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Reminder

Dates

» July 12: no tutorial (excursion)

» July 16: evaluation of Problem Set 10 and Test Exam
» July 19: no tutorial

» July 19/20: block seminar on shortest paths

» August 7 (Tuesday): 1st exam

» October 8 (Monday): 2nd exam

Exams

» location: ZIB seminar room
» start time: 10.00am
» duration: 60 minutes

» permitted aids: one A4 sheet with notes
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Chapter 6
Metro Map Drawing

66.1 Metro Maps
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§6.1 Metro Maps
Berlin, 1921 (Pharus-Plan)
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§6.1 Metro Maps
Berlln 1913 (Hochbahngesellschaft)
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86.1 Metro Maps
Berlin, 1933 (BVG)
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§6.1 Metro Maps
London, 1926 (London Underground)
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§6.1 Metro Maps
London, 1933 (Harry Beck
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§6.1 Metro Maps

Plaque at Finchley Central station

HARRY BECK
THE ORIGINATOR OF THE

DISTINCTIVE LONDON UNDERGROUND MAP
WHO LIVED NEAR HERE AND USED

THE STATION REGULARLY
THE MAP IS USED BY MILLIONS DAILY
AND HAS BECOME RECOGNISED
AS A CLASSIC

* WORLD-WIDE

Nick Cooper, commons.wikimedia.org
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86.1 Metro Maps

Berlin, 1968 (BVG-West)
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§6.1 Metro Maps
Berlin, 2018 (BVG)
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§6.1 Metro Maps
London, 2018 (Transport for London)

Transport for London, tfl.gov.uk
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§6.1 Metro Maps
Saint Petersburg, 2018
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Chapter 6
Metro Map Drawing

6.2 Planar Graphs

July 9, 2018 14 / 48



86.2 Planar Graphs

Planar Embeddings

Let G = (V, E) be a (simple) graph.

Definition

A planar embedding of G consists of an injective map ¢ : V — R?, and a
family of continuous and injective functions f, : [0, 1] — R? for each edge
e € E such that

> fw(0) = ¢(v) and £, (1) = ¢¥(w) for all vw € E,
» £.((0,1))N Ue/;ée fer([0,1]) = 0 for all e € E.
G is called planar if it admits some planar embedding.

Remark
This embeds a graph into the plane using simple Jordan curves.
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86.2 Planar Graphs
Faces

Definition
A connected component of R? \ |J g fe([0,1]) is called a face.

Observations
» There is exactly one unbounded face (Jordan curve theorem).

» The boundary of a bounded face F gives rise to a face circuit Cr in G.

Lemma
{CFr | F is a bounded face} is an undirected cycle basis of G.

Proof.

Let C be a circuit in G. Then R?\ Ueee(c) fe([0, 1]) is the union of a
bounded and an unbounded component. Let Fi,..., Fix be the faces
contained in the bounded component. Then C = Cg, +--- + Cf,.
Suppose Y r pounded face AF CF = 0 for some Ap € Fa. If e is an edge
between a bounded face F and the outer face, then A\ = 0. Proceed by
induction on the number of bounded faces. O
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66.2 Planar Graphs
Euler's formula

Let G be a planar graph with n vertices, m edges, f faces and ¢ connected
components.

Corollary (Euler, 1758)

f—1=m-n+c.

Lemma

Suppose that G is connected and n > 3.

(1) 2m > 3f (2) m<3n—-6 (3) f<2n—-4
Proof.

(1) Handshake: 2m =3 .\ deg(v) = > F (.o #{vertices along F} > 3f.
If n > 3, then the outer face contains at least 3 vertices.

(2) 2m>3f=3(m—n+2)=3m—-3n+6 = m<3n—6.
3)3n—6>m=n+f—-2=f<2n—4 O
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86.2 Planar Graphs
K5 and K3’3

Lemma
The complete graph Ks is not planar.

Proof.
We have n=5and m= (}) =10,som=10>9=3-5—-6=3n—6. L[]

Lemma

The complete bipartite graph K3 3 is not planar.

Proof.

Every circuit in K33 has length at least 4. In particular, if K33 was planar,
then 2m > 4(f —1) +3=4(m—n+1)+3 =4m —4n+ 7 and therefore
2m<4n—7.But2m=2-3?=18and 4n—7=4-6—-7=17. O
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86.2 Planar Graphs
Minors

Definition
Let G and M be undirected graphs. M is a minor of G if a series of the
following operations transforms G into M:

> delete a vertex
» delete an edge

» contract an edge

Theorem (Wagner, 1937)

An undirected graph is planar if and only if it contains neither Ks nor K33
as a minor.

