Mathematical Aspects of Public Transportation Networks

Niels Lindner

June 4, 2018
Chapter 3

Periodic Timetabling

§3.2 Cycle Spaces
Cycle basis names

Let G be a directed graph.

Corollary

*If G has n vertices, m edges and c weakly connected components, then $\mu(G) = \mu(|G|) = m - n + c$.***

Definition

- A cycle basis in G coming from a cycle basis in $|G|$ is called an **undirected cycle basis**.
- A cycle basis in G coming from a spanning tree is called a **strictly fundamental basis**.

Definition

Let $\mathcal{B} = (\gamma_1, \ldots, \gamma_{\mu(G)})$ be a cycle basis. The $(\mu(G) \times m)$-matrix Γ whose rows are given by $\gamma_i, i = 1, \ldots, \mu(G)$, is called the **cycle matrix** of \mathcal{B}.
Consider the following digraph G with red spanning tree T:

We produce a strictly fundamental cycle basis by taking the oriented cycle for each co-tree edge of T:

The cycles C_1 and C_3 use only forward edges, whereas C_2 uses two backward edges.
§3.2 Cycle Spaces

Cycle basis example

Label the edges by 1, \ldots, 10:

\[
\begin{array}{c}
\circ \rightarrow \circ \ \\
\circ \rightarrow \circ \end{array}
\]

Collecting the incidence vectors of C_1, C_2, C_3 yields the 3×10-cycle matrix:

\[
\begin{array}{cccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
\gamma_1 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 \\
\gamma_2 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & -1 & -1 \\
\gamma_3 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 1 \\
\end{array}
\]

Note that the matrix has full row rank. The part corresponding to the co-tree edges 5, 6, 7 of T is a permutation of the identity matrix.
§3.2 Cycle Spaces

Determinant of a cycle basis

Let G be a directed graph and let B be a cycle basis with cycle matrix Γ.

Definition

The **determinant** of B is defined as

$$\det(B) := \begin{vmatrix} \text{($\mu(G) \times \mu(G)$)-submatrix of Γ corresponding to the co-tree edges of some spanning tree of G} \end{vmatrix}.$$

This is well-defined:

Theorem (Liebchen, 2003)

Let T_1, T_2 be two spanning trees of G. For $i = 1, 2$, denote by A_i the ($\mu(G) \times \mu(G)$)-submatrix of Γ, where exactly the columns corresponding to $e \notin E(T_i)$ are selected. Then A_1 and A_2 are both invertible and $\det(A_1) = \pm \det(A_2)$.

June 4, 2018
§3.2 Cycle Spaces

Determinant of a cycle basis

Proof.
Let Φ be the cycle matrix of a strictly fundamental cycle basis of G coming from the spanning tree T_1. The rows of Φ are indexed by the $\mu := \mu(G)$ co-tree edges of T_1. We have

$$\Phi_{e,e'} = \begin{cases} 1 & \text{if } e = e', \\ 0 & \text{if } e \neq e', \end{cases} \quad \text{for all } e, e' \notin E(T).$$

Note that we can always lift a fundamental cycle in such a way that the co-tree edge becomes a forward edge. In particular, if Φ_1 denotes the restriction of Φ to the columns corresponding to co-tree edges of T_1, then Φ_1 is the identity matrix.

Since Φ and B are bases, there is an invertible $(\mu \times \mu)$-matrix S such that $\Gamma = S \cdot \Gamma_\Phi$. It follows that $A_1 = S \cdot \Phi_1$ is invertible. This holds analogously for A_2.
Proof (cont.)

Let Φ_2 denote the restriction of Φ to the columns corresponding to the co-tree edges of T_2. Then $A_2 = S \cdot \Phi_2$, so it remains to show that $\det(\Phi_2) = \pm \det(\Phi_1) = \pm 1$. We use induction on $#E(T_1) \Delta E(T_2)$.

$#E(T_1) \Delta E(T_2) = 0$: This is equivalent to $E(T_1) = E(T_2)$, where obviously $\det(\Phi_2) = \det(\Phi_1)$.

