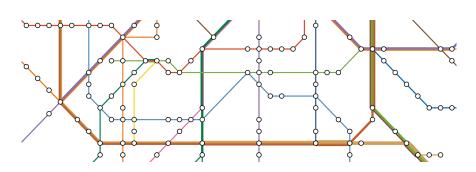
Mathematical Aspects of Public Transportation Networks

Niels Lindner



July 9, 2018

Reminder

Dates

- ▶ July 12: no tutorial (excursion)
- ▶ July 16: evaluation of Problem Set 10 and Test Exam
- July 19: no tutorial
- ▶ July 19/20: block seminar on shortest paths
- ► August 7 (Tuesday): 1st exam
- October 8 (Monday): 2nd exam

Exams

▶ location: ZIB seminar room

start time: 10.00am

duration: 60 minutes

permitted aids: one A4 sheet with notes

July 9, 2018 2 / 48

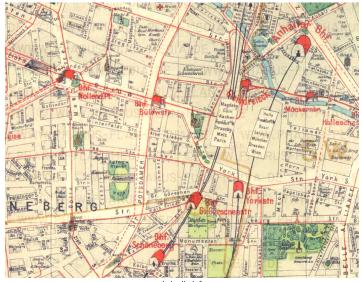
Chapter 6 Metro Map Drawing

§6.1 Metro Maps

July 9, 2018 3 / 48

July 9, 2018

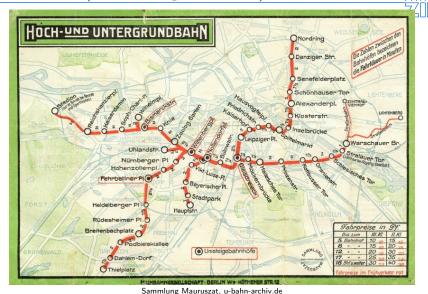
Berlin, 1921 (Pharus-Plan)



alt-berlin.info

4 / 48

Berlin, 1913 (Hochbahngesellschaft)



July 9, 2018 5 / 48

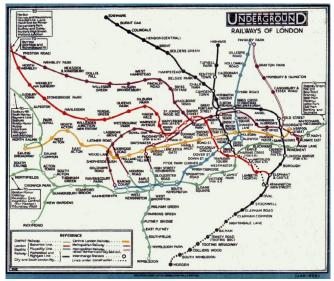
§6.1 Metro Maps

Berlin, 1933 (BVG)

Sammlung Mauruszat, u-bahn-archiv.de

July 9, 2018 6 / 48

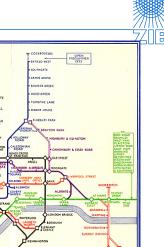
London, 1926 (London Underground)

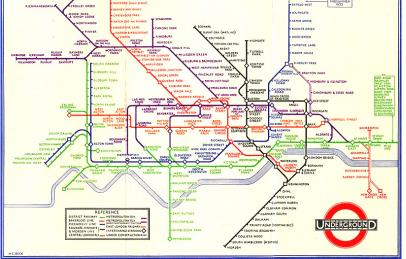


commons.wikimedia.org

July 9, 2018 7 / 48

London, 1933 (Harry Beck)





July 9, 2018

Plaque at Finchley Central station

Nick Cooper, commons.wikimedia.org

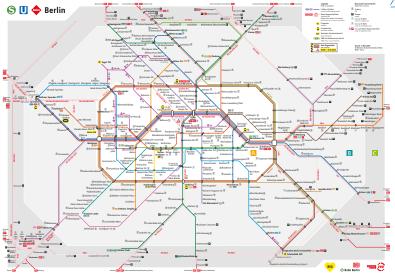
July 9, 2018 9 / 4

Berlin, 1968 (BVG-West)

Sammlung Mauruszat, u-bahn-archiv.de

July 9, 2018 10 / 48

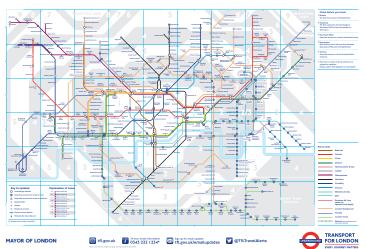
Berlin, 2018 (BVG)



 $Berliner\ Verkehrsbetriebe,\ bvg.de$

July 9, 2018 11 / 48

London, 2018 (Transport for London)



Transport for London, tfl.gov.uk

July 9, 2018 12 / 48

Saint Petersburg, 2018

Петербургский Метрополитен, metro.spb.ru

July 9, 2018

Chapter 6 Metro Map Drawing

§6.2 Planar Graphs

July 9, 2018 14 / 48

Planar Embeddings

740B

Let G = (V, E) be a (simple) graph.

