
Introducing Adaptive Algorithmic Behavior of Primal
Heuristics in SCIP for Solving Mixed Integer Programs

Gregor Hendel, hendel@zib.de
joint work with Matthias Miltenberger and Jakob Witzig
Monash University, Melbourne, Australia, 22 March, 2019

Gregor Hendel – SCIP’s Adaptive Primal Heuristics 1/32

mailto:hendel@zib.de

Zuse Institute Berlin – Fast Algorithms, Fast Computers

A research institute and computing center of the State of Berlin with
research units:

• Numerical Analysis and Modeling
• Visualization and Data Analysis
• Optimization:
Energy – Transportation – Health – Mathematical Optimization Methods

• Scientific Information Systems
• Computer Science and High Performance Computing

Gregor Hendel – SCIP’s Adaptive Primal Heuristics 2/32

Meet the SCIP Team

26 active developers

• 4 running Bachelor and Master projects
• 14 running PhD projects
• 8 postdocs and professors

4 development centers in Germany

• ZIB: SCIP, SoPlex, UG, ZIMPL
• TU Darmstadt: SCIP and SCIP-SDP
• FAU Erlangen-Nürnberg: SCIP
• RWTH Aachen: GCG

Many international contributors and users

• more than 10 000 downloads per year from 100+ countries

Careers

• 10 awards for Masters and PhD theses: MOS, EURO, GOR, DMV
• 7 former developers are now building commercial optimization soǒtware at CPLEX,
FICO Xpress, Gurobi, MOSEK, and GAMS

Gregor Hendel – SCIP’s Adaptive Primal Heuristics 3/32

Overview

Introduction

Large Neighborhood Search for MIP

Multi-Armed Bandit Selection

SCIP’s Adaptive LNS

Reward Function for LNS

Computational Results

Diving & Adaptive Diving

Outlook: Adaptive LP Pricing

Gregor Hendel – SCIP’s Adaptive Primal Heuristics 4/32

Introduction

Mixed Integer Programs

min cTx
s.t. Ax ≥ b

ℓ ≤ x ≤ u
x ∈ {0, 1}nb × Zni−nb ×Qn−ni

(MIP)

Solution method:

• typically solved with branch-and-cut
• at each node, an LP relaxation is (re-)solved with the dual Simplex
algorithm

• primal heuristics, e.g., Large Neighborhood Search and diving methods,
support the solution process

Gregor Hendel – SCIP’s Adaptive Primal Heuristics 5/32

Introduction

Large Neighborhood Search for MIP

LNS and the Auxiliary MIP

Auxiliary MIP
Let P be a MIP with solution set FP. For a polyhedron N ⊆ Qn and objective
coefficients caux ∈ Qn, a MIP Paux defined as

min
{
cTauxx | x ∈ FP ∩N

}
is called an auxiliary MIP of P, and N is called neighborhood.

Large Neighborhood Search (LNS) heuristics solve auxiliary MIPs and can be
distinguished by their respective neighborhoods.

Gregor Hendel – SCIP’s Adaptive Primal Heuristics 6/32

Typical LNS Neighborhoods

LetM ⊆ {1, . . . ,ni}, x∗ ∈ Qn.

• Fixing neighborhood

N fix(M, x∗) :=
{
x ∈ Qn | xj = x∗j ∀j ∈ M

}

• Improvement neighborhood

N obj(δ, xinc) :=
{
x ∈ Qn | cTx ≤ (1− δ) · cTxinc + δ · cdual

}

Gregor Hendel – SCIP’s Adaptive Primal Heuristics 7/32

Typical LNS Neighborhoods

LetM ⊆ {1, . . . ,ni}, x∗ ∈ Qn.

• Fixing neighborhood

N fix(M, x∗) :=
{
x ∈ Qn | xj = x∗j ∀j ∈ M

}

• Improvement neighborhood

N obj(δ, xinc) :=
{
x ∈ Qn | cTx ≤ (1− δ) · cTxinc + δ · cdual

}

Gregor Hendel – SCIP’s Adaptive Primal Heuristics 7/32

Examples of LNS Heuristics

Relaxation Induced Neighborhood Search (RINS) [Danna et al., 2005]

NRINS := N fix
(
M=

({
xlp, xinc

})
, xinc

)
∩N obj

(
δ, xinc

)
.