$#E(T_1) \Delta E(T_2) > 0$: Let $e_1 \in E(T_1) \setminus E(T_2)$. On the unique path in T_2 connecting the endpoints of e_1, there must be an edge $e_2 \notin E(T_1)$, as otherwise T_1 would contain a cycle. The fundamental cycle of e_1 in T_1 uses e_2, so that $\Phi_{e_1,e_2} = \pm 1$. Since there is only one fundamental cycle for T_1 using the co-tree edge e_2, this means that $\Phi_{e,e_2} = 0$ for $e \neq e_1$. Use Laplace expansion along the column e_2. \qed
§3.2 Cycle Spaces

Characterization by determinant

Let G be a digraph with cyclomatic number μ and cycle basis B.

Theorem (Liebchen/Rizzi, 2007)

1. B is undirected if and only if $\det(B)$ is odd.
2. B is strictly fundamental if and only if the cycle matrix of B can be permuted in such a way that it has the $\mu \times \mu$-identity matrix in its last μ columns.

Proof.

(2) Exercise. (1) Let Γ be the cycle matrix of B. Write $\Gamma = S \cdot \Phi$, where S is an invertible $\mu \times \mu$-matrix and Φ is the matrix of a strictly fundamental basis for some spanning tree T. Restricting to the co-tree edges, we obtain $\Gamma|_{\text{co-tree}} = S \cdot \Phi|_{\text{co-tree}} = S$, so $\det(B) = \det(S)$. If $\det(B)$ is odd, then S is invertible over \mathbb{F}_2, so the rows of Γ mod 2 form a cycle basis for $|G|$. Conversely, if B is undirected, then $\Gamma|_{\text{co-tree}}$ is invertible mod 2, so that also S is invertible mod 2 and hence $\det(B)$ is odd.
More on the determinant

Let \(G \) be a digraph with cyclomatic number \(\mu \).

Lemma (Liebchen/Peeters, 2003)

Let \(\Gamma \) be the cycle matrix of a cycle basis for \(G \), and let \(A \) be any \(\mu \times \mu \)-submatrix of \(\Gamma \). Then \(A \) is invertible if and only if the columns of \(A \) correspond to the co-tree edges of some spanning tree of \(G \).

Proof.

\[(\Leftarrow)\] Let \(\Phi \) be the cycle matrix of a strictly fundamental basis for some spanning tree \(T \). As before, \(\Gamma = S \cdot \Phi \) for some invertible \(\mu \times \mu \)-matrix \(S \). Let \(A \) be the submatrix of \(\Gamma \) corresponding to the co-tree edges of \(T \). Then \(A = \Gamma|_{\text{co-tree}} = S \cdot \Phi_{\text{co-tree}} = S \), so that \(A \) is invertible.

\[(\Rightarrow)\] Suppose that \(A \) is invertible. Let \(H = \{e_1, \ldots, e_\mu\} \subseteq E(G) \) such that the columns of \(A \) correspond to \(H \). Then any cycle \(\gamma \) can be written as \(\gamma^t = \lambda^t \Gamma \) for some \(\lambda \in \mathbb{Q}^\mu \), as \(\Gamma \) is a cycle basis. If \(\gamma \) contains no edge of \(H \), then \(0 = (\gamma_{e_1}, \ldots, \gamma_{e_\mu}) = \lambda^T A \), so that \(\lambda = 0 \) as \(A \) is invertible, and \(\gamma = 0 \). In particular, \(E(G) \setminus H \) has no cycle and is thus a spanning tree. \(\square \)
Integral cycle bases

Let G be a digraph with cyclomatic number μ.

Definition

A cycle basis $\mathcal{B} = \{\gamma_1, \ldots, \gamma_\mu\}$ is called integral if every incidence vector γ of an oriented cycle in G can be written as

$$\gamma = \sum_{i=1}^{\mu} \lambda_i \gamma_i,$$

where $\lambda_1, \ldots, \lambda_\mu \in \mathbb{Z}$.

Theorem (Liebchen/Peeters, 2003)

The following are equivalent for a cycle basis \mathcal{B} with cycle matrix Γ:

1. \mathcal{B} is integral,
2. every $\mu \times \mu$-submatrix of Γ has determinant 0 or ± 1,
3. $\det(\mathcal{B}) = 1$.

June 4, 2018
Proof.

