
Advanced Practical Programming for Scientists

Software Processes and Tools

Robert Gottwald, Matthias Miltenberger, Daniel Rehfeldt

Zuse Institute Berlin

June 9th, 2017



Advanced Practical Programming for Scientists

Software Processes and Tools

Agile Development and Continuous Integration

Tools for C/C++

Time Measurement

Gottwald, Miltenberger, Rehfeldt – APPFS 2017 – Software Processes and Tools 1 / 18



Agile Development

I avoid static/fixed development plans
I enable fast reaction to failures and problems
I esp. useful/applicable for small teams
I many agile methods

I scrum
I extreme programming
I crystal clear

I basic concepts
I pair/peer programming
I code refactoring
I continuous integration
I release often
I . . .

Gottwald, Miltenberger, Rehfeldt – APPFS 2017 – Software Processes and Tools 2 / 18



Continuous Integration

I software engineering practice

Gottwald, Miltenberger, Rehfeldt – APPFS 2017 – Software Processes and Tools 3 / 18



Basic Concepts of CI

I automatic builds
I frequent (unit) tests
I dedicated build machine/server
I quick test results and analysis
I immediate feedback on broken builds (e.g. e-mail)
I requires version control (e.g. git)

Gottwald, Miltenberger, Rehfeldt – APPFS 2017 – Software Processes and Tools 4 / 18



Tools for CI

I Jenkins1

I features:
I free, open source
I written in Java
I probably most popular (open source) CI tool right now
I web interface
I easy to deploy (java jenkins.jar)
I easy to maintain (complete control using web interface)
I large active community
I many different plugins to extend the features

(in fact, Jenkins is more of a framework that relies on its plugins)
I different types of permission control (e.g. LDAP, or Jenkins’ own one)

1https://jenkins.io/
Gottwald, Miltenberger, Rehfeldt – APPFS 2017 – Software Processes and Tools 5 / 18

https://jenkins.io/


Tools for CI

I hosted CI tool:
Travis-CI2

I features:
I build and test projects hosted on GitHub.com
I free for open source projects
I supports many programming languages
I Berlin based company

2https://travis-ci.org/
Gottwald, Miltenberger, Rehfeldt – APPFS 2017 – Software Processes and Tools 6 / 18

GitHub.com
https://travis-ci.org/


Next Step

Continuous Deployment
I directly release build that passes all tests
I eliminates long release preparations
I users immediatly get new features
I but: not always applicable in practice

(users may need to integrate new versions by hand)

Gottwald, Miltenberger, Rehfeldt – APPFS 2017 – Software Processes and Tools 7 / 18



Advanced Practical Programming for Scientists

Software Processes and Tools

Agile Development and Continuous Integration

Tools for C/C++

Time Measurement

Gottwald, Miltenberger, Rehfeldt – APPFS 2017 – Software Processes and Tools 8 / 18



valgrind3

I Integrates different tools for analyzing programs at runtime
Memcheck For detecting memory-management problems

Callgrind performance profiler
Cachegrind cache profiler

Massif heap profiler
Helgrind thread debugger

3http://valgrind.org/
Gottwald, Miltenberger, Rehfeldt – APPFS 2017 – Software Processes and Tools 9 / 18

http://valgrind.org/


Static analysis

I run time checks like valgrind only find errors in the parts that are
executed

I static code analysis can find errors at compile time
I division by zero
I integer overflows
I uninitialized values
I null pointer dereferences

I especially useful for hard to find bugs that appear only in some
executions

I for C/C++:
I clang static analyzer https://clang-analyzer.llvm.org/
I cppcheck http://cppcheck.sourceforge.net/
I coverity http://www.coverity.com/

Gottwald, Miltenberger, Rehfeldt – APPFS 2017 – Software Processes and Tools 10 / 18

https://clang-analyzer.llvm.org/
http://cppcheck.sourceforge.net/
http://www.coverity.com/


Demonstration

Time for a demo!

Gottwald, Miltenberger, Rehfeldt – APPFS 2017 – Software Processes and Tools 11 / 18



Advanced Practical Programming for Scientists

Software Processes and Tools

Agile Development and Continuous Integration

Tools for C/C++

Time Measurement

Gottwald, Miltenberger, Rehfeldt – APPFS 2017 – Software Processes and Tools 12 / 18



Time Measurement

How to measure “execution time” of program that starts at time t0 and
ends at time t1?