Local Branching [Fischetti and Lodi, 2003]

NLBranch :=
{
x ∈ Qn |

∥∥∥x− xinc
∥∥∥
b
≤ dmax

}
∩N obj(δ, xinc)

Gregor Hendel – SCIP’s Adaptive Primal Heuristics 8/32

Examples of LNS Heuristics

Relaxation Induced Neighborhood Search (RINS) [Danna et al., 2005]

NRINS := N fix
(
M=

({
xlp, xinc

})
, xinc

)
∩N obj

(
δ, xinc

)
.

Local Branching [Fischetti and Lodi, 2003]

NLBranch :=
{
x ∈ Qn |

∥∥∥x− xinc
∥∥∥
b
≤ dmax

}
∩N obj(δ, xinc)

Gregor Hendel – SCIP’s Adaptive Primal Heuristics 8/32

Famous LNS Heuristics

• Relaxation Induced Neighborhood Search (RINS) [Danna et al., 2005]
• Local Branching [Fischetti and Lodi, 2003]

• Crossover, Mutation [Rothberg, 2007]
• RENS [Berthold, 2014]
• Proximity [Fischetti and Monaci, 2014]
• DINS [Ghosh, 2007]
• Zeroobjective [in SCIP, Gurobi, XPress,…]
• Analytic Center Search [Berthold et al., 2017]
• …

Gregor Hendel – SCIP’s Adaptive Primal Heuristics 9/32

Famous LNS Heuristics

• Relaxation Induced Neighborhood Search (RINS) [Danna et al., 2005]
• Local Branching [Fischetti and Lodi, 2003]
• Crossover, Mutation [Rothberg, 2007]
• RENS [Berthold, 2014]
• Proximity [Fischetti and Monaci, 2014]
• DINS [Ghosh, 2007]
• Zeroobjective [in SCIP, Gurobi, XPress,…]
• Analytic Center Search [Berthold et al., 2017]
• …

Gregor Hendel – SCIP’s Adaptive Primal Heuristics 9/32

Introduction

Multi-Armed Bandit Selection

The Multi-Armed Bandit Problem

• Discrete time steps t = 1, 2, . . .
• Finite set of actions H

1. Choose ht ∈ H

2. Observe reward r(ht, t) ∈ [0, 1]
3. Goal: Maximize

∑
t r(ht, t)

Two main scenarios:

• stochastic i.i.d. rewards for each action over time
• adversarial an opponent tries to maximize the player’s regret.

Literature: [Bubeck and Cesa-Bianchi, 2012]

Gregor Hendel – SCIP’s Adaptive Primal Heuristics 10/32

The Multi-Armed Bandit Problem

• Discrete time steps t = 1, 2, . . .
• Finite set of actions H

1. Choose ht ∈ H

2. Observe reward r(ht, t) ∈ [0, 1]
3. Goal: Maximize

∑
t r(ht, t)

Two main scenarios:

• stochastic i.i.d. rewards for each action over time

• adversarial an opponent tries to maximize the player’s regret.

Literature: [Bubeck and Cesa-Bianchi, 2012]

Gregor Hendel – SCIP’s Adaptive Primal Heuristics 10/32

The Multi-Armed Bandit Problem

• Discrete time steps t = 1, 2, . . .
• Finite set of actions H

1. Choose ht ∈ H

2. Observe reward r(ht, t) ∈ [0, 1]
3. Goal: Maximize

∑
t r(ht, t)

Two main scenarios:

• stochastic i.i.d. rewards for each action over time
• adversarial an opponent tries to maximize the player’s regret.

Literature: [Bubeck and Cesa-Bianchi, 2012]

Gregor Hendel – SCIP’s Adaptive Primal Heuristics 10/32

Bandit Algorithms

Let Th(t) =
∑
t′≤t

1h=ht and r̄h(t) = 1
Th(t)

∑
t′≤t

rh,t1h=ht

ε-greedy
Select heuristic at random with probability εt = ε

√
|H|
t , otherwise use best.

