
Advanced	practical	Programming
for	Scientists

SS2017

Thorsten Koch
Zuse Institute Berlin

TU Berlin

The	Zen	of Python,	by Tim	Peters	(part 1)

▶︎ Beautiful	is	better	than	ugly.
▶︎ Explicit	is	better	than	implicit.
▶︎ Simple	is	better	than	complex.
▶︎ Complex	is	better	than	complicated.
▶︎ Flat	is	better	than	nested.
▶︎ Sparse	is	better	than	dense.
▶︎ Readability	counts.
▶︎ Special	cases	aren't	special	enough	to	break	the	rules.
▶︎ Although	practicality	beats	purity.
▶︎ Errors	should	never	pass	silently.
▶︎ Unless	explicitly	silenced.
▶︎ In	the	face	of	ambiguity,	refuse	the	temptation	to	guess.

Advanced	Programming 78

Ex1	again

• Remember:	
store	the	data	and	compute	the	geometric	mean	on	this	stored	data.

• If	it	is	not	obvious	how	to	compile	your	program,	add	a	REAME	file	or	a	
comment	at	the	beginning

• It	should	run	as	
ex1 filenname

• If	you	need	to	start	something	(python,	python3,	...)	provide	an	
executable	script	named	ex1 which	calls	your	program,	e.g.
#/bin/bash
python3	ex1.py	$1

• Compare	the	number	of	valid	values.	
If	you	have	a	lower	number,	you	are	missing	something.
If	you	have	a	higher	number,	send	me	the	wrong	line	I	am	missing.
File:	ex1-100.dat	with	100001235	lines
Valid	values	Loc0:	50004466	with	GeoMean:	36.781736
Valid	values	Loc1:	49994581	with	GeoMean:	36.782583

Advanced	Programming 79

Exercise	1:	File	Format	(more	detail)

Each	line	should	consists	of	
• a	sequence-number,	
• a	location	(1	or	2),	and	
• a	floating	point	value	>	0.

Empty	lines	are	allowed.	
Comments	can	start	a	”#”.	
Anything	including	and	after	“#”	on	a	line	should	be	ignored.
The	fields	are	separated	by	“;”.	
White	space	before	and	after	the	“;”	is	allowed.	
Extra	non	white	space	characters	after	the	value	field	are	not	allowed.
Be	aware	that	“NaN”	could	be	considered	a	valid	floating		value.	(-Inf?)

Advanced	Programming 80

Exercise 2:	Reading	XML

We	provided	some	documentation	and	and	an	example	file.

Write	a	program	ex2 that	reads	in	the	
measured-1.0.0.2017-02-03.b0050c5c8deb1db59c7b2644414b079d.xml

And	writes	CSV	data	in	format:
YYYY-MM-DD;	HH;	amountOfPower-Value

You	will	need	the	reading	part	later	again.

Try	to	validate	the	XML	file	against	the	provided	schema

The	filename	to	be	converted	should	be	taken	from	the	command	line.
The	output	should	be	to	stdout,	any	errors	to	stderr.
You	may	use	whatever	library	to	parse	the	XML	file.

Advanced	Programming 81

Eval order:	What is the output?

#include <stdio.h>

int f1(void) { puts("f1"); return 2; }

int f2(void) { puts("f2"); return 3; }

int f3(void) { puts("f3"); return 5; }

int f4(void) { puts("f4"); return 7; }

int ff(int a, int b, int c) {

puts("ff");

return a + b + c;

}

int main() {

printf("x=%d\n", ff(f1(), f2() * f3(), f4()));

}

Advanced	Programming 82

f4 f2 f3 f1 ff x=24

Memory	layout of C	programs

Advanced	Programming 83

stack

heap

unitialized data (bss)

initialized data

code (text)

Command-line arguments
and environment variables

low address

high		address

initialized to zero by exec

read from program
file by exec

From http://www.geeksforgeeks.org/memory-layout-of-c-program/

Code	Segment

A	code	segment	,	also	known	as	a	text	segment,	is	one	of	the	sections	of	a	
program	in	an	object	file	or	in	memory,	which	contains	executable	
instructions.
As	a	memory	region,	a	text	segment	may	be	placed	below	the	heap	or	stack	
in	order	to	prevent	heaps	and	stack	overflows	from	overwriting	it.
Usually,	the	text	segment	is	sharable	so	that	only	a	single	copy	needs	to	be	in	memory	for	
frequently	executed	programs,	such	as	text	editors,	the	C	compiler,	the	shells,	and	so	on.	
Also,	the	text	segment	is	often	read-only,	to	prevent	a	program	from	accidentally	modifying	
its	instructions.