Proof.
(=) Any minor of a planar graph must be planar.
(<) Omitted. O

July 9, 2018 19 /48



66.2 Planar Graphs
More on Minors

Theorem (Robertson/Seymour, 2004)

A family of graphs is closed under taking minors if and only if it has a
finite number of minimal forbidden minors.

Example
Planar graphs: Ks, K33  Forests: C3 (circuit on 3 vertices)

Theorem (Robertson/Seymour, 1995)

For any fixed minor M, there is a O(n3) algorithm deciding whether a
graph on n vertices has M as a minor.

This is nice, but the proof is not constructive. For planarity testing, there
are better (and explicit) algorithms:

Theorem (Hopcroft/Tarjan, 1974)

Planarity testing can be done in O(n) time.
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86.2 Planar Graphs
Subdivisions

Definition

Let G and M be undirected graphs. M is a subdivision of G if it is
obtained from G by consecutively replacing an edge uw with two edges
uv, vw, inserting a new vertex v.

u w u v w
*——O — *—o—90

The reverse process is called smoothing.

Theorem (Kuratowski, 1930)
An undirected graph is planar if and only if it contains no subgraph that is
a subdivision of Ks or K3 3.

Proof.
(=) Any subgraph and any smoothing of a planar graph must be planar.
(<) Omitted. O
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86.2 Planar Graphs
2-bases

Observation
Let G be a planar embedded graph. Then every edge is contained in at
most two face circuits.

Definition
A cycle basis B of a graph is called a 2-basis if every edge is contained in
at most two cycles of B.

Theorem (MacLane, 1937)

A graph is planar if and only if it admits a 2-basis.

Proof (O'Neill, 1973).

Planar graphs have 2-bases. The following would prove the converse:

(1) Admitting a 2-basis is closed under taking subgraphs and smoothings.
(2) Ks and K33 do not admit a 2-basis.

Then any graph with a 2-basis does not contain a subdivision of Ks or

K33, and must hence be planar by Kuratowski's theorem.
July 9, 2018 22/ 48




86.2 Planar Graphs
MacLane's planarity criterion

Proof of (1).
Let {Cy,..., C,} be a 2-basis of a graph G = (V, E).

Deleting an edge e € E: If e is not contained in any cycle, nothing
happens. Otherwise this reduces the cyclomatic number by 1. If e is
contained in a single cycle (w.l.o.g. Cy), then {(,, ..., C,} is a 2-basis of
(V,E\ {e}). If e is contained in two cycles (w.l.o.g. Ci, (), then

{G+ G, ..., Cu}is a 2-basis of (V, E\ {e}).

Deleting a vertex: Delete first all adjacent edges. Removing an isolated

vertex does not affect the cyclomatic number.

Smoothing uv and vw to uw: The columns of uv and vw in the cycle
matrix are the same, so smoothing does not change anything about the
2-basis.
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86.2 Planar Graphs
MacLane's planarity criterion

Proof of (2).

Let {Ci,..., Gs} be a 2-basis for Ks. Set G := Z?:l C;. Observe that
C7 #0 and 27:1 Cie =0 €T, for all e € E. In particular, every edge is
contained in exactly two of the cycles C3,..., C;. Hence

> i1 [E(G)| = 2|E(Ks)| = 20.

On the other hand, |E(G;)| > 3 for all i, so S.7_; |E(CG;)| > 21.

Now let {Cy,..., G4} be a 2-basis for K33. Set G5 := Zj}:l C;. Again

2 Ce=0forallec E, so 32 | |E(C)| = 2|E(Ks3)| = 18. Since
|E(C))| >4 forall i, S°_, |E(C;)| > 20. O
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86.2 Planar Graphs
More on 2-bases

Lemma
The cycle matrix of a 2-basis of a directed graph is totally unimodular. In
particular, any 2-basis is integral.

Proof.

Orient all cycles counter-clockwise w.r.t. some planar embedding. Proceed
by induction on the size g of a quadratic submatrix A of the cycle matrix.
The case g = 1 is clear. If g > 2, there are two cases:

(1) A contains a column with a single non-zero entry. Use Laplace
expansion and induction.

(2) All columns of A have at least two non-zero entries. Since we have a
2-basis, there are exactly two non-zeros, a +1 and a —1. So all rows of
A add up to 0, showing det A = 0.

O
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86.2 Planar Graphs
Graph drawings

Let G be a planar graph.
Types of planar embeddings
» polygonal: All edges are embedded as polygonal arcs.

» straight line: All edges are drawn as straight line segments.

» rectilinear: All edges are drawn as straight line segments with slopes
k-90° k e Z.

» octilinear: All edges are drawn as straight line segments with slopes

S
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86.2 Planar Graphs
Combinatorial type

Definition

Let G = (V, E) be a planar graph with some planar embedding. For each
vertex v € V, the embedding defines an ordering of the neighborhood of v
by counter-clockwise sorting of the edges incident to v. This is the
combinatorial type of the embedding.