Upper Confidence Bound (UCB)

ht ∈

argmax
h∈H

{
r̄h(t− 1) +

√
α ln(1+t)
Th(t−1)

}
if t > |H|,

{Ht} if t ≤ |H|.

Exp.3
ph,t = (1− γ) · exp(wh,t)∑

h′ exp(wh′,t)
+ γ · 1

|H|

Individual parameters α, ε, γ ≥ 0 can be calibrated to the problem at hand.

Gregor Hendel – SCIP’s Adaptive Primal Heuristics 11/32

Bandit Algorithms

Let Th(t) =
∑
t′≤t

1h=ht and r̄h(t) = 1
Th(t)

∑
t′≤t

rh,t1h=ht

ε-greedy
Select heuristic at random with probability εt = ε

√
|H|
t , otherwise use best.

Upper Confidence Bound (UCB)

ht ∈

argmax
h∈H

{
r̄h(t− 1) +

√
α ln(1+t)
Th(t−1)

}
if t > |H|,

{Ht} if t ≤ |H|.

Exp.3
ph,t = (1− γ) · exp(wh,t)∑

h′ exp(wh′,t)
+ γ · 1

|H|

Individual parameters α, ε, γ ≥ 0 can be calibrated to the problem at hand.

Gregor Hendel – SCIP’s Adaptive Primal Heuristics 11/32

Bandit Algorithms

Let Th(t) =
∑
t′≤t

1h=ht and r̄h(t) = 1
Th(t)

∑
t′≤t

rh,t1h=ht

ε-greedy
Select heuristic at random with probability εt = ε

√
|H|
t , otherwise use best.

Upper Confidence Bound (UCB)

ht ∈

argmax
h∈H

{
r̄h(t− 1) +

√
α ln(1+t)
Th(t−1)

}
if t > |H|,

{Ht} if t ≤ |H|.

Exp.3
ph,t = (1− γ) · exp(wh,t)∑

h′ exp(wh′,t)
+ γ · 1

|H|

Individual parameters α, ε, γ ≥ 0 can be calibrated to the problem at hand.

Gregor Hendel – SCIP’s Adaptive Primal Heuristics 11/32

Bandit Algorithms

Let Th(t) =
∑
t′≤t

1h=ht and r̄h(t) = 1
Th(t)

∑
t′≤t

rh,t1h=ht

ε-greedy
Select heuristic at random with probability εt = ε

√
|H|
t , otherwise use best.

Upper Confidence Bound (UCB)

ht ∈

argmax
h∈H

{
r̄h(t− 1) +

√
α ln(1+t)
Th(t−1)

}
if t > |H|,

{Ht} if t ≤ |H|.

Exp.3
ph,t = (1− γ) · exp(wh,t)∑

h′ exp(wh′,t)
+ γ · 1

|H|

Individual parameters α, ε, γ ≥ 0 can be calibrated to the problem at hand.

Gregor Hendel – SCIP’s Adaptive Primal Heuristics 11/32

SCIP’s Adaptive LNS

Adaptive Large Neighborhood Search

• new primal heuristic plugin heur_alns.c
• controls 8 neighborhoods
• neighborhoods are bandit-selected based on their reward
• further algorithmic steps: generic fixings, adaptive fixing rate
• released with SCIP 5.0, improved in SCIP 6.0

Gregor Hendel – SCIP’s Adaptive Primal Heuristics 12/32

SCIP’s Adaptive LNS

Reward Function for LNS

Rewarding Neighborhoods

Goal A suitable reward function ralns(ht, t) ∈ [0, 1]

Solution Reward

rsol(ht, t) =

1 , if xold ̸= xnew

0 , else

Gap Reward

rgap(ht, t) =
cTxold − cTxnew

cTxold − cdual

Failure Penalty

rfail(ht, t) =

1, if xold ̸= xnew

1− ϕ(ht, t) n(ht)nlim
ralns(.)

+

+

rsol(.)

·η1

rgap(.)

·(1− η1)

scaling (opt.)

·η2
rfail(.)

