54.3 1.6
3 28 0 0 5 5 14.4 1.5 5 40.4 3.1 5 53.2 2.2
testsetdf 15 0 25 25 24.8 2.1 25 41.5 1.5 25 55.8 2.2

is the most robust approach for this test set.

Test set testsete. This set contains 50 instances. As for the instances of testsetc all
jobs have the same release and due date. In this test set the number of machines and jobs
increase up to 10 and 50, respectively. Table 5.22 states the detailed results.

None of the instances is categorized as hard whereas 11 instances are easy since all
three approaches can solve them in less than a second. That leaves 39 instances for the
evaluation. Since all instances are solved by all three approach, we do not need to analyze
the solution quality for instances which are not solved to proven optimality.

The LBBD approach and the MIP approach are able to solve all these instances. The
CIP approach fails on 4 instances. As we analyzed in the previous section, these fails results
from a poor performance of the primal heuristics (see Section 5.5.3).
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The CIP approach gives the worst performance w.r.t. the running time. This approach
needs 106.9 seconds in shifted geometric mean. The MIP approach is a factor 2 faster with
an aggregated running time of 56.7 seconds. The best performance w.r.t. running time is
achieved by the LBBD approach which needs 12.8 seconds. That is a factor 5 faster than
the MIP approach and a factor 9 faster than the CIP approach.

For all approaches it can be observed that the running time in general increases if the
problems get larger. Interestingly, the largest class of instances (10 machines and 50 jobs)
is solved by all approaches better than the second largest problem class.

Test set testsetde. In contrast, the two previous test sets, the instances of testsetde
have the same release date but differ in their due dates. In total this test set has 50
instances. Table 5.23 presents the results for these instances.

All three approaches are able to solve all 50 instances. From these instances 24 instances
are categorized as easy since all approaches solves them in less than a second. That leaves
26 instances for the evaluation.

The best running time w.r.t. the shifted geometric mean is achieved by the LBBD ap-
proach with 3.9 seconds. A factor 2 slower is the CIP approach with 7.9 seconds. The MIP
approach needs 14.5 seconds in shifted geometric mean which is almost a factor 4 slower
than the LBBD approach. Overall, all three approach give reasonable results.

Test set testsetdf. The last test set testsetdf contains 40 instances. These instances
have different release and due dates. Table 5.24 summarizes the results for them.

All instances can be solved by all three approaches. In total there are 15 instances
categorized as easy since these instances are solved by each approach in less than one
second. For the remaining 25 instances all approach show a similar performance. The MIP
approach needs 1.5 second in shifted geometric mean which is slightly faster than the other
two approaches which take just a little more than 2 seconds.

For this test set we cannot observe that the running time increases for larger instances.

5.6.2 Conclusions

The results of the experiments presented in this chapter show that both CIP and MIP
should be considered to be the state-of-art models, along with LBBD, for the tested re-
source allocation and scheduling problems. To come to these conclusions, we used two pri-
mary measures of model performance: the number of problem instances solved to proven
optimality and the proven quality of solutions found, given that not all instances were
solved to optimality. CIP comes second to LBBD by the former measure and to MIP by
the latter. Figure 5.5 shows the evolution of the number of problems solved to optimality
over time. It can be observed that LBBD dominates CIP and CIP dominates MIP w.r.t.
this measure. testsetc is the only test set where each of the approaches fails to solve
all instances. Figure 5.4 visualizes the solution quality for all instances of this test set.
Considering this measure, MIP dominates CIP and CIP dominates LBBD.

Depending on the importance placed on these measures any of the three algorithms could
be declared the “winner”. For practical purposes, we believe that the importance of proven
solution quality should not be under-estimated: in an industrial context it is typically
better to consistently produce proven good solutions than to often find optimal solutions
but sometimes fail to find any feasible solution at all.
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5.6 Comparison
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Figure 5.5: Diagram for the three approaches: LBBD, MIP, and CIP on the 335 allocation and
scheduling instances. It shows the number of instances solved within a certain time. The LBBD
approach is dotted ( ), the MIP approach is dashed ( ), and CIP approacheis solid ( ).

An examination of the sub-problems in two-resource instances of test set testsetc that
LBBD and CIP fail to solve reveals that most of the cumulative constraint/sub-problems
which have to be proven to be feasible or infeasible have a very small slack and the jobs
have wide and often identical time windows. Slack is the difference between the rectangular
area available on the resource (length of effective horizon time by capacity) and the sum
of the areas (processing time by resource requirement) of the jobs. Alternatively, slack can
be understood to be the tightness of the single relaxation (Equation (2.18)). The small
slack results from the fact that one resource is consistently less costly than the others and
so it appears promising to assign as many jobs as possible within the limits of the interval
relaxation. This slack is not equivalent to the flexibility of a job w.r.t. a resource which we
defined in Section 5.3.2 and used to create an ordering for a set of jobs..

