
 
A distance measure for non-rigid registration of geometrical models to intensity data 

  
1. Purpose 
 
In some registration applications additional user knowledge is available, which can improve 
and accelerate the registration process, especially for non-rigid registration. This is 
particularly important in the transfer of pre-operative plans to the operating room, e.g. for 
navigation. In case of tubular structures, such as vessels, a geometric representation can 
be extracted via segmentation and skeletonization. We present a new class of distance 
measures based on global filter kernels to compare such models efficiently with image 
data. The approach is validated in a non-rigid registration application with Powerdoppler 
ultrasound data. 
 
The importance and clinical use of 3D planning systems [1] in liver surgery is increasing. 
First navigation systems based on intraoperative 3D ultrasound have been developed and 
clinically applied [2]. Until now the transfer of preoperative models and plans to the patient 
in the operating room (OR) is mentally performed by the surgeon. Robust and fast methods 
are needed for a precise multi-modal non-rigid registration of the preoperative data and the 
intraoperative 3D ultrasound image volume. 
 
2. Methods 
One of the main building blocks of a registration method is a distance measure suitable for 
the particular application. The idea of our approach is to incorporate user knowledge in 
terms of extracted vessel models from preoperative data and their special tube-like 
structure. In a typical computer-assisted liver surgery planning process the vessels are 
segmented from CT/MR data and the one-dimensional set of vessel center lines 

3RC ⊂ are explicitly extracted via skeletonization. A hybrid distance measure comparing 
these features directly with intraoperative intensity data is proposed. It is based on the 
work of Aylward et al. [3], where a measure is presented which evaluates the response of a 
local Gaussian filter at each point on vessel center lines. The sum of all these filter 
responses is maximized assuming a high response in the presence of a vessel in the intra-
operative data. However, this approach fails for non-rigid registration. Therefore, we 
reformulate the presented measure (section 2.1) and improve it by using a more 
appropriate vessel detecting filter class (section 2.2). 
 
The new distance measure is formulated in the parametric variational registration 
framework [4], but it is equally suitable for non-parametric approaches [5]. Firstly Aylward’s 
measure is reformulated in this framework to illustrate similarities and differences to the 
new measure. 
 
2.1 Variational Reformulation of Aylward’s Distance Measure 

Let 
3R⊂Ω  be the image domain. For a reference image  and a template RRR →3:

image  a parametric transformation  is searched, which RRT →3: 33: RRa →ϕ
minimizes the following functional by deforming T: 
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In the case of the well-known B-spline approach [4], the parameters a are the positions of 
the control grid points. The distance measure D determines the similarity between R and 

T. In the following the abbreviation ))((:)( xTxT aa ϕ=  is used. For efficiency reasons, the 

pre-operative CT/MR data is chosen as reference R and the intra-operative Powerdoppler 
ultrasound data as template T. The clinically relevant deformation from T to R is 

computed subsequently by inverting aϕ . 

Let denote the radius and  the tangential direction of the pre-
+→ RCr : 3: RCt →

operatively generated vessel center lines C. The idea of Aylward et al. is to determine a 
filter response at each point of the center lines and to integrate all those filter responses: 



the image data is locally convolved with a Gaussian kernel adapted to the radius r at this 
point. The presented distance measure can be formulated essentially (neglecting additional 
weighting) as: 
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The order of integration can be exchanged. Instead of convolving all points on the Cy∈
vessel center lines with a local kernel G all local kernels can be integrated first and then 
the resulting global kernel 
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can be multiplied with the template T. Thus, we may re-parameterize the distance 

measure in terms of a global kernel  GD GP
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such that the expressions  of (2) and  of (4) are equal. This implies that the [.]GD (.)D
global kernel  can be computed pre-operatively and only the cross correlation of  and GP GP
the template image T has to be determined intra-operatively in each iteration of the 
registration. 
Although the Gaussian filter G not only gives high responses to tube-like structures but 
also to other bright structures, the measure is shown to work quite well on the data of 
Aylward et al. However, the distance measure is inappropriate for non-rigid registration. 
Optimizing the deformation of the data leads to an enlargement of the vessels and thus in 
an increase of bright voxels until, after few optimization steps, the image is completely 
bright. 
 