(2) \Leftrightarrow (3): by preceding lemma.

(1) \Rightarrow (2): Let T be a spanning tree, giving rise to a strictly fundamental cycle basis with matrix Φ. Then $\Phi = S \cdot \Gamma$ for some invertible $\mu \times \mu$-matrix S. Since \mathcal{B} is integral, S has integer entries. Let A be the $\mu \times \mu$-submatrix of Γ restricted to the co-tree edges of T. Then $S \cdot A$ is the identity matrix. Since S and A have both integer determinants multiplying to 1, we have $\det(A) = \pm 1$.

(3) \Rightarrow (1): For an arbitrary incidence vector γ there is a $\lambda \in \mathbb{Q}^\mu$ such that $\gamma^t = \lambda^t \Gamma$ (cycle basis property). Restricting to the co-tree edges $\{e_1, \ldots, e_\mu\}$ of a spanning tree yields $(\gamma_{e_1}, \ldots, \gamma_{e_\mu}) = \lambda^t A$ for the suitable submatrix A of Γ. Since A has determinant ± 1 by (3), it has an integer inverse and hence $\lambda^t = (\gamma_{e_1}, \ldots, \gamma_{e_\mu}) A^{-1}$ is integer.
§3.2 Cycle Spaces

Summary

Let G be a directed graph.

Classes of cycle bases

- **arbitrary**

 $\det \neq 0$

- **undirected**

 $\det \equiv_2 1$

- **integral**

 $\det = 1$

- **strictly fundamental**

 $\det = 1 + \text{identity matrix condition}$

Examples for the strict inclusion: Last tutorial and Problem Set 6.
Chapter 3

Periodic Timetabling

§3.3 Cycles in Periodic Timetabling
§3.3 Cycles in Periodic Timetabling

Back to PESP

Input

- event-activity network $\mathcal{E} = (V, E)$,
- period time $T \in \mathbb{N}$,
- lower bound vector $\ell \in (\mathbb{R}_{\geq 0})^E$, $0 \leq \ell < T$,
- upper bound vector $u \in (\mathbb{R}_{\geq 0})^E$, $\ell \leq u < T - \ell$,
- weight vector $w \in (\mathbb{R}_{\geq 0})^E$

MIP formulation

Minimize $\sum_{ij \in E} w_{ij}x_{ij}$

s.t.

$\quad x_{ij} = \pi_j - \pi_i + p_{ij}T$, \hspace{1cm} ij \in E,

$\quad \ell_{ij} \leq x_{ij} \leq u_{ij}$, \hspace{1cm} ij \in E, \hspace{1cm} \text{(periodic tension)}

$\quad 0 \leq \pi_i \leq T - 1$, \hspace{1cm} i \in V, \hspace{1cm} \text{(periodic timetable)}

$\quad p_{ij} \in \mathbb{Z}$, \hspace{1cm} ij \in E. \hspace{1cm} \text{(periodic offset)}
§3.3 Cycles in Periodic Timetabling

Cycle periodicity constraints

Theorem (Nachtigall, 1994; Liebchen/Peeters, 2002)

Consider a PESP instance, and let $x \in \mathbb{R}^E$. The following are equivalent:

1. There exists a periodic timetable $\pi \in [0, T)^V$ such that for all $ij \in E$ exist $p_{ij} \in \mathbb{Z}$ such that $x_{ij} = \pi_j - \pi_i + p_{ij}T$.

2. For each oriented cycle γ in E exists $z_\gamma \in \mathbb{Z}$ such that $\gamma^t x = z_\gamma T$.

3. For each integral cycle basis $\{\gamma_1, \ldots, \gamma_\mu\}$ of E, there are $z_1, \ldots, z_\mu \in \mathbb{Z}$ such that $\gamma_i^t x = z_i T$ for all $i = 1, \ldots, \mu$.

Proof.

