Smoothness and factoriality of projective hypersurfaces

Niels Lindner

Institut für Mathematik
Humboldt-Universität zu Berlin

June 4, 2015
Let K be a field. Fix integers $d \geq 1, n \geq 2$.

Identify $K[x_0, \ldots, x_n]_d \sim K^{(n+d)\binom{d}{d}}$ as K-vector spaces.

Suppose $\text{char } K \nmid d$ and consider the rational map $\phi: A^{(n+d)\binom{d}{d}} \times \mathbb{P}^n \rightarrow \mathbb{P}^n, (f, P) \mapsto \left(\frac{\partial f}{\partial x_0}(P), \ldots, \frac{\partial f}{\partial x_n}(P)\right)$.

The locus of singular hypersurfaces is the image of the base locus of ϕ under projection onto the first factor. Since \mathbb{P}^n is complete, this is closed.
Let K be a field. Fix integers $d \geq 1$, $n \geq 2$.

Question

Choose $f \in K[x_0, \ldots, x_n]_d$ uniformly at random. What is the probability that $\{f = 0\} \subseteq \mathbb{P}_K^n$ is smooth?
Let K be a field. Fix integers $d \geq 1$, $n \geq 2$.

Question

Choose $f \in K[x_0, \ldots, x_n]_d$ uniformly at random. What is the probability that $\{f = 0\} \subseteq \mathbb{P}_K^n$ is smooth?

A first approach:

- Identify $K[x_0, \ldots, x_n]_d \cong K^{n+d\choose d}$ as K-vector spaces.
Let K be a field. Fix integers $d \geq 1$, $n \geq 2$.

Question

Choose $f \in K[x_0, \ldots, x_n]_d$ uniformly at random. What is the probability that $\{f = 0\} \subseteq \mathbb{P}^n_K$ is smooth?

A first approach:

- Identify $K[x_0, \ldots, x_n]_d \cong K^{(n+d)}_d$ as K-vector spaces.
- Suppose char $K \nmid d$ and consider the rational map

$$
\varphi : \mathbb{A}^{(n+d)} \times \mathbb{P}^n \to \mathbb{P}^n, \quad (f, P) \mapsto \left(\frac{\partial f}{\partial x_0}(P), \ldots, \frac{\partial f}{\partial x_n}(P) \right).
$$
Let K be a field. Fix integers $d \geq 1$, $n \geq 2$.

Question

Choose $f \in K[x_0, \ldots, x_n]_d$ uniformly at random. What is the probability that $\{f = 0\} \subseteq \mathbb{P}_K^n$ is smooth?

A first approach:

- Identify $K[x_0, \ldots, x_n]_d \cong K^{n+d \choose d}$ as K-vector spaces.
- Suppose char $K \nmid d$ and consider the rational map

$$\varphi : \mathbb{A}^{n+d \choose d} \times \mathbb{P}^n \dashrightarrow \mathbb{P}^n, \quad (f, P) \mapsto \left(\frac{\partial f}{\partial x_0}(P), \ldots, \frac{\partial f}{\partial x_n}(P) \right).$$

- The locus of singular hypersurfaces is the image of the base locus of φ under projection onto the first factor.
Let K be a field. Fix integers $d \geq 1$, $n \geq 2$.

Question

Choose $f \in K[x_0, \ldots, x_n]_d$ uniformly at random. What is the probability that $\{f = 0\} \subseteq \mathbb{P}_K^n$ is smooth?

A first approach:

- Identify $K[x_0, \ldots, x_n]_d \cong K^{(n+d)_d}$ as K-vector spaces.
- Suppose $\text{char } K \nmid d$ and consider the rational map
 \[
 \varphi : \mathbb{A}^{(n+d)_d} \times \mathbb{P}^n \to \mathbb{P}^n, \quad (f, P) \mapsto \left(\frac{\partial f}{\partial x_0}(P), \ldots, \frac{\partial f}{\partial x_n}(P) \right).
 \]
- The locus of singular hypersurfaces is the image of the base locus of φ under projection onto the first factor.
- Since \mathbb{P}^n is complete, this is closed.
Density of smooth hypersurfaces

Theorem (Bertini)

The locus of smooth hypersurfaces of degree d in \mathbb{P}^n is open and dense in $\mathbb{A}^{\binom{n+d}{d}}$.