All approaches suffer from not being able to handle small slack and wide time window
problems efficiently on cumulative resources. This is the underlying reason for the occa-
sional failure of LBBD. It gets stuck at such sub-problems and fails completely to find a
feasible solution. All other approaches have the same issue of not being able to solve these
implicit sub-problems, but are able to provide high quality primal solutions. To overcome
this issue, stronger cumulative inference techniques [BCP08] may be worth consideration.

As we are comparing the CIP approach against a start-of-the-art LBBD implementation,
we should also compare it with a state-of-the-art commercial MIP solver when solving MIP
models. It has been standard for the past 10 years for commercial MIP solvers to use
multiple cores. If we run IBM ILOG Cplex with its default settings (using all available
cores, eight in our case) on all instances we can solve 317 instances to proven optimality with
a shifted geometric mean of 44.0 seconds (see Table 5.14). The fact that this performance
w.r.t. number of solved instances is only marginally better than what we observe for CIP
and similar to LBBD results, strengthens the claim to be a state-of-the-art approach.

Finally, if the best of the three models is chosen individually for each instance (resulting
in the virtual best solver), 330 instances can be solved demonstrating that none of the
models is dominant.
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In this dissertation, we focused on primal and dual inference techniques for the cumulative
constraint which can be used to describe a relationship between a renewable resource, e.g.,
a machine, and non-preemptive jobs which require a certain amount of the resource during
their execution. We restricted ourselves to a setup where the available resource capacity is
constant over time and where each job has a fixed processing time and resource demand
(Section 1.4.1). We allowed, however, that jobs can be optional for a resource requiring
that a decision has to be made whether a job is processed or not (Section 1.4.4).

In the following we summarize our contributions and give a outlook for future work.

Contributions

Achterberg [Ach07b] introduced the concept of variable locks for a constraint integer pro-
gram (CIP) to define dual reductions based on global information for mixed-integer pro-
grams (MIP). Essentially, a variable lock represents information about the relationship
between a variable and a set of constraints. Building on the existing idea of variable locks,
we formally defined and justified the use of dual information for constraint optimization
problems (COP) in Section 1.3.2.

In Chapter 2 we discussed two relaxations for the cumulative constraint: a conflict re-
laxation and a linear relaxation. For our systematic approach, we formally defined energy-
based propagation algorithms (Definition 2.1), a class of propagation algorithms for cumu-
lative constraints. These algorithms use specific energy-based arguments to infer bound
changes or to detect infeasibilities.

For the conflict relaxation, which is a set of conflict constraints retrieved from the anal-
ysis of infeasible sub-problems, we developed generic explanations (Definition 2.6) for the
inferences made by energy-based propagation algorithms (Theorem 2.8 and Theorem 2.9).
These general explanations rely on the observation that all these algorithms use a lower
bound on the energy consumption of a fixed job j within a fixed interval and that the vol-
ume formulas used for inference are the same (see Section 2.1). For particular algorithms
these general explanations are identical to previously published explanations. The added
value lies in the generalization to a whole class of propagation algorithms.

For the linear relaxation of cumulative constraints with optional jobs, we used the same
observation as for the conflict relaxation and showed how to construct a linear relaxation
from any propagation algorithm belonging to the class of energy-based propagation algo-
rithms, see Section 2.3.2. This general concept captures known linear relaxations for this
structure. In addition, we presented a new linear relaxation which is a corollary of our
concept using the energetic reasoning propagation algorithm (Inequalities 2.23).

Chapter 3 is dedicated to generic presolving techniques for the cumulative constraint. In
Section 3.3 we adapted the notions of variable locks and variable bounds to the cumulative
constraint. In addition, we generalize known problem specific presolving techniques for
the cumulative constraint, thus, making them available within a general purpose solver
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through the use of globally available structures, i.e., the variable bound graph. In Sec-
tion 3.4, we applied the concept of dual reductions described in Section 1.7 for generic
COPs and presented several dual reductions for the cumulative constraint. We developed
two types of dual reductions: one which analyzes the setup w.r.t. the effective horizon
(Definition 1.19), a concept introduced in this dissertation, and the other which infers
schedule-or-postpone situations. The effective horizon is also used to decompose cumu-
lative constraints (Lemma 3.7). These reductions are applicable to a single cumulative
constraint, but are also generalized to a set of cumulative constraints. Section 3.5 stated
presolving methods for the cumulative constraint with optional jobs. These methods rely
on presolving techniques for the cumulative constraint without optional jobs.

