Mathematical Aspects of Public Transportation Networks

Niels Lindner

April 23, 2018
Chapter 1

S-Bahn Challenge

§1.3 The Traveling Salesman Problem
Interlude: P vs. NP

Informal definitions

- A decision problem is a problem whose solution is either yes or no.
- The complexity class P consists of all decision problems that can be solved in polynomial time.
- The complexity class NP consists of all decision problems that can be verified in polynomial time.

P vs. NP

The question whether \(P = NP \) is a millennium problem.

Notation

For a decision problem \(\Pi \) with an input \(x \), we write \(x \in \Pi \) iff \(x \) is a “yes”-instance for \(\Pi \).
How to show membership to P or NP

Let Π be a decision problem.

- Π ∈ P ⇔ ∃ polynomial \(p \) and an algorithm \(A \) that decides for each input \(x \) if \(x \in Π \), and the running time of \(A \) is \(\leq p(\text{size}(x)) \).
- Π ∈ NP ⇔ ∃ polynomial \(p \) and a problem \(Λ \in P \) such that each input \(x \) has a certificate \(c(x) \) satisfying \(x \in Π ⇔ (x, c(x)) \in Λ \), and \(\text{size}(c(x)) \leq p(\text{size}(x)) \).

Examples

- “Does a graph \(G \) admit an Euler tour?” is in P.
- “Is a graph \(G \) Hamiltonian?” is in NP.
 (certificate: a Hamiltonian circuit \(C \))
- “Is a graph \(G \) not Hamiltonian?” is not known to be in NP.
 (certificate: all circuits in \(G \) – too large!)
1.3 The Traveling Salesman Problem

Polynomial-time reduction

Definition
Let \(\Pi \) and \(\Lambda \) be decision problems. \(\Pi \) reduces polynomially to \(\Lambda \) (short: \(\Pi \leq \Lambda \)) if there is a function \(f \) on the inputs for \(\Pi \) such that

\[
x \in \Pi \Leftrightarrow f(x) \in \Lambda,
\]

and \(f \) can be computed by a polynomial-time algorithm.

Remarks
- This is a partial order.
- Intuitively, \(\Pi \leq \Lambda \) if and only if \(\Pi \) is at most as hard to solve as \(\Lambda \).
- If \(\Pi \leq \Lambda \) and \(\Lambda \leq \Pi \), then \(\Pi \) and \(\Lambda \) are polynomially equivalent.

Lemma
- \(\Pi \in P \Leftrightarrow \Pi \leq \Lambda \ for \ some \ \Lambda \in P. \)
- \(\Pi \in NP \Leftrightarrow \Pi \leq \Lambda \ for \ some \ \Lambda \in NP. \)
NP-completeness

Definition
Let Π be a decision problem.

- Π is **NP-hard** if $\Lambda \leq \Pi$ for each $\Lambda \in \text{NP}$.
- Π is **NP-complete** if Π is NP-hard and $\Pi \in \text{NP}$.

Lemma (How to show NP-hardness)
Suppose there is an NP-hard problem Λ with $\Lambda \leq \Pi$. Then Π is NP-hard.

Optimization problems
We also call a minimization problem $\min_{x \in X} f(x)$ **NP-hard/-complete** if the decision problem

"Given $q \in \mathbb{Q}$, is there an $x \in X$ with $f(x) \leq q$?"

is NP-hard/-complete. (Similar: maximization with “\geq”.)
1.3 The Traveling Salesman Problem

Complete Graphs

Let $n \in \mathbb{N}$. The complete graph K_n is the graph with

- vertex set $V(K_n) = \{1, \ldots, n\}$,
- edge set $E(K_n) = \{\{i, j\} \mid 1 \leq i < j \leq n\}$.

Definition

The **Traveling Salesman Problem (TSP)** on a complete graph K_n is to find a minimum-cost Hamilton circuit in K_n w.r.t. a cost function $c : E(K_n) \to \mathbb{R}_{\geq 0}$.

<table>
<thead>
<tr>
<th>distance/km</th>
<th>HH</th>
<th>K</th>
<th>S</th>
<th>M</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hamburg</td>
<td>0</td>
<td>366</td>
<td>534</td>
<td>613</td>
<td>256</td>
</tr>
<tr>
<td>Köln</td>
<td>366</td>
<td>0</td>
<td>288</td>
<td>456</td>
<td>478</td>
</tr>
<tr>
<td>Stuttgart</td>
<td>534</td>
<td>288</td>
<td>0</td>
<td>191</td>
<td>512</td>
</tr>
<tr>
<td>München</td>
<td>613</td>
<td>456</td>
<td>191</td>
<td>0</td>
<td>505</td>
</tr>
<tr>
<td>Berlin</td>
<td>256</td>
<td>478</td>
<td>512</td>
<td>505</td>
<td>0</td>
</tr>
</tbody>
</table>
Let $n \in \mathbb{N}$. The **complete graph** K_n is the graph with

- vertex set $V(K_n) = \{1, \ldots, n\}$,
- edge set $E(K_n) = \{\{i, j\} \mid 1 \leq i < j \leq n\}$.