B D

D C B C
A: (B, D, C) A: (D, B, C)

This defines an equivalence relation on planar embeddings of G.
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86.2 Planar Graphs
Straight line drawings

Theorem (Fary, 1948)

Any simple planar graph has a straight line drawing.

Proof.

Let G be a simple connected planar graph with n > 3 vertices, embedded

into the plane. W.l.o.g. G is maximally planar, i.e., m = 3n — 6, and every
bounded face is a triangle.

Claim: If uvw is a triangle, then there is a straight line embedding of the
same combinatorial type where u, v, w are the vertices along the outer face.

This is easy for n = 3. Thus let n > 4, and let uvw be a triangle. Not all
of u, v, w have degree 2 (connectedness). Assume that the other n — 3
vertices have degree at least 6. Then

> deg(v) > 6(n—3)+7=6n—11>6n—12=2m,
veVv
contradicting the Handshaking Lemma. Ol
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86.2 Planar Graphs
Straight line drawings

Proof (cont.)

In particular, we find a vertex z different from u, v, w with deg(z) <5.
Now remove z from the graph and retriangulate the new face F. The new
graph has n — 1 vertices and — by induction — admits a straight line
embedding of the same combinatorial type where u, v, w are the vertices
along the outer face. In particular, the face F has become a simple
polygon with at most 5 sides.

By the art gallery theorem (with |5/3| = 1 guards), there is a point inside
this polygon that can be connected to all vertices of F by non-crossing
straight lines (Short proof: Triangulations of simple polygons admit a
3-coloring.) O

Theorem (De Fraysseix/Pach/Pollack, 1990)

Straight line drawings on a grid can be found in linear time.
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66.2 Planar Graphs
Straight line drawings: Example

delete z

uodNpul

insert z
k A h.
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66.2 Planar Graphs

Rectilinear and octilinear drawings

Let G be a graph.

Theorem (Garg/Tamassia, 2001)

It is NP-hard to decide whether G admits a rectilinear drawing.

Theorem (Tamassia, 1987)

Fix some planar embedding of G. There is a polynomial-time algorithm
that decides whether G admits a rectilinear drawing preserving the
combinatorial type.

Theorem (Nollenburg, 2005)

Fix some planar embedding of G. It is NP-hard to decide whether G
admits an octilinear drawing preserving the combinatorial type.

Both NP-hardness proofs reduce (variants of) the 3-SAT problem.

Remark
Clearly, if G admits a rectilinear (octilinear) drawing, then deg(v) < 4
(<£8) forall ve V(G).
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Chapter 6
Metro Map Drawing

6.3 Octilinear Layout Computation
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6.3 Octilinear Layout Computation
Requirements

Design Principles (taken from Nollenburg, 2011)

>

>

Preserve the combinatorial type.

Octilinear drawing: All edges are drawn as line segments with slopes
k - 45° for k € {0,1,...,7}.

Lines should avoid sharp bends, and pass straight through
interchanges.

Ensure a minimum distance between stations, and stations and
non-incident edges.

Minimize geometric distortion.
Use uniform edge lengths.
Use large angular resolution.

Place station labels in a readable way.
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6.3 Octilinear Layout Computation

Metro Map Layout Problem

Input

» a line network consisting of a graph G = (V, E) of maximum degree 8
and a line cover L

» a planar embedding of G, e.g., by geographical coordinates

Output

» a map ¢ : V — R? inducing an octilinear drawing of G
» satisfying/optimizing design principles

Solution Methods

» metaheuristics (hill climbing, simulated annealing, ant colonies, .. .)
» local optimization: least squares

> global optimization: mixed integer programming
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§6.3 Octilinear Layout Computation

U-Bahn Berlin: geographical layout

173 vertices, 184 edges, 10 lines

July 9, 2018 35 /48



§6.3 Octilinear Layout Computation
U-Bahn Berlin: curvilinear layout

least squares method (Wang/Chi 2011, Wang/Peng 2016)
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§6.3 Octilinear Layout Computation
U-Bahn Berlin: octilinear layout?

least squares method (Wang/Chi 2011, Wang/Peng 2016), naive python/cvxopt implementation: 36 s
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6.3 Octilinear Layout Computation

Octilinear Layout MIP
We will use the formulation due to Nollenburg (2005):

Hard constraints (feasibility)

» octilinearity
» combinatorial type preservation
» minimum edge length

» minimum distance for non-adjacent edges

In particular, a feasible solution guarantees octilinearity.
Soft constraints (objective)
» bend minimization

» preservation of relative positions for adjacent stations

» minimum total edge length
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§6.3 Octilinear Layout Computation
Octilinear Layout MIP: Basic variables