Example ($K = \mathbb{C}$)
As proper Zariski-closed subspace of $\mathbb{C}^{\binom{n+d}{d}}$, the locus of singular hypersurfaces has Lebesgue measure 0. So the probability that $f \in \mathbb{C}[x_0, \ldots, x_n]_d$ defines a smooth hypersurface equals 1.
Theorem (Bertini)

The locus of smooth hypersurfaces of degree d in \mathbb{P}^n is open and dense in $\mathbb{A}^{\binom{n+d}{d}}$.

Example ($K = \mathbb{C}$)

As proper Zariski-closed subspace of $\mathbb{C}^{\binom{n+d}{d}}$, the locus of singular hypersurfaces has Lebesgue measure 0. So the probability that $f \in \mathbb{C}[x_0, \ldots, x_n]_d$ defines a smooth hypersurface equals 1.
Example ($K = \mathbb{F}_2$, $d = 3$, $n = 2$)

Out of the $1024 = 2^{\left(\frac{2+3}{3}\right)}$ elements of $\mathbb{F}_2[x_0, x_1, x_2]_3$, only 336 define smooth plane cubics.
Example ($K = \mathbb{F}_2$, $d = 3$, $n = 2$)

Out of the $1024 = 2^{\frac{2+3}{3}}$ elements of $\mathbb{F}_2[x_0, x_1, x_2]_3$, only 336 define smooth plane cubics.

Theorem (Poonen’s Bertini theorem)

$$\lim_{d \to \infty} \frac{\# \{ f \in \mathbb{F}_q[x_0, \ldots, x_n]_d \mid \{ f = 0 \} \text{ smooth} \}}{\# \mathbb{F}_q[x_0, \ldots, x_n]_d} = \prod_{i=1}^{n+1} \left(1 - \frac{1}{q^i} \right).$$
Example ($K = \mathbb{F}_2$, $d = 3$, $n = 2$)

Out of the $1024 = 2^{(2+3)}$ elements of $\mathbb{F}_2[x_0, x_1, x_2]_3$, only 336 define smooth plane cubics.

Theorem (Poonen’s Bertini theorem)

$$
\lim_{d \to \infty} \frac{\# \left\{ f \in \mathbb{F}_q[x_0, \ldots, x_n]_d \mid \{ f = 0 \} \text{ smooth} \right\}}{\# \mathbb{F}_q[x_0, \ldots, x_n]_d} = \prod_{i=1}^{n+1} \left(1 - \frac{1}{q^i}\right).
$$

Example ($K = \mathbb{F}_2$, $n = 2$)

For $q = 2$ and $n = 2$ this limit equals $21/64 = 336/1024$.
So over \mathbb{F}_q, smooth hypersurfaces do not form a set of density 1.
So over \mathbb{F}_q, smooth hypersurfaces do not form a set of density 1.

Theorem (Poonen, L.)

The following sets have density 1:

1. Geometrically integral hypersurfaces,
2. Hypersurfaces with 0-dimensional singular locus,
3. Hypersurfaces f with $\deg \text{Proj}(\mathbb{F}_q[x_0, \ldots, x_n]/\langle \frac{\partial f}{\partial x_0}, \ldots, \frac{\partial f}{\partial x_n} \rangle) < c \deg f$ for some fixed constant $c > 0$.
So over \mathbb{F}_q, smooth hypersurfaces do not form a set of density 1.

Theorem (Poonen, L.)

The following sets have density 1:

- **geometrically integral hypersurfaces,**
So over \mathbb{F}_q, smooth hypersurfaces do not form a set of density 1.

Theorem (Poonen, L.)

The following sets have density 1:
- geometrically integral hypersurfaces,
- hypersurfaces with 0-dimensional singular locus,
So over \mathbb{F}_q, smooth hypersurfaces do not form a set of density 1.

Theorem (Poonen, L.)

The following sets have density 1:

- geometrically integral hypersurfaces,
- hypersurfaces with 0-dimensional singular locus,
- hypersurfaces f with

$$\deg \text{Proj} \left(\mathbb{F}_q[x_0, \ldots, x_n]/\left\langle \frac{\partial f}{\partial x_0}, \ldots, \frac{\partial f}{\partial x_n} \right\rangle \right) < c \deg f$$

for some fixed constant $c > 0$.
Let K be a field. Fix integers $d \geq 1$, $n \geq 4$. Take $f \in K[x_0, \ldots, x_n]$ s. t. $X := \{f = 0\}$ defines a hypersurface in \mathbb{P}^n_K with $\dim X_{\text{sing}} = 0$. Theorem

The following are equivalent:

- $K[x_0, \ldots, x_n]/\langle f \rangle$ is a UFD,
- The natural restriction map of Weil divisor class groups $\text{Cl}(\mathbb{P}^n_K) \to \text{Cl}(X)$ is an isomorphism,
- $\text{Cl}(X) = \mathbb{Z} \cdot \text{hyperplane class},$
- Every Weil divisor on X is a Cartier divisor.

