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1.1 Introduction

A line in a public transit system is designated with an origin location, a destination location and a

path designated with several intermediate stops between these two locations. The complete set of

lines in the system makes up the skeleton of the transit services.

Public transportation planning requires various stages of planning that handle different but inher-

ently interrelated decisions and cope with different temporal scope. Strategic planning covers long-

Güvenç Şahin

Sabanci University, Orhanli, Tuzla, 34956 Istanbul, e-mail: guvencs@sabanciuniv.edu

Amazon Web Services, Krausenstraße 38, 10117 Berlin, e-mail: guvencs@amazon.de

Niels Lindner

Freie Universität Berlin, Institut für Mathematik, Arnimallee 6, 14195 Berlin, e-mail: lindner@zib.de

Zuse Institute Berlin, Takustraße 7, 14195 Berlin, e-mail: lindner@zib.de

Thomas Schlechte

LBW Optimization GmbH, Englerallee 19, 14915 Berlin, e-mail: schlechte@lbw-optimization.de

1

guvencs@sabanciuniv.edu
guvencs@amazon.de
lindner@zib.de
lindner@zib.de
schlechte@lbw-optimization.de
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term decisions in service design, among which network design, line planning, timetabling, and fare

planning are included; such decisions have impact over a long planning horizon covering multiple

years. The tactical planning level is concerned with attainment, allocation and usage of resources

such as vehicles and crew; the temporal scope of tactical plans is typically several months that

may extend to a year.

The operational plans are involved with actions on the day of operations; these include assign-

ment of individual resource units to specific operations and services, traffic (and delay) manage-

ment, and real-time scheduling of services. Line planning, as part of strategic decisions, lays out

the foundation of all subsequent plans, decisions and operations. Lampkin and Saalmans [7] re-

port the first systematic operational research approach for public transportation planning, refer to

the line planning stage as choosing a set of routes, and identify it as the first task of a sequence of

planning decisions/tasks.

The line plan of a public transportation (PT) system can be described as follows. Let a graph

G represent the physical infrastructure of the PT network. Depending on the type of the PT, a

node/vertex of G corresponds to a station, a terminal or a stop. Without loss of generality, a line

corresponds to a walk on G from s ∈ G to t ∈ G. Considering a line plan in a railway context, G

could have stations as vertices and railway links between stations as edges. A railway line can be

represented by a walk ` on G and a frequency f` over a pre-determined fixed length portion of the

planning horizon. If f` = 2 and frequencies are determined hourly, then line ` is supposed to run

twice per every hour, as in Figure 1.1.

Definition 1 (Line Plan) A line plan on a graph G is a set L of walks (= lines) on G, together

with positive integer frequencies f` ∈ N for each ` ∈ L.

The aim of the line planning problem (LPP) is to find a feasible line plan providing both conve-

nient travel for passengers and low operational costs. In practice, the feasibility of line plans can

depend on various physical constraints associated with the infrastructure as well as the availability

of resources such as vehicles and crew. For example, a railway infrastructure can only accommo-

date a certain maximum number of trains within a given time window. Meanwhile, line planning
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Fig. 1.1 A line plan of the projected future Swiss intercity network. Thick lines run twice per hour (frequency
2), thin lines only once (frequency 1). Source: Filzstift via commons.wikimedia.org, CC-BY-SA 4.0.

needs to balance two conflicting goals: The higher the frequencies, the shorter the travel times of

the passengers, but the higher the operational expenses for fleet and crew. Indeed, the LPP is a

prime example for a combinatorial optimization problem. Nevertheless, it was only in 1997 when

Bussieck et al. [2] showed that the feasibility variant of the LPP is NP-complete by reducing the

exact cover by 3-sets problem (X3C).

Bussieck et al. [2] developed the first integer programming (IP) problem formulation for the LPP.

The objective function of this formulation is to maximize the number of passengers travelling from

their origins to destinations directly, i.e., by using only one line. Schöbel [10] later classify this ap-

proach as passenger-oriented due to its objective function. In the early works of passenger-oriented

line of research, Schöbel and Scholl [11] and Rittner and Nachtigall [9] minimize passengers total

riding time. Alternatively, Klier and Haase [6] maximize the number of serviced passengers, i.e.,

the amount of transit demand.
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The cost-oriented approach, in contrast to passenger-oriented approach, relies on minimizing the

costs of the system mostly focusing on the operational costs. As the earliest example in this line of

research, Claessens et al. [3] provide a non-linear IP formulation, while Goossens et al. [4] extend

their formulation. Torres et al. [13] provide some theoretical complexity results on special cases of

basic formulations based on a cost-oriented approach.

