
Advanced practical Programming
for Scientists

WS2014/15

Thorsten Koch

Zuse Institute Berlin

TU Berlin

Administrative stuff

All emails related to this lecture should start with APPFS in the subject.

Everybody participating in this lecture, please send an email to
<thorsten.koch@tu-berlin.de> with your Name and Matrikel-Nr.

We will setup a mailing list for announcements and discussion.
Everything is here http://www.zib.de/koch/lectures/ws2014_appfs.php

If you need the certificate, regular attendance, completion of homework
assignments, and in particular participation in our small programming
project is expected. Grades will be based on the outcome and a few
questions about it .

No groups.

Advanced Programming 3

mailto:thorsten.koch@tu-berlin.de
http://www.zib.de/koch/lectures/ws2014_appfs.php

Planned Topics

Overview: Imperative, OOP, Functional, side effects, thread safe, Design by contract
Design: Information hiding, Dependencies, Coding style, Input checking, Error
Handling
Tools: git, gdb, undodb, gnat
Design: Overall program design, Data structures, Memory allocation
Examples: BIP Enumerator, Shortest path/STP, SCIP call, Gas computation
Languages and correctness: Design errors/problems C/C++, C89 / C99 / C11,
Compiler switches, assert, flexelint, FP, How to write correct programs
Testing: black-box, white-box, Unit tests, regression tests, error tests, speed tests
Tools: gcov, jenkins, ctest, doxygen, make, gprof, valgrind, coverity
Software metrics: Why, Examples, Is it useful?
Other Languages: Ada 2012, Introduction, Comparison to C/C++, SPARK
Parallel programming: OpenMP, MPI, Others (pthreads, OpenCL), Ada
How to design large programs

All information is subject to change.

Advanced Programming 4

Advanced Programming 5

Attitudes

Algorithm engineering refers to the process required to transform a
pencil-and-paper algorithm into a robust, efficient, well tested, and
easily usable implementation.

— Bader, Moret, Sanders

Real Programmers don't comment their code. If it was hard to write, it
should be hard to understand and harder to modify.

— Fortune (6)

Beware of bugs in the above program. I have only proved it correct,
not tried it.

— D.E.Knuth

The single most important rule of testing is to do it.
— Kernighan, Pike

Imperative Programming

In computer science terminology, imperative programming is a
programming paradigm that describes computation in terms of statements
that change a program state. In much the same way that imperative mood
in natural languages expresses commands to take action, imperative
programs define sequences of commands for the computer to perform.

Imperative programming, http://en.wikipedia.org/w/index.php?title=Imperative_programming&oldid=624302389 (last visited Sept. 21, 2014)
.

Imperative Programmierung ist ein Programmierparadigma. Danach werden Programme so
entwickelt, dass „ein Programm aus einer Folge von Anweisungen besteht, die vorgeben, in
welcher Reihenfolge was vom Computer getan werden soll “.

Die imperative Programmierung ist das am längsten bekannte Programmierparadigma. Diese
Vorgehensweise war, bedingt durch den Sprachumfang früherer Programmiersprachen,
ehemals die klassische Art des Programmierens. Sie liegt dem Entwurf von vielen
Programmiersprachen, zum Beispiel ALGOL, Fortran, Pascal, Ada, PL/I, Cobol, C und allen
Assemblersprachen zugrunde.

Seite „Imperative Programmierung“. In: Wikipedia, Die freie Enzyklopädie. Bearbeitungsstand: 20. September 2014, 14:27 UTC. URL:
http://de.wikipedia.org/w/index.php?title=Imperative_Programmierung&oldid=134202110 (Abgerufen: 21. September 2014, 20:41 UTC)

Advanced Programming 6

https://en.wikipedia.org/w/index.php?title=Imperative_programming&oldid=624302389
http://de.wikipedia.org/w/index.php?title=Imperative_Programmierung&oldid=134202110

Imperative Programming

I am in command!

input->putput->output
Data separated from instructions (more or less as instructions are data)
Von-Neumann Architecture/Stored-Program-Computer
Access Memory, do computations incl. conditional, PC program counter
-> allows: goto (jump), if (conditional), while (loop)

1. Do it!
2. Anyway!

Structured programming vs. goto

Blocks, subroutines, scopes.

Advanced Programming 7

Object-Oriented Programming

Building your own world of objects

Object-oriented programming attempts to provide a model for
programming based on objects. OO programming integrates code and data
using the concept of an “object”. An object is an abstract data type with the
addition of polymorphism and inheritance.

An object has both state (data) and behavior (code).