Definition

X is called factorial if one of the above holds.
Let K be a field. Fix integers $d \geq 1$, $n \geq 4$.
Take $f \in K[x_0, \ldots, x_n]_d$ s. t. $X := \{f = 0\}$ defines a hypersurface in \mathbb{P}_K^n with $\dim X_{\text{sing}} = 0$.

Theorem

The following are equivalent:

1. $K[x_0, \ldots, x_n]/\langle f \rangle$ is a UFD,
2. The natural restriction map of Weil divisor class groups $\text{Cl}(\mathbb{P}_K^n) \to \text{Cl}(X)$ is an isomorphism,
3. $\text{Cl}(X) = \mathbb{Z} \cdot \text{hyperplane class},$
4. Every Weil divisor on X is a Cartier divisor.

X is called factorial if one of the above holds.
Let K be a field. Fix integers $d \geq 1$, $n \geq 4$.
Take $f \in K[x_0, \ldots, x_n]_d$ s. t. $X := \{f = 0\}$ defines a hypersurface in \mathbb{P}_K^n with $\dim X_{\text{sing}} = 0$.

Theorem

The following are equivalent:

- $K[x_0, \ldots, x_n]/\langle f \rangle$ is a UFD,
- The natural restriction map of Weil divisor class groups $\text{Cl}(\mathbb{P}_K^n) \to \text{Cl}(X)$ is an isomorphism,
- $\text{Cl}(X) = \mathbb{Z} \cdot$ hyperplane class,
- Every Weil divisor on X is a Cartier divisor.

X is called factorial if one of the above holds.
Let K be a field. Fix integers $d \geq 1$, $n \geq 4$. Take $f \in K[x_0, \ldots, x_n]_d$ s. t. $X := \{f = 0\}$ defines a hypersurface in \mathbb{P}^n_K with $\dim X_{\text{sing}} = 0$.

Theorem

The following are equivalent:

- $K[x_0, \ldots, x_n]/\langle f \rangle$ is a UFD,
- The natural restriction map of Weil divisor class groups $\text{Cl}(\mathbb{P}^n) \to \text{Cl}(X)$ is an isomorphism,
Let K be a field. Fix integers $d \geq 1$, $n \geq 4$. Take $f \in K[x_0, \ldots, x_n]_d$ s. t. $X := \{ f = 0 \}$ defines a hypersurface in \mathbb{P}_K^n with $\dim X_{\text{sing}} = 0$.

Theorem

The following are equivalent:

- $K[x_0, \ldots, x_n]/\langle f \rangle$ is a UFD,
- The natural restriction map of Weil divisor class groups $\text{Cl}(\mathbb{P}^n) \to \text{Cl}(X)$ is an isomorphism,
- $\text{Cl}(X) = \mathbb{Z} \cdot \text{hyperplane class}$,
Let K be a field. Fix integers $d \geq 1$, $n \geq 4$. Take $f \in K[x_0, \ldots, x_n]_d$ s. t. $X := \{f = 0\}$ defines a hypersurface in \mathbb{P}^n_K with $\dim X_{\text{sing}} = 0$.

Theorem

The following are equivalent:

- $K[x_0, \ldots, x_n]/\langle f \rangle$ is a UFD,
- The natural restriction map of Weil divisor class groups $\text{Cl}(\mathbb{P}^n) \to \text{Cl}(X)$ is an isomorphism,
- $\text{Cl}(X) = \mathbb{Z} \cdot \text{hyperplane class},$
- Every Weil divisor on X is a Cartier divisor.
Let K be a field. Fix integers $d \geq 1$, $n \geq 4$. Take $f \in K[x_0, \ldots, x_n]_d$ s. t. $X := \{f = 0\}$ defines a hypersurface in \mathbb{P}^n_K with $\dim X_{\text{sing}} = 0$.