(1) \Rightarrow (2): Let $\gamma \in \{-1, 0, 1\}^E$ be the incidence vector of an oriented cycle (v_1, \ldots, v_k, v_1). If γ uses $(v_i, v_{i+1}) \in E$ forward, then

$$\gamma_{v_i,v_{i+1}} x_{v_i,v_{i+1}} = \pi_{v_{i+1}} - \pi_{v_i} + p_{v_i,v_{i+1}} T.$$

Otherwise, if γ uses (v_{i+1}, v_i) backward, then

$$\gamma_{v_{i+1},v_i} x_{v_{i+1},v_i} = \pi_{v_{i+1}} - \pi_{v_i} - p_{v_{i+1},v_i} T.$$

Hence $\gamma^t x = T\gamma^t p$, and clearly $\gamma^t p \in \mathbb{Z}$.

June 4, 2018

16 / 36
§3.3 Cycles in Periodic Timetabling

Cycle periodicity constraints

Proof (cont.)

(2) ⇒ (3): Trivial. (3) ⇒ (2): Let γ be the incidence vector of an arbitrary oriented cycle. Since $\{\gamma_1, \ldots, \gamma_\mu\}$ is an integral cycle basis, there are $\lambda_1, \ldots, \lambda_\mu \in \mathbb{Z}$ such that $\gamma = \sum_{i=1}^{\mu} \lambda_i \gamma_i$. In particular

$$\gamma^t \mathbf{x} = \sum_{i=1}^{\mu} \lambda_i \gamma_i^t \mathbf{x} = \sum_{i=1}^{\mu} \lambda_i z_i T = \left(\sum_{i=1}^{\mu} \lambda_i z_i \right) \cdot T \quad \in \mathbb{Z} \cdot T.$$

(2) ⇒ (1): Let T be a spanning tree of E, and pick a vertex $s \in V(T)$. Then there is a unique oriented path from s to each other vertex $v \in V(T)$. Each oriented path in E can be expressed as an incidence vector in $\{-1, 0, 1\}^E$ as in the case of cycles. Set $\pi_s := 0$ and $\pi_v := \mathbf{p}_{sv}^t \mathbf{x}$ for all $v \in V(T) \setminus \{s\}$, where \mathbf{p}_{sv} is the unique oriented s-v-path in T. If $ij \in E(T)$, then $\mathbf{p}_{sj} = \mathbf{p}_{si} + \mathbf{e}_{ij}$, so that

$$\pi_j - \pi_i = \mathbf{e}_{ij}^t \mathbf{x} = x_{ij} = x_{ij} + 0 \cdot T.$$
3.3 Cycles in Periodic Timetabling

Cycle periodicity constraints

Proof (cont.)

if \(ij \in E \setminus E(T) \) is a co-tree edge, then this yields a fundamental cycle \(\gamma \).

The cycle \(\gamma \) uses the edge \(ij \) and then the unique path from \(j \) to \(i \) in \(T \).

The incidence vector of this path is simply given by \(p_{si} - p_{sj} \), so that \(\gamma = p_{si} - p_{sj} + e_{ij} \). Hence

\[
\pi_j - \pi_i = p_{sj}^t x - p_{si}^t x = e_{ij}^t x - \gamma^t x = x_{ij} + z_\gamma T,
\]

and we can set \(p_{ij} := z_\gamma \).

Finally, reduce \(\pi \) modulo \(T \).

Corollary

A feasible periodic timetable \(\pi \) can be constructed from a feasible periodic tension \(x \) using a spanning tree.
3.3 Cycles in Periodic Timetabling

Cycle-based PESP MIP formulation

In the PESP MIP formulation, we can now replace the constraints

\[
x_{ij} = \pi_j - \pi_i + p_{ij} T, \quad p_{ij} \in \mathbb{Z}
\]

by choosing an integral cycle basis \(\{\gamma_1, \ldots, \gamma_\mu\} \) and requiring

\[
\gamma_i^T x = z_i T, \quad z_i \in \mathbb{Z}.
\]

New MIP formulation (cycle & tension)

Let \(\Gamma \) be the cycle matrix of an integral cycle basis for \(\mathcal{E} \).

Minimize

\[
\sum_{ij \in E} w_{ij} x_{ij}
\]

s.t.

\[
\Gamma x = z^T, \quad \text{(cycle periodicity)}
\]

\[
\ell \leq x \leq u, \quad \text{(periodic tension)}
\]

\[
z \in \mathbb{Z}^\mu. \quad \text{(cycle offset)}
\]

This uses less constraints and variables than the original formulation.
3.3 Cycles in Periodic Timetabling

Cycle-and-slack-based PESP MIP formulation

Definition

The **periodic slack** is \(y := x - \ell \).