Definition

A planar embedding of G consists of an injective map $\psi:V\to\mathbb{R}^2$, and a family of continuous and injective functions $f_e:[0,1]\to\mathbb{R}^2$ for each edge $e\in E$ such that

- $f_{vw}(0) = \psi(v)$ and $f_{vw}(1) = \psi(w)$ for all $vw \in E$,
- $f_e((0,1)) \cap \bigcup_{e' \neq e} f_{e'}([0,1]) = \emptyset$ for all $e \in E$.

G is called **planar** if it admits some planar embedding.

Remark

This embeds a graph into the plane using simple Jordan curves.

July 9, 2018 15 / 48

Faces

77.00

Definition

A connected component of $\mathbb{R}^2 \setminus \bigcup_{e \in E} f_e([0,1])$ is called a **face**.

Observations

- ▶ There is exactly one unbounded face (Jordan curve theorem).
- ▶ The boundary of a bounded face F gives rise to a face circuit C_F in G.

Lemma

 $\{C_F \mid F \text{ is a bounded face}\}\$ is an undirected cycle basis of G.

Proof.

Let C be a circuit in G. Then $\mathbb{R}^2\setminus\bigcup_{e\in E(C)}f_e([0,1])$ is the union of a bounded and an unbounded component. Let F_1,\ldots,F_k be the faces contained in the bounded component. Then $C=C_{F_1}+\cdots+C_{F_k}$. Suppose $\sum_{F\text{ bounded face}}\lambda_FC_F=0$ for some $\lambda_F\in\mathbb{F}_2$. If e is an edge between a bounded face F and the outer face, then $\lambda_F=0$. Proceed by induction on the number of bounded faces.

July 9, 2018

Euler's formula

Let G be a planar graph with n vertices, m edges, f faces and c connected components.

Corollary (Euler, 1758)

$$f-1=m-n+c.$$

Lemma

Suppose that G is connected and $n \geq 3$.

(1)
$$2m > 3f$$

(1)
$$2m \ge 3f$$
 (2) $m \le 3n - 6$

(3)
$$f \leq 2n - 4$$

Proof.

- (1) Handshake: $2m = \sum_{v \in V} \deg(v) = \sum_{F \text{ face}} \#\{\text{vertices along } F\} \ge 3f$. If n > 3, then the outer face contains at least 3 vertices.
- (2) $2m > 3f = 3(m-n+2) = 3m-3n+6 \Rightarrow m < 3n-6$.

(3)
$$3n-6 > m = n+f-2 \Rightarrow f < 2n-4$$
.

July 9, 2018 17 / 48

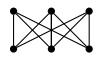
K_5 and $K_{3,3}$

Lemma

The complete graph K_5 is not planar.

Proof.

We have n = 5 and $m = {5 \choose 2} = 10$, so $m = 10 > 9 = 3 \cdot 5 - 6 = 3n - 6$.



Lemma

The complete bipartite graph $K_{3,3}$ is not planar.

Proof.

Every circuit in $K_{3,3}$ has length at least 4. In particular, if $K_{3,3}$ was planar, then $2m \ge 4(f-1) + 3 = 4(m-n+1) + 3 = 4m-4n+7$ and therefore 2m < 4n-7. But $2m = 2 \cdot 3^2 = 18$ and $4n-7 = 4 \cdot 6 - 7 = 17$.

July 9, 2018

Minors

Definition

Let G and M be undirected graphs. M is a **minor** of G if a series of the following operations transforms G into M:

- delete a vertex
- ► delete an edge
- contract an edge

Theorem (Wagner, 1937)

An undirected graph is planar if and only if it contains neither K_5 nor $K_{3,3}$ as a minor.