Definition

The **Traveling Salesman Problem (TSP)** on a complete graph K_n is to find a minimum-cost Hamilton circuit in K_n w.r.t. a cost function $c : E(K_n) \to \mathbb{R}_{\geq 0}$.

optimal cost: 1606
The Traveling Salesman Problem

Hardness

Theorem

TSP is NP-hard.

Proof.

Let G be a graph on n vertices with edge set $E(G)$. Define a cost function on $E(K_n)$ via

$$c(\{i,j\}) := \begin{cases} 1 & \text{if } \{i,j\} \in E(G), \\ 2 & \text{otherwise,} \end{cases} \quad 1 \leq i < j \leq n.$$

Then G contains a Hamiltonian circuit if and only if K_n has a Hamiltonian circuit with cost $\leq n$. \hfill \square

Combinatorial Explosion

K_n contains $(n - 1)!/2$ Hamilton circuits.
Approximation hardness

Definition
Let P be an optimization problem with non-negative cost and $k \geq 1$. A k-factor approximation algorithm for P is a polynomial-time algorithm A for P such that

$$\frac{1}{k} \cdot \text{OPT}(I) \leq A(I) \leq k \cdot \text{OPT}(I)$$

for all instances I of P. Here, $\text{OPT}(I)$ denotes the cost of an optimal solution, and $A(I)$ is the cost of the solution computed by A.

A k-factor approximation algorithm is a polynomial-time heuristic with a worst-case estimate on the solution quality (the lower k, the better).

Theorem
Let A be a k-factor approximation algorithm for TSP for some $k \geq 1$. Then $P = NP$.
1.3 The Traveling Salesman Problem

Approximation hardness

Proof.

- Let A be such an algorithm, i.e., for every TSP instance $I = (K_n, c)$ with optimal solution $\text{OPT}(I)$, A computes a Hamiltonian circuit of cost $A(I) \leq k \cdot \text{OPT}(I)$.

- Let G be a graph with edge set $E(G)$ and n vertices. Define a cost function on $E(K_n)$ via

$$c(\{i, j\}) := \begin{cases} 1 & \text{if } \{i, j\} \in E(G), \\ 2 + (k - 1)n & \text{otherwise}, \end{cases} \quad 1 \leq i < j \leq n.$$

- If $A(I) \leq n$, then G admits a Hamiltonian circuit.

- Otherwise $k \cdot \text{OPT}(I) \geq A(I) \geq n - 1 + 2 + (k - 1)n = kn + 1$, thus $\text{OPT}(I) > n$ and G cannot have a Hamiltonian circuit.

- A is a polynomial-time algorithm deciding the NP-complete Hamilton circuit problem on an arbitrary graph. This implies $P = NP$.

April 23, 2018
§1.3 The Traveling Salesman Problem

Metric TSP

Definition
A TSP instance \((K_n, c)\) is called **metric** if the triangle inequality
\[c(\{i, j\}) \leq c(\{i, k\}) + c(\{k, j\}) \]
holds for all \(1 \leq i, j, k \leq n\).

Theorem (Christofides, 1976)
There is a \(\frac{3}{2}\)-factor approximation algorithm for metric TSP.

Christofides’ algorithm

1. Compute a minimum spanning tree \(T\) in \(K_n\) w.r.t. \(c\).
2. Find a min-weight perfect matching \(M\) of the odd-degree vertices of \(T\) w.r.t. \(c\).
3. Take the Hamiltonian circuit by sorting the vertices by order of appearance in an Euler tour in \((V(K_n), E(T) \cup M)\).
1.3 The Traveling Salesman Problem

Metric TSP

Definition

A TSP instance \((K_n, c)\) is called **metric** if the triangle inequality
\[c(\{i, j\}) \leq c(\{i, k\}) + c(\{k, j\}) \]
holds for all \(1 \leq i, j, k \leq n\).

Theorem (Christofides, 1976)

There is a \(\frac{3}{2}\)-factor approximation algorithm for metric TSP.

Christofides’ algorithm

1. Compute a minimum spanning tree \(T\) in \(K_n\) w.r.t. \(c\).
2. Find a min-weight perfect matching \(M\) of the odd-degree vertices of \(T\) w.r.t. \(c\).
3. Take the Hamiltonian circuit by sorting the vertices by order of appearance in an Euler tour in \((V(K_n), E(T) \cup M)\).
1.3 The Traveling Salesman Problem

Metric TSP

Definition
A TSP instance \((K_n, c)\) is called metric if the triangle inequality
\[c(\{i, j\}) \leq c(\{i, k\}) + c(\{k, j\}) \]
holds for all \(1 \leq i, j, k \leq n\).

Theorem (Christofides, 1976)
There is a \(\frac{3}{2}\)-factor approximation algorithm for metric TSP.

Christofides’ algorithm

1. Compute a minimum spanning tree \(T\) in \(K_n\) w.r.t. \(c\).
2. Find a min-weight perfect matching \(M\) of the odd-degree vertices of \(T\) w.r.t. \(c\).
3. Take the Hamiltonian circuit by sorting the vertices by order of appearance in an Euler tour in \((V(K_n), E(T) \cup M)\).
1.3 The Traveling Salesman Problem

Christofides’ Algorithm

Proof.

- Let $I = (K_n, c)$ be a TSP instance. Removing a single edge from any Hamilton circuit gives a spanning tree. Hence for a minimum spanning tree T of K_n w.r.t. c, we have $\text{OPT}(I) \geq c(T) := \sum_{e \in E(T)} c(e)$.

