Advanced Practical Programming for Scientists

Parallel Programming with OpenMP

Robert Gottwald, Thorsten Koch

Zuse Institute Berlin

June 9th, 2017

B . DAI—

Mathematical Optimization and Data Analysis Laboratories



Sequential program
» From programmers perspective: Statements are executed in the order
in which they appear
» On the CPU level this is not true

> Instruction reordering due to compiler optimizations
> Inside the CPU: Out of order execution to better utilize processing units

Gottwald, Koch — APPFS 2017 — Parallel Programming with OpenMP 1/6



Sequential program
» From programmers perspective: Statements are executed in the order
in which they appear
» On the CPU level this is not true

> Instruction reordering due to compiler optimizations
> Inside the CPU: Out of order execution to better utilize processing units

Parallel program

» For the CPU completely independent programs executed on different
cores

» Order of memory writes in one thread can be different when observed
from another thread

» Programmer is responsible for all synchronization

» Statements from different threads can be interleaved in millions of
ways even for small programs

Gottwald, Koch — APPFS 2017 — Parallel Programming with OpenMP 1/6



Example

ZAR;
What can happen if these statements are executed in parallel?
int x = 0;
int y =0; :
if (y=1)
x = 1: printf("x_is %i\n", x);
y = 1;

» Sequentially executed this program can only print “x is 1"
» When executed in parallel “x is 0" is possible

Gottwald, Koch — APPFS 2017 — Parallel Programming with OpenMP 2/6



Example

ZAR;
What can happen if these statements are executed in parallel?
int x = 0;
int y =0; :
. if (y=1)
x = 1: printf("x_is %i\n", x);
y = 1;

» Sequentially executed this program can only print “x is 1"
» When executed in parallel “x is 0" is possible

Memory operations might not be visible in the same order when observed
from the other thread!

» Safe abstractions and memory model required for parallel programs

Gottwald, Koch — APPFS 2017 — Parallel Programming with OpenMP 2/6



OpenMP

ZAR;

» OpenMP standard provides annotations for C, C++ , and Fortran
languages

» If compiled without OpenMP the program is still a valid sequential
program

» Compiler takes care of thread handling and provides abstractions for
synchronization

Gottwald, Koch — APPFS 2017 — Parallel Programming with OpenMP 3/6



OpenMP

ZAR;

» OpenMP standard provides annotations for C, C++ , and Fortran
languages

» If compiled without OpenMP the program is still a valid sequential
program

» Compiler takes care of thread handling and provides abstractions for
synchronization

double sum = 0.0;
double vec|[N];
//initialize vec
#pragma omp parallel for reduction(+:sum)
for (int i = 0; i <N; 4++i )
X 4= vec[i];

Gottwald, Koch — APPFS 2017 — Parallel Programming with OpenMP 3/6



Parallel section and work sharing

> +#pragma omp parallel starts parallel
section

> Parallel section is executed by all
threads

B

#pragma omp parallel numthreads(4)

implicit flush

// executed by all 4 threads
printf("thread %i:_hello_world!\n",
omp_get_thread_num ());

#pragma omp single

// executed on one thread
} // implicit barrier and flush

// execute do_workl() and do_work2() in
parallel
#pragma omp sections

#pragma omp section
do_workl () ;
#pragma omp section
do_work2();

}
} //implicit barrier and flush

Gottwald, Koch — APPFS 2017 — Parallel Programming with OpenMP 4/6



Parallel section and work sharing

A B
#pragma omp parallel starts parallel
. #pragma omp parallel numthreads(4)
section // implicit flush
Parallel section is executed by all // executed by all 4 threads
printf("thread %i:_hello_world!\n",
threads omp_get_thread_num());
Work sharing constructs are used to T"'agma omp single
distribute work // executed on one thread
} // implicit barrier and flush
> #pragma omp for // execute do_workl() and do_work2() in
> i parallel
#pragma omp S_eCtlonS #pragma omp sections
> #pragma omp single
#pragma omp section
do_workl () ;
#pragma omp section
do_work2();
¥
} //implicit barrier and flush

Gottwald, Koch — APPFS 2017 — Parallel Programming with OpenMP

4/6



Parallel section and work sharing

A B
> +#pragma omp parallel starts parallel
. #pragma omp parallel numthreads(4)
section // implicit flush
> Parallel section is executed by all // executed by all 4 threads
printf("thread %i:_hello_world!\n",
threads omp_get_thread_num());
» Work sharing constructs are used to Tpragma omp single
distribute work // executed on one thread
} // implicit barrier and flush
> #pragma omp for // execute do_workl() and do_work2() in
> i parallel
#pragma omp S_eCtlonS #pragma omp sections
> #pragma omp single
#pragma omp section
s . do_workl () ;
» Memory consisitency enforced with dpragma omp section
#pragma omp flush operation ) do-work2 () ;
. ™ } //implicit barrier and flush
» Wait for threads to reach specified
point with #pragma omp barrier
Gottwald, Koch — APPFS 2017 — Parallel Programming with OpenMP 4/6



Sharing state

» Default uses scoping rules to determines whether variables are shared

» Can also be specified explicitly with clauses

firstprivate(var)
private(var)
lastprivate(var)
shared(var)

vV vy vVvYy

> shared(var) clause only useful with default(none) or default(private)
clause

Gottwald, Koch — APPFS 2017 — Parallel Programming with OpenMP 5/6



Sharing state

2=
» Default uses scoping rules to determines whether variables are shared
» Can also be specified explicitly with clauses

firstprivate(var)
private(var)
lastprivate(var)
shared(var)

vV vy vVvYy

> shared(var) clause only useful with default(none) or default(private)
clause

int x

0; // x is shared (scope)

int y=20; // y is private (clause)

#pragma omp parallel numthreads(4), firstprivate(y)
// private(y) would make y uninitialized

{
}

int z=20; // z is private (scope)

Gottwald, Koch — APPFS 2017 — Parallel Programming with OpenMP 5/6



Other Features

ZAR;

v

Many new features with each new version

> #pragma omp task for recursive work sharing (since OpenMP 3.0)

> #pragma omp simd for instruction-level parallelism (since OpenMP 4.0)
Directives for GPU computing (since OpenMP 4.0)

v

Gottwald, Koch — APPFS 2017 — Parallel Programming with OpenMP 6/6



Other Features

ZAR;

v

Many new features with each new version

> #pragma omp task for recursive work sharing (since OpenMP 3.0)

> #pragma omp simd for instruction-level parallelism (since OpenMP 4.0)
Directives for GPU computing (since OpenMP 4.0)

v

Thank you for your attention!

Gottwald, Koch — APPFS 2017 — Parallel Programming with OpenMP 6/6