In their seminal work, Borndörfer et al. [1] present an IP formulation with an objective func-

tion minimizing both the passenger riding/travel times and operational costs, integrating the

passenger-oriented and cost-oriented approaches. Building upon this work, Karbstein [5] tunes the

model towards less transfers and connects it to the Steiner connectivity problem.

1.2 Models

Considering a finite-length planning horizon and the physical infrastructure of the PT system, the

minimal product of the LPP is a set of lines and their corresponding frequencies which correspond

to the number of times the line service is run during the planning horizon.

Definition 2 (Basic Line Planning Problem) Let G be a graph, let P be a set of walks on

G (line pool), and let fmin
e , fmax

e ∈ N0 be lower resp. upper frequency bounds for each edge e ∈

E(G). The basic line planning problem (BLPP) is to find a line plan (L, f) such that

L ⊆ P and ∀e ∈ E(G) : fmin
e ≤

∑
`∈L

f` ≤ fmax
e . (1.1)

The BLPP is a feasibility problem, and the set of potential lines is constrained to be part of the

pre-specified line pool P. The BLPP is characterized with the following features:

• The line pool is used to reflect that not every walk in G is a feasible line due to various con-

straints including but not limited to infrastructure restrictions, e.g., missing switches or turn-

ing facilities and length restrictions, e.g, limited range for electric vehicles.
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• It depends on the application context whether G should be directed or not, and similarly,

whether lines should be (un)directed simple paths or be allowed to contain cycles.

• The lower frequency bounds fmin ensure a minimum service level, while the upper frequency

bounds fmax limit the operational costs and model the infrastructure capacity of an edge.

It is straightforward to model the BLPP as an IP problem with the general integer variables f` ∈

N0 for each ` ∈ P, with the interpretation that f` > 0 if and only if ` ∈ L. However, the BLPP

formulation doees not necessarily consider either the transit demand or the associated costs and

therefore it is not realistic for practical purposes.

Cost-oriented Line Planning

In order to describe a cost-oriented version of the BLPP, a line in P is associated with an activa-

tion cost C` ∈ R, which is independent of the frequency, and an operating cost c` ∈ R. Accord-

ingly, the cost-oriented BLPP can be defined as

minimize
∑
`∈L

(C` + c`f`) (1.2)

s.t. fmin
e ≤

∑
`∈L

f` ≤ fmax
e , ∀e ∈ E(G). (1.3)

In practice, C` and c` can in general only be estimated, as line planning is typically performed

before allocation and scheduling of resources such as vehicle and crew, and hence associated ex-

penses such as fuel and driver costs are yet unknown.

Passenger-oriented Line Planning

The passenger demand is most commonly modeled by an origin-destination matrix (OD matrix)

with entries dst for all pairs (s, t) of vertices in G, estimating the number of passengers that want

to travel from s to t. A pair (s, t) with dst > 0 is called an OD pair, the set of all OD pairs is de-
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noted by D. In passenger-oriented line planning, the objective is then to find a line plan (L, f) sat-

isfying (1.1) that minimizes the total travel time for each OD pair. However, it is quite challenging

to assess the travel time as it first requires answering the following questions that will lead to a set

of assumptions to frame the problem:

• Fixed vs. integrated routing: Do passengers always travel along the same s-t-path or do they

rather take the shortest route offered by the line plan?

• Capacitated vs. uncapacitated routing: Can passengers take different routes depending on vehi-

cle capacities?

• Travel time vs. time in vehicle: Should only in-vehicle time be considered, or should transfers

and adaption times be taken in to account as well? Should waiting in vehicles be preferred

over waiting at stops (perceived travel time)?

Pasenger-oriented approaches, at a minimum, require defining a travel time τp for a path p ∈ Pst

where Pst represents the set of all s-t-paths in G for OD pair (s, t). In essence, the passenger-

oriented BLPP is to be formulated to minimize
∑

(s,t)∈D
∑

p∈Pst
τpyp while the conditions on sat-

isfaction of transit demand and dependency of the paths on the chosen set of lines require an elab-

orate modelling approach which could be represented as an IP problem formulation.

1.3 Formulations

In order to develop a path-based mixed-integer programming model for the LPP, it is necessary

to predetermine a set of lines L from which a subset of lines is to be selected and a set of paths

Pst for all OD pairs (s, t) ∈ D. If E(p) is the set of edges on path p and E(l) is the set of edges

covered by line l, the following problem formulation considers in-vehicle times and capacitated

routing constraints [1]:

minimize α
∑
`∈L

(C`x` + c`f`) + β
∑

(s,t)∈D

∑
p∈Pst

τpyp (1.4)
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s.t.
∑

p∈Pst

yp = dst (s, t) ∈ D (1.5)

∑
(s,t)∈D

∑
p∈Pst:e∈E(p)

yp ≤
∑

`∈L:e∈E(`)

κ`f` e ∈ E(G) (1.6)

∑
`∈L:e∈E(`)

f` ≤ fmax
e e ∈ E(G) (1.7)

f` ≤ Fx` ` ∈ L (1.8)

f` ∈ N0 ` ∈ L (1.9)

x` ∈ {0, 1} ` ∈ L (1.10)

yp ≥ 0 p ∈ Pst, (s, t) ∈ D (1.11)

where the binary variable x` (1.10) indicates whether line ` is part of the chosen line plan or not,

the integer variable f` (1.9) denotes the frequency of `, and the continuous variable yp counts the

number of passengers from s to t using path p.