- A shortest path from i to j is simply given by the edge $\{i, j\}$ because of the triangle inequality.

- Denote by $c(M)$ the weight of the min-weight perfect matching M. Each Hamiltonian circuit decomposes into two matchings of the odd-degree nodes of T. Hence $\text{OPT}(I) \geq 2c(M)$ (triangle inequality).

- The graph $(V(K_n), E(T) \cup M)$ is clearly Eulerian.

- Computing a Hamiltonian circuit from an Euler tour does not increase the cost (again triangle inequality).

- Thus $A(I) \leq c(T) + c(M) \leq \text{OPT}(I) + \frac{1}{2}\text{OPT}(I) = \frac{3}{2}\text{OPT}(I)$.

- The algorithm runs in polynomial time.
The k-opt heuristic

For non-metric TSP instances $I = (K_n, c)$, there is a family of heuristics based on local search:

k-opt heuristic

Fix an integer $k \geq 2$.

1. Let C be any Hamiltonian circuit.
2. Let S be the collection of all k-element subsets of $E(C)$.
3. Let $C' := \arg \min \{ c(C') \mid C' \text{ Ham. circuit, } E(C) \setminus S \subseteq E(C'), S \in S \}$.
4. If $c(C') < c(C)$, set $C := C'$ and go to 2. Otherwise return C'.

Remarks

- For all $k \geq 2$, the worst-case running time is exponential in n.
- n-opt would be exact, but enumerates all possibilities.
- In Step 3, 2-opt simply replaces two edges $(i, j), (k, \ell)$ by $(i, k), (j, \ell)$.
The TSP on \((K_n, c)\) has the following classical formulation as an IP:

\[
\begin{align*}
\text{Minimize} & \quad \sum_{e \in E(K_n)} c(e)x_e \\
\text{s. t.} & \quad \sum_{e \in E(K_n) : v \in e} x_e = 2, \quad \forall v \in V(K_n), \\
& \quad \sum_{e \in E(K_n) : e \in S \times S} x_e \leq |S| - 1, \quad \emptyset \subsetneq S \subsetneq V(K_n), \\
& \quad x_e \in \{0, 1\}, \quad e \in E(K_n).
\end{align*}
\]

The second constraint is called *subtour elimination* constraint. It excludes solutions that are unions of disjoint circuits. Unfortunately, there are exponentially many of those.
1.3 The Traveling Salesman Problem

Separating Subtour Constraints

Theorem

Let \(x \in [0, 1]^{E(K_n)} \) satisfy \(\sum_{e: v \in e} x_e = 2 \). Then there is a polynomial-time algorithm that decides if there is a subset \(\emptyset \subsetneq S \subsetneq V(K_n) \) such that \(x \) violates the subtour elimination constraint w.r.t. \(S \).

Proof.
Tutorial.

This yields the following IP-based solution method:

1. Let \(S := \emptyset \).
2. Solve the IP with subtour elimination constraints only for \(S \in S \).
3. If the optimal solution violates the constraint for some \(S \), add it to \(S \). Otherwise, an optimal solution is found.

There are also IP formulations for the TSP with a polynomial number of constraints, but they have weaker LP relaxations and are hence harder for IP solvers.
1.3 The Traveling Salesman Problem

Solving TSP: Summary

Heuristics

- Metric TSP: Christofides’ $\frac{3}{2}$-factor approximation algorithm
- Local search: 2-opt, 3-opt, Lin-Kernighan (combines both, implementation: LKH)

Exact algorithms

- Integer programming: Branch-and-cut (implementation: concorde)
- Dynamic programming: Held-Karp $O(2^n n^2)$ algorithm

TSP Record

In 2006, conorde computed a solution for a TSP instance on 85,900 vertices, and proved optimality. LKH can solve this instance as well nowadays, but cannot provide lower bounds.
1.3 The Traveling Salesman Problem

Directed graphs

Let $n \in \mathbb{N}$. The complete directed graph K_n^* is the digraph with

- vertex set $V(K_n^*) = \{1, \ldots, n\}$,
- edge set $E(K_n^*) = \{(i, j) \mid 1 \leq i \neq j \leq n\}$.

Definition

The Asymmetric Traveling Salesman Problem (ATSP) on K_n^* is to find a minimum-cost directed Hamiltonian circuit w.r.t. a cost function $c : E(K_n^*) \to \mathbb{R}_{\geq 0}$.

Remarks

- If $c(i, j) = c(j, i)$ for all $1 \leq i \neq j \leq n$, then the problem is called symmetric and is equivalent to the TSP on the undirected complete graph K_n with cost function $c(\{i, j\}) := c(i, j)$.
- ATSP is NP-complete.
Theorem (Jonker-Volgenant, 1983)

TSP is polynomially equivalent to ATSP.

Proof.

- Clearly, any TSP instance can be transformed into an ATSP instance by replacing each undirected edge \(\{i, j\} \) with cost \(c(\{i, j\}) \) by the two anti-parallel edges \((i, j)\) and \((j, i)\), and setting \(c(i, j) := c(j, i) := c(\{i, j\}) \).

