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Periodic Event Scheduling Problem (PESP)

Given
G = (V , A) event-activity network,

T ∈ N period time,

` ∈ ZA lower bounds,

u ∈ ZA upper bounds,

w ∈ RA
≥0 weights,

find
π ∈ [0, T)V periodic timetable,

x ∈ RA periodic tension

such that

(1) πj − πi ≡ xij mod T for all ij ∈ A,

(2) ` ≤ x ≤ u,

(3) w>x is minimum,

or decide that no such (π, x) exists.

(Serafini and Ukovich, 1989)

Cycle-based MIP formulation:

(Nachtigall, 1994, Liebchen and Peeters, 2009)

Minimize w>x

s.t. Γx = Tz,

` ≤ x ≤ u,

z ∈ ZB

B ⊆ ZA integral cycle basis of G

Γ ∈ ZB×A cycle matrix of B

z ∈ ZB modulo parameters

Cycle inequalities:

(Odijk, 1994)⌈
γ>
+ `− γ>

−u

T

⌉
≤ γ>x

T
≤

⌊
γ>
+u− γ>

−`

T

⌋
for each oriented cycle γ ∈ {−1, 0, 1}A.
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A Small PESP Instance: Cycle Inequalities

PESP instance with period time T = 10:
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γ1 γ2 γ3

Relaxation Optimal weighted slack

LP relaxation 0

+ γ>
2 x ≥ 10

⌈
3+1+3+1

10

⌉
= 10 γ>

2 x = 3+ 1+ 3+ 3 = 10 0

+ γ>
1 x ≥ 10

⌈
1+1+1−7

10

⌉
= 0 γ>

1 x = 1+ + 1− 1 = 0

+ γ>
3 x ≥ 10

⌈
1+1+1−7

10

⌉
= 0 γ>

3 x = 1+ 1+ 1− 3 = 0 0

+ (γ1 + γ2)
>x ≥ 10

⌈
10
10

⌉
= 10 (γ1 + γ2)

>x = 0

+ (γ2 + γ3)
>x ≥ 10

⌈
10
10

⌉
= 10 (γ2 + γ3)

>x = 10 0

+ (γ1 + γ2 + γ3)
>x ≥ 10

⌈
12
10

⌉
= 20 (γ1 + γ2 + γ3)

>x = 20 80

PESP MIP 80
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A Small PESP Instance: Conclusions

Observation

I Cycle inequalities derived from the planar cycle basis {γ1, γ2, γ3} are useless.
This is also the integral cycle basis with minimum span u− `.

I The only contributing cycle inequalities come from the forward cycles γ2 and
γ1 + γ2 + γ3.

I If the cycle basis contains the ”vehicle rotation” γ1 + γ2 + γ3, then the LP

relaxation closes the MIP optimality gap at the root node.

I γ1 + γ2 + γ3 is the only cycle where are arcs have positive weight.

Idea

Look for cycle bases consisting of forward or heavy-weight cycles.

Some Benefits of Forward Cycles

I cycle inequalities= change-cycle inequalities.

I increasing the modulo parameters correlates with increasing objective value
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Cycle Space and Cycle Bases

Let G = (V , A) be a digraph.

Cycle space:

C :=

γ ∈ ZA

∣∣∣∣∣∣∀v ∈ V :
∑

a∈δ+(v)

γa =
∑

a∈δ−(v)

γa

 (abelian group)

Oriented cycle: vector γ ∈ C ∩ {−1, 0, 1}A

Cycle bases: set B = {γ1, . . . , γµ} of µ := rank(C) oriented cycles s.t.

(1) B basis ofR-vector space C ⊗ R directed cycle basis

(2) B basis of F2-vector space C ⊗ F2 undirected cycle basis

(3) B basis of abelian group C integral cycle basis

(4) ∀ i ∃ a ∈ γi \ (γ1 ∪ · · · ∪ γi−1) weakly fundamental cycle basis

(5) B fundamental cycles of spanning forest strictly fundamental cycle basis

Cycle matrix: representation matrix Γ ∈ {−1, 0, 1}B×A of some cycle basis B

Hierarchy: (5) ⇒ (4) ⇒ (3) ⇒ (2) ⇒ (1) (Kavitha et al., 2009)
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Let G = (V , A) be a digraph.

Cycle space:

C :=

γ ∈ ZA

∣∣∣∣∣∣∀v ∈ V :
∑

a∈δ+(v)

γa =
∑

a∈δ−(v)

γa

 (abelian group)

Oriented cycle: vector γ ∈ C ∩ {−1, 0, 1}A
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Forward Cycle Bases

Forward cycle: vector γ ∈ C ∩ {0, 1}A (⇔ oriented cycle with no backward arcs)

Forward cycle basis: cycle basis B consisting only of forward cycles

Theorem (Seymour and Thomassen, 1987)

G has a forward directed cycle basis

⇔ each 2-edge-connected component of G is strongly connected.

Example: Non-Existence of Forward Strictly Fundamental Bases

Every digraph has a spanning forest, and hence a strictly fundamental cycle basis.

But: Not every strongly connected G has a forward strictly fundamental cycle basis.