Proof.

 (\Rightarrow) Any minor of a planar graph must be planar.

(⇐) Omitted.

July 9, 2018

More on Minors

Theorem (Robertson/Seymour, 2004)

A family of graphs is closed under taking minors if and only if it has a finite number of minimal forbidden minors.

Example

Planar graphs: K_5 , $K_{3,3}$ Forests: C_3 (circuit on 3 vertices)

Theorem (Robertson/Seymour, 1995)

For any fixed minor M, there is a $\mathcal{O}(n^3)$ algorithm deciding whether a graph on n vertices has M as a minor.

This is nice, but the proof is not constructive. For planarity testing, there are better (and explicit) algorithms:

Theorem (Hopcroft/Tarjan, 1974)

Planarity testing can be done in O(n) time.

July 9, 2018 20 / 48

Subdivisions

Definition

Let G and M be undirected graphs. M is a **subdivision** of G if it is obtained from G by consecutively replacing an edge uw with two edges uv, vw, inserting a new vertex v.

The reverse process is called **smoothing**.

Theorem (Kuratowski, 1930)

An undirected graph is planar if and only if it contains no subgraph that is a subdivision of K_5 or $K_{3,3}$.

Proof.

- (\Rightarrow) Any subgraph and any smoothing of a planar graph must be planar.
- (\Leftarrow) Omitted.

July 9, 2018 21 / 48

2-bases

Observation

Let G be a planar embedded graph. Then every edge is contained in at most two face circuits.

Definition

A cycle basis $\mathcal B$ of a graph is called a **2-basis** if every edge is contained in at most two cycles of $\mathcal B$.

Theorem (MacLane, 1937)

A graph is planar if and only if it admits a 2-basis.

Proof (O'Neill, 1973).

Planar graphs have 2-bases. The following would prove the converse:

- (1) Admitting a 2-basis is closed under taking subgraphs and smoothings.
- (2) K_5 and $K_{3,3}$ do not admit a 2-basis.

Then any graph with a 2-basis does not contain a subdivision of K_5 or $K_{3,3}$, and must hence be planar by Kuratowski's theorem.

July 9, 2018 22 / 48

MacLane's planarity criterion

Proof of (1).

Let $\{C_1, \ldots, C_{\mu}\}$ be a 2-basis of a graph G = (V, E).

Deleting an edge $e \in E$: If e is not contained in any cycle, nothing happens. Otherwise this reduces the cyclomatic number by 1. If e is contained in a single cycle (w.l.o.g. C_1), then $\{C_2, \ldots, C_{\mu}\}$ is a 2-basis of $(V, E \setminus \{e\})$. If e is contained in two cycles (w.l.o.g. C_1, C_2), then $\{C_1 + C_2, \ldots, C_{\mu}\}$ is a 2-basis of $(V, E \setminus \{e\})$.

Deleting a vertex: Delete first all adjacent edges. Removing an isolated vertex does not affect the cyclomatic number.

Smoothing *uv* and *vw* to *uw*: The columns of *uv* and *vw* in the cycle matrix are the same, so smoothing does not change anything about the 2-basis.

July 9, 2018 23 / 48

MacLane's planarity criterion

Proof of (2).

Let $\{C_1,\ldots,C_6\}$ be a 2-basis for K_5 . Set $C_7:=\sum_{i=1}^6 C_i$. Observe that $C_7\neq 0$ and $\sum_{i=1}^7 C_{i,e}=0\in \mathbb{F}_2$ for all $e\in E$. In particular, every edge is contained in exactly two of the cycles C_1,\ldots,C_7 . Hence $\sum_{i=1}^7 |E(C_i)|=2|E(K_5)|=20$.

On the other hand, $|E(C_i)| \ge 3$ for all i, so $\sum_{i=1}^7 |E(C_i)| \ge 21$.