- Conversely, let \(I = (K^*_n, c) \) be an ATSP instance. Create a TSP instance \(I' = (K_{2n}, c') \) as follows: For \(i \in V(K^*_n) \), let \(i^+ := 2i \) and \(i^- := 2i - 1 \). Set

\[
\begin{align*}
 c'_{\{i^+, j^-\}} &:= c(i, j) + M, \\
 c'_{\{i^-, i^+\}} &:= 0, \\
 c' &:= (n + 1)M + 1 \\
\end{align*}
\]

and let \(c' \) have value \((n + 1)M + 1\) on all other edges.
1.3 The Traveling Salesman Problem

Asymmetric TSP

Proof.

- Then any directed Hamiltonian circuit \((i_1, \ldots, i_n, i_1)\) in \(K^*_n\) yields a Hamiltonian circuit \((i_1^+, i_2^-, i_2^+, \ldots, i_n^-, i_n^+, i_1^-)\) in \(K_{2n}\), the cost increases by \(n \cdot M\). This shows \(\text{OPT}(I) + n \cdot M \geq \text{OPT}(I')\).

- Let \(C'\) be the optimal solution to \(I'\). Suppose \(M > \text{OPT}(I)\). Then \(C'\) contains all \(n\) edges \(i^- \rightarrow i^+\), as otherwise

\[
\text{OPT}(I') \geq (n+1)M = n \cdot M + M > n \cdot M + \text{OPT}(I).
\]

- Moreover, \(C'\) contains none of the \((n+1)M + 1\) cost edges, because otherwise also

\[
\text{OPT}(I') \geq (n+1)M + 1 > n \cdot M + \text{OPT}(I).
\]

- Hence \(C'\) can be transformed to a Hamiltonian circuit in \(K^*_n\), the cost decreasing by \(n \cdot M\). Thus \(\text{OPT}(I) + n \cdot M = \text{OPT}(I')\).

- Take e.g. \(M := 1 + \text{sum of } n\) heaviest edges of \(K^*_n\) w.r.t. \(c\).
Asymmetric TSP

Summary

- A TSP instance on n nodes can be transformed into an ATSP instance on n nodes, with the same optimal cost.
- An ATSP instance on n nodes can be transformed into a TSP instance on $2n$ nodes, the cost increasing by $n \cdot M$ for a large M.

1.3 The Traveling Salesman Problem

General undirected graphs

Let $G = (V, E)$ be a not necessarily complete undirected graph with a cost function $c : E \to \mathbb{R}_{\geq 0}$.

Definition

- A **Traveling Salesman tour** is a closed walk (e_1, \ldots, e_k) in G such that every vertex in G is visited at least once.
- The **Traveling Salesman Problem (TSP)** is to find a Traveling Salesman tour (e_1, \ldots, e_k) of minimum cost $\sum_{i=1}^{k} c(e_i)$.

Lemma

If G is Hamiltonian and c satisfies the triangle inequality, then the optimal TSP solution is one of the Hamiltonian circuits of G.

In particular, it is important to know if TSP refers to the “exactly once” or “at least once” version.
§1.3 The Traveling Salesman Problem

Reducing ≥ 1 to $= 1$

Let G be an undirected graph on n nodes, $c : E(G) \rightarrow \mathbb{R}_{\geq 0}$ a cost function.

Theorem

The “at least once” TSP on G w.r.t. c can be polynomially transformed to an “exactly once” metric TSP instance on K_n with the same optimal cost.

Proof.

1. Let v_1, \ldots, v_n denote the vertices of G. For $1 \leq i < j \leq n$, set
 \[c'(\{i, j\}) := \text{length of shortest path from } v_i \text{ to } v_j \text{ in } G \text{ w.r.t. } c. \]

2. The optimal Hamiltonian circuit on (K_n, c') produces a closed walk in G by transforming $i \rightarrow j$ to the shortest path from $v_i \rightarrow v_j$. The cost does not change, hence $\text{OPT}(G, c) \leq \text{OPT}(K_n, c').$

3. The optimal TSP tour in G w.r.t. c. gives a Hamiltonian circuit in K_n by sorting the vertices in their order of appearance. Since c' consists of the shortest distances, we have $\text{OPT}(G, c) \geq \text{OPT}(K_n, c').$
1. Compute all shortest paths (e.g., using Floyd-Warshall).
1.3 The Traveling Salesman Problem

Example: Amsterdam metro

1. Compute all shortest paths (e.g., using Floyd-Warshall).

```
<table>
<thead>
<tr>
<th></th>
<th>Amsterdam Zuid</th>
<th>Centraal Station</th>
<th>Gaasperplas</th>
<th>Gein</th>
<th>Isolatorweg</th>
<th>Overamstel</th>
<th>Spaklerweg</th>
<th>van der Madeweg</th>
<th>Westwijk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amsterdam Zuid</td>
<td>0</td>
<td>0</td>
<td>16</td>
<td>4</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>0</td>
<td>25</td>
</tr>
<tr>
<td>Centraal Station</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Gaasperplas</td>
<td>16</td>
<td>4</td>
<td>9</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Gein</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Isolatorweg</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Overamstel</td>
<td>10</td>
<td>11</td>
<td>11</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Spaklerweg</td>
<td>10</td>
<td>11</td>
<td>11</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>van der Madeweg</td>
<td>10</td>
<td>11</td>
<td>11</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Westwijk</td>
<td>25</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
```
1.3 The Traveling Salesman Problem