G directed Hamiltonian⇒ G strongly connected

no spanning tree with exclusively forward fundamental cycles

forward weakly fundamental cycle basis by first 4 cycles
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A Standard Construction

Question

How can we ensure existence of forward integral cycle bases for PESP instances?

Line-Based Event-Activity Networks

→

line network

3 bidirectional lines

event-activity network

drive, dwell, turnaround, transfer activities
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ILTY Cycles

I L

T Y

ILTY cycles at a station:

# dwell # transfer

I 2 0

L 0 2

T 1 2

Y 3 0

Theorem (LLM, 2021)

The set Bs of ILTY cycles at a

station s through a fixed event

at s is a weakly fundamental

basis for the space spanned by

all ILTY cycles at s.

There is B′ s.t. B′ ∪
⋃

s∈S Bs is a

forward integral cycle basis,

and B′ projects to a strictly

fundamental cycle basis of the

line network.
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Minimum Forward Cycle Bases

Weights for Cycle Bases

Let c ∈ RA
≥0 be a weight vector.

Weight of a cycle basis: c(B) =
∑

γ∈B

∑
a∈γ γa

Finding MinimumWeight Cycle Bases

Motivation: weight of Bw.r.t. u− `≈ log(# possible modulo parameters z ∈ ZB)

type complexity (oriented)

complexity (forward)

(1) directed P (Horton’s algorithm, 1987)

P (Gleiss et al., 2003)

(2) undirected P (Horton’s algorithm, 1987)

P (Gleiss et al., 2003)

(3) integral ?

?

(4) weakly fund. APX-hard (Rizzi, 2007)

?

(5) strictly fund. APX-hard (Galbiati et al., 2007)

?
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Forward Cycles in Practice

Recapitulation

I Wewant to use forward integral cycle bases for solving the PESP MIP.

I Forward cycle bases exist in strongly connected digraphs.

I A forward integral cycle basis can be constructed in line-based networks

by means of ILTY cycles.

I Minimumweight forward (un)directed cycle bases can be computed by a

modification of Horton’s algorithm.

PESPlib

I benchmarking library of PESP instances by Goerigk

I networks are not strongly connected

I but they are very close to line-based networks!
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Reverse Engineering PESPlib Instances

Observations for R1L1

I Remove the 4 arcs with [`a, ua] = [0, 0].

I The network is now bipartite.

I Remove all arcs with ua − `a = T − 1 = 59.

I All remaining arcs have ua − `a ≤ 17.

I The network decomposes into 110 directed paths.

I For each path, every second activity has [`a, ua] = [1, 5].

I For each path, we find another path whose sequence of bound intervals is

exactly reverse.

Construction of R1L1v

Add 110 turnaround activities, at each end of each of the 55 bidirectional lines.

Remark

The structure of all 16 PESPlib railway instances follows this pattern.
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Computational Set-Up

Solver: Concurrent PESP solver (Borndörfer et al., 2020) with Gurobi 9.1, up to 8

threads, 1h wall time

Scenarios: R1L1v with...

I 4 minimum turnaround times: `a = 0, 5, 10, 15

I 7 turnaround weights: wa = 0, 2 500, 5 000, 10 000, 20 000, 40 000, 80 000

I 4 cycle bases: span, forward span, forward bottleneck, ILTY

I 6 solution strategies:

Strategy MIP Initial solution Ignore light arcs Other

complete X X X
mip X
mip-start X X
mip-ignore X X
mip-ignore-start X X X
dual X X

I 2 evaluation criteria: weighted passenger slack (i.e., without turnaround

activities), number of vehicles (vehicles stay on line)
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Pareto Front
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min turnaround time 0
min turnaround time 5
min turnaround time 10
min turnaround time 15
complete
mip-start
mip-ignore
mip-ignore-start

S span
F forward span
B forward bottleneck
I ILTY
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Results: Primal Side

Unsurprising Results

I The higher the turnaround weights, the lower the number of vehicles.

I With the passenger-optimized initial timetable, the number of vehicles tends to

be higher.

I Within 1h, reaching the passenger slack of the PESPlib incumbent is impossible,

but the best number of vehicles goes down to the theoretical minimum+1.

Impact of Cycle Bases

I The “mip” strategy without initial solution and without further heuristics

performs bad in all cases.

I The picture is quite diffuse. For the 4 other strategies and for all 4 cycle bases,

we find at least one non-dominated solution each.

I Comparing the 4 cycle bases, the difference is at most 2.6% in passenger slack

and 0.6% in number of vehicles on average.

Conclusion: The choice of cycle basis does not matter.
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Results: Dual Side

I After 1h, the best dual bound for the traditional oriented minimum span basis is

on average 17.6%worse than with ILTY.

I With minimum turnaround time 0 and turnaround weight 0, dual bounds are

valid for the original R1L1:

instance cycle basis dual bound

R1L1v span 20 638 013

R1L1v forward span 20 609 801

R1L1v forward bottleneck 20 591 564

R1L1v ILTY 20 901 883

R1L1 span 20 693 118

(24h wall time, with CPLEX 12.10 and flip inequality separation)

Conclusion: Making the network larger in order to use forward cycle bases can

improve dual bounds!

New Challenges: PESPlib has grown by 2 instances with turnarounds (R1L1v and

R4L4v).
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