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4.1 Periodic Vehicle Scheduling
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4.1 Periodic Vehicle Scheduling
Vehicle Scheduling: Overview

Main Question
Given a line network with a timetable, how many vehicles are required to
operate the timetable?

Scope

» basic: periodic timetables
» better: aperiodic timetables (e.g., for a day)

» realistic: several depots, vehicle types, capacities, ...

All these versions lead to network flow problems. In some scenarios, the
minimal number of vehicles is replaced by a more general cost function.
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4.1 Periodic Vehicle Scheduling
Periodic Vehicle Scheduling

Input data

» event-activity network £ = (V, E)
» period time T € N
» periodic timetable 7 : V — [0, T)

» periodic tensions x : E — R>¢ such that x;j =7 m; —m; forall jj € E

Question

How many vehicles are required to operate the periodic timetable 7 on £7

Example
; 8 ; -3_ ! 8 .

driving activity e
with tension Xe
turnaround activity e
with tension Xe

event v with time m,
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§4.1 Periodic Vehicle Scheduling
Periodic vehicle schedules

Definition A B,

A periodic vehicle schedule is a collection S of directed cycles in £ such
that each driving activity is contained in at least (exactly) one cycle of S.
For a periodic vehicle schedule S, its number of vehicles v(S) is given by

1 k
US) = L3 e

ecE i=1
where 71, ...,7 € {0,1}F are the incidence vectors of the cycles in S.
Example
8 3 8 8 3 8

D@ 5O—@ O— D 2O—0

0 o © o 0 o1 I ©

@, D——® @, DO

30 + 30 minutes — 6 vehicles 50 minutes — 5 vehicles
Remark

By the cycle periodicity property of periodic timetabling, v(S) € Z>o.
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§4.1 Periodic Vehicle Scheduling
Minimum tension circulation

Definition ZIB

The periodic vehicle scheduling problem is to find a periodic vehicle
schedule S with minimal v(S).

Tension-based integer programming formulation

Minimize ;EGZExefe
s.t. Z fe — Z fe =0, vevV,
ecdt(v) e€d—(v)
fe>1, e € E driving activity,
fo € Zzo, ecE.

Observation
The periodic vehicle scheduling problem can be formulated as a mininum

cost circulation problem.

June 18, 2018
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§4.1 Periodic Vehicle Scheduling
Minimum offset circulation

Definition (Recall from periodic timetabling)
For an edge ij € E, define its periodic offset as
Xjj — Tj + T;
= ————— € Z>y.
pl_] T 20
Cycle periodicity property
For all incidence vectors ~y of oriented cycles in £ holds v'x = T - ¢p.

Offset-based integer programming formulation

Minimize Zpefe
ecE
s.t. Y > =0 vev,
ecdt(v) ecd—(v)
fe>1, e € E driving activity,
fe S Zzo, ecE.
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4.1 Periodic Vehicle Scheduling
Perfect turnaround matching

Let E; and E; be the set of driving and turnaround activities, respect%eu

Theorem
There is a one-to-one correspondence

driving activities exactly once in (V,E)

(fe)eeE = (fe)eEEt-

{ circulations covering all } { perfect matchings }

Moreover, a circulation of cost ¢ w.r.t. p (or x) corresponds to a perfect
matching of cost ¢ — Y g pe W.r-t. p (or ¢ — 3 cp Xe W.rt. X).

Proof.

The correspondence has been an exercise. For the cost comparison, note
that restricting a circulation to the turnaround activities removes the cost
of all driving activities. O
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84.1 Periodic Vehicle Scheduling
Perfect turnaround matching: Example

8 3 8

3
F— 00— >0  O— 00— 0
] 19 o 1o w 19 o1 1o
- () OFRO} ®
8 4 8 8 8
circulation cost w.r.t. x: 60 circulation cost w.r.t. x: 50

I 7
© o @ 9 99 o

o 1o w1 1o
@*;©® @*;-®
matching cost w.r.t. x: 28 matching cost w.r.t. x: 18
driving act. cost w.r.t. x: 32 driving act. cost w.r.t. x: 32
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4.1 Periodic Vehicle Scheduling
Summary

B!

The periodic vehicle scheduling problem has the following interpretations:
» minimum cost circulation w.r.t. periodic tension x covering all driving
activities
» minimum cost circulation w.r.t. periodic offset p covering all driving
activities
» minimum weight perfect matching w.r.t. periodic tension x of
turnaround activities
» minimum weight perfect matching w.r.t. periodic offset p of
turnaround activities
The graph (V/, E;) usually decomposes into many small components, so
that the perfect matching problem decomposes into smaller problems as

well.
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§4.2 Aperiodic Vehicle Scheduling
Single-Depot Vehicle Scheduling

B!