Now let $\{C_1, \ldots, C_4\}$ be a 2-basis for $K_{3,3}$. Set $C_5 := \sum_{i=1}^4 C_i$. Again $\sum_{i=1}^5 C_{i,e} = 0$ for all $e \in E$, so $\sum_{i=1}^5 |E(C_i)| = 2|E(K_{3,3})| = 18$. Since $|E(C_i)| \ge 4$ for all i, $\sum_{i=1}^5 |E(C_i)| \ge 20$.

July 9, 2018 24 / 48

More on 2-bases

Lemma

The cycle matrix of a 2-basis of a directed graph is totally unimodular. In particular, any 2-basis is integral.

Proof.

Orient all cycles counter-clockwise w.r.t. some planar embedding. Proceed by induction on the size q of a quadratic submatrix A of the cycle matrix. The case q=1 is clear. If $q\geq 2$, there are two cases:

- (1) A contains a column with a single non-zero entry. Use Laplace expansion and induction.
- (2) All columns of A have at least two non-zero entries. Since we have a 2-basis, there are exactly two non-zeros, a +1 and a -1. So all rows of A add up to 0, showing det A = 0.

July 9, 2018 25 / 48

Graph drawings

Let G be a planar graph.

Types of planar embeddings

- polygonal: All edges are embedded as polygonal arcs.
- straight line: All edges are drawn as straight line segments.
- ▶ rectilinear: All edges are drawn as straight line segments with slopes $k \cdot 90^{\circ}$, $k \in \mathbb{Z}$.
- ▶ *octilinear*: All edges are drawn as straight line segments with slopes $k \cdot 45^{\circ}$, $k \in \mathbb{Z}$.

July 9, 2018 26 / 48

Combinatorial type

Definition

Let G = (V, E) be a planar graph with some planar embedding. For each vertex $v \in V$, the embedding defines an ordering of the neighborhood of v by counter-clockwise sorting of the edges incident to v. This is the **combinatorial type** of the embedding.

This defines an equivalence relation on planar embeddings of G.

July 9, 2018 27 / 48

Straight line drawings

7408

Theorem (Fáry, 1948)

Any simple planar graph has a straight line drawing.

Proof.

Let G be a simple connected planar graph with $n \geq 3$ vertices, embedded into the plane. W.l.o.g. G is maximally planar, i.e., m = 3n - 6, and every bounded face is a triangle.

Claim: If uvw is a triangle, then there is a straight line embedding of the same combinatorial type where u, v, w are the vertices along the outer face.

This is easy for n=3. Thus let $n \ge 4$, and let uvw be a triangle. Not all of u, v, w have degree 2 (connectedness). Assume that the other n-3 vertices have degree at least 6. Then

$$\sum_{v \in V} \deg(v) \ge 6(n-3) + 7 = 6n - 11 > 6n - 12 = 2m,$$

contradicting the Handshaking Lemma.

July 9, 2018 28 / 48

Straight line drawings

Proof (cont.)

In particular, we find a vertex z different from u,v,w with $\deg(z) \leq 5$. Now remove z from the graph and retriangulate the new face F. The new graph has n-1 vertices and – by induction – admits a straight line embedding of the same combinatorial type where u,v,w are the vertices along the outer face. In particular, the face F has become a simple polygon with at most 5 sides.

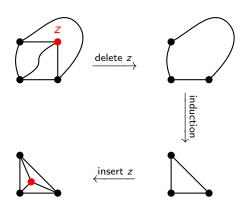
By the art gallery theorem (with $\lfloor 5/3 \rfloor = 1$ guards), there is a point inside this polygon that can be connected to all vertices of F by non-crossing straight lines (Short proof: Triangulations of simple polygons admit a 3-coloring.)

Theorem (De Fraysseix/Pach/Pollack, 1990)

Straight line drawings on a grid can be found in linear time.

July 9, 2018 29 / 48

Straight line drawings: Example



July 9, 2018 30 / 48

Rectilinear and octilinear drawings

7208

Let G be a graph.

Theorem (Garg/Tamassia, 2001)

It is NP-hard to decide whether G admits a rectilinear drawing.

Theorem (Tamassia, 1987)

Fix some planar embedding of G. There is a polynomial-time algorithm that decides whether G admits a rectilinear drawing preserving the combinatorial type.