» vertex coordinates x,,y, € [0,|V|] for v e V
» additional vertex coordinates z, := x, + y,, w, ‘=X, — ¥y
» edge directions dir,,diry, € {0,1,...,7} for {v,w} € E

» original directions sec,,, = Hﬂ‘;;"’ ) + H ,

where <(v, w) € (—180°,180°] is the slope of the edge {v,w}

Néllenburg (2005)
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6.3 Octilinear Layout Computation
Octilinear Layout MIP: Directions

> binary variables a; ,, for i € {—1,0,1} and {v,w} € E such that
ajyw =1 < edge {v,w} is in original direction -+ - 45°
a_1,uw + aouw + a1 = 1, {viw} € E
dityw + Mty < M + [seCpy + s, ie{-1,0,1},{v,w} € E
diryy — Moy > —M + [secyy, + i, i€{-1,0,1},{v,w} € E
diryy + Moy < M+ [secyy + i + 4]s, i€{-1,0,1},{v,w} € E
diryy — Moy > —M + [secyy, + i +4]g, i€ {-1,0,1},{v,w} € E
M > 0 is a large constant

> relating directions with coordinates, e.g., for sec,,, = 2 and ag,vw:

Xy — Xw + Mag y <M
M

M — minimum edge length

>
<

Y

Xy — Xw — MaO,vw

>
Ww—Yw+ MaO,vw <

If ag,vw = 1, then x, = x,, and y,, > y, + minimum edge length.
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6.3 Octilinear Layout Computation

Octilinear Layout MIP: Planar embedding

> preservation of combinatorial type: binary variables j; , for
ie{l,...,deg(v)} and v € V,

deg(v)
Z /BI v=1, vev,
diry w, — dirV7WU71]deg(v) + Mﬁj(v) >1, veV,j=1,... deg(v),
where wi, ..., Wyeg(,) are the neighbors of v in counter-clockwise

order

» planarity constraints: modeled by binary variables v; ¢ o for
i€{0,...,7} and e, € € E non-incident (large number!)
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6.3 Octilinear Layout Computation
Octilinear Layout MIP: Objective

» total edge length objective: by new variables len,,,, vw € E, e.g., for
seCy = 2 and ag v

Yv — Yw + Mag vy = M —leny,

If ag,vw =1, then x, = x,,, and y,, > y, = len,,,. Edge lengths are
measured w.r.t. | - |»: a diagonal line segment (x,y) — (x + 1,y + 1)
has length 1.

» bend objective: for each three consecutive stations (u, v, w) on a line
of the network, add the constraints

|diry, — diryy| if [diry, — diry,| <4
bend v = . . . . .
8 — |diry, — diryy,| if |diry, —diryy| > 5
> relative position objective:
—M - rel,,, <dir,, —secyyy < M -rely,,, vweeE
> objective function: A1 >, lenyw + X2 >, bendu + 3>, reluy
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6.3 Octilinear Layout Computation
Octilinear Layout MIP: Practical Aspects

Size
Suppose that G has n vertices and m edges. Let m’ := %", . |E(¢)|. Then
the MIP formulation uses uses O(n + m’ + m?) variables and constraints.

Example
The Berlin U-Bahn example needs

> 3046 variables (1623 binary, 546 integer, 877 continuous) and 7149
constraints without planarity constraints.

» 137158 variables (135735 binary, 546 integer, 877 continuous) and
560 361 constraints with planarity constraints

Pre-processing
» Do not use all planarity constraints (heuristics, lazy constraints).

» Contract vertices of degree 2.
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6.3 Octilinear Layout Computation
Crossing minimization
Consider a line network (G, £). The metro line crossing minimization

problem is to find an ordering of the lines at each station such that the
total number of crossings of lines is minimized.

Results

» The problem is in general NP-hard (Fink/Pupyrev, 2013).
» There is an integer programming formulation (Asquith et. al., 2008).

» The key step is to determine the ordering of the lines at their
terminals.

» For a fixed ordering at the terminals, there is a polynomial-time
algorithm.
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§6.3 Octilinear Layout Computation
U-Bahn Berlin: octilinear layout!

mixed integer programming method (Néllenburg 2005), solution found by CPLEX 12.7.1 after 66 s, optimality: 15 min 55 s
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§6.3 Octilinear Layout Computation

S-Bahn Berlin: geographical layout
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§6.3 Octilinear Layout Computation
S-Bahn Berlin: curvilinear layout

least squares method, naive python/cvxopt implementation: 31 s
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§6.3 Octilinear Layout Computation
S-Bahn Berlin: octilinear layout

mixed integer programming method, solution found by CPLEX 12.7.1 after 25 s, optimality gap: < 3%
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