
Advanced	practical	Programming
for	Scientists

16.	June	2017

Thorsten Koch
Zuse Institute Berlin

TU Berlin

Programming principles by John	Romero

(1) No	prototypes.	Just	make	the	game.	Polish	as	you	go.	
Don't	depend	on	polish	happening	later.	Always	maintain	constantly	shippable	code.	

(2) It	is	incredibly	important	that	your	game	can	always	be	run	by	your	team.	
Bulletproof	your	engine	by	providing	defaults	upon	load	failure.	

(3) Keep	your	code	absolutely	simple.	
Keep	looking	at	your	functions	and	figure	out	how	you	can	simplify	further.	

(4) Great	tools	help	make	great	games.	Spend	as	much	time	on	tools	as	possible.	
(5) We	are	our	own	best	testing	team	and	should	never	allow	anyone	else	to	experience	bugs	or	see	the	

game	crash.	Don't	waste	others'	time.	Test	thoroughly	before	checking	in	your	code.	
(6) As	soon	as	you	see	a	bug,	you	fix	it.	Do	not	continue	on.	If	you	don't	fix	your	bugs	your	new	code	will	

be	built	on	a	buggy	codebase	and	ensure	an	unstable	foundation.	
(7) Use	a	superior	system	than	your	target.	
(8) Write	your	code	for	this	game	only	– not	for	a	future	game.	

You're	going	to	be	writing	new	code	later	because	you'll	be	smarter.	
(9) Encapsulate	functionality	to	ensure	design	consistency.	

This	minimizes	mistakes	and	saves	design	time.	
(10)Try	to	code	transparently.	Tell	your	lead	and	peers	exactly	how	you	are	going	to	solve	your	current	

task	and	get	feedback	and	advice.	Do	not	treat	game	programming	like	each	coder	is	a	black	box.	
The	project	could	go	off	the	rails	and	cause	delays.	

(11)Programming	is	a	creative	art	form	based	in	logic.	
Every	programmer	is	different	and	will	code	differently.	It's	the	output	that	matters.	

Advanced	Programming 171

Exercise:	Sorting

Input:	A	file	containing	at	most	27,000	integers	in	the	range	1	...	27,000.
It	is	a	fatal	error	condition	if	any	integer	occurs	twice	in	the	input.
No	other	data	is	associated	with	the	integer.

Output:	A	sorted	list	in	increasing	order	of	the	input	integers.

Constraints:	At	most	(roughly)	one	thousand	16-bit	words	of	storage	are	
available	in	main	memory.	There	is	plenty	of	disk	space	available.

Advanced	Programming 172

Exercise 5

Makefile (default (1st)	should be build of program)
-LDFLAGS
Doc	target
Coverage target
Test	target
No magic numbers like	2000000000
g++	-std=c++0x	-O3	-Wall	ex5.cpp	-o	ex2
g++	-O3	-c -Wall		ex5.cpp	-o	ex5 [-std=c++11]
Traceback (most recent call last):		File	"src/ex5/ex5.py",	line 4,	in	<module>				
import networkx as nx
ImportError:	No module named networkx

Advanced	Programming 173

./ex5 /data/vorlesung/SP/world666.gph

Going to parse the file /data/vorlesung/SP/world666.gph.gph

ERROR : Encoutered Problem opening file: No such file or directory

./ex5 /data/vorlesung/SP/world666

Going to parse the file /data/vorlesung/SP/world666.gph

Vertexcount: 666

Edgecount: 221445

Reading edges...

Creating graph...

Compute shortest paths via Dijkstra...

*** Error in `./ex5': munmap_chunk(): invalid pointer: 0x0000000003f3cb70 ***=======

Backtrace: =========

/lib/x86_64-linux-gnu/libc.so.6(+0x777e5)[0x7f959c0317e5]/

…

./ex5 /data/vorlesung/SP/world666.gph

RESULT VERTEX 665

RESULT DIST 17955

main.c:33:21: error: ‘file’ undeclared (first use in this function)

FILE *f = fopen(file, "r");

Advanced	Programming 174

public Node(int id)

{

this.id = id;

this.distance = Integer.MAX_VALUE;

this.visited = false;

this.touched = false;

this.neighbours = new ArrayList<Neighbour>();

}

Advanced	Programming 175

Exercise	5:	Graphs

Write	a	program	that:	

• reads	in	a	graph	from	file	given	in	.grp	format	(see	data	
at<http://www.zib.de/koch/SP/data> for	examples)	with	the	filename	provided	
as	a	command	line	argument.	Note	that	the	graphs	have	positive	edge	weights	
(that	are	always	below	231).	

• computes	a	longest	(with	respect	to	the	edge	weights)	shortest	path	from	any	
vertex	to	the	vertex	with	index	1.	In	case	of	ties	the	vertex	with	smallest	index	
should	be	taken.	

• produces	an	output	with	the	following	syntax:	
RESULT	VERTEX	<vertex	index>	
RESULT	DIST	<distance	of	longest	shortest	path>	
RESULT	TIME	<cpu time	in	seconds>

• You	may	use	graph	libraries	such	as	boost	(for	C++)	or	graph-tool	(for	Python),	
but	you	are	not	allowed	to	copy	the	entire	program.	

Advanced	Programming 177

Exercise	5-b:	Graphs

Fix	whatever	is	still	to	fix	with	your	program.
There	should	be	a	makfile for	generating	documentation,	coverage,	and	any	
checking	you	found.

If	you	not	have	implemented	your	own	shortest	path	algorithm,	please	do	
so.	

If	you	not	have	used	a	library	algorithm	for	this	so	far,	please	do	so.

There	should	be	a	command	line	switch	-m1	for	your	method	and	–m2	for	
the	library	method.	

So	ex5	–m1	graph666.phd		or	ex5	–m2	graph666.phd

Advanced	Programming 178