Remark

If a periodic timetable \(\pi \) is given, then \(y_{ij} = [\pi_j - \pi_i - \ell_{ij}]_T \).

This gives rise to an equivalent MIP formulation, minimizing the total slack:

New MIP formulation (cycle & slack)

Minimize \(\sum_{ij \in E} w_{ij} y_{ij} \)

s.t. \(\Gamma(y + \ell) = zT \), \hspace{1cm} \text{(cycle periodicity)}

\(0 \leq y \leq u - \ell, \) \hspace{1cm} \text{(periodic slack)}

\(z \in \mathbb{Z}^\mu. \) \hspace{1cm} \text{(cycle offset)}
§3.3 Cycles in Periodic Timetabling

Example

Consider the following PESP instance \((T = 10)\):
Example

The cycle basis is integral (even strictly fundamental). In the cycle & slack-formulation, this yields the following:

Minimize \(y_2 + y_4 + y_6 + y_8 + y_9 + y_{10} \)

s.t.

\[
\begin{align*}
y_1 + y_7 + y_8 + y_9 - 10z_1 &= -19, \quad \text{(cycle periodicity for } \gamma_1) \\
y_2 + y_6 - y_9 - y_{10} - 10z_2 &= 0, \quad \text{(cycle periodicity for } \gamma_2) \\
y_3 + y_4 + y_5 + y_{10} - 10z_3 &= -17, \quad \text{(cycle periodicity for } \gamma_3) \\
0 &\leq y_2, y_4, y_6, y_8, y_9, y_{10} \leq 9, \quad \text{(periodic slack, transfer)} \\
z_1, z_2, z_3 &\in \mathbb{Z}. \quad \text{(cycle offset)}
\end{align*}
\]

We may omit the fixed \(y \)-variables (i.e., the ones for the driving activities), giving a MIP with 3 integer and 6 continuous variables, and 3 constraints.

Optimal sol.: \(y_2 = y_6 = y_9 = y_{10} = z_2 = 0, y_4 = 3, y_8 = 1, z_1 = z_3 = 2 \),

minimal slack: 4.
§3.3 Cycles in Periodic Timetabling

Offset variable bounds

Question

Recall that in the old timetable-based formulation, we could w.l.o.g. achieve that the periodic offsets satisfy $p_{ij} \in \{0, 1, 2\}$. What about the cycle offsets in the cycle-based formulation?

Definition

For a PESP instance, define the offset space as

$$P_{\text{offset}} := \{ z \in \mathbb{Z}^\mu \mid \exists y \in \mathbb{R}^E : 0 \leq y \leq u - \ell, \Gamma(y + \ell) = Tz \}.$$

Theorem (Odijk, 1996)

If $z \in P_{\text{offset}}$, then any cycle $\gamma^t = \lambda^t \Gamma$ satisfies the cycle inequality

$$\left[\frac{\gamma_+^t \ell - \gamma_-^t u}{T} \right] \leq \lambda^t z \leq \left[\frac{\gamma_+^t u - \gamma_-^t \ell}{T} \right].$$

Conversely, if for given $z \in \mathbb{Z}^\mu$, the cycle inequality holds for each oriented cycle γ, then $z \in P_{\text{offset}}$.
§3.3 Cycles in Periodic Timetabling

Cycle inequality

Notation
Each incidence vector γ of an oriented cycle decomposes as $\gamma = \gamma_+ - \gamma_-$, where $\gamma_+ \in \{0, 1\}^E$ ("forward part") and $\gamma_- \in \{0, 1\}^E$ ("backward part").

Example: $(1, 1, 0, 0, -1, -1) = (1, 1, 0, 0, 0, 0) - (0, 0, 0, 0, 1, 1)$.