Theorem (Nöllenburg, 2005)

Fix some planar embedding of G. It is NP-hard to decide whether G admits an octilinear drawing preserving the combinatorial type.

Both NP-hardness proofs reduce (variants of) the 3-SAT problem.

Remark

Clearly, if G admits a rectilinear (octilinear) drawing, then $deg(v) \le 4$ (≤ 8) for all $v \in V(G)$.

July 9, 2018 31 / 48

Chapter 6 Metro Map Drawing

§6.3 Octilinear Layout Computation

July 9, 2018 32 / 48

Requirements

7208

Design Principles (taken from Nöllenburg, 2011)

- Preserve the combinatorial type.
- ▶ Octilinear drawing: All edges are drawn as line segments with slopes $k \cdot 45^{\circ}$ for $k \in \{0, 1, ..., 7\}$.
- ► Lines should avoid sharp bends, and pass straight through interchanges.
- Ensure a minimum distance between stations, and stations and non-incident edges.
- Minimize geometric distortion.
- Use uniform edge lengths.
- Use large angular resolution.
- Place station labels in a readable way.
- •

July 9, 2018 33 / 48

Metro Map Layout Problem

7208

Input

- ▶ a line network consisting of a graph G = (V, E) of maximum degree 8 and a line cover \mathcal{L}
- \triangleright a planar embedding of G, e.g., by geographical coordinates

Output

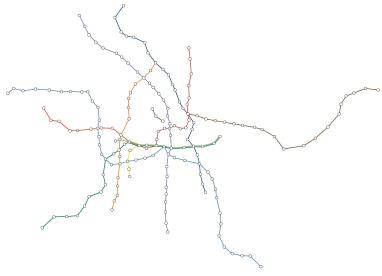
- lacktriangle a map $\psi:V o\mathbb{R}^2$ inducing an octilinear drawing of G
- satisfying/optimizing design principles

Solution Methods

- ▶ metaheuristics (hill climbing, simulated annealing, ant colonies, ...)
- ▶ local optimization: least squares
- global optimization: mixed integer programming

July 9, 2018 34 / 48

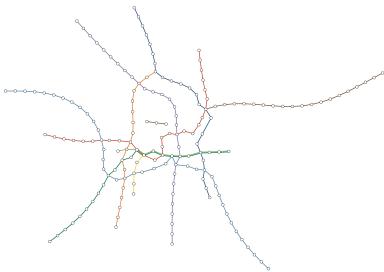
U-Bahn Berlin: geographical layout



173 vertices, 184 edges, 10 lines

July 9, 2018 35 / 48

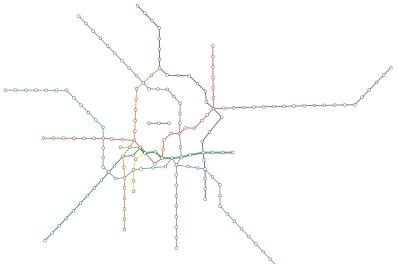
U-Bahn Berlin: curvilinear layout



least squares method (Wang/Chi 2011, Wang/Peng 2016)

July 9, 2018 36 / 48

U-Bahn Berlin: octilinear layout?



least squares method (Wang/Chi 2011, Wang/Peng 2016), naive python/cvxopt implementation: 36 s

July 9, 2018 37 / 48

Octilinear Layout MIP

ZUB

We will use the formulation due to Nöllenburg (2005):

Hard constraints (feasibility)

- octilinearity
- combinatorial type preservation
- minimum edge length
- minimum distance for non-adjacent edges

In particular, a feasible solution guarantees octilinearity.