-> Information hiding
-> polymorphism comes naturally
-> single vs. multiple inheritance.
-> templates and generics

Advanced Programming 8

Functional Programming

The way mathematicians think.
Functional programming is a style of building the structure and elements of
computer programs, that treats computation as the evaluation of
mathematical functions and avoids changing state and mutable data.
In functional code, the output value of a function depends only on the
arguments that are input to the function, so calling a function f twice with
the same value for an argument x will produce the same result f(x) both
times.
Eliminating side effects, i.e. changes in state that do not depend on the
function inputs, can make it much easier to understand and predict the
behavior of a program, which is one of the key motivations for the
development of functional programming.
-> side effects / mutable state -> rand(), getchar(), putchar()
-> call by value, call by reference
-> thread safeness -> errno

Advanced Programming 9

Programming Paradigms

• Imperative programming – defines computation as statements that change a
program state (Assembler)

• Procedural programming, structured programming – specifies the steps the
program must take to reach the desired state (C, Pascal, Fortran 77)

• Functional programming – treats computation as the evaluation of
mathematical functions and avoids state and mutable data
(Lisp, ML, Haskell, Erlang, Ocaml)

• Object-oriented programming (OOP) – organizes programs as objects: data
structures consisting of datafields and methods together with their interactions
(Smalltalk, C++, Java, Eiffel)

• Declarative programming – defines computation logic without defining its
control flow (Prolog)

• Event-driven programming – the flow of the program is determined by events,
such as sensor outputs or user actions (mouse clicks, key presses) or messages
from other programs or threads (JavaScript)

Advanced Programming 10

Have you ever ...

• wasted a lot of time coding the wrong algorithm?
• used a data structure that was much too complicated?
• tested a program but missed an obvious problem?
• spent a day looking for a bug you should have found in five minutes?
• needed to make a program run three times faster and use less memory?
• struggled to move a program from one architecture to another?
• tried to make a modest change in someone else’s program?
• rewritten a program because you couldn’t understand it?

Was it fun?

From: Kernighan,Pike „The practise of programming“

Advanced Programming 12

Design goals

These include

• simplicity, which keeps programs short and manageable;
• clarity, which makes sure they are easy to understand, for people

as well as machines;
• generality, which means they work well in a broad range of

situations and adapt well as new situations arise; and
• automation, which lets the machine do the work for us, freeing us

from mundane tasks.

From: Kernighan,Pike „The practise of programming“

 Advanced Programming 13

Winner OSC1990 Best small programm

v,i,j,k,l,s,a[99];

main()

{

for(scanf("%d",&s);*a-s;v=a[j*=v]-a[i],k=i<s,
j+=(v=j<s&&(!k&&!!printf(2+"\n\n%c"-(!l<<!j),
" #Q"[l^v?(l^j)&1:2])&&++l||a[i]<s&&v&&v-i+j&&
v+i-j))&&!(l%=s),
v||(i==j?a[i+=k]=0:++a[i])>=s*k&&++a[--i]);

}

What might it possibly do?

Advanced Programming 14

How to achieve this

• Be able to follow control flow (-imperative, +structured, -OO, +functional)

• Structuring programs into units (-imperative, +structured, +OO)
• Minimize dependencies (between components)

• Minimize scope
• Minimize side effects (+functional)
• Data hiding (+OO)
• How about things happening automatic?

(member functions in C++, Garbage collection)
• Being clever?: while(*s++ = *t++);
• DbC

Advanced Programming 15

Something to think about

int data[10000]; // all 0..255

long long fun = 0;

unsigned i;

[…]

int t = (data[i] - 128) >> 31;

fun += ~t & data[i];

Advanced Programming 16

This is not the way
/* The Computer Language Benchmarks Game http://benchmarksgame.alioth.debian.org/

Contributed by Dmitry Vyukov

*/

#define _GNU_SOURCE

#include <stdlib.h>

[…]

#define CL_SIZE 64

void* cache_aligned_malloc(size_t sz)

{

 char* mem;

 char* res;

 void** pos;

 mem = (char*)malloc(sz + 2 * CL_SIZE);

 if (mem == 0)

 exit(1);

 res = (char*)((uintptr_t)(mem + CL_SIZE) & ~(CL_SIZE - 1));

 pos = (void**)(res - sizeof(void*));

 pos[0] = mem;

 return res;

}

Advanced Programming 17

Design by Contract

(DbC), is an approach for designing software.
It prescribes that software designers should define formal, precise and
verifiable interface specifications for software components, which extend
the ordinary definition of abstract data types with preconditions, post-
conditions and invariants.
These specifications are referred to as “contracts”, in accordance with a
conceptual metaphor with the conditions and obligations of business
contracts.

Pre-conditions
Post-conditions
Invariants

Advanced Programming 18

Exercise 1: Setup

Please check out the data for this exercise located here:
https://github.com/mattmilten/appfs

You will find a programm named ex1_gen used to generate the input data.
Run this program as follows:

./ex1_gen 500000000 >ndata.dat

The file ndata.dat should then contain 500.000.001 numbers, binary
stored as signed little endian 32 bit integers.