Remark
Oджik’s theorem gives a strategy to generate valid inequalities for PESP: All integer solutions satisfy the cycle inequality for all cycles. If an LP solver finds a fractional solution and there is a cycle γ violating the cycle inequality, then we can add the cycle inequality for γ as additional constraint and solve again.
§3.3 Cycles in Periodic Timetabling

Cycle inequality: Example

Consider the following PESP instance \((T = 10)\):

Bounds:

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\ell)</td>
<td>7</td>
<td>3</td>
<td>6</td>
<td>2</td>
<td>6</td>
<td>3</td>
<td>7</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>(u)</td>
<td>7</td>
<td>12</td>
<td>6</td>
<td>11</td>
<td>6</td>
<td>12</td>
<td>7</td>
<td>11</td>
<td>12</td>
<td>12</td>
</tr>
</tbody>
</table>

Cycle inequalities:

\[
2 = \left\lceil \frac{(7 + 7 + 2 + 3)}{10} \right\rceil \leq z_1 \leq \left\lfloor \frac{(7 + 7 + 11 + 12)}{10} \right\rfloor = 3
\]

\[
-1 = \left\lceil \frac{(3 + 3 - 12 - 12)}{10} \right\rceil \leq z_2 \leq \left\lfloor \frac{(12 + 12 - 3 - 3)}{10} \right\rfloor = 1
\]

\[
2 = \left\lceil \frac{(6 + 2 + 6 + 3)}{10} \right\rceil \leq z_3 \leq \left\lfloor \frac{(6 + 11 + 6 + 12)}{10} \right\rfloor = 3
\]

→ bounds for the cycle offset variables.
§3.3 Cycles in Periodic Timetabling

Cycle inequality

Proof (⇒).

Let \(z \in P_{\text{offset}} \) and let \(\gamma^t = \lambda^t \Gamma \) be an oriented cycle. Since \(\lambda^t z \) is integer, it suffices to prove

\[
\frac{\gamma^t_+ \ell - \gamma^t_- u}{T} \leq \lambda^t z \leq \frac{\gamma^t_+ u - \gamma^t_- \ell}{T}.
\]

Since \(z \in P_{\text{offset}} \), we find \(0 \leq y \leq u - \ell \) such that \(\Gamma(y + \ell) = Tz \). This implies \(\gamma^t_+ y \geq 0 \) and \(\gamma^t_- y \leq \gamma^t_- (u - \ell) \), and therefore

\[
\gamma^t(y + \ell) = \gamma^t_+ y - \gamma^t_- y + \gamma^t_+ \ell - \gamma^t_- \ell \geq \gamma^t_- (u - \ell) + \gamma^t_+ \ell - \gamma^t_- \ell = \gamma^t_+ \ell - \gamma^t_- u.
\]

On the other hand, \(\gamma^t_+ y \leq \gamma^t_+ (u - \ell) \) and \(\gamma^t_- y \geq 0 \), so that

\[
\gamma^t(y + \ell) = \gamma^t_+ y - \gamma^t_- y + \gamma^t_+ \ell - \gamma^t_- \ell \leq \gamma^t_+ (u - \ell) + \gamma^t_+ \ell - \gamma^t_- \ell = \gamma^t_+ u - \gamma^t_- \ell.
\]

Putting this together,

\[
\gamma^t_+ \ell - \gamma^t_- u \leq \gamma^t(y + \ell) \leq \gamma^t_+ u - \gamma^t_- \ell.
\]

Finally note \(\lambda^t z = \lambda^t \Gamma(y + \ell)/T = \gamma^t(y + \ell)/T \).
§3.3 Cycles in Periodic Timetabling

Cycle inequality

Proof (⇐).

Given \(z \in \mathbb{Z}^\mu \) such that the cycle inequality holds for each oriented cycle, we have to show that there is \(0 \leq y \leq u - \ell \) with \(\Gamma(y + \ell) = Tz \).

Let \(\gamma^t = \lambda^t \Gamma \) and let \(p \in \mathbb{Z}^E \) be an integer solution of \(\Gamma p = z \) (integral cycle basis). By the cycle inequality,

\[
\lambda^t z = \lambda^t \Gamma p = \gamma^t p \leq (\gamma^t_+ u - \gamma^t_- \ell) / T.
\]

Define \(\ell' := \ell - pT \) and \(u' := u - pT \). Then the above inequality reads as

\[
\gamma^t_+ u' - \gamma^t_- \ell' \geq 0.
\]

Let \(E' \) be the network obtained from \(E \) by adding to each edge \(ij \in E \) its anti-parallel edge \(ji \). For each edge \(ij \in E(E') \) set

\[
 w_{ij} := \begin{cases}
 u'_{ij} & \text{if } ij \in E, \\
 -\ell'_{ji} & \text{if } ji \in E.
\end{cases}
\]
Cycle inequality

Proof (cont.)