2.2 New Distance Measure Based on Vesselness Filter 
To overcome the drawback of the approach of Aylward et al. we propose to use filter 
kernels, which give high responses for tube-like structures of similar radius and direction. A 
similar kind of vesselness filter was published for example by Frangi et al. [6]. They analyze 

the eigenvalues 321 λλλ ≤≤ of the Hessian matrix H for each voxel. The eigenvector  1v
corresponding to 1λ  points in the direction of the vessel. For bright vessels on a dark 

background the eigenvalues have the property: 01 ≈λ  and 321 λλλ ≈<< . Frangi et al. 

define a scalar valued vesselness function depending on this property. Because the radii of 
the vessels are unknown, the vesselness response is calculated at multiple scales by 
computing the Hessian with Gaussian derivatives at multiple scales. At every voxel the 
vesselness value with the highest response is selected and the corresponding scale represents 
the radius of the vessel. 
 
Since the vessels are parameterized explicitly by their radius and direction, so is the filter 
kernel. Let us define a local coordinate system at each center line point y by two normal 

directions , perpendicular to t(y). Motivated by the )()(,:, 21
3

21 ynynRCnn ⊥→
vesselness filters we define a filter kernel based on the sum of the second Gaussian 
derivatives in the two normal directions. This results in a Laplacian filter in the normal 
plane which is Gaussian weighted in the vessel direction [Fig 1]. These second Gaussian 
derivatives 
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are defined for r2=σ , such that the zero crossings of the kernel are located at the 
vessel radius. The kernel has to be transformed to the position of a center line point y and 



orientation of the local coordinate system )](,,[ 21 yxnntz −= . This yields the following 
filter kernel: 
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and subsequently the global kernel 
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which replaces  in equation (4). GP
 
3. Results 
In order to qualitatively validate the proposed distance measure we use the measure in a 
multilevel B-Spline scheme (without effective multi-resolution strategy) to register 
artificially deformed data. Vessel center lines are extracted with radii from real intra-
operative 3D Powerdoppler ultrasound data. These center lines are deformed by a realistic 
B-spline deformation and thereby the center line points are shifted by 4.5 (+/- 2.9) mm on 

average and maximally 9.6 mm. The global kernel  is determined on the deformed center LP
lines (Fig. 2a) and rigidly (Fig. 2b) resp. nonrigidly (Fig. 2c) registered. The deformation is 
substantially reduced and the original state is recovered well from a visual point of view. 
We quantify the resulting deviations from the original and the registered vessels by 
computing the distance of corresponding center line points. After rigid registration a 
deviation of 3.3 (+/-0.2) mm on average and a maximum of 7.7 mm is left. After non-rigid 
registration the deviation is reduced to 1.0 (+/- 0.4) mm on average and a maximum of 2.3 
mm. It cannot be expected that the original state can be perfectly reproduced by the 
registration algorithm, since segmentation, skeletonization and as well radius computation 
introduce certain inaccuracies. 
 
4. Conclusion 
We have re-parameterized the distance measure of Aylward et al. using a global kernel 
function. The latter can be computed pre-operatively and thus the distance measure can 
then be evaluated efficiently intra-operatively. This is an important aspect for non-rigid 
registration applications with tight time constraints. Furthermore we have derived a new 
distance measure suitable for comparing geometric representations of tubular structure 
with image data, as we have shown in a preliminary validation. Extended validation in 
more registration applications is in progress. Although we apply our method to tube-like 
features, the framework is general and we expect it to work also for other (e.g. plate-like) 
features. Such investigations are subject to future work. 
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Fig. 1: Profile of second Gaussian derivative (left) and isosurface of local 3D vessel filter 
kernel with positive values (dark grey) inside and negative values (light grey) outside the 
vessel. 
 
 

 
Fig. 2: Powerdoppler ultrasound data of liver vessels with a) artificially deformed, b) 
rigidly and c) non-rigidly registered vessels. 
 
 

 