Theorem

The following are equivalent:

- $K[x_0, \ldots, x_n]/\langle f \rangle$ is a UFD,
- The natural restriction map of Weil divisor class groups $\text{Cl}(\mathbb{P}^n) \to \text{Cl}(X)$ is an isomorphism,
- $\text{Cl}(X) = \mathbb{Z} \cdot \text{hyperplane class},$
- Every Weil divisor on X is a Cartier divisor.

Definition

X is called *factorial* if one of the above holds.
Example

Smooth \Rightarrow factorial, as there is no difference between Weil and Cartier divisors.
Example

Smooth \Rightarrow factorial, as there is no difference between Weil and Cartier divisors.

Example

The quadric cone $X = \{x_0x_1 - x_2x_3 = 0\} \subseteq \mathbb{P}^4_K$ is not factorial, as $x_0x_1 = x_2x_3$ in $K[x_0, \ldots, x_4]/\langle x_0x_1 - x_2x_3 \rangle$.

Theorem (Grothendieck)

Any hypersurface $X \subseteq \mathbb{P}^n$ with $\dim X_{\text{sing}} < \dim X - 3$ is factorial.
Factorial hypersurfaces

<table>
<thead>
<tr>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smooth \Rightarrow factorial, as there is no difference between Weil and Cartier divisors.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>The quadric cone $X = {x_0x_1 - x_2x_3 = 0} \subseteq \mathbb{P}^4_K$ is not factorial, as $x_0x_1 = x_2x_3$ in $K[x_0, \ldots, x_4]/\langle x_0x_1 - x_2x_3 \rangle$.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Theorem (Grothendieck)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any hypersurface $X \subseteq \mathbb{P}^n$ with $\dim X_{\text{sing}} < \dim X - 3$ is factorial.</td>
</tr>
</tbody>
</table>
Example

Smooth \Rightarrow factorial, as there is no difference between Weil and Cartier divisors.

Example

The quadric cone $X = \{x_0x_1 - x_2x_3 = 0\} \subseteq \mathbb{P}^4_K$ is not factorial, as $x_0x_1 = x_2x_3$ in $K[x_0, \ldots, x_4]/\langle x_0x_1 - x_2x_3 \rangle$.

Theorem (Grothendieck)

Any hypersurface $X \subseteq \mathbb{P}^n$ with $\dim X_{\text{sing}} < \dim X - 3$ is factorial.

This leaves us with the case $\dim X = 3$.
Definition

X is called \mathbb{Q}-factorial if any Weil divisor is \mathbb{Q}-Cartier, i.e. if $\text{Cl}(X) \otimes \mathbb{Q} = \text{Pic}(X) \otimes \mathbb{Q}$.

Example

Smooth \Rightarrow factorial \Rightarrow \mathbb{Q}-factorial.

Example

Let $X = \{x_0 x_1 - x_2 x_3 = 0\} \subseteq \mathbb{P}^4_K$. Then $\text{Cl}(X) \sim \mathbb{Z}_2$, whereas $\text{Pic}(X) \sim \mathbb{Z}$. \Rightarrow X is not \mathbb{Q}-factorial.
Definition

X is called \mathbb{Q}-factorial if any Weil divisor is \mathbb{Q}-Cartier, i.e. if $\text{Cl}(X) \otimes \mathbb{Q} = \text{Pic}(X) \otimes \mathbb{Q}$.

Example

Smooth \Rightarrow factorial \Rightarrow \mathbb{Q}-factorial.
Definition

X is called \mathbb{Q}-factorial if any Weil divisor is \mathbb{Q}-Cartier, i.e. if $\text{Cl}(X) \otimes \mathbb{Q} = \text{Pic}(X) \otimes \mathbb{Q}$.

Example

Smooth \Rightarrow factorial \Rightarrow \mathbb{Q}-factorial.

Example

Let $X = \{x_0x_1 - x_2x_3 = 0\} \subseteq \mathbb{P}^4_K$. Then $\text{Cl}(X) \cong \mathbb{Z}^2$, whereas $\text{Pic}(X) \cong \mathbb{Z}$. \Rightarrow X is not \mathbb{Q}-factorial.
Let $X \subseteq \mathbb{P}^4_K$ be a hypersurface with $\dim X_{\text{sing}} = 0$.
Let $X \subseteq \mathbb{P}^4_K$ be a hypersurface with $\dim X_{\text{sing}} = 0$.