We claim that every directed cycle in E' has non-negative weight. Indeed, if $\tilde{\gamma}$ is such a cycle, then

$$w^t \tilde{\gamma} = \sum_{ij \in \tilde{\gamma}: ij \in E} u'_{ij} + \sum_{ij \in \tilde{\gamma}: ji \in E} (-\ell_{ij}) = \gamma^t_+ u' - \gamma^t_- \ell' \geq 0,$$

where γ is the corresponding oriented cycle in E using the edges $ij \in E$ forward and the $ji \in E$ backward.

This implies that the shortest path problem in (E', w) behaves well. In particular, there is a potential $\pi \in \mathbb{R}^V$ such that

$$\pi_j - \pi_i \leq w_{ij} \text{ for all } ij \in E(E').$$

Taking π to E, we have

$$\pi_j - \pi_i \leq u'_{ij} \quad \text{and} \quad \pi_i - \pi_j \leq -\ell'_{ij} \quad \text{for all } ij \in E.$$
3.3 Cycles in Periodic Timetabling

Cycle inequality

Proof (cont.)

This means

$$\ell_{ij} \leq \pi_j - \pi_i + p_{ij} T \leq u_{ij} \quad \text{for all } ij \in E.$$

In particular, if we set

$$y_{ij} := \pi_j - \pi_i + p_{ij} T - \ell_{ij}, \quad ij \in E,$$

then obviously $0 \leq y \leq u - \ell$. Moreover

$$\Gamma(y + \ell) = T \cdot \Gamma p = Tz,$$

as for each oriented cycle $\gamma = (v_1, \ldots, v_k, v_1)$, the potential differences $\pi_2 - \pi_1, \ldots, \pi_k - \pi_{k-1}, \pi_1 - \pi_k$ along γ sum up to 0.
§3.3 Cycles in Periodic Timetabling

Cycle inequality: Applications

There are two applications for the cycle inequalities to PESP:

- give bounds on the integer variables in the cycle-based MIP, thereby reducing the search space for optimal solutions
 → find an integral cycle basis minimizing the possible values for the integer variables
 → \textit{minimum-weight cycle basis}

- add violated cycle inequalities as cutting planes in a LP-based MIP solving procedure
 → give an algorithm that checks if there is a violated cycle inequality
 → \textit{separation of cycle cuts}
§3.3 Cycles in Periodic Timetabling

Minimum-weight cycle basis

Let G be a digraph with a weight vector $d \in \mathbb{R}_{\geq 0}^{E(G)}$.

Definition

The **minimum weight cycle basis** problem is to find a cycle basis \(\{\gamma_1, \ldots, \gamma_\mu\} \) of G such that

\[
\sum_{i=1}^{\mu} \sum_{e \in E(G)} \gamma_{i,e} d_e
\]

is minimal.

Application to PESP

For a cycle γ, denote by a_γ and b_γ the lower and upper bounds of the cycle inequality for γ, respectively. Then using $\gamma_1, \ldots, \gamma_\mu$ for the MIP formulation produces

\[
\prod_{i=1}^{\mu} (b_{\gamma_i} - a_{\gamma_i} + 1)
\]

possible combinations of values for the integer variables z_1, \ldots, z_m.
§3.3 Cycles in Periodic Timetabling

Minimum-weight cycle basis

However, this is not a weight vector.

