
Incremental Heuristics For Periodic Timetabling

Niels Lindner1,2[0000−0002−8337−4387] and
Christian Liebchen3[0000−0002−4311−2024]

1 Freie Universität Berlin, Institut für Mathematik, Arnimallee 3, 14915 Berlin
2 Zuse Institute Berlin, Department Network Optimization, Takustr. 7, 14915 Berlin

lindner@zib.de
3 Technical University of Applied Sciences Wildau, Hochschulring 1, 15745 Wildau

liebchen@th-wildau.de

Abstract. We present incremental heuristics for the Periodic Event
Scheduling Problem (PESP), the standard mathematical tool to opti-
mize periodic timetables in public transport. The core of our method is
to solve successively larger subinstances making use of previously found
solutions. Introducing the technical notion of free stratifications, we for-
mulate a general scheme for incremental heuristics for PESP. More prac-
tically, we use line and station information to create heuristics that add
lines or stations one by one, and we evaluate these heuristics on in-
stances of the benchmarking library PESPlib. This approach is indeed
viable, and leads to new incumbent solutions for six PESPlib instances.

Keywords: Timetabling · Mixed-Integer Programming · Public Trans-
port.

1 Introduction

Timetabling is an indispensable planning problem in public transport. Designing
timetables carefully is not only vital for the attractiveness of a public transport
system, but also for its operational and economic efficiency, since cost-sensitive
tasks such as vehicle and crew scheduling build upon a timetable. As a large
quantity of public transport networks is operated with a periodic pattern, in
particular in Central Europe, there is hence a demand for periodic timetable
optimization.

The Periodic Event Scheduling Problem (PESP) [11] is a mathematical frame-
work that captures many aspects of periodic timetabling in public transport.
Although there is a vast supply of primal heuristics (e.g., [1,2,8,9]), PESP is
an NP-hard optimization problem that is also difficult to solve in practice: All
instances of the benchmark library PESPlib [3] have withstood all attempts to
solve them to proven optimality since the establishment of PESPlib in 2012.

Recently, the TimPassLib set has been published [10], and it contains back-
ground information on the 16 railway timetabling instances of PESPlib: The
events that are to be scheduled are associated to stations and to lines.

We therefore suggest two incremental heuristics for periodic timetabling in-
stances that share their structural properties with the PESPlib railway instances:



2 N. Lindner, C. Liebchen

At first, we decompose the instance into a chain of subinstances, starting with
the restriction to the busiest line, and adding less busier lines and the induced
transfer activities successively. Secondly, we build another chain of subinstances,
starting with the busiest station and the lines it is connected to, and then succes-
sively adding more stations. Both chains have the property that – due to a lack
of headway constraints – a feasible solution of a subinstance can be extended
to a feasible solution of the subsequent subinstance. We exploit this to obtain a
conceptually simple heuristic, and demonstrate that it is in fact competitive.

We summarize the theoretical background in Section 2, which will allow us
to describe our incremental heuristics formally in Section 3. The computational
set-up and our results are presented in Section 4.

2 Theoretical Background

We briefly recall the Periodic Event Scheduling Problem in Section 2.1 before
describing the structural requirements for our heuristic in Section 2.2.

2.1 The Periodic Event Scheduling Problem

An instance of the Periodic Event Scheduling Problem (PESP) [11] is a tuple
(G,T, ℓ, u, w) that consists of an event-activity network (= digraph) G = (V,A),
a period time T ∈ N, lower bounds ℓ ∈ ZA and upper bounds u ∈ ZA on
activity durations, and activity weights w ∈ RA

≥0. A periodic timetable is a vector

π ∈ {0, 1, . . . , T − 1}V such that there is a periodic tension x ∈ ZA satisfying

∀a = (i, j) ∈ A : ℓa ≤ xa ≤ ua and πj − πi ≡ xa mod T. (1)

Given an instance (G,T, ℓ, u, w), the aim of PESP is to find a periodic timetable
π with a compatible periodic tension x such that the weighted periodic tension
w⊤x, or equivalently, the weighted periodic slack w⊤(x− ℓ), is minimized.

2.2 Free Stratifications

Let I = (G,T, ℓ, u, w) be a feasible PESP instance. By a subinstance Ik of I we
mean the restriction of I to a subgraph Gk = (Vk, Ak) of G = (V,A).