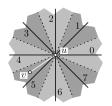
Soft constraints (objective)

- bend minimization
- preservation of relative positions for adjacent stations
- minimum total edge length

July 9, 2018 38 / 48

Octilinear Layout MIP: Basic variables

- ▶ vertex coordinates $x_v, y_v \in [0, |V|]$ for $v \in V$
- ▶ additional vertex coordinates $z_v := x_v + y_v$, $w_v := x_v y_v$
- edge directions $\operatorname{dir}_{vw}, \operatorname{dir}_{wv} \in \{0, 1, \dots, 7\}$ for $\{v, w\} \in E$
- ▶ original directions $\sec_{vw} := \left[\left\lfloor \frac{\sphericalangle(v,w)}{45^{\circ}} + \frac{1}{2} \right\rfloor \right]_{8}$, where $\sphericalangle(v,w) \in (-180^{\circ},180^{\circ}]$ is the slope of the edge $\{v,w\}$



Nöllenburg (2005)

July 9, 2018 39 / 48

Octilinear Layout MIP: Directions

▶ binary variables $\alpha_{i,vw}$ for $i \in \{-1,0,1\}$ and $\{v,w\} \in E$ such that $\alpha_{i,vw} = 1 \Leftrightarrow \text{edge } \{v,w\}$ is in original direction $+i \cdot 45^{\circ}$

$$\begin{array}{lll} \alpha_{-1,vw} + \alpha_{0,vw} + \alpha_{1,vw} = 1, & \{v,w\} \in E \\ \operatorname{dir}_{vw} + M\alpha_{i,vw} \leq M + [\sec_{vw} + i]_8, & i \in \{-1,0,1\}, \{v,w\} \in E \\ \operatorname{dir}_{vw} - M\alpha_{i,vw} \geq -M + [\sec_{vw} + i]_8, & i \in \{-1,0,1\}, \{v,w\} \in E \\ \operatorname{dir}_{wv} + M\alpha_{i,vw} \leq M + [\sec_{vw} + i + 4]_8, & i \in \{-1,0,1\}, \{v,w\} \in E \\ \operatorname{dir}_{wv} - M\alpha_{i,vw} \geq -M + [\sec_{vw} + i + 4]_8, & i \in \{-1,0,1\}, \{v,w\} \in E \\ \operatorname{dir}_{wv} - M\alpha_{i,vw} \geq -M + [\sec_{vw} + i + 4]_8, & i \in \{-1,0,1\}, \{v,w\} \in E \\ \end{array}$$

 $M \gg 0$ is a large constant

▶ relating directions with coordinates, e.g., for $\sec_{vw} = 2$ and $\alpha_{0,vw}$:

$$\begin{split} x_{v} - x_{w} + M\alpha_{0,vw} &\leq M \\ x_{v} - x_{w} - M\alpha_{0,vw} &\geq -M \\ y_{v} - y_{w} + M\alpha_{0,vw} &\leq M - \text{minimum edge length} \end{split}$$

If $\alpha_{0,vw} = 1$, then $x_v = x_w$ and $y_w \ge y_v + \text{minimum edge length}$.

July 9, 2018 40 / 48

Octilinear Layout MIP: Planar embedding

▶ preservation of combinatorial type: binary variables $\beta_{i,v}$ for $i \in \{1, ..., \deg(v)\}$ and $v \in V$,

$$\sum_{i=1}^{\deg(v)} \beta_{i,v} = 1, \qquad v \in V,$$

$$\mathsf{dir}_{v,w_j} - \mathsf{dir}_{v,w_{[j-1]_{\deg(v)}}} + M\beta_j(v) \geq 1, \qquad v \in V, j = 1, \dots, \mathsf{deg}(v),$$

where $w_1, \ldots, w_{\deg(v)}$ are the neighbors of v in counter-clockwise order

▶ planarity constraints: modeled by binary variables $\gamma_{i,e,e'}$ for $i \in \{0,\ldots,7\}$ and $e,e' \in E$ non-incident (large number!)

July 9, 2018 41 / 48

Octilinear Layout MIP: Objective

$$y_v - y_w + M\alpha_{0,vw} = M - \operatorname{len}_{vw}$$

If $\alpha_{0,vw}=1$, then $x_v=x_w$, and $y_w\geq y_v=\text{len}_{vw}$. Edge lengths are measured w.r.t. $|\cdot|_{\infty}$: a diagonal line segment $(x,y)\to (x+1,y+1)$ has length 1.