Example: Amsterdam metro

<table>
<thead>
<tr>
<th></th>
<th>Amsterdam Zuid</th>
<th>Centraal Station</th>
<th>Gaasperplas</th>
<th>Gein</th>
<th>Isolatorweg</th>
<th>Overamstel</th>
<th>Spaklerweg</th>
<th>van der Madeweg</th>
<th>Westwijk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amsterdam Zuid</td>
<td>0</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>16</td>
<td>4</td>
<td>7</td>
<td>7</td>
<td>25</td>
</tr>
<tr>
<td>Centraal Station</td>
<td>0</td>
<td>0</td>
<td>21</td>
<td>22</td>
<td>32</td>
<td>12</td>
<td>9</td>
<td>11</td>
<td>41</td>
</tr>
<tr>
<td>Gaasperplas</td>
<td>0</td>
<td>21</td>
<td>0</td>
<td>21</td>
<td>33</td>
<td>13</td>
<td>12</td>
<td>10</td>
<td>42</td>
</tr>
<tr>
<td>Gein</td>
<td>0</td>
<td>0</td>
<td>34</td>
<td>0</td>
<td>20</td>
<td>14</td>
<td>13</td>
<td>11</td>
<td>43</td>
</tr>
<tr>
<td>Isolatorweg</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>34</td>
<td>34</td>
<td>3</td>
<td>13</td>
<td>11</td>
<td>43</td>
</tr>
<tr>
<td>Overamstel</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>20</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>29</td>
</tr>
<tr>
<td>Spaklerweg</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>32</td>
</tr>
<tr>
<td>van der Madeweg</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>32</td>
</tr>
<tr>
<td>Westwijk</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>32</td>
</tr>
</tbody>
</table>

1. Compute all shortest paths (e.g., using Floyd-Warshall).
2. Solve the TSP on the complete graph (20,160 Hamiltonian circuits).
1. Compute all shortest paths (e.g., using Floyd-Warshall).
2. Solve the TSP on the complete graph (20,160 Hamiltonian circuits).
3. Trace back the shortest paths.
1.3 The Traveling Salesman Problem

Example: Amsterdam metro

<table>
<thead>
<tr>
<th></th>
<th>Amsterdam Zuid</th>
<th>Centraal Station</th>
<th>Gaasperplas</th>
<th>Gein</th>
<th>Isolatorweg</th>
<th>Overamstel</th>
<th>Spaklerweg</th>
<th>van der Madeweg</th>
<th>Westwijk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amsterdam Zuid</td>
<td>0</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>16</td>
<td>4</td>
<td>7</td>
<td>7</td>
<td>25</td>
</tr>
<tr>
<td>Centraal Station</td>
<td>0</td>
<td>21</td>
<td>22</td>
<td>32</td>
<td>12</td>
<td>9</td>
<td>11</td>
<td>41</td>
<td>44</td>
</tr>
<tr>
<td>Gaasperplas</td>
<td>0</td>
<td>21</td>
<td>33</td>
<td>13</td>
<td>12</td>
<td>10</td>
<td>13</td>
<td>42</td>
<td>43</td>
</tr>
<tr>
<td>Gein</td>
<td>0</td>
<td>0</td>
<td>34</td>
<td>14</td>
<td>13</td>
<td>11</td>
<td>32</td>
<td>41</td>
<td>29</td>
</tr>
<tr>
<td>Isolatorweg</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>20</td>
<td>23</td>
<td>33</td>
<td>32</td>
<td>32</td>
<td>32</td>
</tr>
<tr>
<td>Overamstel</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Spaklerweg</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>van der Madeweg</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Westwijk</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

1. Compute all shortest paths (e.g., using Floyd-Warshall).
2. Solve the TSP on the complete graph (20,160 Hamiltonian circuits).
3. Trace back the shortest paths.

Result: The optimal TSP tour is identical to the optimal CPP tour.
Chapter 1

S-Bahn Challenge

§1.4 Generalized Routing Problems
\section*{1.4 Generalized Routing Problems}

GATSP and GDRPP

Let $G = (V, E)$ be a directed graph with a cost function $c : E \to \mathbb{R}_{\geq 0}$.

Definition

Let V_1, \ldots, V_k be disjoint subsets of V (clusters). The **Generalized Asymmetric Traveling Salesman Problem (GATSP)** is to find a directed closed walk $C = (e_1, \ldots, e_k)$ in G such that

- C visits at least one vertex from each cluster at least once,
- C has minimal cost w.r.t. c.

Definition

Let E_1, \ldots, E_k be disjoint subsets of E (clusters). The **Generalized Directed Rural Postman Problem (GDRPP)** is to find a directed closed walk $C = (e_1, \ldots, e_k)$ in G such that

- C visits at least one edge from each cluster at least once,
- C has minimal cost w.r.t. c.

We will model the S-Bahn Challenge problem as GDRPP.
1.4 Generalized Routing Problems

GATSP and GDRPP: Example

GATSP instance with 2 clusters

GDRPP instance with 2 clusters

an optimal GATSP tour of cost 24

an optimal GDRPP tour of cost 28
GATSP and GDRPP: Equivalence

Theorem (Drexl, 2007)

GATSP and GDRPP are polynomially equivalent.