Advanced	Programming 84

Initialized	Data	Segment

Initialized	data	segment,	usually	called	simply	the	Data	Segment.	A	data	
segment	is	a	portion	of	virtual	address	space	of	a	program,	which	contains	
the	global	variables	and	static	variables	that	are	initialized	by	the	
programmer.
Note	that,	data	segment	is	not	read-only,	since	the	values	of	the	variables	can	be	
altered	at	run	time.
This	segment	can	be	further	classified	into	initialized	read-only	area	and	initialized	
read-write	area.
For	instance	the	global	string	defined	by	char s[] = “hello world” in	C	and	a	C	
statement	like	int debug=1 outside	the	main	(i.e.	global)	would	be	stored	in	
initialized	read-write	area.	And	a	global	C	statement	like	const char* string =

“hello world”makes	the	string	literal	“hello	world”	to	be	stored	in	initialized	read-
only	area	and	the	character	pointer	variable	string	in	initialized	read-write	area.
Ex:	static int i = 10 will	be	stored	in	data	segment	and	
global	int i = 10 will	also	be	stored	in	data	segment

Advanced	Programming 85

Uninitialized	Data	Segment

Uninitialized	data	segment,	often	called	the	“bss”	segment.	Data	in	this	
segment	is	initialized	by	the	kernel	to	arithmetic	0	before	the	program	starts	
executing.
uninitialized	data	starts	at	the	end	of	the	data	segment	and	contains	all	
global	variables	and	static	variables	that	are	initialized	to	zero	or	do	not	
have	explicit	initialization	in	source	code.
For	instance	a	variable	declared	static int i;	would	be	contained	in	the	BSS	segment.
For	instance	a	global	variable	declared	int j;	would	be	contained	in	the	BSS	segment.

Advanced	Programming 86

Stack

The	stack	area	traditionally	adjoined	the	heap	area	and	grew	the	opposite	
direction;	when	the	stack	pointer	met	the	heap	pointer,	free	memory	was	
exhausted.	(With	modern	large	address	spaces	and	virtual	memory	
techniques	they	may	be	placed	almost	anywhere,	but	they	still	typically	
grow	opposite	directions.)
The	stack	area	contains	the	program	stack,	a	LIFO	structure,	typically	located	in	the	higher	
parts	of	memory.	On	the	standard	PC	x86	computer	architecture	it	grows	toward	address	
zero;	on	some	other	architectures	it	grows	the	opposite	direction.	A	“stack	pointer”	register	
tracks	the	top	of	the	stack;	it	is	adjusted	each	time	a	value	is	“pushed”	onto	the	stack.	The	
set	of	values	pushed	for	one	function	call	is	termed	a	“stack	frame”;	A	stack	frame	consists	at	
minimum	of	a	return	address.
Stack,	where	automatic	variables	are	stored,	along	with	information	that	is	saved	each	time	a	
function	is	called.	Each	time	a	function	is	called,	the	address	of	where	to	return	to	and	
certain	information	about	the	caller’s	environment,	such	as	some	of	the	machine	registers,	
are	saved	on	the	stack.	The	newly	called	function	then	allocates	room	on	the	stack	for	its	
automatic	and	temporary	variables.	This	is	how	recursive	functions	in	C	can	work.	Each	time	
a	recursive	function	calls	itself,	a	new	stack	frame	is	used,	so	one	set	of	variables	doesn’t	
interfere	with	the	variables	from	another	instance	of	the	function.

