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Zuse Institute Berlin – Fast Algorithms, Fast Computers

A research institute and computing center of the State of Berlin with
research units:
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• Visualization and Data Analysis
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Energy – Transportation – Health – Mathematical Optimization Methods

• Scientific Information Systems
• Computer Science and High Performance Computing
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Meet the SCIP Team

26 active developers

• 4 running Bachelor and Master projects
• 14 running PhD projects
• 8 postdocs and professors

4 development centers in Germany

• ZIB: SCIP, SoPlex, UG, ZIMPL
• TU Darmstadt: SCIP and SCIP-SDP
• FAU Erlangen-Nürnberg: SCIP
• RWTH Aachen: GCG

Many international contributors and users

• more than 10 000 downloads per year from 100+ countries

Careers

• 10 awards for Masters and PhD theses: MOS, EURO, GOR, DMV
• 7 former developers are now building commercial optimization soǒtware at CPLEX,
FICO Xpress, Gurobi, MOSEK, and GAMS
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Introduction



Mixed Integer Programs

min cTx
s.t. Ax ≥ b

ℓ ≤ x ≤ u
x ∈ {0, 1}nb × Zni−nb ×Qn−ni

(MIP)

Solution method:

• typically solved with branch-and-cut
• at each node, an LP relaxation is (re-)solved with the dual Simplex
algorithm

• primal heuristics, e.g., Large Neighborhood Search and diving methods,
support the solution process
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Introduction

Large Neighborhood Search for MIP



LNS and the Auxiliary MIP

Auxiliary MIP
Let P be a MIP with solution set FP. For a polyhedron N ⊆ Qn and objective
coefficients caux ∈ Qn, a MIP Paux defined as

min
{
cTauxx | x ∈ FP ∩N

}
is called an auxiliary MIP of P, and N is called neighborhood.

Large Neighborhood Search (LNS) heuristics solve auxiliary MIPs and can be
distinguished by their respective neighborhoods.
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Typical LNS Neighborhoods

LetM ⊆ {1, . . . ,ni}, x∗ ∈ Qn.

• Fixing neighborhood

N fix(M, x∗) :=
{
x ∈ Qn | xj = x∗j ∀j ∈ M

}

• Improvement neighborhood

N obj(δ, xinc) :=
{
x ∈ Qn | cTx ≤ (1− δ) · cTxinc + δ · cdual

}
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Examples of LNS Heuristics

Relaxation Induced Neighborhood Search (RINS) [Danna et al., 2005]

NRINS := N fix
(
M=

({
xlp, xinc

})
, xinc

)
∩N obj

(
δ, xinc

)
.

Local Branching [Fischetti and Lodi, 2003]

NLBranch :=
{
x ∈ Qn |

∥∥∥x− xinc
∥∥∥
b
≤ dmax

}
∩N obj(δ, xinc)
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Famous LNS Heuristics

• Relaxation Induced Neighborhood Search (RINS) [Danna et al., 2005]
• Local Branching [Fischetti and Lodi, 2003]

• Crossover, Mutation [Rothberg, 2007]
• RENS [Berthold, 2014]
• Proximity [Fischetti and Monaci, 2014]
• DINS [Ghosh, 2007]
• Zeroobjective [in SCIP, Gurobi, XPress,…]
• Analytic Center Search [Berthold et al., 2017]
• …
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Introduction

Multi-Armed Bandit Selection



The Multi-Armed Bandit Problem

• Discrete time steps t = 1, 2, . . .
• Finite set of actions H

1. Choose ht ∈ H

2. Observe reward r(ht, t) ∈ [0, 1]
3. Goal: Maximize

∑
t r(ht, t)

Two main scenarios:

• stochastic i.i.d. rewards for each action over time
• adversarial an opponent tries to maximize the player’s regret.

Literature: [Bubeck and Cesa-Bianchi, 2012]
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Bandit Algorithms

Let Th(t) =
∑
t′≤t

1h=ht and r̄h(t) = 1
Th(t)

∑
t′≤t

rh,t1h=ht

ε-greedy
Select heuristic at random with probability εt = ε

√
|H|
t , otherwise use best.

Upper Confidence Bound (UCB)

ht ∈

argmax
h∈H

{
r̄h(t− 1) +

√
α ln(1+t)
Th(t−1)

}
if t > |H|,

{Ht} if t ≤ |H|.