The objective (1.4) is a scalarized bicriteria objective function, weighing the operational costs by

α and the passenger travel time by β. As passenger numbers are only estimates, it is reasonable

not to require yp to be integer. Of course, the total demand dst must be distributed among all

paths p ∈ Pst (1.5). Introducing a vehicle capacity κ` for each line `, the capacitated routing is

established by (1.6): The total number of passengers using edge e must not exceed the total ve-

hicle capacity on e. In particular, the line frequencies are driven by passenger demand. This cou-

pling also replaces the lower frequency bound requirement from BLPP, the upper frequency bound

remains (1.7). The upper bound F enforces that f` = 0 whenever x` = 0 (1.8).

Arc-based vs. path-based: The nature of the passenger demand is path-based, i.e., the transit de-

mand for an OD pair (s, t) is distributed over the paths in Pst. This representation trivially allows

the models to consider the distribution of the demand over the paths as part of the decisions un-

derlying the line selection decision as demonstrated in the problem formulation (1.4)-(1.11). Since

this inflates the degree of freedom in the solution space by allowing the passengers of the same

(s, t) pair travel on different and the number of such paths can can in general be quite large, the

resulting formulations become too large to solve to optimality. An alternative is to use an arc-
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based formulation where demand is satisfied by the most convenient path, i.e. usually the shortest

or the fastest, and the transit demand over each arc can be calculated through the fixed routing

scheme.

Line pool vs. unrestricted lines: In order to overcome the challenges inherent to the path-based

formulations, a predetermined set of lines with a limited number of lines is used in the formula-

tions while generating all possible lines over G of the PT leads to impractically large and there-

fore untractable formulations. Column generation techniques have been successfully applied to

LPPs when lines are no longer restricted to be selected from a predetermined line pool. Though

the pricing problem is a longest path problem, it is still solvable for practical instances. In this

setting, it is possible to enforce length restrictions by constraints for practical purposes.

1.4 Conclusions

With the advancement in computational technology, the scope of line planning problem is now

enriched with various practical considerations.

Integration with other stages

Line planning is intertwined with other public transport planning tasks on the strategic level, e.g.,

timetabling. An innovative approach to integrate line planning with more planning problems are

the eigenmodel by Schöbel [12].

Multi-period planning

Public transport systems experience a large amount of variation and fluctuation in demand over

the day. It is therefore desirable to consider line plans that are responsive to varying demand
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within the planning horizon. This multi-period line planning is able to outperform combining line

plans for static demand [14].

Symmetric Line Plans

For special network layouts, e.g., those that adhere to a specific symmetry, one might consider line

plans that respect this symmetry as well. It turns out that symmetric line plans are not always

optimal, but approximation results can be provided [8].

See also

Branch and Price: Integer Programming with Column Generation, Modeling Difficult Optimiza-

tion Problems.

References

[1] Borndörfer R, Grötschel M, Pfetsch ME (2007) A Column-Generation Approach to Line

Planning in Public Transport. Transportation Science 41(1):123–132

[2] Bussieck MR, Kreuzer P, Zimmermann UT (1997) Optimal lines for railway systems. Euro-

pean Journal of Operational Research 96(1):54–63

[3] Claessens MT, van Dijk NM, Zwaneveld PJ (1998) Cost optimal allocation of rail passenger

lines. European Journal of Operational Research 110(3):474–489

[4] Goossens JW, van Hoesel S, Kroon L (2006) On solving multi-type railway line planning

problems. European Journal of Operational Research 168(2):403–424

[5] Karbstein M (2013) Line Planning and Connectivity. PhD thesis, Technische Universität

Berlin
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[14] Şahin G, Ahmadi Digehsara A, Borndörfer R, Schlechte T (2020) Multi-period line planning

with resource transfers. Transportation Research Part C: Emerging Technologies 119:102726


	Line Planning Problem
	Güvenç Sahin, Niels Lindner and Thomas Schlechte
	Introduction
	Models
	Cost-oriented Line Planning
	Passenger-oriented Line Planning
	Formulations
	Conclusions
	Integration with other stages
	Multi-period planning
	Symmetric Line Plans
	See also
	References
	References