·(1− η2)

Default settings in ALNS: η1 = 0.8, η2 = 0.5

Gregor Hendel – SCIP’s Adaptive Primal Heuristics 13/32

Rewarding Neighborhoods

Goal A suitable reward function ralns(ht, t) ∈ [0, 1]

Solution Reward

rsol(ht, t) =

1 , if xold ̸= xnew

0 , else

Gap Reward

rgap(ht, t) =
cTxold − cTxnew

cTxold − cdual

Failure Penalty

rfail(ht, t) =

1, if xold ̸= xnew

1− ϕ(ht, t) n(ht)nlim
ralns(.)

+

+

rsol(.)

·η1

rgap(.)

·(1− η1)

scaling (opt.)

·η2
rfail(.)

·(1− η2)

Default settings in ALNS: η1 = 0.8, η2 = 0.5

Gregor Hendel – SCIP’s Adaptive Primal Heuristics 13/32

Rewarding Neighborhoods

Goal A suitable reward function ralns(ht, t) ∈ [0, 1]

Solution Reward

rsol(ht, t) =

1 , if xold ̸= xnew

0 , else

Gap Reward

rgap(ht, t) =
cTxold − cTxnew

cTxold − cdual

Failure Penalty

rfail(ht, t) =

1, if xold ̸= xnew

1− ϕ(ht, t) n(ht)nlim
ralns(.)

+

+

rsol(.)

·η1

rgap(.)

·(1− η1)

scaling (opt.)

·η2
rfail(.)

·(1− η2)

Default settings in ALNS: η1 = 0.8, η2 = 0.5

Gregor Hendel – SCIP’s Adaptive Primal Heuristics 13/32

Rewarding Neighborhoods

Goal A suitable reward function ralns(ht, t) ∈ [0, 1]

Solution Reward

rsol(ht, t) =

1 , if xold ̸= xnew

0 , else

Gap Reward

rgap(ht, t) =
cTxold − cTxnew

cTxold − cdual

Failure Penalty

rfail(ht, t) =

1, if xold ̸= xnew

1− ϕ(ht, t) n(ht)nlim

ralns(.)

+

+

rsol(.)

·η1

rgap(.)

·(1− η1)

scaling (opt.)

·η2
rfail(.)

·(1− η2)

Default settings in ALNS: η1 = 0.8, η2 = 0.5

Gregor Hendel – SCIP’s Adaptive Primal Heuristics 13/32

Rewarding Neighborhoods

Goal A suitable reward function ralns(ht, t) ∈ [0, 1]

Solution Reward

rsol(ht, t) =

1 , if xold ̸= xnew

0 , else

Gap Reward

rgap(ht, t) =
cTxold − cTxnew

cTxold − cdual

Failure Penalty

rfail(ht, t) =

1, if xold ̸= xnew

1− ϕ(ht, t) n(ht)nlim
ralns(.)

+

+

rsol(.)

·η1

rgap(.)

·(1− η1)

scaling (opt.)

·η2
rfail(.)

·(1− η2)

Default settings in ALNS: η1 = 0.8, η2 = 0.5

Gregor Hendel – SCIP’s Adaptive Primal Heuristics 13/32

SCIP’s Adaptive LNS

Computational Results

Simulation for Parameter Calibration

• Always execute all 8
neighborhoods with
ALNS (disable old LNS
heuristics)

• Disable solution
transfer

• Record each reward
• Fixing rates 0.1− 0.9 0

250

500

750

0 20 40 60

ALNS calls

In
st

an
ce

s

Fixing rate

0.1

0.3

0.5

0.7

0.9

Test Set
666 instances from the test sets MIPLIB3, MIPLIB2003, MIPLIB2010, Cor@l, 5h
time limit.