Input Data

> set 7 of trips (Tdep; Tarr) € R x R with Tgep < Tarr

» relation < on T x T, where t; < t» holds if a vehicle can use trip t»
after t;

Definition

A vehicle schedule is a collection S = {s1, ..., sk} of chains

si=ti1 2 tia = --- X tj,, such that each trip in 7 occurs in at least
(exactly) one chain s;. The number v(S) := k is the number of vehicles
of S.

Definition
The (single-depot) vehicle scheduling problem is to find a vehicle
schedule S minimizing v(5).
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§4.2 Aperiodic Vehicle Scheduling
Network flow model
Build an event-activity network £ as follows: 1B

1. Create two events p and q.

2. Create activities (p, dt), (d:, at), (at, g) for each trip t € T (pull-out,
driving, pull-in).

3. For each pair t; < tp, add an activity (ay,, dt,) (turnaround).

The events p and g are depot vertices.

Example
4:03 4:11 4:13 4:21 4:23 4:31
@ *6) @ @) @ @)
4:00 4:08 4:10 4:18 4:20 4:28
@) ) @) ) (@) )
@ 4:04 4:12 4:14 4:22 4:24 4:32 @
® @) @ @ @ &)
4:08 4:16 4:18 4:26 4:28 4:36
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§4.2 Aperiodic Vehicle Scheduling
Network flow model

Build an event-activity network £ as follows:
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4:03 4:11 4:13 4:21 4:23 4:31
@ 'S
4:00
@
@ 4:04 432 @
@ <
4:36
)
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§4.2 Aperiodic Vehicle Scheduling
Network flow model ‘
ZI B

Observation
The single-depot vehicle scheduling problem is solved by finding a minimum

value p-g-flow on & = (V/, E) covering each driving activity at least once:

Minimize Z fe

e€st(p)
s.t. Y o > =0 veV\{p,q},
e€dt(v) ecd—(v)
fe>1, e € E driving activity,
fo € Zzo, eeE.
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§4.2 Aperiodic Vehicle Scheduling
Network flow model: Example

Example
4:03 4:11 4:13 4:21 4:23 4:31

TN

This is an optimal p-g-flow covering each driving activity exactly once.
The value of flow (= number of vehicles) is 5.

Notation

Let E4 and E; denote the set of driving and turnaround activities,
respectively.
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§4.2 Aperiodic Vehicle Scheduling
Matching interpretation

Lemma
The following numbers are equal:

(a) The minimum value of an p-q-flow covering each e € E4 exactly once.

(b) |E4| —|M|, where M is a maximum cardinality matching of (V, E;).

Proof.

A feasible flow with value v decomposes into v edge-disjoint p-g-paths,
where the activity types along each path have the pattern (pull-out, driving,
turnaround, driving, turnaround, ..., driving, pull-in). So each path with k
driving activities uses k — 1 turnaround activities. Summing over all paths
yields a matching M of the turnaround activities with |M| = |E4| — v.

Conversely, let M be a matching of (V, E;). Consider the flow of value
|Ey4| using the |Ey| paths (p, d:, at, q) for all trips t. For each edge in M,
connect the corresponding trips, thereby reducing the flow value by 1.
Repeating this process yields a feasible flow of value |Ey4| — |[M]. O
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§4.2 Aperiodic Vehicle Scheduling
Matching interpretation: Example

4:03 4:11 413 4:21 4:23 4:31

In (V, E;), only the 7 arrival vertices a1, az, aa, as, az, ag, ag, a1p are
non-isolated. All of these vertices are matched, so that we obtain a
maximum cardinality (in fact, even perfect) matching. As there are 12
driving activities, the minimal number of vehicles equals 12 — 7 = 5.
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§4.2 Aperiodic Vehicle Scheduling
Matching interpretation: Example

4:03 4:11 4:13 4:21 4:23 4:31
4:00

@ 4:04 4:32 @
4:36

In (V, E;), only the 7 arrival vertices a1, az, aa, as, az, ag, ag, a1p are

non-isolated. All of these vertices are matched, so that we obtain a

maximum cardinality (in fact, even perfect) matching. As there are 12

driving activities, the minimal number of vehicles equals 12 — 7 = 5.
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§4.2 Aperiodic Vehicle Scheduling
Single-depot case: Summary

Summary
The single-depot vehicle scheduling can be solved by computing a ...
» minimum value network flow covering all driving activities

» maximum cardinality matching of the turnaround activities

Remarks
» The actual timetable and the actual travel times are not important,
only the feasible sequences of trips matter.

