Irem Portakal (MPI MIS, Leipzig)
Thursday, October 28, 2021 - 14:00
MPI fur Mathematik in den Naturwissenschaften Leipzig
Inselstr. 22, 04103 Leipzig, E1 05 (Leibniz-Saal), 1. Etage
The toric ideal associated to a finite graph is obtained by taking the kernel of the monomial map that is defined by the edges of the graph. Equivalently one obtains a toric variety by defining edge cones (or edge polytopes) where the extremal rays (or vertices) are the columns of the incidence matrix of the graph. In this talk, we explain the interplay between graphs and their associated toric varieties appearing in different areas such as Fano, (matrix) Schubert and Kazhdan-Lusztig varieties.
submitted by Saskia Gutzschebauch (, 0341 9959 50)