Observation

As $\text{Pic}(X) \cong \mathbb{Z}$,

X not \mathbb{Q}-factorial $\iff \text{rk Cl}(X) - \text{rk Pic}(X) \geq 1$

$\iff \text{rk Cl}(X) \geq 2$.
Consider a nice cohomology theory H^* (e. g. étale, rigid, algebraic de Rham) with coefficients in some field of characteristic 0.
Consider a nice cohomology theory H^* (e.g. étale, rigid, algebraic de Rham) with coefficients in some field of characteristic 0.

Fact

Let X be a smooth projective K-variety. There is a cycle class map

$$c_1 : \text{Pic}(X) \to H^2(X).$$

If $H^1(X) = 0$, then the induced map

$$c_1 : \text{Pic}(X) \otimes \mathbb{Q} \to H^2(X)$$

is injective.
Let $\tilde{X} \to X$ be a resolution of singularities. Denote by e the number of irreducible components of the exceptional divisor.
Let $\tilde{X} \to X$ be a resolution of singularities. Denote by e the number of irreducible components of the exceptional divisor.

Computations

Suppose that $H^1(E) = H^3(E) = 0$. Then:

- $\text{rk Pic}(\tilde{X}) = \text{rk Cl}(X) + e$.
- $H^1(\tilde{X}) = H^1(X) = H^1(\mathbb{P}^4) = 0$.
- $h^2(\tilde{X}) = h^4(\tilde{X}) = h^4(X) + e$.
Let $\tilde{X} \to X$ be a resolution of singularities. Denote by e the number of irreducible components of the exceptional divisor.

Computations

Suppose that $H^1(E) = H^3(E) = 0$. Then:
- $\text{rk } \text{Pic}(\tilde{X}) = \text{rk } \text{Cl}(X) + e$.
- $H^1(\tilde{X}) = H^1(X) = H^1(\mathbb{P}^4) = 0$.
- $h^2(\tilde{X}) = h^4(\tilde{X}) = h^4(X) + e$.

Conclusion

As $c_1 : \text{Pic}(\tilde{X}) \otimes \mathbb{Q} \to H^2(\tilde{X})$ is injective,

$$\text{rk } \text{Cl}(X) = \text{rk } \text{Pic}(\tilde{X}) - e \leq h^2(\tilde{X}) - e = h^4(X).$$
Theorem

Suppose that X has a resolution of singularities as above. Then

X not \mathbb{Q}-factorial $\Rightarrow h^4(X) \geq 2.$
Theorem

Suppose that X has a resolution of singularities as above. Then

\[X \text{ not } \mathbb{Q}\text{-factorial} \implies h^4(X) \geq 2. \]

Example

Suppose that X has only ordinary multiple points as singularities. Then blowing up gives a resolution such that the exceptional divisor E is a sum of pairwise non-intersecting smooth surfaces in \mathbb{P}^3. In particular $H^1(E) = H^3(E) = 0$.
Theorem

Suppose that X has a resolution of singularities as above. Then

$$X \text{ not } \mathbb{Q}\text{-factorial} \Rightarrow h^4(X) \geq 2.$$

Example

Suppose that X has only ordinary multiple points as singularities. Then blowing up gives a resolution s. t. the exceptional divisor E is a sum of pairwise non-intersecting smooth surfaces in \mathbb{P}^3. In particular $H^1(E) = H^3(E) = 0$.

Theorem (Polizzi, Rapagnetta, Sabatino)

The conclusion of the above theorem holds for any X with only isolated singularities in characteristic 0.
Suppose $K = \mathbb{F}_q$.
Suppose $K = \mathbb{F}_q$.

Question

What is the density of \mathbb{Q}-factorial threefold hypersurfaces in $\mathbb{P}^4_{\mathbb{F}_q}$?
Suppose $K = \mathbb{F}_q$.

Question

What is the density of \mathbb{Q}-factorial threefold hypersurfaces in $\mathbb{P}^4_{\mathbb{F}_q}$?

By Poonen’s Bertini theorem, this is $\geq \prod_{i=1}^{5}(1 - q^{-i})$.
Suppose $K = \mathbb{F}_q$.

Question

What is the density of \mathbb{Q}-factorial threefold hypersurfaces in $\mathbb{P}^4_{\mathbb{F}_q}$?