» When costs for trips or turnarounds come into play, this generalizes to
a minimum cost network flow or a weighted matching problem.
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§4.2 Aperiodic Vehicle Scheduling
Multi-Depot Vehicle Scheduling

B!

Input Data
> set 7 of trips (Tqep, Tarr) € R x R with Tgep < Tarr
» relation < on 7 x T, where t; < t» holds if a vehicle can use trip t
after t1
» set D of depots
» assignment D : T — P(D) of feasible depots for each trip

Definition

The multi-depot vehicle scheduling problem is to find a vehicle
schedule S minimizing v(S) such that for each chain t; <--- < t,in §
holds D(t1) N ---N D(t,) # 0.

l.e., the trips served by a vehicle must be feasible for a common depot. In
particular, we can assume that the pull-out and pull-in depots of each

vehicle are the same.
June 18, 2018 20 / 36




§4.2 Aperiodic Vehicle Scheduling

Network flow model

Build an event-activity network & as follows: 4B
1. Create two depot vertices pgy and gq for each depot d € D.

2. Add driving activities (d;, a;) for each trip t € T .
3. Add pull-out activities (py, d;) for each trip t € T and each d € D(t).
4. Add pull-in activities (a, qq) for each trip t € T and each d € D(t).
5. For each pair t; < tp, add a turnaround activity (ay,, ds,).
Example (2 depots)
4:03 4:11 4:13 4:21 4:23 4:31
@ ) @) ) (@) @)
4:00 4:.08 4:10 4:18 4:20 4:28
(@) ) @) ) (@) %)
4:04 4:12 4:14 4:22 4:24 4:32
@ ) (@) ) @) )
@ 4:08 4:16 4:18 4:26 4:28 4:36
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§4.2 Aperiodic Vehicle Scheduling
Network flow model

Build an event-activity network & as follows: 4B

1.

A

Create two depot vertices py and gq for each depot d € D.

Add driving activities (d;, a;) for each trip t € T.

Add pull-out activities (py, dt) for each trip t € T and each d € D(t).
Add pull-in activities (at, qq) for each trip t € T and each d € D(t).
For each pair t; < tp, add a turnaround activity (ay,, ds, ).

Example (2 depots)

4:03 4:11 4:13 4:21 4:23 4:31
@ <
4:00
@
4:04 4:32
' 4:36

NG
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§4.2 Aperiodic Vehicle Scheduling
Network flow model

Observations

» This is not a normal network flow problem: In a flow with the py as
sources and the gy as sinks, a vehicle might pull out from depot 1 and
pull in to depot 2.

» Instead, our flow covering all driving activities needs to decompose
into pg-gq-flows for each depot d € D.

» This leads to a multi-commodity flow.
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§4.2 Aperiodic Vehicle Scheduling
Multi-commodity flow model

Minimize ooy

deD ecs+(py)

s.t. - ) =0

e€dt(v) ecd—(v)

> e

deD(t)

R

d¢D(t)

e E {07 1}7

deD,veV\{pd,qd},
e € E driving activity of trip t,
e € E driving activity of trip t,

deD,ecE.

This defines a pg-qq flow 9 for each depot d € D. Each driving activity is
covered by exactly one such 9, and d is feasible for the corresponding

trip.

June 18, 2018
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§4.2 Aperiodic Vehicle Scheduling
Multi-commodity flow: Example

4:03 4:11 4:13 4:21 4:23 4:31

This optimal 2-commodity flow decomposes into 3 p;-gi-paths and 3
p2-g2-paths (— 6 vehicles required).
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§4.2 Aperiodic Vehicle Scheduling
General multi-commodity flow

Let G = (V, E) be a digraph with cost functions c!,...,ck: E — RZD
balances b',...,b*: V — R, and capacities u, u*, ..., uk : E — Rxy.
The problem
k
Minimize ZZ céfei
i=1 ecE
s.t. Soofi- Y fi=b, i=1,...,kvevV,
ecdt(v) ecéd—(v)
k
fl < ue, ecE,
i=1

flef{0,1,...,ul}, i=1,... k,ecE.

is called an integer minimum cost k-commodity flow problem.
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§4.2 Aperiodic Vehicle Scheduling
Multi-commodity flow: Complexity

Remarks

>

When the flows f' can be relaxed to rational numbers in [0, u'], then
there are polynomial-time algorithms (linear programming).

In fact, for rational f/, there are strongly polynomial-time algorithms.
l.e., the running time does not depend on cost, balance or capacities.
However, for k > 2 commodities, the total unimodularity property of
single-commodity flows gets lost. In particular, we cannot use linear
programming to obtain integer flows.