Gregor Hendel – SCIP’s Adaptive Primal Heuristics 14/32

UCB Calibration

Simulate 100 repetitions of UCB, Exp.3, and ϵ-greedy on the data

●

●

●

●

●

0.40

0.45

0.50

0.55

0.1 0.3 0.5 0.7 0.9

Fixing rate

S
ol

. r
at

e

UCB
● alpha_0

alpha_0.2

alpha_0.4

alpha_0.6

alpha_0.8

alpha_1

alpha_0.0016

avg

ht ∈

argmax
h∈H

{
r̄h(t− 1) +

√
α ln(1+t)
Th(t−1)

}
if t > |H|,

{Ht} if t ≤ |H|.
(UCB)

Gregor Hendel – SCIP’s Adaptive Primal Heuristics 15/32

Learning Curve of UCB

●

●

●

●

●

●●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●●

●

●

●

●●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

0.2

0.4

0.6

0.8

1.0

0 20 40 60

Call

S
ol

. r
at

e

UCB
● alpha_0

alpha_0.0016

avg

ht ∈

argmax
h∈H

{
r̄h(t− 1) +

√
α ln(1+t)
Th(t−1)

}
if t > |H|,

{Ht} if t ≤ |H|.
(UCB)

Gregor Hendel – SCIP’s Adaptive Primal Heuristics 16/32

More Learning Curves

●

●

●

●

●

●
●

●
●

●

●
●

●●●

●

●

●●●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●●

●

●●
●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

0.2

0.4

0.6

0.8

1.0

0 20 40 60

Call

S
ol

. r
at

e

Exp.3
● gamma_0.15

gamma_0.45

gamma_0.95

gamma_0.07041455

avg

●

●

●

●

●

●

●

●●

●

●●
●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●
●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

0.2

0.4

0.6

0.8

1.0

0 20 40 60

Call

S
ol

. r
at

e

Eps−greedy
● eps_0.5

eps_0.4685844

avg

Gregor Hendel – SCIP’s Adaptive Primal Heuristics 17/32

Performance of the ALNS Framework

 −1.5
 −1.9

 −1.3

 0.0

−10.6

−11.4
−10.9

 0.0

 0.9
 0.2

 1.5

 0.0

 −1.7

 −4.6

 −2.5

 0.0

−12

−8

−4

0

all Diff Eq MIPLIB2010

Instance Group

R
el

. T
im

e
%

Settings

ALNS off

Eps−greedy

Exp.3

UCB

Gregor Hendel – SCIP’s Adaptive Primal Heuristics 18/32

Diving & Adaptive Diving

Diving Heuristics

9 different diving heuristics explore an auxiliary tree in probing mode.

1

2

4 5

d1

d2

d3 d4

3

Diving Heuristics in
SCIP [Achterberg, 2007]
• coefficient diving
• fractionality diving
• guided diving [Danna et al., 2005]
• pseudo costs
• …

Information from Diving:
• Primal solutions
• Variable branching history (pseudo
costs, …)

• Conflict clauses

Gregor Hendel – SCIP’s Adaptive Primal Heuristics 19/32

Reward Functions for Diving

Goal of Selection
Improving both primal solutions and relevant search information

Problem: Solutions are only rarely found by diving heuristics, see
also [Khalil et al., 2017].

Possible reward measures that discriminate better:

• minimum avg. depth
• minimum backtracks/conflict ratio
• minimum avg. probing nodes
• minimum avg. LP iterations

Unlikely that there is a unique best diving algorithm⇒ use weighted
sampling method with inverse probabilities as in LP pricing.

Gregor Hendel – SCIP’s Adaptive Primal Heuristics 20/32

Computational Results

Group # Setting Solved Time rel.

all 1477 default 1005 152.54 1.000
adaptive diving 1020 146.05 0.957

≥ 100 sec. 396 default 363 485.39 1.000
adaptive diving 378 436.99 0.900

Setup:

adaptive diving selects from 9 diving heuristics. It is called in addition to the SCIP diving heuristics.

Test set: 496 instances from MIPLIBs & Cor@l benchmark sets 1h time limit, default + 2 LP Seeds,
48 node cluster with 16 Intel Xeon Gold 5122 @ 3.60GHz, 96GB, Ubuntu 16.04

Instance,seed pairs are treated as individual observations.

Gregor Hendel – SCIP’s Adaptive Primal Heuristics 21/32

Adaptive Diving

Adaptive Diving will be one of the main new features in SCIP 7.0. It

• automatically incorporates user diving heuristics1, if the user sets the
visibility to public.