Advanced	Programming 87

Heap

Heap	is	the	segment	where	dynamic	memory	allocation	usually	takes	place.
The	heap	area	begins	at	the	end	of	the	BSS	segment	and	grows	to	larger	
addresses	from	there.	
The	Heap	area	is	managed	by	malloc(),	realloc(),	and	free(),	
which	may	use	the	brk()	and	sbrk()	system	calls	to	adjust	its	size.
(note	that	the	use	of	brk/sbrk and	a	single	“heap	area”	is	not	required	to	fulfill	the	contract	
of	malloc/realloc/free;	they	may	also	be	implemented	using	mmap to	reserve	potentially	
non-contiguous	regions	of	virtual	memory	into	the	process’	virtual	address	space).	
The	Heap	area	is	shared	by	all	shared	libraries	and	dynamically	loaded	modules	in	a	process.

Advanced	Programming 88

The	size(1)	command	reports	the	sizes	(in	bytes)	of	the	text,	data,	and	bss
segments.	(for	more	details	please	refer	man	page	of	size(1),	objdump(1))

#include <stdio.h>

int main(void)

{

return 0;

}

$ gcc memory-layout.c -o memory-layout

$ size memory-layout

text data bss dec hex filename

960 248 8 1216 4c0 memory-layout

Advanced	Programming 89

added	one	global	variable	in	program,	now	check	the	size	of	bss

#include <stdio.h>

int global; /* Uninitialized variable stored in bss*/

int main(void)

{

return 0;

}

text data bss dec hex filename

960 248 12 1220 4c4 memory-layout

Advanced	Programming 90

Let	us	add	one	static	variable	which	is	also	stored	in	bss.

#include <stdio.h>

int global; /* Uninitialized variable stored in bss*/

int main(void)

{

static int i; /* Uninitialized static variable stored in bss */

return 0;

}

text data bss dec hex filename

960 248 16 1224 4c8 memory-layout

Advanced	Programming 91

Let	us	initialize	the	static	variable	which	will	then	be	stored	in	the	
Data	Segment	(DS)

#include <stdio.h>

int global; /* Uninitialized variable stored in bss*/

int main(void)

{

static int i = 100; /* Initialized static variable stored in DS*/

return 0;

}

text data bss dec hex filename

960 252 12 1224 4c8 memory-layout

Advanced	Programming 92

Let	us	initialize	the	global	variable	which	will	then	be	stored	in	the
Data	Segment	(DS)

#include <stdio.h>

int global = 10; /* initialized global variable stored in DS*/

int main(void)

{

static int i = 100; /* Initialized static variable stored in DS*/

return 0;

}

text data bss dec hex filename

960 256 8 1224 4c8 memory-layout

Advanced	Programming 93

$ ulimit -d -m -n -s -u

data seg size (kbytes, -d) unlimited

max memory size (kbytes, -m) unlimited

open files (-n) 1024

stack size (kbytes, -s) 8192

max user processes (-u) 15789

Advanced	Programming 94

Stack
#include <stdio.h>

void f(int i)

{

int a[100];

a[1] = i + 1;

if (i % 1000 == 0) {

printf("%d ", i / 1000);

fflush(stdout);

}

f(a[1]);

}

int main() { f(1); }

Advanced	Programming 95

#include <stdio.h>

void f(int i)

{

int a[2];

a[1] = i + 1;

if (i % 1000 == 0) {

printf("%d ", i / 1000);

fflush(stdout);

}

f(a[1]);

}

int main() { f(1); }

$./a.out
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
18 Segmentation fault (core dumped)

$./a.out
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
109 110 111 112 113 114 115 116 117 118 119 120 121 122
123 124 125 126 127 128 129 130 Segmentation fault
(core dumped)

$ ulimit -s 16384
$./a.out
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
18 19 20 21 22 23 24 25 26 27 28 29 30 31
32 33 34 35 36 37 Segmentation fault (core
dumped)

#include <stdio.h>

#include <stdlib.h>

void f(int i)

{

int* a = malloc(100 * sizeof(*a));

a[1] = i + 1;

if (i % 1000 == 0) {

printf("%d ", i / 1000);

fflush(stdout);

}

f(a[1]);

free(a);

}

int main() { f(1); }

Advanced	Programming 96

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 Segmentation fault (core dumped)

$ valgrind ./a.out

==6373== Memcheck, a memory error detector

==6373==

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
121 122 123 124 125 126 127 128 129 130

==6373== Stack overflow in thread 1: can't grow stack to 0xffe801fd0

==6373==

==6373== Process terminating with default action of signal 11 (SIGSEGV)

==6373== The main thread stack size used in this run was 8388608.