Definition 1. A free stratification of I is a sequence (I1, . . . , In) of subinstances
of I such that

(1) In = I,
(2) for all k ∈ {2, . . . , n}, Gk−1 is a subgraph of Gk,
(3) for all k ∈ {1, . . . , n}, all arcs a ∈ Ak \ Ak−1 with at least one endpoint in

Vk−1 are free, i.e., ua − ℓa ≥ T − 1.

While (1) and (2) mean that we decompose I into a chain of subinstances, (3)
implies the following theorem, whose proof we omit due to length restrictions.

Theorem 1. Let (I1, . . . , In) be a free stratification of a feasible PESP instance
I, and let k ∈ {2, . . . , n}. If πk−1 is a periodic timetable for Ik−1, then there is
a periodic timetable πk for Ik such that πk

i = πk−1
i for all i ∈ Vk−1.



Incremental Heuristics For Periodic Timetabling 3

3 Incremental Heuristics

We are now ready to formulate our incremental periodic timetabling heuristic,
describing first a general scheme in Section 3.1. We then provide two illustrative
incarnations, based on lines (Section 3.2) and stations (Section 3.3).

3.1 General Scheme

Consider a feasible PESP instance I = (G,T, ℓ, u, w) with a free stratification
(I1, . . . , In). Our baseline algorithm is given in Algorithm 1.

Algorithm 1: Incremental heuristic for PESP with free stratification

Input: feasible PESP instance I with free stratification (I1, . . . In)
Output: periodic timetable π on I

1 π0
full ← ∅

2 V0 ← ∅
3 for k ← 1 to n do

4 π̃k ← periodic timetable on subinstance Ĩk on Gk[Vk \ Vk−1]

5 πk
initial ← union(πk−1

full , π̃
k)

6 πk
fix ← fix opt(πk−1

full , π
k
initial)

7 πk
full ← full opt(πk

fix)

8 end
9 return πn

full

We iterate over the subinstances I1, . . . , In. In each iteration k, we determine
some periodic timetable π̃k on the subinstance Ĩk on the subgraph Gk[Vk \Vk−1].
By means of union, we then extend π̃k with a previously found timetable πk−1

full

on Ik−1 to obtain a timetable πk
initial on Ik. The existence is guaranteed by

Theorem 1. The function fix opt attempts to solve the PESP instance Ik with
the additional requirement that the timetable on Ik−1 is fixed to πk−1

full , and we
take πk

initial as an initial solution. The output πk
fix of fix opt is then used an

initial solution to an unrestricted optimization full opt of Ik, whose output is
πk
full. Finally, the procedure returns πn

full.
Algorithm 1 leaves several degrees of freedom, e.g., choosing the timetables

π̃k, and the details of the optimization processes behind fix opt and full opt.
The main ingredient is of course a free stratification. When its subinstances are
rather small, it is to be expected that determining π̃k and the fix opt step are
computationally always feasible, and also full opt is tractable for small k.

Before confirming this intuition by computational experiments in Section 4,
we will formulate two hands-on applications of Algorithm 1.

3.2 Incrementing Lines

In order to exploit line information, we make the following two assumptions:



4 N. Lindner, C. Liebchen

(L1) There is a set L of lines and a map L : V → L.
(L2) Each activity a = (i, j) ∈ A with L(i) ̸= L(j) is free.

These two assumptions are restrictive in the sense that they exclude, e.g., the
typical modeling of headway activities (see, e.g., [5]). However, the 16 PESPlib
railway instances RxLy for x, y ∈ {1, 2, 3, 4} do satisfy (L1) and (L2) after slight
preprocessing: Although there are a few headway arcs [7, §5.1], these turn out
to be bridges in the event-activity network, which can be deleted [1, §3.2].

Suppose that (L1) and (L2) are satisified. Then any ordering (ℓ1, . . . , ℓn) of
the elements of L yields a free stratification via Gk := G[L−1({l1, . . . , lk})], i.e.,
the k-th subinstance is given by the events associated to the first k lines and the
activities between them. A somehow related approach has been used in [9].

We suggest the following to sort the lines: Start with the line l1 with largest
weighted span

∑
a∈A[L−1(l1)]

wa(ua−ℓa). When k−1 lines have been arranged, the
next line lk is one that intersects at least one of l1, . . . , lk−1, i.e., there is a transfer
activity a = (i, j) ∈ A with L(i) = lr for some r ≤ k − 1 and L(j) = lk or vice
versa, and maximizes the sum of weighted span of the activities in A[L−1(lk)] and
of all transfer activities between lk and the previous lines l1, . . . , lk−1. We then
continue this process. The idea is that the weighted span combines passenger
usage in terms of w and optimization potential in terms of the span u − ℓ, so
that “important” lines come first. Since smaller instances are more likely to be
solved optimally, in particular for full opt it appears to be promising to reserve
this privilege of the first rounds to the most important lines.

