Busra Sert (TU Dresden)

Spectrahedral representability and Matroids

Programm / Abstract:
For each hyperbolic polynomial h, there is an associated closed convex cone called the hyperbolicity cone of h, whose interior contains all the directions e for which h is hyperbolic. Moreover, a convex cone is called spectrahedral, if it can be described by linear matrix inequalities with symmetric matrices. Is every hyperbolicity cone spectrahedral? This is the question generalized Lax conjecture considers and posits. Choe et. al. in 2004 showed that the support of each homogeneous multiaffine polynomial with the half-plane property (such a polynomial is hyperbolic) is the collection of bases of some matroid M. Their result lets us switch to the combinatorial world, search for matroids corresponding to a hyperbolic polynomial, and consider the spectrahedral representability in that setting. In this talk, we take this matroid theoretic approach, and present our results on the spectrahedral representability being closed under taking minors. We continue with the classification of matroids on 8 elements with respect to the half-plane property.

Zeit:
am Freitag den 30. Juli 2021 um 10:00

Ort:
MPI fur Mathematik in den Naturwissenschaften Leipzig
Inselstr. 22
04103 Leipzig
E1 05 (Leibniz-Saal) 1. Etage

eingetragen von Saskia Gutzschebauch(Saskia.Gutzschebauch@mis.mpg.de, 0341 9959 50)

zurück zum Kalender               Mathematics Calendar of the AMS