I t1 − t0? (wall-clock time or wall time)
I Problem: what about the time spent in I/O etc.?

I Alternative: measure only the time spent in CPU? (CPU time)
I Problem: is this time actually being spent in the program?

I Alternative: measure time CPU spent executing code in user space
(user time)

Gottwald, Miltenberger, Rehfeldt – APPFS 2017 – Software Processes and Tools 13 / 18



Time Measurement

How to measure “execution time” of program that starts at time t0 and
ends at time t1?

I t1 − t0? (wall-clock time or wall time)
I Problem: what about the time spent in I/O etc.?

I Alternative: measure only the time spent in CPU? (CPU time)
I Problem: is this time actually being spent in the program?

I Alternative: measure time CPU spent executing code in user space
(user time)

Gottwald, Miltenberger, Rehfeldt – APPFS 2017 – Software Processes and Tools 13 / 18



Time Measurement

How to measure “execution time” of program that starts at time t0 and
ends at time t1?

I t1 − t0? (wall-clock time or wall time)
I Problem: what about the time spent in I/O etc.?

I Alternative: measure only the time spent in CPU? (CPU time)
I Problem: is this time actually being spent in the program?

I Alternative: measure time CPU spent executing code in user space
(user time)

Gottwald, Miltenberger, Rehfeldt – APPFS 2017 – Software Processes and Tools 13 / 18



Time Measurement

How to measure “execution time” of program that starts at time t0 and
ends at time t1?

I t1 − t0? (wall-clock time or wall time)
I Problem: what about the time spent in I/O etc.?

I Alternative: measure only the time spent in CPU? (CPU time)
I Problem: is this time actually being spent in the program?

I Alternative: measure time CPU spent executing code in user space
(user time)

Gottwald, Miltenberger, Rehfeldt – APPFS 2017 – Software Processes and Tools 13 / 18



CPU Time

I CPU time: amount of time CPU was used for processing instructions
of program or of operating system. Can therefore be divided in

I user time
I system time (time spent in kernel space)

I CPU time is measured in clock ticks (computers’ notion of passing of
time) or seconds

I CPU time 6 wall time.
I CPU usage refers to CPU time as a percentage of CPU’s capacity

Gottwald, Miltenberger, Rehfeldt – APPFS 2017 – Software Processes and Tools 14 / 18



CPU Time

I CPU time: amount of time CPU was used for processing instructions
of program or of operating system. Can therefore be divided in

I user time
I system time (time spent in kernel space)

I CPU time is measured in clock ticks (computers’ notion of passing of
time) or seconds

I CPU time 6 wall time.

I CPU usage refers to CPU time as a percentage of CPU’s capacity

Gottwald, Miltenberger, Rehfeldt – APPFS 2017 – Software Processes and Tools 14 / 18



CPU Time

I CPU time: amount of time CPU was used for processing instructions
of program or of operating system. Can therefore be divided in

I user time
I system time (time spent in kernel space)

I CPU time is measured in clock ticks (computers’ notion of passing of
time) or seconds

I CPU time 6 wall time.
I CPU usage refers to CPU time as a percentage of CPU’s capacity

Gottwald, Miltenberger, Rehfeldt – APPFS 2017 – Software Processes and Tools 14 / 18



CPU Time in Unix

top or htop command to get information including user time and details of
all processes.

Gottwald, Miltenberger, Rehfeldt – APPFS 2017 – Software Processes and Tools 15 / 18



Execution Time of Your Program (Unix)

/usr/bin/time -v to measure your program. For exercise 1:

Gottwald, Miltenberger, Rehfeldt – APPFS 2017 – Software Processes and Tools 16 / 18



Exercise

Exercise 6: Extend your program for exercise 5 such that it measures (and
prints) both it’s own wall-clock and user time.

Gottwald, Miltenberger, Rehfeldt – APPFS 2017 – Software Processes and Tools 17 / 18



Questions about exercise 5?

Gottwald, Miltenberger, Rehfeldt – APPFS 2017 – Software Processes and Tools 18 / 18


	Agile Development and Continuous Integration
	Tools for C/C++
	Time Measurement