Lemma

\[\sum_{e \in E(G)} |\gamma_e| \frac{(u_e - l_e)}{T} \leq b_\gamma - a_\gamma < 2 + \sum_{e \in E(G)} |\gamma_e| \frac{(u_e - l_e)}{T} \]

Proof.

\[
\begin{align*}
 b_\gamma - a_\gamma + 1 &= \left\lceil \frac{\gamma^t_u - \gamma^t_l}{T} \right\rceil - \left\lfloor \frac{\gamma^t_l - \gamma^t_u}{T} \right\rfloor \\
 &< \frac{\gamma^t_u - \gamma^t_l}{T} + 1 - \left(\frac{\gamma^t_l - \gamma^t_u}{T} - 1 \right) \\
 &= 2 + \frac{\gamma^t_+(u - l) + \gamma^t_-(u - l)}{T} = 2 + \sum_{e \in E} |\gamma_e| \frac{(u_e - l_e)}{T},
\end{align*}
\]

\[
\begin{align*}
 b_\gamma - a_\gamma + 1 &\geq \frac{\gamma^t_+(u - l)}{T} - \frac{\gamma^t_+(l - u)}{T} = \sum_{e \in E} |\gamma_e| \frac{(u_e - l_e)}{T}.
\end{align*}
\]
3.3 Cycles in Periodic Timetabling

Minimum-weight cycle basis

As a compromise, compute the minimum weight undirected cycle basis for the weight vector $d := u - \ell$.

Complexity of finding a minimum cycle basis

<table>
<thead>
<tr>
<th>class</th>
<th>complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>arbitrary</td>
<td>polynomial</td>
</tr>
<tr>
<td>undirected</td>
<td>polynomial</td>
</tr>
<tr>
<td>integral</td>
<td>unknown</td>
</tr>
<tr>
<td>strictly fundamental</td>
<td>NP-complete</td>
</tr>
</tbody>
</table>

Idea for arbitrary/undirected cycle bases

The set of all (undirected) cycle bases forms a matroid. In particular, a minimum-weight (undirected) cycle basis can be computed by a greedy algorithm. However, the set of all (undirected) cycle bases is too large.
§3.3 Cycles in Periodic Timetabling

The Horton set

Let G be a connected undirected graph with weights $w : E(G) \rightarrow \mathbb{R}_{\geq 0}$. For $v \in V(G)$, let T_v be a shortest path tree w.r.t. w with root v.

Definition

The **Horton set** \mathcal{H} of G consists of the following **Horton cycles** of G:

$$v \xrightarrow{p_{vi}} i \rightarrow j \xrightarrow{p_{jv}} v,$$

where $v \in V(G)$, $\{i, j\} \in E(G)$, p_{vi} is the unique v-i-path in T_v, p_{jv} is the unique j-v-path in T_v, and p_{vi} and p_{jv} are edge-disjoint.

Remark

The Horton set consists of $O(|V(G)||E(G)|)$ cycles, and can be computed in polynomial time.

Theorem (Horton, 1987)

\mathcal{H} contains a minimum-weight cycle basis w.r.t. w. It is computed by the greedy algorithm on \mathcal{H}.
3.3 Cycles in Periodic Timetabling

Minimum-weight undirected cycle basis algorithm

Let G be a connected undirected graph with weights $w : E(G) \to \mathbb{R}_{\geq 0}$.

Horton’s Algorithm

1. Compute shortest-path trees T_v w.r.t. w for all $v \in V(G)$.
2. Build the Horton set \mathcal{H}.
3. Sort \mathcal{H} by weight w in ascending order.
4. Set $B := \emptyset$.
5. For all cycles $\gamma \in \mathcal{H}$ in ascending order:
 - Add γ to B.
 - If B is linearly dependent over \mathbb{F}_2, then remove C.
 - If $\#B = \mu(G)$, then return B.

Remark

This computes a minimum-weight cycle basis in an undirected graph. For directed graphs, the cycle basis may be computed first on the underlying undirected graph $|G|$, and then be lifted to oriented cycles on G.
Consider a PESP instance with period time T on n events and m activities.

Theorem (Borndörfer/Hoppmann/Karbstein/Lindner, 2015, 2018)

(1) *There is an algorithm that, given a point (y, z) of the LP relaxation to the cycle & slack-MIP formulation, computes an oriented cycle violating the cycle inequality w.r.t. (y, z) or decides that no such cycle exists. This algorithm runs in $O(Tn^2 m)$ time (i.e., is pseudo-polynomial).*

(2) *There is no strongly polynomial-time algorithm for cycle cut separation unless $P = NP$.***