There are non-integral minimum cost 2-commodity flows with integer
costs, balances and capacities.

Finding an integer k-commodity flow is NP-hard for every fixed k > 2
(Even/Itai/Shamir 1974: SAT < integer 2-commodity flow).
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§4.2 Aperiodic Vehicle Scheduling
Path-based multi-commodity flow/Set partitioning

4:11 4:13 4:21 4:23

Observation
A feasible multi-commodity flow consists certain py-gg-paths. Let Py
denote the set of all py-g4-paths for a depot d. Then

» Every driving activity of some trip t must be covered by exactly one
path p € Py with d € D(t).
» We want to minimize the number of required paths.
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§4.2 Aperiodic Vehicle Scheduling
Path-based multi-commodity flow model

For a driving activity e of trip t, let Pe := Uyep(ry{p € Pa | € € p} dendte
the set of py-qg-paths using e coming from a feasible depot d € D(t) for t.

Integer program

Minimize Z Z fo

deD pePy

s.t. > =1, e € E driving activity of trip t,
PEPe
f, € {0,1}, pe | Pa
deD
Remarks

> Any multi-commodity flow problem has a path-based formulation.

» The number of paths is enormous. — column generation (pricing:

shortest path problems).
28 / 36
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§4.2 Aperiodic Vehicle Scheduling
Extensions

» depot capacities k4: In the path-based multi-commodity flow
formulation, these are modeled as

> f<keq deD.
PEPJ

» operational costs (e.g., fuel)
» fixed costs (e.g., maintenance, investment)

» multiple vehicle types: one commodity for each feasible combination
of a depot and a vehicle type

» time windows: regular trips (e.g., according to line frequency) vs.
irregular trips (e.g., school trips)

> route constraints (e.g., battery vehicles)
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§4.2 Aperiodic Vehicle Scheduling
Real-world examples

ZI B
Berlin (BVG) Hamburg (HHA) Hamburg (VHH)
Depots 10 14 10
Vehicle types 9 9 9
Combinations 44 40 19
Trips 25000 16 000 5500
Turnarounds 70000000 15100000 10000000

Lobel, Optimal Vehicle Scheduling in Public Transit, 1997
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4.3 Railway Stock Rotation Planning
Terminology

» Find an optimal periodic vehicle schedule for a standard week
(rotation).

» A vehicle configuration is a multiset of vehicles.

L et ] et 0 bl 19

» For each trip, there is a feasible set of vehicle configurations.

» Before or after a trip, a vehicle configuration can be changed by
coupling.

» A train is a set of at most seven trips haven the same departure and

arrival stops and the same departure and arrival times, but on
different days.
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4.3 Railway Stock Rotation Planning

Hypergraph model
Define a hypergraph G = (V, H, A) as follows: B!

» A node v € Vis a tuple (t,c,f,m), where t is a trip, c is a feasible
vehicle configuration for t, and f is a vehicle used m times by c.

» A hypernode h € H is a collection V(t,c) of all nodes (t, c, f, m) for
a given trip t and a given configuration c.

» A hyperarc a € A is a non-empty set of pairs (v,w) € V x V,
constructed as follows:

» Configuration conserving arcs: If a vehicle can go from trip t; to trip t
with the same configuration, then add an hyperarc consisting of
|V(t1, )| = |V(t2, )| arcs connecting them.

» Coupling arcs: Connect trips with different configurations.

» Regularity hyperarcs: Let Ty, T, be trains, let ¢ be a configuration and
let 0 € {0,...,6}. Let a be the set of all arcs connecting any trip from
T; with any trip of T, with configuration ¢ such that midnight is
passed o times between the arrival of t; and the departure of t,. If
|a| > 2, then add a hyperarc {(v,w) € V x V |Jaca: (v,w) € a}.
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§4.3 Railway Stock Rotation Planning
Hypergraph model: Conservation and coupling

Jf f— a —— 7453
(=8 - O
o (EsEE)
as
t3 €T
T a6 e
-

Borndorfer et. al., A Hypergraph Model for Railway Vehicle Rotation Planning, 2011
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§4.3 Railway Stock Rotation Planning
Hypergraph model: Regularity

B!

Monday X
Tuesday \
Wednesday .\
Thursday t €T (@

as
Saturday /

Sunday /

Borndorfer et. al., A Hypergraph Model for Railway Vehicle Rotation Planning, 2011

t,e¥

o & @ € e o e

az
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§4.3 Railway Stock Rotation Planning
Hypergraph model: Torus

ICE-A network, HyDraw output
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