==6373== Stack overflow in thread 1: can't grow stack to 0xffe801fb8

==6373==

==6373== Process terminating with default action of signal 11 (SIGSEGV)

==6373==

==6373== HEAP SUMMARY:

==6373== in use at exit: 523,728,000 bytes in 130,932 blocks

==6373== total heap usage: 130,932 allocs, 0 frees, 523,728,000 bytes allocated

==6373==

==6373== LEAK SUMMARY:

==6373== still reachable: 523,728,000 bytes in 130,932 blocks

Advanced	Programming 97

Advanced	Programming 98

#include <stdio.h>

#include <alloca.h>

void f(int i)

{

int* a = alloca(100 * sizeof(*a));

a[1] = i + 1;

if (i % 1000 == 0) {

printf("%d ", i / 1000);

fflush(stdout);

}

f(a[1]);

}

int main() { f(1); }

$./a.out
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Segmentation fault (core dumped)

Stack	Pointer

int foobar(int a,	int b,	int c)	
{	
int xx	=	a	+	2;	
int yy =	b	+	3;	
int zz =	c	+	4;	
int sum	=	xx	+	yy +	zz;	
return xx	*	yy *	zz +	sum;	

}	
intmain()	
{	
return foobar(77,	88,	99);	

}

Advanced	Programming 99

Stack	Frame

Advanced	Programming 100

Page 150, Van der Linden, Expert C Programing, Prentice Hall, 1994

Memory	allocation

#include <stdlib.h>

void *malloc(size_t size);

void free(void *ptr);

void *calloc(size_t nmemb, size_t size);

void *realloc(void *ptr, size_t size);

Example:
double x = malloc(1000 * sizeof(*x))

double x = calloc(1000, sizeof(*x))

double x = realloc(x, 10000 * sizeof(*x))

free(x)

Note:	size_t is unsigned.
Note:	free()	should be on	the same	level than malloc()

Advanced	Programming 101

Memory	allocation

malloc/calloc can always return NULL.

• Must	check.
• Happens	too late.
• Hard	to test (ulimit)
• Hard	to recover
• Replace by cover functions
• With possible guards
• Performance	variation
• Memory	pool for many identical small calls
• memory leaks/overruns
• use after	free (linked list)

Advanced	Programming 102

#include <stdio.h>

#include <stdlib.h>

#include <time.h>

#define SIZE 100000000

#define GET_SEC(a, b) ((b - a) / (double)CLOCKS_PER_SEC)

int main(int argc, char** argv)

{

clock_t start;

double* x = malloc(SIZE * sizeof(*x));

double sum;

for(int i = 0; i < SIZE; i++)

x[i] = i + 1.0;

Advanced	Programming 103

sum = 0.0; start = clock();

/* In order 1 */

for(int i = 0; i < SIZE; i++)

sum += x[i];

printf("IO time=%.3f sum=%.1f\n", GET_SEC(start, clock()), sum);

sum = 0.0; start = clock();

/* In order 2 */

for(int k = 0; k < 100; k++)

for(int i = 0; i < SIZE / 100; i++)

sum += x[k * (SIZE / 100) + i];

printf("O1 time=%.3f sum=%.1f\n", GET_SEC(start, clock()), sum);

Advanced	Programming 104

sum = 0.0; start = clock();

for(int i = 0; i < SIZE / 100; i++)

for(int k = 0; k < 100; k++)

sum += x[k * (SIZE / 100) + i];

printf("OH time=%.3f sum=%.1f\n", GET_SEC(start, clock()), sum);

sum = 0.0; start = clock();

for(int i = 0; i < SIZE / 1000; i++)

for(int k = 0; k < 1000; k++)

sum += x[k * (SIZE / 1000) + i];

printf("OT time=%.3f sum=%.1f\n", GET_SEC(start, clock()), sum);