Proof (GATSP \(\leq \) GDRPP).

Let \(I = (G, c, \{V_1, \ldots, V_k\}) \) be a GATSP instance. Set

\[
E_i := \{(v, w) \mid v \in V_i, w \notin V_i\}, \quad i = 1, \ldots, k,
\]

and define a GDRPP instance \(I' := (G, c, \{E_1, \ldots, E_k\}) \).

For each \(i \), any solution to the GDRPP on \(I' \) visits at least one edge of \(E_i \), and hence at least one vertex of \(V_i \). We conclude

\[\text{OPT}(I') \geq \text{OPT}(I). \]

Conversely, any solution to the GATSP on \(I \) visits at least one edge of \(E_i \), because \(E_i \) comprises all outgoing edges from \(V_i \). Hence

\[\text{OPT}(I') \leq \text{OPT}(I). \]
1.4 Generalized Routing Problems

GATSP and GDRPP: Equivalence

Proof \((\text{GDRPP} \leq \text{GATSP})\).

- Let \(I' = (G, c, \{E_1, \ldots, E_k\})\) be a GDRPP instance. Split each edge \(e = (v, w) \in \bigcup_{i=1}^{k} E_i\) by a new vertex \(z_e\). That is, remove \(e\), and add the edges \((v, z_e)\) and \((z_e, w)\) with cost \(c(e)\) and 0, respectively. Set

\[
V_i := \{z_e \mid e \in E_i\}, \quad i = 1, \ldots, k.
\]

and define a GATSP instance \(I := (G, c, \{V_1, \ldots, V_k\})\).

- Any solution to the GDRPP on \(I'\) visits at least one edge \(e_i \in E_i\) for all \(i\), and hence gives rise to a GATSP solution visiting at least one vertex \(z_{e_i}\) for all \(i\). The cost does not change, thus \(\text{OPT}(I') \geq \text{OPT}(I)\).

- Conversely, any solution to the GATSP on \(I\) visits at least one vertex \(z_{e_i} \in V_i\) for all \(i\), and yields a GDRPP solution visiting at least one edge \(e_i\) for all \(i\). Therefore \(\text{OPT}(I') \leq \text{OPT}(I)\).
GATSP and GDRPP: Equivalence Example

GATSP instance

GDRPP instance

equivalent GDRPP instance

equivalent GATSP instance
1.4 Generalized Routing Problems

GATSP and GDRPP: NP-hardness

Theorem

GATSP and GDRPP are NP-hard.

Proof.

- It suffices to show NP-hardness for GDRPP. We already know that the Rural Postman Problem (RPP) is NP-hard.
- Let \(G = (V, E) \) be an undirected graph with a cost function \(c : E \to \mathbb{R}_{\geq 0} \), and let \(S \subseteq E \) be a subset of edges. The RPP is to find a closed walk \((e_1, \ldots, e_k)\) in \(G \) covering \(S \) of minimal cost w.r.t. \(c \).
- Let \(D \) be the digraph obtained from \(G \) where each undirected edge \(\{v, w\} \) is replaced by two anti-parallel edges \((v, w), (w, v)\). Extend the cost function \(c \) to \(D \) by defining \(c(v, w) := c(w, v) := c(\{v, w\}) \). For each edge \(e = \{v, w\} \in S \), add a cluster \(E_e = \{(v, w), (w, v)\} \).
- The GDRPP on \((D, c, \{E_e \mid e \in S\})\) is equivalent to the RPP on \((G, c, S)\).
Theorem (Noon/Bean, 1991)

\[\text{GATSP} \leq \text{ATSP}.\]

Proof.

- Let \(I = (G, c, \{V_1, \ldots, V_k\}) \) be an arbitrary GATSP instance, let \(n = \sum_{i=1}^{k} |V_i| \). We will define an ATSP instance \(I' = (K_n^*, c') \).
- For each \(i = 1, \ldots, k \), choose any ordering \((v_{i,1}, v_{i,2}, \ldots, v_{i,r_i})\) of \(V_i \).
- Set \(M := 1 + \text{sum of lengths of the } k \text{ longest shortest paths in } G \) and
 \[c'(v_{i,1}, v_{i,2}) := c'(v_{i,2}, v_{i,3}) := \cdots := c'(v_{i,r_i}, v_{i,1}) := 0,\]
 \[c'(v_{i,j}, v_{p,q}) := M + \text{shortest path length from } v_{i,(j+1) \mod r_i} \text{ to } v_{p,q} \text{ in } G\]
 for all \(i \) resp. all \((i, j), (p, q)\) with \(i \neq p \).
- All other edges receive cost \(M \).
§1.4 Generalized Routing Problems