• Selects via weighted sampling based on conflicts/backtrack, or simply
revolves through the available diving strategies.

• Provides new score types, including number of found solutions.
• learns, by default, from its own calls, but also from individual runs of
the heuristics.

1see SCIP Docu for information how to write diving heuristics.

Gregor Hendel – SCIP’s Adaptive Primal Heuristics 22/32

https://scip.zib.de/doc/html/DIVINGHEUR.php

Outlook: Adaptive LP Pricing

LP Pricing Selection

SCIP features the parameter lp/pricing = …

s(teepest edge) d(evex) q(uick start steep)
[Forrest and Goldfarb, 1992] [Harris, 1973]

neos-1601936 1098.50 2126.55 1502.57
nw04 46.90 21.34 31.08
pigeon-12 3600.00 3600.00 3.02

Automatic selection strategy within SoPlex: run devex for 10000 iterations,
then switch to steepest edge.

Goal: Maximize LP throughput

Gregor Hendel – SCIP’s Adaptive Primal Heuristics 23/32

LP Pricing Selection

SCIP features the parameter lp/pricing = …

s(teepest edge) d(evex) q(uick start steep)
[Forrest and Goldfarb, 1992] [Harris, 1973]

neos-1601936 1098.50 2126.55 1502.57
nw04 46.90 21.34 31.08
pigeon-12 3600.00 3600.00 3.02

Automatic selection strategy within SoPlex: run devex for 10000 iterations,
then switch to steepest edge.

Goal: Maximize LP throughput

Gregor Hendel – SCIP’s Adaptive Primal Heuristics 23/32

LP Pricing Goal and Setup

Maximize LP throughput⇔ discover and select the LP pricing with minimum expected running
time τ∗

p , p ∈ {devex, steep, qsteep}

Problem for UCB: Need [0, 1] score to maximize

Solution: Scale the (normalized) reward

• Let τt,p be the measured running time for pricer p at step t
• Use reward rt,p = 1

1+
τt,p
τ̄p

for UCB

1st alternative: UCB variant (shiǒted greedy) (thanks to Tobias Achterberg)

• select a favorite pricer, w.l.o.g. p1
• use shiǒt vector σ ∈ R+

P σp1 = 100, σp = 50 for p ̸= p1
• always start with p1 for a couple of resolves
• only start selection process if average iterations of p1 exceed a threshold, e.g., 20.
• always select the pricer that minimizes

τ̄
σ
p =

∑
t 1pt=pτt,p

Tp(t− 1) + σp

2nd alternative: Turn shiǒted greedy weights into weighted sampling weights

• compute shiǒted version of average as in shiǒted greedy
• sample from weight distribution wp,t ∝ 1

τ̄σ
p +10−4

Gregor Hendel – SCIP’s Adaptive Primal Heuristics 24/32

LP Pricing Goal and Setup

Maximize LP throughput⇔ discover and select the LP pricing with minimum expected running
time τ∗

p , p ∈ {devex, steep, qsteep}

Problem for UCB: Need [0, 1] score to maximize

Solution: Scale the (normalized) reward

• Let τt,p be the measured running time for pricer p at step t
• Use reward rt,p = 1

1+
τt,p
τ̄p

for UCB

1st alternative: UCB variant (shiǒted greedy) (thanks to Tobias Achterberg)

• select a favorite pricer, w.l.o.g. p1
• use shiǒt vector σ ∈ R+

P σp1 = 100, σp = 50 for p ̸= p1
• always start with p1 for a couple of resolves
• only start selection process if average iterations of p1 exceed a threshold, e.g., 20.
• always select the pricer that minimizes

τ̄
σ
p =

∑
t 1pt=pτt,p

Tp(t− 1) + σp

2nd alternative: Turn shiǒted greedy weights into weighted sampling weights

• compute shiǒted version of average as in shiǒted greedy
• sample from weight distribution wp,t ∝ 1