Exp.3
ph,t = (1− γ) · exp(wh,t)∑

h′ exp(wh′,t)
+ γ · 1

|H|

Individual parameters α, ε, γ ≥ 0 can be calibrated to the problem at hand.
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SCIP’s Adaptive LNS



Adaptive Large Neighborhood Search

• new primal heuristic plugin heur_alns.c
• controls 8 neighborhoods
• neighborhoods are bandit-selected based on their reward
• further algorithmic steps: generic fixings, adaptive fixing rate
• released with SCIP 5.0, improved in SCIP 6.0
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SCIP’s Adaptive LNS

Reward Function for LNS



Rewarding Neighborhoods

Goal A suitable reward function ralns(ht, t) ∈ [0, 1]

Solution Reward

rsol(ht, t) =

1 , if xold ̸= xnew

0 , else

Gap Reward

rgap(ht, t) =
cTxold − cTxnew

cTxold − cdual

Failure Penalty

rfail(ht, t) =

1, if xold ̸= xnew

1− ϕ(ht, t) n(ht)nlim
ralns(.)

+

+

rsol(.)

·η1

rgap(.)

·(1− η1)

scaling (opt.)

·η2
rfail(.)

·(1− η2)

Default settings in ALNS: η1 = 0.8, η2 = 0.5
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SCIP’s Adaptive LNS

Computational Results



Simulation for Parameter Calibration

• Always execute all 8
neighborhoods with
ALNS (disable old LNS
heuristics)

• Disable solution
transfer

• Record each reward
• Fixing rates 0.1− 0.9 0

250

500

750

0 20 40 60

ALNS calls

In
st

an
ce

s

Fixing rate

0.1

0.3

0.5

0.7

0.9

Test Set
666 instances from the test sets MIPLIB3, MIPLIB2003, MIPLIB2010, Cor@l, 5h
time limit.
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UCB Calibration

Simulate 100 repetitions of UCB, Exp.3, and ϵ-greedy on the data

●

●

●

●

●

0.40

0.45

0.50
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Fixing rate

S
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e
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alpha_0.8
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alpha_0.0016

avg

ht ∈

argmax
h∈H

{
r̄h(t− 1) +

√
α ln(1+t)
Th(t−1)

}
if t > |H|,

{Ht} if t ≤ |H|.
(UCB)
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Learning Curve of UCB

●

●

●

●

●

●●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●●

●

●

●

●●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

0.2

0.4

0.6

0.8

1.0

0 20 40 60

Call

S
ol

. r
at

e

UCB
● alpha_0

alpha_0.0016

avg

ht ∈

argmax
h∈H

{
r̄h(t− 1) +

√
α ln(1+t)
Th(t−1)

}
if t > |H|,

{Ht} if t ≤ |H|.
(UCB)

Gregor Hendel – SCIP’s Adaptive Primal Heuristics 16/32



More Learning Curves
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Performance of the ALNS Framework
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Diving & Adaptive Diving



Diving Heuristics

9 different diving heuristics explore an auxiliary tree in probing mode.

1

2

4 5

d1

d2

d3 d4

3

Diving Heuristics in
SCIP [Achterberg, 2007]
• coefficient diving
• fractionality diving
• guided diving [Danna et al., 2005]
• pseudo costs
• …

Information from Diving:
• Primal solutions
• Variable branching history (pseudo
costs, …)

• Conflict clauses
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Reward Functions for Diving

Goal of Selection
Improving both primal solutions and relevant search information

Problem: Solutions are only rarely found by diving heuristics, see
also [Khalil et al., 2017].

Possible reward measures that discriminate better:

• minimum avg. depth
• minimum backtracks/conflict ratio
• minimum avg. probing nodes
• minimum avg. LP iterations

Unlikely that there is a unique best diving algorithm⇒ use weighted
sampling method with inverse probabilities as in LP pricing.
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Computational Results

Group # Setting Solved Time rel.

all 1477 default 1005 152.54 1.000
adaptive diving 1020 146.05 0.957

≥ 100 sec. 396 default 363 485.39 1.000
adaptive diving 378 436.99 0.900

Setup:

adaptive diving selects from 9 diving heuristics. It is called in addition to the SCIP diving heuristics.