Advanced	Programming 105

sum = 0.0; start = clock();

for(int i = 0; i < SIZE / 10000; i++)

for(int k = 0; k < 10000; k++)

sum += x[k * (SIZE / 10000) + i];

printf("Ot time=%.3f sum=%.1f\n", GET_SEC(start, clock()), sum);

sum = 0.0; start = clock();

for(int i = 0; i < SIZE / 100000; i++)

for(int k = 0; k < 100000; k++)

sum += x[k * (SIZE / 100000) + i];

printf("Oh time=%.3f sum=%.1f\n", GET_SEC(start, clock()), sum);

}

Advanced	Programming 106

Array	access times

Advanced	Programming 107

Offset base -O -O2 -O3
in order 0.36 0.34 0.13 0.13
offset 1 0.35 0.34 0.13 0.13
offset 100 1.41 1.34 1.12 0.70
offset 1000 1.74 1.64 1.68 0.86
offset 10000 2.34 2.25 2.29 1.16
offset 100000 2.73 2.18 2.02 1.03
Ratio 7.8 6.6 17.6 8.9

Struct sizes

#include <stdio.h>

struct { int i; char c; double d; char x; } icdx;

struct { char c; double d; char x; int i; } cdxi;

struct { char c; char x; int i; double d; } cxid;

struct { char x; double d; char c; double y; } xdcy;

struct { double d; double y; char c; char x; } dycx;

int main()

{

printf("icdx=%lu\n", sizeof(icdx));

printf("cdxi=%lu\n", sizeof(cdxi));

printf("cxid=%lu\n", sizeof(cxid));

printf("xdcy=%lu\n", sizeof(xdcy));

printf("dycx=%lu\n", sizeof(dycx));

}

Advanced	Programming 108

24
24
16
32
24

#include <stdio.h>

#include <stddef.h>

struct cxid { char c; char x; int i; double d; };

int main()

{

printf("c=%lu\n", offsetof(struct cxid, c));

printf("x=%lu\n", offsetof(struct cxid, x));

printf("i=%lu\n", offsetof(struct cxid, i));

printf("d=%lu\n", offsetof(struct cxid, d));

}

Advanced	Programming 109

c=0
x=1
i=4
d=8

union

#include <stdio.h>

#include <stddef.h>

typedef union { char c; int i; double d; short s[4]; } CIDS;

static CIDS cids = { .d = 12.4 };

int main()

{

printf("size cids=%lu\n", sizeof(cids));

printf("offset d=%lu\n", offsetof(CIDS, d));

printf("d=%f\n", cids.d);

printf("c=%d\n", cids.c);

printf("i=%d\n", cids.i);

}

Advanced	Programming 110

size cids=8
offset d=0
d=12.400000
c=-51
i=-858993459

Exercise 3:	What to do

Write	a	program	in	C	or	your	favorite	compiled	language,	which	takes	no	
input	and	produces	a	copy	of	its	own	source	code	as	its	only	output.	

The	program	should	be	as	short	as	possible	(not	important)	and	have	at
least	one	character	(because	there	are	languages	where	the	empty
program	is	a	valid	program).

The	standard	terms	for	these	programs	in	the	computability	theory	and	
computer	science	literature	are	“self-replicating	programs”,	“self-
reproducing	programs”,	and	“self-copying	programs”.
Otherwise	it	is	called	a	Quine.
Please,	given	the	info	above	it	is	easy	enough	to	look	this	up	in	the
Internet.	The	purpose	of	this	exercise	is	that	you	try	it	yourself.
We	will	discuss	the	most	interesting	ones	in	the	lecture.

Advanced	Programming 111

Exercise DEADLINES

Wednesday May	17
Ex	1,	2,	3

Advanced	Programming 112

Lecture 12.05:	Digital	Future

Please register yourself via	
https://science-match.tagesspiegel.de/the-digital-future-may-2017
Voucher/VIP	Code:	*future17-1*

Advanced	Programming 113