τ̄σ
p +10−4

Gregor Hendel – SCIP’s Adaptive Primal Heuristics 24/32

LP Pricing Goal and Setup

Maximize LP throughput⇔ discover and select the LP pricing with minimum expected running
time τ∗

p , p ∈ {devex, steep, qsteep}

Problem for UCB: Need [0, 1] score to maximize

Solution: Scale the (normalized) reward

• Let τt,p be the measured running time for pricer p at step t
• Use reward rt,p = 1

1+
τt,p
τ̄p

for UCB

1st alternative: UCB variant (shiǒted greedy) (thanks to Tobias Achterberg)

• select a favorite pricer, w.l.o.g. p1
• use shiǒt vector σ ∈ R+

P σp1 = 100, σp = 50 for p ̸= p1
• always start with p1 for a couple of resolves
• only start selection process if average iterations of p1 exceed a threshold, e.g., 20.
• always select the pricer that minimizes

τ̄
σ
p =

∑
t 1pt=pτt,p

Tp(t− 1) + σp

2nd alternative: Turn shiǒted greedy weights into weighted sampling weights

• compute shiǒted version of average as in shiǒted greedy
• sample from weight distribution wp,t ∝ 1

τ̄σ
p +10−4

Gregor Hendel – SCIP’s Adaptive Primal Heuristics 24/32

LP Pricing Goal and Setup

Maximize LP throughput⇔ discover and select the LP pricing with minimum expected running
time τ∗

p , p ∈ {devex, steep, qsteep}

Problem for UCB: Need [0, 1] score to maximize

Solution: Scale the (normalized) reward

• Let τt,p be the measured running time for pricer p at step t
• Use reward rt,p = 1

1+
τt,p
τ̄p

for UCB

1st alternative: UCB variant (shiǒted greedy) (thanks to Tobias Achterberg)

• select a favorite pricer, w.l.o.g. p1
• use shiǒt vector σ ∈ R+

P σp1 = 100, σp = 50 for p ̸= p1
• always start with p1 for a couple of resolves
• only start selection process if average iterations of p1 exceed a threshold, e.g., 20.
• always select the pricer that minimizes

τ̄
σ
p =

∑
t 1pt=pτt,p

Tp(t− 1) + σp

2nd alternative: Turn shiǒted greedy weights into weighted sampling weights

• compute shiǒted version of average as in shiǒted greedy
• sample from weight distribution wp,t ∝ 1

τ̄σ
p +10−4

Gregor Hendel – SCIP’s Adaptive Primal Heuristics 24/32

Computational Results

LP Solver CPLEX 12.7.1
LP throughput Time

Group # Pricing solved abs. rel. abs. rel.

all 593 devex 288 72.4 1.000 152.30 1.000
qsteep 289 74.7 1.032 144.93 0.952
steep 288 76.4 1.056 147.34 0.967
weighted 289 73.0 1.009 148.40 0.974
UCB 292 79.6 1.100 147.56 0.969
sh. greedy 292 80.8 1.117 143.94 0.945

LP Solver SoPlex 3.1.1
LP throughput Time

Group # Pricing solved abs. rel. abs. rel.

all 587 devex 279 44.2 1.000 167.36 1.000
qsteep 272 35.0 0.793 181.74 1.086
steep 280 37.7 0.854 178.01 1.064
weighted 282 42.7 0.966 170.75 1.020
UCB 284 45.5 1.031 168.82 1.009
sh. greedy 288 50.5 1.144 163.93 0.980

Test set: 150 instances from a total of 666 (MIPLIBs & Cor@l), time limit, default + 3 LP Seeds, 48
node cluster with 16 Intel Xeon Gold 5122 @ 3.60GHz, 96GB, Ubuntu 16.04

Gregor Hendel – SCIP’s Adaptive Primal Heuristics 25/32

Conclusion

• bandit selection variants for LP pricing selection, diving heuristics, and
Large Neighborhood Search heuristics

• different scenarios require different reward functions and selection
strategies

• adaptive selection yields computational benefits in all three cases.

In the future, we would like to
• finalize the LP pricing prototype

• switch to deterministic LP time
measurement

• calibrate bandit parameters
• exploit seemingly lognormal distribution
of LP solving time for simulation and
different bandit algorithm (Thompson
sampling)

• investigate the usefulness of keeping
learned information for future solves.