3.3 Incrementing Stations

We also propose to use stations in addition to line information satisfying (L1)
and (L2). We hence further assume that there

(S1) There is a set S of stations and a map S : V → S.
(S2) Each activity a = (i, j) ∈ A with S(i) = S(j) is free or satisfies L(i) = L(j).

If (s1, . . . , sn) is any ordering of S, then we obtain a free stratification by

Gk := G[S−1({s1, . . . , sk}) ∪ L−1(L(S−1({s1, . . . , sk})))],

i.e., the k-th subinstance is given by the events belonging to the first k stations
and all events of lines that visit the first k stations, and all activities in between.
At each step, we hence add arcs within a station, which are free by (S2), or
we add a whole line, which is connected to the instance of the previous step by
exclusively free arcs due to (L2).

We will later sort the stations s ∈ S in descending order with respect to
the weighted span, i.e.,

∑
a∈A[S−1(s)] wa(ua − ℓa), again with the intuition that

“busiest” stations are first.

3.4 Larger Bunches

The free stratifications in Section 3.2 and Section 3.3 add lines or stations one
by one, thus creating a high number n of subinstances. We therefore suggest to
coarsen the stratification by considering (Ib, I2b, I3b, . . . , In) for a bunch size b.



Incremental Heuristics For Periodic Timetabling 5

instances RxLy for x, y ∈ {1, 2, 3, 4} [3,10]
free stratification lines (as in Section 3.2), or stations (as in Section 3.3)

bunch size b 1, 2, . . . , 12 (cf. Section 3.4)

finding π̃k always trivial (Ĩk with free arcs removed contains no cycles)

fix opt ConcurrentPESP, wall time limit: 10 min per iteration

full opt skip (πk
full := πk

fix), or
ConcurrentPESP, wall time limit: 1 min per iteration

Table 1. Overview of computational experiments

4 Computational Experiments

We evaluate the incremental heuristic outlined in Section 3 on the 16 PESPlib
railway instances. Data on lines and stations is provided by the TimPassLib
[10]. After preprocessing as discussed in Section 3.2, the instances conform to
the requirements (L1), (L2), (S1), (S2). We conduct a series of experiments whose
parameters are summarized in Table 1. The fix opt and full opt procedures
are powered by the solver ConcurrentPESP [1], including tropical neighborhood
search [2] and split user cuts [6] with Gurobi 10 [4] as MIP solver.

Table 2 gives an overview of the results. It turns out that the incremental
heuristics, especially the line-based one, is very competitive. We are able to pro-
duce new incumbent solutions for six PESPlib instances. This is particularly
surprising, as we spend only 1 min on optimizing each instance via full opt.
Moreover, skipping full opt and hence using only fix opt for optimization is
conceptually even simpler heuristic and still provides decent solutions. Concern-
ing fix opt, the optimality gap has been positive in only less than 5% of all
runs, and it was always ≤ 0.6% after 10 minutes. We finally note that higher
bunch sizes are often, but not always advantageous.

References

1. Borndörfer, R., Lindner, N., Roth, S.: A concurrent approach to the peri-
odic event scheduling problem. Journal of Rail Transport Planning & Management
15, 100175 (2020). https://doi.org/10.1016/j.jrtpm.2019.100175

2. Bortoletto, E., Lindner, N., Masing, B.: Tropical Neighbourhood Search: A New
Heuristic for Periodic Timetabling. In: D’Emidio, M., Lindner, N. (eds.) 22nd Sym-
posium on Algorithmic Approaches for Transportation Modelling, Optimization,
and Systems (ATMOS 2022). Open Access Series in Informatics (OASIcs), vol. 106,
pp. 3:1–3:19 (2022). https://doi.org/10.4230/OASIcs.ATMOS.2022.3

3. Goerigk, M.: PESPlib – A benchmark library for periodic event scheduling (2022),
http://num.math.uni-goettingen.de/~m.goerigk/pesplib/

4. Gurobi Optimization, LLC: Gurobi Optimizer Reference Manual (2023), https:
//www.gurobi.com

5. Liebchen, C., Möhring, R.H.: The Modeling Power of the Periodic Event Scheduling
Problem: Railway Timetables — and Beyond. In: Geraets, F., Kroon, L., Schoebel,

https://doi.org/10.1016/j.jrtpm.2019.100175
https://doi.org/10.4230/OASIcs.ATMOS.2022.3
http://num.math.uni-goettingen.de/~m.goerigk/pesplib/
https://www.gurobi.com
https://www.gurobi.com


