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Agile Development

I avoid static/fixed development plans
I enable fast reaction to failures and problems
I esp. useful/applicable for small teams
I many agile methods

I scrum
I extreme programming
I crystal clear

I basic concepts
I pair/peer programming
I code refactoring
I continuous integration
I release often
I . . .
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Continuous Integration

I software engineering practice
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Basic Concepts of CI

I automatic builds
I frequent (unit) tests
I dedicated build machine/server
I quick test results and analysis
I immediate feedback on broken builds (e.g. e-mail)
I requires version control (e.g. git)
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Tools for CI

I Jenkins1

I features:
I free, open source
I written in Java
I probably most popular (open source) CI tool right now
I web interface
I easy to deploy (java jenkins.jar)
I easy to maintain (complete control using web interface)
I large active community
I many different plugins to extend the features

(in fact, Jenkins is more of a framework that relies on its plugins)
I different types of permission control (e.g. LDAP, or Jenkins’ own one)

1https://jenkins.io/
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Tools for CI

I hosted CI tool:
Travis-CI2

I features:
I build and test projects hosted on GitHub.com
I free for open source projects
I supports many programming languages
I Berlin based company

2https://travis-ci.org/
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Next Step

Continuous Deployment
I directly release build that passes all tests
I eliminates long release preparations
I users immediatly get new features
I but: not always applicable in practice

(users may need to integrate new versions by hand)
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valgrind3

I Integrates different tools for analyzing programs at runtime
Memcheck For detecting memory-management problems

Callgrind performance profiler
Cachegrind cache profiler

Massif heap profiler
Helgrind thread debugger

3http://valgrind.org/
Gottwald, Miltenberger, Rehfeldt – APPFS 2017 – Software Processes and Tools 9 / 18

http://valgrind.org/


Static analysis

I run time checks like valgrind only find errors in the parts that are
executed

I static code analysis can find errors at compile time
I division by zero
I integer overflows
I uninitialized values
I null pointer dereferences

I especially useful for hard to find bugs that appear only in some
executions

I for C/C++:
I clang static analyzer https://clang-analyzer.llvm.org/
I cppcheck http://cppcheck.sourceforge.net/
I coverity http://www.coverity.com/
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Demonstration

Time for a demo!
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Time Measurement

How to measure “execution time” of program that starts at time t0 and
ends at time t1?

I t1 − t0? (wall-clock time or wall time)
I Problem: what about the time spent in I/O etc.?

I Alternative: measure only the time spent in CPU? (CPU time)
I Problem: is this time actually being spent in the program?

I Alternative: measure time CPU spent executing code in user space
(user time)
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CPU Time

I CPU time: amount of time CPU was used for processing instructions
of program or of operating system. Can therefore be divided in

I user time
I system time (time spent in kernel space)

I CPU time is measured in clock ticks (computers’ notion of passing of
time) or seconds

I CPU time 6 wall time.
I CPU usage refers to CPU time as a percentage of CPU’s capacity
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CPU Time in Unix

top or htop command to get information including user time and details of
all processes.
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Execution Time of Your Program (Unix)

/usr/bin/time -v to measure your program. For exercise 1:
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Exercise

Exercise 6: Extend your program for exercise 5 such that it measures (and
prints) both it’s own wall-clock and user time.
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Questions about exercise 5?
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