By Poonen's Bertini theorem, this is $\geq \prod_{i=1}^{5}(1 - q^{-i})$.

Conjecture

$$\lim_{d \to \infty} \frac{\#\{f \in \mathbb{F}_q[x_0, \ldots, x_4]_d \mid h^4(\{f = 0\}) \leq 1\}}{\#\mathbb{F}_q[x_0, \ldots, x_4]_d} = 1.$$
Suppose $K = \mathbb{F}_q$.

Question

What is the density of \mathbb{Q}-factorial threefold hypersurfaces in $\mathbb{P}^4_{\mathbb{F}_q}$?

By Poonen’s Bertini theorem, this is $\geq \prod_{i=1}^{5}(1 - q^{-i})$.

Conjecture

$\lim_{d \to \infty} \frac{\# \{ f \in \mathbb{F}_q[x_0, \ldots, x_4]_d \mid h^4(\{f = 0\}) \leq 1 \}}{\# \mathbb{F}_q[x_0, \ldots, x_4]_d} = 1$.

I. e.: \mathbb{Q}-factorial threefold hypersurfaces should form a set of density 1.
Assume $f \in K[x_0, \ldots, x_4]_d$ defines a hypersurface $X \subseteq \mathbb{P}^4$ with $\dim X_{\text{sing}} = 0$.
Assume \(f \in K[x_0, \ldots, x_4]_d \) defines a hypersurface \(X \subseteq \mathbb{P}^4 \) with \(\dim X_{\text{sing}} = 0 \). Let \(\mu(f) \) denote the length of

\[
\text{Proj} \left(K[x_0, \ldots, x_4] / \left(\frac{\partial f}{\partial x_0}, \ldots, \frac{\partial f}{\partial x_4} \right) \right).
\]
Assume \(f \in K[x_0, \ldots, x_4]_d \) defines a hypersurface \(X \subseteq \mathbb{P}^4 \) with \(\dim X_{\text{sing}} = 0 \). Let \(\mu(f) \) denote the length of

\[
\text{Proj} \left(K[x_0, \ldots, x_4] / \left\langle \frac{\partial f}{\partial x_0}, \ldots, \frac{\partial f}{\partial x_4} \right\rangle \right).
\]

Goal

Show that \(h^4(X) \geq 2 \) implies \(\mu(f) \geq cd \) for some constant \(c > 0 \).
Proof strategy

Assume \(f \in K[x_0, \ldots, x_4]_d \) defines a hypersurface \(X \subseteq \mathbb{P}^4 \) with \(\dim X_{\text{sing}} = 0 \). Let \(\mu(f) \) denote the length of

\[
\text{Proj} \left(K[x_0, \ldots, x_4] / \left\langle \frac{\partial f}{\partial x_0}, \ldots, \frac{\partial f}{\partial x_4} \right\rangle \right).
\]

Goal

Show that \(h^4(X) \geq 2 \) implies \(\mu(f) \geq cd \) for some constant \(c > 0 \).

Then for \(K = \mathbb{F}_q \), the set of \(f \) with \(h^4(X) \leq 1 \) would contain the density 1 set of \(f \) with \(\mu(f) < cd \).
The following is known over \(\mathbb{C} \):

Theorem (Cheltsov)

Assume \(X \) has only ordinary double points as singularities. If \(X \) is not factorial, then \(X \) has at least \((d - 1)^2 \) singular points.

Theorem (Polizzi, Rapagnetta, Sabatino)

Assume \(X \) has only ordinary multiple points as singularities. If \(X \) is not factorial, then

\[
\sum_{x \in X_{\text{sing}}} (\text{mult}(x) - 1) \geq d.
\]
The following is known over \mathbb{C}:

Theorem (Cheltsov)

Assume X has only ordinary double points as singularities. If X is not factorial, then X has at least $(d - 1)^2$ singular points.
The following is known over \mathbb{C}:

Theorem (Cheltsov)

Assume X has only ordinary double points as singularities. If X is not factorial, then X has at least $(d - 1)^2$ singular points.

Theorem (Polizzi, Rapagnetta, Sabatino)

Assume X has only ordinary multiple points as singularities. If X is not factorial, then $\sum_{x \in X_{\text{sing}}} (\text{mult}(x) - 1) \geq d$.
The following is known over \(\mathbb{C} \):

Theorem (Cheltsov)

Assume \(X \) has only ordinary double points as singularities. If \(X \) is not factorial, then \(X \) has at least \((d - 1)^2\) singular points.