6 N. Lindner, C. Liebchen

Instance
with full opt without full opt

Best obj. Strat. b Time Best obj. Strat. b Time

R1L1 30 501 364 stations 2 2 528 32 158 122 lines 10 1 863
R1L2 31 165 708 lines 12 1 724 32 932 287 lines 10 1 402
R1L3 31 125 965 stations 1 5 183 32 645 175 lines 9 845
R1L4 27 693 907 stations 2 2 700 28 899 146 lines 8 817

R2L1 41 730 227 lines 2 2 079 44 051 010 lines 10 1 522
R2L2 41 293 379 lines 10 2 405 41 855 493 lines 12 2 174
R2L3 37 952 185 lines 10 1 129 39 540 917 lines 10 1 095
R2L4 32 307 020 lines 3 3 085 34 535 758 lines 11 868

R3L1 45 237 157 lines 10 1 947 46 190 273 lines 10 1 917
R3L2 45 812 583 lines 8 1 056 48 096 742 lines 8 535
R3L3 40 424 380 lines 1 6 736 43 764 798 lines 8 1 196
R3L4 33 542 154 lines 12 3 490 34 598 375 lines 12 2 936

R4L1 48 939 815 lines 10 2 372 51 594 813 lines 10 1 966
R4L2 49 139 234 lines 1 5 955 51 872 348 lines 12 2 850
R4L3 45 177 738 lines 10 2 806 47 207 825 lines 10 2 434
R4L4 38 382 967 lines 1 11 758 40 353 821 lines 10 2 316

Table 2. Overview of the results. The columns indicate the instance, the best found
objective value in terms of weighted slack w⊤(u− ℓ), the stratification strategy, bunch
size b, the wall time in seconds, and whether full opt has been invoked. Objective
values that are better than the current PESPlib incumbent are highlighted bold.

A., Wagner, D., Zaroliagis, C.D. (eds.) Algorithmic Methods for Railway Optimiza-
tion. pp. 3–40. Lecture Notes in Computer Science, Springer, Berlin, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-74247-0 1

6. Lindner, N., Masing, B.: On the Split Closure of the Periodic Timetabling Polytope
(2023), http://arxiv.org/abs/2306.02746

7. Masing, B., Lindner, N., Ebert, P.: Forward and Line-Based Cycle Bases
for Periodic Timetabling. Operations Research Forum 4(3), 53 (2023).
https://doi.org/10.1007/s43069-023-00229-0

8. Nachtigall, K., Opitz, J.: Solving Periodic Timetable Optimisation Problems by
Modulo Simplex Calculations. In: Fischetti, M., Widmayer, P. (eds.) 8th Work-
shop on Algorithmic Approaches for Transportation Modeling, Optimization, and
Systems (ATMOS’08). OpenAccess Series in Informatics (OASIcs), vol. 9 (2008).
https://doi.org/10.4230/OASIcs.ATMOS.2008.1588

9. Pätzold, J., Schöbel, A.: A Matching Approach for Periodic Timetabling.
In: Goerigk, M., Werneck, R. (eds.) 16th Workshop on Algorithmic Ap-
proaches for Transportation Modelling, Optimization, and Systems (ATMOS
2016). OpenAccess Series in Informatics (OASIcs), vol. 54, pp. 1:1–1:15 (2016).
https://doi.org/10.4230/OASIcs.ATMOS.2016.1

10. Schiewe, P., Goerigk, M., Lindner, N.: Introducing TimPassLib – A library for
integrated periodic timetabling and passenger routing. ZIB-Report 23-06, Zuse In-
stitute Berlin (2023), https://nbn-resolving.org/urn:nbn:de:0297-zib-89741

11. Serafini, P., Ukovich, W.: A Mathematical Model for Periodic Scheduling
Problems. SIAM Journal on Discrete Mathematics 2(4), 550–581 (1989).
https://doi.org/10.1137/0402049

https://doi.org/10.1007/978-3-540-74247-0_1
http://arxiv.org/abs/2306.02746
https://doi.org/10.1007/s43069-023-00229-0
https://doi.org/10.4230/OASIcs.ATMOS.2008.1588
https://doi.org/10.4230/OASIcs.ATMOS.2016.1
https://nbn-resolving.org/urn:nbn:de:0297-zib-89741
https://doi.org/10.1137/0402049

	Incremental Heuristics For Periodic Timetabling