Test set: 496 instances from MIPLIBs & Cor@l benchmark sets 1h time limit, default + 2 LP Seeds,
48 node cluster with 16 Intel Xeon Gold 5122 @ 3.60GHz, 96GB, Ubuntu 16.04

Instance,seed pairs are treated as individual observations.
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Adaptive Diving

Adaptive Diving will be one of the main new features in SCIP 7.0. It

• automatically incorporates user diving heuristics1, if the user sets the
visibility to public.

• Selects via weighted sampling based on conflicts/backtrack, or simply
revolves through the available diving strategies.

• Provides new score types, including number of found solutions.
• learns, by default, from its own calls, but also from individual runs of
the heuristics.

1see SCIP Docu for information how to write diving heuristics.
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Outlook: Adaptive LP Pricing



LP Pricing Selection

SCIP features the parameter lp/pricing = …

s(teepest edge) d(evex) q(uick start steep)
[Forrest and Goldfarb, 1992] [Harris, 1973]

neos-1601936 1098.50 2126.55 1502.57
nw04 46.90 21.34 31.08
pigeon-12 3600.00 3600.00 3.02

Automatic selection strategy within SoPlex: run devex for 10000 iterations,
then switch to steepest edge.

Goal: Maximize LP throughput
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LP Pricing Goal and Setup

Maximize LP throughput⇔ discover and select the LP pricing with minimum expected running
time τ∗

p , p ∈ {devex, steep, qsteep}

Problem for UCB: Need [0, 1] score to maximize

Solution: Scale the (normalized) reward

• Let τt,p be the measured running time for pricer p at step t
• Use reward rt,p = 1

1+
τt,p
τ̄p

for UCB

1st alternative: UCB variant (shiǒted greedy) (thanks to Tobias Achterberg)

• select a favorite pricer, w.l.o.g. p1
• use shiǒt vector σ ∈ R+

P σp1 = 100, σp = 50 for p ̸= p1
• always start with p1 for a couple of resolves
• only start selection process if average iterations of p1 exceed a threshold, e.g., 20.
• always select the pricer that minimizes

τ̄
σ
p =

∑
t 1pt=pτt,p

Tp(t− 1) + σp

2nd alternative: Turn shiǒted greedy weights into weighted sampling weights

• compute shiǒted version of average as in shiǒted greedy
• sample from weight distribution wp,t ∝ 1

τ̄σ
p +10−4

Gregor Hendel – SCIP’s Adaptive Primal Heuristics 24/32



LP Pricing Goal and Setup

Maximize LP throughput⇔ discover and select the LP pricing with minimum expected running
time τ∗

p , p ∈ {devex, steep, qsteep}

Problem for UCB: Need [0, 1] score to maximize

Solution: Scale the (normalized) reward

• Let τt,p be the measured running time for pricer p at step t
• Use reward rt,p = 1

1+
τt,p
τ̄p

for UCB

1st alternative: UCB variant (shiǒted greedy) (thanks to Tobias Achterberg)

• select a favorite pricer, w.l.o.g. p1
• use shiǒt vector σ ∈ R+

P σp1 = 100, σp = 50 for p ̸= p1
• always start with p1 for a couple of resolves
• only start selection process if average iterations of p1 exceed a threshold, e.g., 20.
• always select the pricer that minimizes

τ̄
σ
p =

∑
t 1pt=pτt,p

Tp(t− 1) + σp

2nd alternative: Turn shiǒted greedy weights into weighted sampling weights

• compute shiǒted version of average as in shiǒted greedy
• sample from weight distribution wp,t ∝ 1

τ̄σ
p +10−4

Gregor Hendel – SCIP’s Adaptive Primal Heuristics 24/32



LP Pricing Goal and Setup

Maximize LP throughput⇔ discover and select the LP pricing with minimum expected running
time τ∗

p , p ∈ {devex, steep, qsteep}

Problem for UCB: Need [0, 1] score to maximize

Solution: Scale the (normalized) reward

• Let τt,p be the measured running time for pricer p at step t
• Use reward rt,p = 1

1+
τt,p
τ̄p

for UCB

1st alternative: UCB variant (shiǒted greedy) (thanks to Tobias Achterberg)