Theorem (Polizzi, Rapagnetta, Sabatino)

Assume \(X \) has only ordinary multiple points as singularities. If \(X \) is not factorial, then \(\sum_{x \in X_{\text{sing}}} (\text{mult}(x) - 1) \geq d \).

The proof of the second theorem pursues the blowup idea and easily carries over to \(\mathbb{F}_q \).
Consider now the case of arbitrary isolated singularities.
Consider now the case of arbitrary isolated singularities.

Idea (Dimca-Griffiths)

Investigate the cohomology of hypersurface complements.
Consider now the case of arbitrary isolated singularities.

Idea (Dimca-Griffiths)

Investigate the cohomology of hypersurface complements.

Computation

Suppose that $X_{\text{sing}} \subseteq \{x_0 \neq 0\} \cong \mathbb{A}^4$.

If $h^4(X) \geq 2$, then the natural restriction map

$$H^4(\mathbb{P}^4 \setminus X) \rightarrow H^4(\mathbb{A}^4 \setminus (X \cap \mathbb{A}^4))$$

is not surjective.
Proof over \mathbb{C}

Fact

There is a differential form Ω such that

$$H^4(P^4 \setminus X) = \left\{ \frac{g \Omega}{f^k} \middle| g \in \mathbb{C}[x_0, \ldots, x_4]_{kd-5}, k \geq 1 \right\} / \sim,$$

$$H^4(A^4 \setminus X) = \left\{ \frac{h dx_1 \wedge \cdots \wedge dx_4}{f(1, x_1, \ldots, x_4)^k} \middle| h \in \mathbb{C}[x_1, \ldots, x_4], k \geq 1 \right\} / \sim,$$

and the natural map $H^4(P^4 \setminus X) \rightarrow H^4(A^4 \setminus X)$ is induced by

$$g \mapsto g(1, x_1, \ldots, x_4).$$
Definition

For given $k \geq 1$, define the pole order filtration P via

$$P^k H^4(\mathbb{P}^4 \setminus X) = \left\{ \frac{g\Omega}{f^k} \bigg| g \in \mathbb{C}[x_0, \ldots, x_4]kd-5 \right\} / \sim,$$

similarly $P^k H^4(\mathbb{A}^4 \setminus X)$.

Proof over \mathbb{C}
Definition

For given $k \geq 1$, define the *pole order filtration* P via

$$
P^k H^4(\mathbb{P}^4 \setminus X) = \left\{ \frac{g \Omega}{f^k} \left| g \in \mathbb{C}[x_0, \ldots, x_4]_{kd-5} \right. \right\} / \sim,
$$

similarly $P^k H^4(\mathbb{A}^4 \setminus X)$.

Consequence

For $k \geq 1$, there is a commutative diagram

$$
\begin{array}{ccc}
\text{Gr}_P^k H^4(\mathbb{P}^4 \setminus X) & \longrightarrow & \text{Gr}_P^k H^4(\mathbb{A}^4 \setminus (X \cap \mathbb{A}^4)) \\
\uparrow \text{surj.} & & \uparrow \text{surj.} \\
\mathbb{C}[x_0, \ldots, x_4]_{kd-5} & \xrightarrow{g \mapsto g(1,x_1,\ldots,x_4)} & \mathbb{C}[x_1, \ldots, x_4]
\end{array}
$$
Proof over \mathbb{C}

The right map actually factors through the *Tjurina algebra*

\[
T(f) := \left(\mathbb{C}[x_1, \ldots, x_4]/\left\langle f(1, x), \frac{\partial f(1, x)}{\partial x_1}, \ldots, \frac{\partial f(1, x)}{\partial x_4} \right\rangle \right).
\]
Proof over \(\mathbb{C} \)

The right map actually factors through the \textit{Tjurina algebra} \(T(f) := \left(\mathbb{C}[x_1, \ldots, x_4]/\left< f(1, x), \frac{\partial f(1, x)}{\partial x_1}, \ldots, \frac{\partial f(1, x)}{\partial x_4} \right> \right) \).

\[\text{Corollary} \]