bend objective: for each three consecutive stations (u, v, w) on a line of the network, add the constraints

$$\mathsf{bend}_{uvw} = \begin{cases} |\mathsf{dir}_{uv} - \mathsf{dir}_{vw}| & \text{if } |\mathsf{dir}_{uv} - \mathsf{dir}_{vw}| \le 4\\ 8 - |\mathsf{dir}_{uv} - \mathsf{dir}_{vw}| & \text{if } |\mathsf{dir}_{uv} - \mathsf{dir}_{vw}| \ge 5 \end{cases}$$

relative position objective:

$$-M \cdot \text{rel}_{vw} < \text{dir}_{vw} - \text{sec}_{vw} < M \cdot \text{rel}_{vw}, \quad vw \in E$$

• objective function: $\lambda_1 \sum_{vw} \text{len}_{vw} + \lambda_2 \sum_{uvw} \text{bend}_{uvw} + \lambda_3 \sum_{vw} \text{rel}_{vw}$

July 9, 2018 42 / 48

Octilinear Layout MIP: Practical Aspects

Size

Suppose that G has n vertices and m edges. Let $m' := \sum_{\ell \in \mathcal{L}} |E(\ell)|$. Then the MIP formulation uses uses $O(n + m' + m^2)$ variables and constraints.

Example

The Berlin U-Bahn example needs

- ▶ 3 046 variables (1 623 binary, 546 integer, 877 continuous) and 7 149 constraints *without* planarity constraints.
- ▶ 137 158 variables (135 735 binary, 546 integer, 877 continuous) and 560 361 constraints *with* planarity constraints

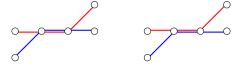
Pre-processing

- ▶ Do not use all planarity constraints (heuristics, lazy constraints).
- ► Contract vertices of degree 2.

July 9, 2018 43 / 48

Crossing minimization

Consider a line network (G, \mathcal{L}) . The **metro line crossing minimization** problem is to find an ordering of the lines at each station such that the total number of crossings of lines is minimized.

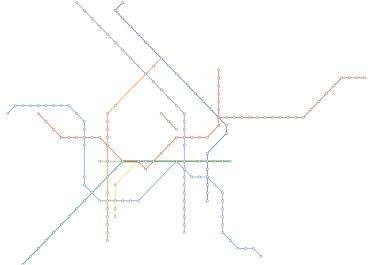


Results

- ▶ The problem is in general NP-hard (Fink/Pupyrev, 2013).
- ► There is an integer programming formulation (Asquith et. al., 2008).
- The key step is to determine the ordering of the lines at their terminals.
- ▶ For a fixed ordering at the terminals, there is a polynomial-time algorithm.

July 9, 2018 44 / 48

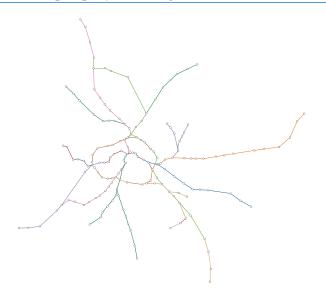
U-Bahn Berlin: octilinear layout!



mixed integer programming method (Nöllenburg 2005), solution found by CPLEX 12.7.1 after 66 s, optimality: 15 min 55 s

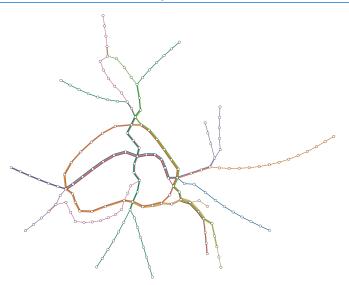
July 9, 2018 45 / 48

S-Bahn Berlin: geographical layout



July 9, 2018 46 / 48

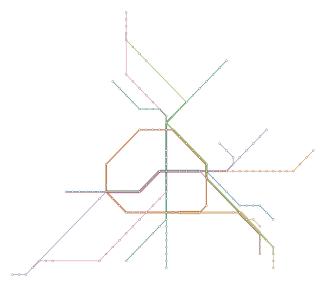
S-Bahn Berlin: curvilinear layout



least squares method, naive python/cvxopt implementation: 31 s

July 9, 2018 47 / 48

S-Bahn Berlin: octilinear layout



mixed integer programming method, solution found by CPLEX 12.7.1 after 25 s, optimality gap: $\leq 3\%$

July 9, 2018 48 / 48