• select a favorite pricer, w.l.o.g. p1
• use shiǒt vector σ ∈ R+

P σp1 = 100, σp = 50 for p ̸= p1
• always start with p1 for a couple of resolves
• only start selection process if average iterations of p1 exceed a threshold, e.g., 20.
• always select the pricer that minimizes

τ̄
σ
p =

∑
t 1pt=pτt,p

Tp(t− 1) + σp

2nd alternative: Turn shiǒted greedy weights into weighted sampling weights

• compute shiǒted version of average as in shiǒted greedy
• sample from weight distribution wp,t ∝ 1

τ̄σ
p +10−4

Gregor Hendel – SCIP’s Adaptive Primal Heuristics 24/32



LP Pricing Goal and Setup

Maximize LP throughput⇔ discover and select the LP pricing with minimum expected running
time τ∗

p , p ∈ {devex, steep, qsteep}

Problem for UCB: Need [0, 1] score to maximize

Solution: Scale the (normalized) reward

• Let τt,p be the measured running time for pricer p at step t
• Use reward rt,p = 1

1+
τt,p
τ̄p

for UCB

1st alternative: UCB variant (shiǒted greedy) (thanks to Tobias Achterberg)

• select a favorite pricer, w.l.o.g. p1
• use shiǒt vector σ ∈ R+

P σp1 = 100, σp = 50 for p ̸= p1
• always start with p1 for a couple of resolves
• only start selection process if average iterations of p1 exceed a threshold, e.g., 20.
• always select the pricer that minimizes

τ̄
σ
p =

∑
t 1pt=pτt,p

Tp(t− 1) + σp

2nd alternative: Turn shiǒted greedy weights into weighted sampling weights

• compute shiǒted version of average as in shiǒted greedy
• sample from weight distribution wp,t ∝ 1

τ̄σ
p +10−4

Gregor Hendel – SCIP’s Adaptive Primal Heuristics 24/32



Computational Results

LP Solver CPLEX 12.7.1
LP throughput Time

Group # Pricing solved abs. rel. abs. rel.

all 593 devex 288 72.4 1.000 152.30 1.000
qsteep 289 74.7 1.032 144.93 0.952
steep 288 76.4 1.056 147.34 0.967
weighted 289 73.0 1.009 148.40 0.974
UCB 292 79.6 1.100 147.56 0.969
sh. greedy 292 80.8 1.117 143.94 0.945

LP Solver SoPlex 3.1.1
LP throughput Time

Group # Pricing solved abs. rel. abs. rel.

all 587 devex 279 44.2 1.000 167.36 1.000
qsteep 272 35.0 0.793 181.74 1.086
steep 280 37.7 0.854 178.01 1.064
weighted 282 42.7 0.966 170.75 1.020
UCB 284 45.5 1.031 168.82 1.009
sh. greedy 288 50.5 1.144 163.93 0.980

Test set: 150 instances from a total of 666 (MIPLIBs & Cor@l), time limit, default + 3 LP Seeds, 48
node cluster with 16 Intel Xeon Gold 5122 @ 3.60GHz, 96GB, Ubuntu 16.04
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Conclusion

• bandit selection variants for LP pricing selection, diving heuristics, and
Large Neighborhood Search heuristics

• different scenarios require different reward functions and selection
strategies

• adaptive selection yields computational benefits in all three cases.

In the future, we would like to
• finalize the LP pricing prototype

• switch to deterministic LP time
measurement

• calibrate bandit parameters
• exploit seemingly lognormal distribution
of LP solving time for simulation and
different bandit algorithm (Thompson
sampling)

• investigate the usefulness of keeping
learned information for future solves.
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Further Literature

• Gregor Hendel, Matthias Miltenberger, and Jakob Witzig, Adaptive
Algorithmic Behavior for Solving Mixed Integer Programs Using Bandit
Algorithms, OR 2018: International Conference on Operations Research,
accepted for publication, Preprint

• Gregor Hendel, Adaptive Large Neighborhood Search for MIP, December
2018, under review, Preprint.

• Ambros Gleixner et al., The SCIP Optimization Suite 6.0, ZIB-Report 18-26,
July 2018, Link
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Thank you for your attention!

Visit scip.zib.de.
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