GATSP and ATSP: Example

GATSP instance

equivalent ATSP instance

<table>
<thead>
<tr>
<th>c'</th>
<th>1,1</th>
<th>1,2</th>
<th>1,3</th>
<th>2,1</th>
<th>2,2</th>
<th>2,3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,1</td>
<td>M</td>
<td>0</td>
<td>M</td>
<td>$M + 11$</td>
<td>$M + 14$</td>
<td>$M + 15$</td>
</tr>
<tr>
<td>1,2</td>
<td>0</td>
<td>M</td>
<td>0</td>
<td>$M + 12$</td>
<td>$M + 15$</td>
<td>$M + 16$</td>
</tr>
<tr>
<td>1,3</td>
<td>M</td>
<td>0</td>
<td>$M + 8$</td>
<td>$M + 11$</td>
<td>$M + 15$</td>
<td>$M + 12$</td>
</tr>
<tr>
<td>2,1</td>
<td>$M + 15$</td>
<td>$M + 14$</td>
<td>$M + 11$</td>
<td>0</td>
<td>M</td>
<td>0</td>
</tr>
<tr>
<td>2,2</td>
<td>$M + 12$</td>
<td>$M + 11$</td>
<td>$M + 8$</td>
<td>M</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>2,3</td>
<td>$M + 16$</td>
<td>$M + 15$</td>
<td>$M + 12$</td>
<td>0</td>
<td>M</td>
<td>0</td>
</tr>
</tbody>
</table>

$M = 33$
1.4 Generalized Routing Problems

GATSP and ATSP: Example

GATSP instance
optimal tour length: 24

equivalent ATSP instance
optimal tour length: $2M + 24$

<table>
<thead>
<tr>
<th>c'</th>
<th>1,1</th>
<th>1,2</th>
<th>1,3</th>
<th>2,1</th>
<th>2,2</th>
<th>2,3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,1</td>
<td></td>
<td>0</td>
<td>M</td>
<td>$M + 11$</td>
<td>$M + 14$</td>
<td>$M + 15$</td>
</tr>
<tr>
<td>1,2</td>
<td>M</td>
<td></td>
<td>0</td>
<td>$M + 12$</td>
<td>$M + 15$</td>
<td>$M + 16$</td>
</tr>
<tr>
<td>1,3</td>
<td>0</td>
<td>M</td>
<td></td>
<td>$M + 8$</td>
<td>$M + 11$</td>
<td>$M + 12$</td>
</tr>
<tr>
<td>2,1</td>
<td>$M + 15$</td>
<td>$M + 14$</td>
<td>$M + 11$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2,2</td>
<td>$M + 12$</td>
<td>$M + 11$</td>
<td>$M + 8$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2,3</td>
<td>$M + 16$</td>
<td>$M + 15$</td>
<td>$M + 12$</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$M = 33$
Proof (cont.)

Let C' be a Hamiltonian circuit in $I' = (K_n^*, c')$ that visits all vertices of a cluster V_i in ascending order before moving to another cluster. This way, C contains precisely k edges of weight $\geq M$, and we have $c(C') < kM + M$.

We claim that the optimal solution to I' is such a circuit. Otherwise, $\text{OPT}(I') \geq (k + 1)M = kM + M > c(C')$.

In particular, if the optimal solution enters V_i at $v_{i,j}$, it leaves V_i at $v_{i,(j-1) \mod r_i}$. The cost of the edge to $v_{i,j}$ is $(M +)$ the shortest path length to $v_{i,j}$, and the cost of the edge from $v_{i,(j-1) \mod r_i}$ is $(M +)$ the shortest path length from $v_{i,j}$ (note the shift!).

Hence we find a GATSP tour by tracing the shortest paths back. For the cost we find $\text{OPT}(I) \leq \text{OPT}(I') - kM$.
1.4 Generalized Routing Problems

GATSP and ATSP

Proof (cont.)

Consider an optimal GATSP tour C. Create a Hamiltonian circuit C' in K_n^* by sorting the clusters by their order of appearance in C and traversing the whole cluster before proceeding. The cost of C' increases at most by kM. Thus

$$\text{OPT}(I') \leq c(C') \leq c(C) + kM = \text{OPT}(I) + kM.$$

Corollary

$GDRPP \leq GATSP \leq ATSP \leq TSP.$

Corollary

A GDRPP with clusters E_1, \ldots, E_k can be polynomially transformed into a TSP on $2 \sum_{i=1}^{k} |E_i|$ vertices (with a large increase in cost).

Lemma (Exercise)

Metric TSP \leq Metric ATSP \leq GATSP.
§1.4 Generalized Routing Problems

GDRPP to TSP: Example

GDRPP instance
- Optimal tour: 30

GATSP instance
- Optimal tour: 30

ATSP instance ($M = 39$)
- Optimal tour: $108 = 2 \cdot 39 + 30$

TSP instance ($M = 225$)
- Optimal tour: $1008 = 4 \cdot 225 + 108$
Chapter 1

S-Bahn Challenge

§1.5 Public Transportation Networks
1.5 Public Transportation Networks

Line Networks

Definition

A **line network** is a graph G together with a **line cover** \mathcal{L}, i.e., \mathcal{L} is a set of walks in G such that $E(G) = \bigcup_{L \in \mathcal{L}} E(L)$.
Line Networks and Event-Activity Networks

Remarks

▶ Depending on the application, line networks may be undirected or directed.
▶ The vertices of a line network are stations or stops.
▶ The elements of L are lines or routes.
▶ The two directions of a classical path-shaped line can be modeled by two separated walks or by a closed walk.

Definition

An event-activity network (EAN) is a directed graph E whose vertices are called events and whose edges are called activities.
1.5 Public Transportation Networks

Timetables for Line Networks

Definition

Let $\mathcal{N} = (G, \mathcal{L})$ be a line network.