\textit{Suppose} \(h^4(X) \geq 2 \). \textit{Then} \(\exists k \geq 1 \) \textit{s. t.}

\[\mathbb{C}[x_0, \ldots, x_4]_{kd-5} \xrightarrow{g \mapsto g(1, x_1, \ldots, x_4)} T(f) \]

is not surjective.
Proof over \mathbb{C}

The right map actually factors through the *Tjurina algebra*

$$T(f) := \left(\mathbb{C}[x_1, \ldots, x_4] / \left\langle f(1, x), \frac{\partial f(1, x)}{\partial x_1}, \ldots, \frac{\partial f(1, x)}{\partial x_4} \right\rangle \right).$$

Corollary

Suppose $h^4(X) \geq 2$. *Then* $\exists k \geq 1$ *s. t.*

$$\mathbb{C}[x_0, \ldots, x_4]_{kd - 5} \xrightarrow{g \mapsto g(1, x_1, \ldots, x_4)} T(f)$$

is not surjective.

Observation

$T(f)$ defines a zero-dimensional scheme $Z \subseteq \mathbb{P}^4$ of length $\mu(f)$. Moreover, the above map is just the natural map

$$H^0(\mathbb{P}^4, \mathcal{O}_{\mathbb{P}^4}(kd - 5)) \rightarrow H^0(Z, \mathcal{O}_Z(kd - 5)).$$
Corollary

Suppose $h^4(X) \geq 2$. Then $\exists k \geq 1$ s. t. $H^1(\mathbb{P}^4, \mathcal{I}_Z(kd - 5)) \neq 0$.
Corollary

Suppose \(h^4(X) \geq 2 \). Then \(\exists k \geq 1 \) s. t. \(H^1(\mathbb{P}^4, \mathcal{I}_Z(kd - 5)) \neq 0 \).

- This means that the Castelnuovo-Mumford regularity of \(Z \) is at least \(kd - 3 \).
Corollary

Suppose $h^4(X) \geq 2$. Then $\exists k \geq 1$ s. t. $H^1(\mathbb{P}^4, \mathcal{I}_Z(kd - 5)) \neq 0$.

- This means that the Castelnuovo-Mumford regularity of Z is at least $kd - 3$.
- Hence $\mu(f) = \text{length}(Z) \geq kd - 3 \geq d - 3$.

Proof over \mathbb{C}

Corollary

Suppose $h^4(X) \geq 2$. Then $\exists \; k \geq 1$ s. t. $H^1(\mathbb{P}^4, \mathcal{I}_Z(kd - 5)) \neq 0$.

- This means that the Castelnuovo-Mumford regularity of Z is at least $kd - 3$.
- Hence $\mu(f) = \text{length}(Z) \geq kd - 3 \geq d - 3$.

Theorem

Let $X = \{ f = 0 \}$ be a hypersurface in $\mathbb{P}^4_{\mathbb{C}}$ with only isolated singularities. If $h^4_{dR}(X) \geq 2$, then $\mu(f) \geq d - 3$.
Now suppose $K = \mathbb{F}_q$.
Now suppose $K = \mathbb{F}_q$.

- Need to find a replacement for de Rham cohomology
 \rightsquigarrow rigid cohomology.
Now suppose $K = \mathbb{F}_q$.

- Need to find a replacement for de Rham cohomology
 \Rightarrow rigid cohomology.
- $\mathbb{P}^4 \setminus X$ is smooth and affine
 \Rightarrow Monsky-Washnitzer cohomology
 \Rightarrow Overconvergent power series instead of polynomials.
Now suppose $K = \mathbb{F}_q$.

- Need to find a replacement for de Rham cohomology
 \rightsquigarrow rigid cohomology.
- $\mathbb{P}^4 \setminus X$ is smooth and affine
 \rightsquigarrow Monsky-Washnitzer cohomology
 \rightsquigarrow Overconvergent power series instead of polynomials.
- Need to adjust the pole-order filtration.
Now suppose $K = \mathbb{F}_q$.

- Need to find a replacement for de Rham cohomology \Rightarrow rigid cohomology.
- $\mathbb{P}^4 \setminus X$ is smooth and affine \Rightarrow Monsky-Washnitzer cohomology \Rightarrow Overconvergent power series instead of polynomials.
- Need to adjust the pole-order filtration.

Conjecture

Let $X = \{ f = 0 \}$ be a hypersurface in $\mathbb{P}^4_{\mathbb{F}_q}$ with only isolated singularities. If $h^4_{\text{rig}}(X) \geq 2$, then $\mu(f) \geq d - 3$.

