
Advanced Practical Programming for Scientists

Parallel Programming with OpenMP

Robert Gottwald, Thorsten Koch

Zuse Institute Berlin

June 9th, 2017

Sequential program
I From programmers perspective: Statements are executed in the order

in which they appear
I On the CPU level this is not true

I Instruction reordering due to compiler optimizations
I Inside the CPU: Out of order execution to better utilize processing units

Parallel program
I For the CPU completely independent programs executed on different

cores
I Order of memory writes in one thread can be different when observed

from another thread
I Programmer is responsible for all synchronization
I Statements from different threads can be interleaved in millions of

ways even for small programs

Gottwald, Koch – APPFS 2017 – Parallel Programming with OpenMP 1 / 6

Sequential program
I From programmers perspective: Statements are executed in the order

in which they appear
I On the CPU level this is not true

I Instruction reordering due to compiler optimizations
I Inside the CPU: Out of order execution to better utilize processing units

Parallel program
I For the CPU completely independent programs executed on different

cores
I Order of memory writes in one thread can be different when observed

from another thread
I Programmer is responsible for all synchronization
I Statements from different threads can be interleaved in millions of

ways even for small programs

Gottwald, Koch – APPFS 2017 – Parallel Programming with OpenMP 1 / 6

Example
What can happen if these statements are executed in parallel?

i n t x = 0 ;
i n t y = 0 ;

...
x = 1 ;
y = 1 ;

...
i f (y == 1)

p r i n t f (” x i s %i \n” , x) ;

I Sequentially executed this program can only print “x is 1”
I When executed in parallel “x is 0” is possible

Memory operations might not be visible in the same order when observed
from the other thread!

I Safe abstractions and memory model required for parallel programs

Gottwald, Koch – APPFS 2017 – Parallel Programming with OpenMP 2 / 6

Example
What can happen if these statements are executed in parallel?

i n t x = 0 ;
i n t y = 0 ;

...
x = 1 ;
y = 1 ;

...
i f (y == 1)

p r i n t f (” x i s %i \n” , x) ;

I Sequentially executed this program can only print “x is 1”
I When executed in parallel “x is 0” is possible

Memory operations might not be visible in the same order when observed
from the other thread!

I Safe abstractions and memory model required for parallel programs

Gottwald, Koch – APPFS 2017 – Parallel Programming with OpenMP 2 / 6

OpenMP

I OpenMP standard provides annotations for C, C++ , and Fortran
languages

I If compiled without OpenMP the program is still a valid sequential
program

I Compiler takes care of thread handling and provides abstractions for
synchronization

d o u b l e sum = 0 . 0 ;
d o u b l e vec [N] ;
// i n i t i a l i z e vec
#pragma omp p a r a l l e l f o r r e d u c t i o n (+:sum)
f o r (i n t i = 0 ; i < N; ++i)

x += vec [i] ;

Gottwald, Koch – APPFS 2017 – Parallel Programming with OpenMP 3 / 6

OpenMP

I OpenMP standard provides annotations for C, C++ , and Fortran
languages

I If compiled without OpenMP the program is still a valid sequential
program

I Compiler takes care of thread handling and provides abstractions for
synchronization

d o u b l e sum = 0 . 0 ;
d o u b l e vec [N] ;
// i n i t i a l i z e vec
#pragma omp p a r a l l e l f o r r e d u c t i o n (+:sum)
f o r (i n t i = 0 ; i < N; ++i)

x += vec [i] ;

Gottwald, Koch – APPFS 2017 – Parallel Programming with OpenMP 3 / 6

Parallel section and work sharing

I #pragma omp parallel starts parallel
section

I Parallel section is executed by all
threads

I Work sharing constructs are used to
distribute work

I #pragma omp for
I #pragma omp sections
I #pragma omp single

I Memory consisitency enforced with
#pragma omp flush operation

I Wait for threads to reach specified
point with #pragma omp barrier

#pragma omp p a r a l l e l numthreads (4)
// i m p l i c i t f l u s h
{

// execu ted by a l l 4 t h r e a d s
p r i n t f (” t h r e a d %i : h e l l o wor ld !\n” ,

omp get thread num ()) ;

#pragma omp s i n g l e
{

// execu ted on one t h r e a d
} // i m p l i c i t b a r r i e r and f l u s h

// e x e c u t e do work1 () and do work2 () i n
p a r a l l e l

#pragma omp s e c t i o n s
{

#pragma omp s e c t i o n
do work1 () ;
#pragma omp s e c t i o n
do work2 () ;