You can check by

ls -l ndata.dat

And it should say something like 2GB.
The first number is 123456789.

Advanced Programming 19

https://github.com/mattmilten/appfs
https://github.com/mattmilten/appfs

Exercise 1: What to do

Write a program named ex1 in C or your favorite language, which

1. Reads in the numbers from ndata.dat

2. Prints the numbers,
 starting from 0
 in increasing order,
 each number at most once,
 ASCII representation,
 one number per line,
 no leading zeros or spaces,
 lines ended by a single newline.

Advanced Programming 20

Exercise 1: How to report

1. use time ex1 ndata.dat
to get the runtimes of your program

2. run ./ex1 ndata.dat | wc

3. run ./ex1 ndata.dat | md5sum

Send the output of time, wc, and md5sum together with the source
code to <thorsten.koch@tu-berlin.de> with a
subject of APPFS ex1 vorname nachname

Deadline: 23.10. 16 Uhr (earlier would be better)

Advanced Programming 21

mailto:thorsten.koch@tu-berlin.de

Advanced Programming 22

Fun with FP Arithmetic

Does the loop terminate?

Will the program crash?

If it terminates will n have the save value in all alternatives? (Lines 7,8,9)

if ((country == SING) || (country == BRNI) ||

 (country == POL) || (country == ITALY))

{

/*

 * If the country is Singapore, Brunei or Poland

 * then the current time is the answer time

 * rather than the off hook time.

 * Reset answer time and set day of week.

 * /

…

Advanced Programming 24

for (theElementIndex = 0;

 theElementIndex < number0fElements;

 theElementIndex++)

 elementArray[theElementIndex] = theElementIndex;

for (i = 0; i < nelems; i++)

 elem[i] = i;

Advanced Programming 25

enum { DANGER, CAUTION, CLEAR} the_signal;

If (CLEAR == the_signal)

{

 open_gates();

 start_train();

}

; = = 4

Advanced Programming 26

Chapter 1 K&P

• Use descriptive names for globals, short names for locals
• Be consistent
• Use active names for functions
• Be accurate
• Indent to show structure
• Use the natural form for expressions
• Parenthesize to resolve ambiguity
• Break up complex expressions
• Be clear
• Be careful with side effects
• Use a consistent indentation and brace style
• Use idoms for consistency
• Give names to magic numbers

Advanced Programming 27

Avoid function macros

#define isupper(c) ((c) >= 'A' && (c) <= 'Z')

parameter c occurs twice in the body of the macro.
If isupper is called in a context like this,

while (isupper(c = getchar()))

Advanced Programming 28

const and **

int main()

{

 int const fixed = 20;

 int* var;

 int const** constptr;

 constptr = &var;

 *constptr = &fixed;

 *var = 30;

 printf("x=%d, y=%d\n", fixed, *var);

}

Advanced Programming 29

Advanced Programming 31

Fun with FP Arithmetic

Does the loop terminate?

Will the program crash?

If it terminates will n have the save value in all alternatives? (Lines 7,8,9)

Advanced Programming 32

Fun with FP Arithmetic

The loop will terminate, the program will not crash and n is different in most
cases, depending on the architecture, the compiler, and the switches.

Introduction of C++ comments

a //*

//*/ b

In old C: a / b

In C++ : a

Advanced Programming 33

	Advanced practical Programming�for Scientists
	Administrative stuff
	Planned Topics
	Attitudes
	Imperative Programming
	Imperative Programming
	Object-Oriented Programming
	Functional Programming
	Programming Paradigms
	Have you ever ...
	Design goals
	Winner OSC1990 Best small programm
	How to achieve this
	Something to think about
	This is not the way
	Design by Contract
	Exercise 1: Setup
	Exercise 1: What to do
	Exercise 1: How to report
	Fun with FP Arithmetic
	Foliennummer 24
	Foliennummer 25
	Foliennummer 26
	Chapter 1 K&P
	Avoid function macros
	const and **
	Fun with FP Arithmetic
	Fun with FP Arithmetic
	Introduction of C++ comments
	Exercise 2: What to do
	Exercise 2: How to report
	Experiment: Collecting Data at CO@Work-II
	File Format
	Rules Regarding Preference Values
	Specifying Preference Offsets
	How To Submit
	2 Days after the lecture
	3 Days after the lecture
	4 Days after the lecture
	5 Days after the lecture
	7 Days after the lecture
	9 Days after the lecture
	Overview of Errors in Data
	11 Days after the lecture
	Overview of Errors in Data
	13 Days after the lecture
	Overview of Errors in Data
	14 Days after the lecture
	Overview of Errors in Data
	15 Days after the lecture – the final day
	Subject Variations
	Overview of Errors in Data
	Data
	Combinatorial Optimization at Work
	If you are interested in industrial applications