0

2000

4000

6000

0 20 40 60 80

depth

co
un

t

mode

d

l

p

LP counts in diving, probing, and normal lp
mode for timtab1.

Gregor Hendel – SCIP’s Adaptive Primal Heuristics 26/32

Further Literature

• Gregor Hendel, Matthias Miltenberger, and Jakob Witzig, Adaptive
Algorithmic Behavior for Solving Mixed Integer Programs Using Bandit
Algorithms, OR 2018: International Conference on Operations Research,
accepted for publication, Preprint

• Gregor Hendel, Adaptive Large Neighborhood Search for MIP, December
2018, under review, Preprint.

• Ambros Gleixner et al., The SCIP Optimization Suite 6.0, ZIB-Report 18-26,
July 2018, Link

Gregor Hendel – SCIP’s Adaptive Primal Heuristics 27/32

http://www.zib.de/hendel/publication/adaptive-algorithmic-behavior-for-solving-mips-using-bandit-algorithms/
http://www.zib.de/hendel/publication/adaptive-large-neighborhood-search-for-mixed-integer-programming/
https://opus4.kobv.de/opus4-zib/frontdoor/index/index/docId/6936

Thank you for your attention!

Visit scip.zib.de.

Gregor Hendel – SCIP’s Adaptive Primal Heuristics 28/32

https://scip.zib.de

Bibliography i

Achterberg, T. (2007).
Constraint Integer Programming.
PhD thesis, Technische Universität Berlin.
Berthold, T. (2014).
Rens - the optimal rounding.
Mathematical Programming Computation, 6(1):33–54.

Berthold, T., Perregaard, M., and Meszaros, C. (2017).
Four good reasons to use an interior point solver within a mip solver.

Bubeck, S. and Cesa-Bianchi, N. (2012).
Regret analysis of stochastic and nonstochastic multi-armed bandit
problems.
CoRR, abs/1204.5721.
Danna, E., Rothberg, E., and Pape, C. L. (2005).
Exploring relaxation induced neighborhoods to improve MIP solutions.
Mathematical Programming, 102(1):71–90.

Gregor Hendel – SCIP’s Adaptive Primal Heuristics 29/32

Bibliography ii

Fischetti, M. and Lodi, A. (2003).
Local branching.
Mathematical Programming, 98(1-3):23–47.

Fischetti, M. and Monaci, M. (2014).
Proximity search for 0-1 mixed-integer convex programming.
Technical report, DEI - Università di Padova.

Forrest, J. J. and Goldfarb, D. (1992).
Steepest-edge simplex algorithms for linear programming.
Math. Program., 57:341–374.

Ghosh, S. (2007).
DINS, a MIP Improvement Heuristic.
In Fischetti, M. and Williamson, D. P., editors, Integer Programming and
Combinatorial Optimization: 12th International IPCO Conference, Ithaca,
NY, USA, June 25-27, 2007. Proceedings, pages 310–323, Berlin, Heidelberg.
Springer Berlin Heidelberg.

Gregor Hendel – SCIP’s Adaptive Primal Heuristics 30/32

Bibliography iii

Harris, P. M. J. (1973).
Pivot selection methods of the devex lp code.
Mathematical Programming, 5(1):1–28.

Khalil, E. B., Dilkina, B., Nemhauser, G. L., Ahmed, S., and Shao, Y. (2017).
Learning to run heuristics in tree search.
In Proceedings of the 26th International Joint Conference on Artificial
Intelligence, IJCAI’17, pages 659–666. AAAI Press.

Rothberg, E. (2007).
An Evolutionary Algorithm for Polishing Mixed Integer Programming
Solutions.
INFORMS Journal on Computing, 19(4):534–541.

Gregor Hendel – SCIP’s Adaptive Primal Heuristics 31/32

	Introduction
	Large Neighborhood Search for MIP
	Multi-Armed Bandit Selection

	SCIP's Adaptive LNS
	Reward Function for LNS
	Computational Results

	Diving & Adaptive Diving
	Outlook: Adaptive LP Pricing