}
} // i m p l i c i t b a r r i e r and f l u s h

Gottwald, Koch – APPFS 2017 – Parallel Programming with OpenMP 4 / 6

Parallel section and work sharing

I #pragma omp parallel starts parallel
section

I Parallel section is executed by all
threads

I Work sharing constructs are used to
distribute work

I #pragma omp for
I #pragma omp sections
I #pragma omp single

I Memory consisitency enforced with
#pragma omp flush operation

I Wait for threads to reach specified
point with #pragma omp barrier

#pragma omp p a r a l l e l numthreads (4)
// i m p l i c i t f l u s h
{

// execu ted by a l l 4 t h r e a d s
p r i n t f (” t h r e a d %i : h e l l o wor ld !\n” ,

omp get thread num ()) ;

#pragma omp s i n g l e
{

// execu ted on one t h r e a d
} // i m p l i c i t b a r r i e r and f l u s h

// e x e c u t e do work1 () and do work2 () i n
p a r a l l e l

#pragma omp s e c t i o n s
{

#pragma omp s e c t i o n
do work1 () ;
#pragma omp s e c t i o n
do work2 () ;

}
} // i m p l i c i t b a r r i e r and f l u s h

Gottwald, Koch – APPFS 2017 – Parallel Programming with OpenMP 4 / 6

Parallel section and work sharing

I #pragma omp parallel starts parallel
section

I Parallel section is executed by all
threads

I Work sharing constructs are used to
distribute work

I #pragma omp for
I #pragma omp sections
I #pragma omp single

I Memory consisitency enforced with
#pragma omp flush operation

I Wait for threads to reach specified
point with #pragma omp barrier

#pragma omp p a r a l l e l numthreads (4)
// i m p l i c i t f l u s h
{

// execu ted by a l l 4 t h r e a d s
p r i n t f (” t h r e a d %i : h e l l o wor ld !\n” ,

omp get thread num ()) ;

#pragma omp s i n g l e
{

// execu ted on one t h r e a d
} // i m p l i c i t b a r r i e r and f l u s h

// e x e c u t e do work1 () and do work2 () i n
p a r a l l e l

#pragma omp s e c t i o n s
{

#pragma omp s e c t i o n
do work1 () ;
#pragma omp s e c t i o n
do work2 () ;

}
} // i m p l i c i t b a r r i e r and f l u s h

Gottwald, Koch – APPFS 2017 – Parallel Programming with OpenMP 4 / 6

Sharing state

I Default uses scoping rules to determines whether variables are shared
I Can also be specified explicitly with clauses

I firstprivate(var)
I private(var)
I lastprivate(var)
I shared(var)

I shared(var) clause only useful with default(none) or default(private)
clause

i n t x = 0 ; // x i s s h a r e d (scope)
i n t y = 0 ; // y i s p r i v a t e (c l a u s e)

#pragma omp p a r a l l e l numthreads (4) , f i r s t p r i v a t e (y)
// p r i v a t e (y) would make y u n i n i t i a l i z e d
{

i n t z = 0 ; // z i s p r i v a t e (scope)
}

Gottwald, Koch – APPFS 2017 – Parallel Programming with OpenMP 5 / 6

Sharing state

I Default uses scoping rules to determines whether variables are shared
I Can also be specified explicitly with clauses

I firstprivate(var)
I private(var)
I lastprivate(var)
I shared(var)

I shared(var) clause only useful with default(none) or default(private)
clause

i n t x = 0 ; // x i s s h a r e d (scope)
i n t y = 0 ; // y i s p r i v a t e (c l a u s e)

#pragma omp p a r a l l e l numthreads (4) , f i r s t p r i v a t e (y)
// p r i v a t e (y) would make y u n i n i t i a l i z e d
{

i n t z = 0 ; // z i s p r i v a t e (scope)
}

Gottwald, Koch – APPFS 2017 – Parallel Programming with OpenMP 5 / 6

Other Features

I Many new features with each new version
I #pragma omp task for recursive work sharing (since OpenMP 3.0)
I #pragma omp simd for instruction-level parallelism (since OpenMP 4.0)
I Directives for GPU computing (since OpenMP 4.0)
I ...

Thank you for your attention!

Gottwald, Koch – APPFS 2017 – Parallel Programming with OpenMP 6 / 6

Other Features

I Many new features with each new version
I #pragma omp task for recursive work sharing (since OpenMP 3.0)
I #pragma omp simd for instruction-level parallelism (since OpenMP 4.0)
I Directives for GPU computing (since OpenMP 4.0)
I ...

Thank you for your attention!

Gottwald, Koch – APPFS 2017 – Parallel Programming with OpenMP 6 / 6