Chapter 4 contributed an extensive computational study of resource-constrained project
scheduling problems (Section 4.1) using the constraint integer programming solver SCIP.
We focused on three topics: (i) we evaluated the importance of the different propagation
algorithms available for cumulative constraints for resource-constrained project scheduling
problems; (ii) we analyzed the impact of a presolving phase; (iii) we presented results which
compare SCIP against a state-of-the-art solver for resource-constrained project scheduling
problems.

We observed that the edge-finding propagation algorithm in its implementation in SCIP
is not important at all for resource-constrained project scheduling problems. Disabling this
algorithm leads to a better performance for both considered sets (Section 4.2.1). This is
surprising since in the literature [Vil11, SFS13] it is reported that this algorithm is crucial
to solve some of the instances of the Psplib.

We evaluated the impact of different dual reductions for resource-constrained project
scheduling problems (Section 4.4), utilizing variable locks and the effective horizon. Our
experiments showed that these reductions often occur for resource-constrained project
scheduling problems with standard precedence constraints and less frequently for resource-
constrained project scheduling problems with generalized precedence constraints. The re-
sults further showed that our presolving techniques are able to find additional variable
fixings during the presolving phase.

In Section 4.5 we compared the capability of SCIP, as a cumulative scheduling solver to
a problem specific state-of-the-art implementation. The results clearly showed that SCIP
can be seen as a state-of-the-art solver for resource-constrained project scheduling problems
in its standard version as well as with generalized precedence constraints.

Resource allocation and scheduling problems were considered in Chapter 5. We consid-
ered three approaches to tackle this problem class: a logic-based Benders decomposition,
a mixed-integer programming approach, and a constraint integer programming model.

In Section 5.3, we used the linear relaxation for the cumulative constraint with op-
tional jobs, developed in Section 2.3, for an improved sub-problem relaxation within an
LBBD approach. Empirical results showed that the improved sub-problem relaxation is
the best choice. In Section 5.4, we discussed mixed-integer programming formulations for
the resource allocation and scheduling problem under investigation. We used a known
model [HO03] for this problem and analyzed its behavior for modern MIP solvers. As a
result we suggested an extended model which is superior to previously known models. In
Section 5.5, we presented a constraint integer programming model which uses the cumula-
tive constraint with optional jobs.

The results of the experiments presented in this chapter showed that both CIP and
MIP should be considered state-of-art models, along with LBBD, for the tested resource
allocation and scheduling problems.

150



Future work

Future work

The contribution of this thesis comprises three topics: dual reductions for constraint pro-
grams, the analysis of infeasible sub-problems with cumulative constraints, and using con-
straint integer programming to solve scheduling problems efficiently. For each of these
topics, we see numerous possibilities for further research.

Dual reductions

Dual reductions are a form of problem reformulation that removes problem components (e.g.
variables and/or values) and perhaps feasible and optimal solutions while guaranteeing that
at least one optimal solution remains in the transformed search space (provided the problem
is feasible). While there has been work in constraint programming (CP) on techniques
that can be understood to be dual reductions, notably in the form of symmetry breaking,
neither dual reductions nor their common implementation in presolving for MIP solvers
has received much attention in the CP community. We believe that both presolving and
dual reductions are promising general concepts to be implemented in a generic CP solver.

In this dissertation, we formalized variable locks by defining constraints that are mono-
tonously decreasing or increasing in a variable (Definition 1.11), as a means of collecting
information for constraint programs.

One essential condition for variable locks is that the variable domain is totally or-
dered. For problems without such an ordering, one could artificially introduce such an
order and apply the concepts of variable locks. Consider for example the all-different con-
straint [Lau78, vH01]. For a given set of variables, it enforces that each variable takes
a different value and, as a consequence, the domain of the variables does not need to be
totally ordered. Introducing an order, however, could lead to dual fixings, as shown in the
following example.

Example 5.3. Consider the variables x1 with domain {1, 3, 5} and x2 with a domain of
{2, 3, 4}. Using the natural ordering of the numbers, an all-different constraint over these
two variables has to lock both variables in both directions. Changing the domain orders
to {3, 1, 5} for x1 and to {2, 4, 3} for x2, an all-different constraint over these two variables
does not need to up-lock variable x1 and does not need to down up-lock variable x2.

The question arising from this observation is, which order on the domain values is the
best one w.r.t. dual reasoning.

The combination of variable locks and global constraints in CP is a novel aspect of
this work. Our development and analysis of valid dual reductions relies directly on the
semantics of the cumulative constraint whereas dual reasoning in MIP is based on the
comparatively limited structure embodied by a linear constraint. We believe therefore that,
just as standard constraint inference relies on the meaning of a global constraint, there is a
rich vein of reasoning that can be done by deriving and combining dual information based
on the semantics of a global constraint.