- A trip of a line $L = (e_1, \ldots, e_k) \in \mathcal{L}$ is a pair $(\tau_{\text{dep}}, \tau_{\text{arr}})$ of maps $\tau_{\text{dep}}, \tau_{\text{arr}} : \{1, \ldots, k\} \to \mathbb{R}$ such that

 \[\tau_{\text{dep}}(i) \leq \tau_{\text{arr}}(i), \quad i = 1, \ldots, k \]
 \[\tau_{\text{arr}}(i) \leq \tau_{\text{dep}}(i + 1), \quad i = 1, \ldots, k - 1. \]

- A schedule for L is a collection of trips of L.

- A timetable for \mathcal{N} assigns a schedule to each line.
1.5 Public Transportation Networks

Time Expansion

Definition

Consider a timetable T for a line network \mathcal{N}. The time expansion of \mathcal{N} w.r.t. T is the event-activity network \mathcal{E}, together with the length function $\ell : E(\mathcal{E}) \to \mathbb{R}_{\geq 0}$, constructed as follows:

1. For each trip $\tau = (\tau_{\text{dep}}, \tau_{\text{arr}})$ of a line $L = (e_1, \ldots, e_k)$ in \mathcal{N}:
 - Add departure events (L, τ, i, dep) for $i = 1, \ldots, k$.
 - Add arrival events (L, τ, i, arr) for $i = 1, \ldots, k$.
 - Add driving activities $(L, \tau, i, \text{dep}) \rightarrow (L, \tau, i, \text{arr})$ with length $\tau_{\text{arr}}(i) - \tau_{\text{dep}}(i)$, $i = 1, \ldots, k$.
 - Add waiting activities $(L, \tau, i, \text{arr}) \rightarrow (L, \tau, i + 1, \text{dep})$ with length $\tau_{\text{dep}}(i + 1) - \tau_{\text{arr}}(i)$, $i = 1, \ldots, k - 1$.

2. Add a transfer activity $(L, \tau, i, \text{arr}) \rightarrow (L', \tau', i', \text{dep})$ with length $\tau'_{\text{dep}}(i') - \tau_{\text{arr}}(i)$ for each pair of trips (τ, τ') associated to a pair of lines (L, L') whenever:
 - $\tau'_{\text{dep}}(i') - \tau_{\text{arr}}(i) \geq 0$, and
 - the $(i + 1)$-st vertex of L and the i'-th vertex of L' coincide in \mathcal{N},
 - (L, τ, i, arr) and $(L', \tau', i', \text{dep})$ are not connected by a waiting activity.
1.5 Public Transportation Networks

Time Expansion

Remarks

- Trips correspond to certain disjoint directed paths in the EAN.
- The EAN is bipartite, as there are no departure-departure and no arrival-arrival activities.
- No activity goes “backward in time”: Circuits can only have length 0.
- The number of driving and waiting activities is linear in the number of trips, whereas the number of transfer activities is quadratic.
- A transfer activity between two trips of a line at one of its endpoints is called a *turnaround activity*.
- Often there is no point in a transfer between trips of parallel lines, and the corresponding transfer activities can be removed.
- Sometimes we want to establish a minimum transfer time, and hence only add transfer activities where $\tau_{\text{dep}}^{'}(i^{'}) - \tau_{\text{arr}}(i)$ is large enough.
- Footpath information can also be included using transfer activities.
Time Expansion: Example

Trip 1: 10:12 → 10:44
Trip 2: 11:12 → 11:48
Trip 1: 10:46 → 10:58
Trip 2: 11:49 → 12:02
Trip 1: 11:00 → 11:37
1.5 Public Transportation Networks

Time Expansion: Example

- **Trip 1:** 10:12 → 10:44
 - Line 1
- **Trip 2:** 11:12 → 11:48
 - Line 2
- **Trip 1:** 10:46 → 10:58
 - Line 1
- **Trip 2:** 11:49 → 12:02
 - Line 2
- **Trip 1:** 11:00 → 11:37
 - Line 2
1.5 Public Transportation Networks

Time Expansion: Example

Trip 1: 10:12 → 10:44
Trip 2: 11:12 → 11:48

Trip 1: 10:46 → 10:58
Trip 2: 11:49 → 12:02

Trip 1: 11:00 → 11:37
§1.5 Public Transportation Networks

Time Expansion: Example

Trip 1: 10:12 → 10:44
Trip 2: 11:12 → 11:48

Trip 1: 10:46 → 10:58
Trip 2: 11:49 → 12:02

Trip 1: 11:00 → 11:37

1,1,1,dep 10:12
1,2,1,dep 11:12

1,1,1,arr 10:44
1,2,1,arr 11:48

1,1,2,dep 10:46
1,2,2,dep 11:49

1,1,2,arr 10:58
1,2,2,arr 12:02

2,1,1,dep 11:00
2,1,2,dep 11:00

2,1,1,arr 11:37
2,1,2,arr 11:37
Time Expansion: Example

Trip 1: 10:12 → 10:44
Trip 2: 11:12 → 11:48

Trip 1: 10:46 → 10:58
Trip 2: 11:49 → 12:02

Trip 1: 11:00 → 11:37