Variable locks are one way for a constraint-based system to collect dual information. We
showed how such information can be used for the cumulative constraint. A next step is to
analyze other global constraints and develop other concepts that provide similar information
for a constraint-based system.
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Analysis of infeasible sub-problems

Learning from infeasible sub-problems is a powerful tool for any solver that is based on a
tree search. The analysis of infeasible sub-problems generates conflict constraints which
need to be fulfilled by any feasible solution and form a relaxation of the original problem.
This relaxation provides statistics about the distribution of variables in conflict constraints
which can be used to drive the search (Section 2.2.1). To do a conflict analysis as described
in Section 2.2, it is crucial, that for each bound change, an explanation (Definition 2.6)
is present. These explanations can be represented as an implication graph containing
the information which sets of bound changes force the problem to be infeasible. For a
clause as it appears in a SAT problem, there exists a unique explanation for each bound
change derived from unit propagation. For a (general) linear constraint or the cumulative
constraint considered in this dissertation, an explanation does not need to be unique:
there are many possible implication graphs. This observation raises the question which
explanation should be used:

▷ Should an explanation be small w.r.t. the number of bound changes?

▷ If there are several explanations of the same size, which is the better one?

▷ Should the construction of an explanation consider the structure of the current search
tree since each bound change is associated with a search node?

▷ Should an explanation be chosen which results in a minimum extension of the impli-
cation graph?

Explanations as defined in this dissertation (Definition 2.6) are limited to a set of bound
changes where bound changes can be seen as the primitives of the solver for domain prop-
agation. If an overload is detected by a cumulative constraint within a time interval, it
often is clear that symmetric overloads exist by shifting all jobs to the left or to the right
w.r.t. their possible start time. Hence, such an overload can be seen as a representative of
a set of overloads.

Example 5.4. Consider three jobs each with a unit demand and a processing time of 5
units. Job 1 has a release date of 0 and a due date of 10, job 2 is released at time point 5
and must be finished by time point 15, and job 3 is available at time point 0 and has a due
date of 15. Assume that these three jobs need be processed by a resource with a capacity
of 2. At most two jobs can be processed in parallel.

An overload w.r.t. the time interval [7, 8) is given if the earliest start times of job 1
and 3 are shifted to 3, and the latest start time of job two and three is moved to 7. If we
denote the start time variables for the three jobs with S1, S2, and S3, the overload can be
explained with the following bound changes:

JS1 ≥ 3K ∩ JS3 ≥ 3K ∩ JS2 ≤ 7K ∩ JS3 ≤ 7K.

From the structure of the cumulative constraint and the given (global) bounds for the
start time variables, this overload can seen as representative of a set of overloads. For
each t ∈ {−3,−2,−1, 0, 1, 2, 3} the following bound changes lead to an overload for the
cumulative constraint in the time interval [7 + t, 8 + t):

JS1 ≥ 3 + tK ∩ JS3 ≥ 3 + tK ∩ JS2 ≤ 7 + tK ∩ JS3 ≤ 7 + tK.
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The question is whether the idea of generating a set of alternative explanations can be
realized efficiently and whether it helps to improve the performance of a solver.

CIP for scheduling

There are a number of areas of future work both on extending the LBBD, MIP, and CIP
approaches to related scheduling problems and in developing the technology of CIP for
scheduling.

We have demonstrated through the integration of the optcumulative constraint that
global constraint-based presolving, inferences, and relaxations can lead to state-of-the-art
performance. We believe that the further integration of global constraint reasoning into
a CIP framework for scheduling and other optimization problems is a promising field for
future research.

In [Hoo11], Hooker presented LBBD models for extensions of the problem studied here
with a number of different optimization functions. For such problems, LBBD is able to pro-
duce feasible sub-optimal solutions during the solving process without necessarily finding
an optimal solution. Therefore, one of the main advantages, finding feasible sub-optimal
solution during the solving process, of the MIP and CIP techniques compared to LBBD
does not appear. It will be valuable to understand how adaptations of the MIP and CIP
models presented here perform for these extended problems. Another important class of
scheduling problems include temporal constraints among jobs on different resources. Such
constraints destroy the independent sub-problem structure that LBBD and, to a lesser
extent, the other models exploit. Exact techniques struggle on such problems including
flexible job shop scheduling [FSMJ07].

Our results for resource-constrained project scheduling problems and resource allocation
and scheduling problems showed that all models are unable to find optimal solutions as the
number of jobs scales. With even more jobs, the only achievable performance measure will
be the quality of feasible solutions that are found. We expect LBBD to perform poorly
given that it does not provide sub-optimal solutions for resource allocation and scheduling
problems. However, as the problem size increases the time-indexed formulation on the
MIP model will also fail due to the sheer model size. CIP and the pure CP model [HB12a]
would appear to be the only exact techniques likely to continue to deliver feasible solutions.
Confirming this conjecture, as well as comparing the model performance to incomplete
techniques (i.e., heuristic and metaheuristics) is therefore another area for future work.
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